Constructive Taxonomy

Joan Rand Moschovakis (with results by Garyfallia Vafeiadou)

MPLA and Occidental College

Amsterdam September 7, 2012

How can reverse constructive mathematics be unified?

S. Simpson: The goal of **classical reverse mathematics** is to determine which set existence axioms are needed to prove a particular theorem of "ordinary" (classical) mathematics [**CLASS**].

D. Bridges: Constructive reverse mathematics asks

- 1. Which constructive principles are needed to prove particular theorems of Bishop's constructive mathematics [**BISH**]?
- 2. Which nonconstructive principles must be added to BISH to prove particular classical theorems?

W. Veldman: **Intuitionistic reverse mathematics** asks which intuitionistic axioms are needed to prove a particular theorem of intuitionistic analysis **[INT]**.

(A. S. Troelstra, M. Beeson): **Russian reverse mathematics** asks which theorems of **RUSS** depend on one or both of (Extended) Church's Thesis (E)CT₀ and Markov's Principle MP₀: "If a recursive algorithm cannot fail to converge, then it converges?"

The Three Main Varieties of Constructive Mathematics:

INT, RUSS and BISH are all concerned with natural numbers (also coding rationals) and sequences of numbers (also coding reals). All use intuitionistic (not classical) logic and accept full mathematical induction and definition of functions by primitive recursion.

For analysis, **BISH** \subseteq **CLASS** \cap **INT** \cap **RUSS** but no two of CLASS, INT and RUSS are fully compatible, e.g. the axiomatic form $\forall \alpha \exists e \forall x \ (\alpha(x) = \{e\}(x))$ of Church's Thesis is accepted by RUSS and consistent with BISH, but inconsistent with INT and CLASS. But INT is consistent with $\forall \alpha \neg \neg \exists e \forall x \ (\alpha(x) = \{e\}(x))$, and all three constructive varieties respect **Church's Rule**: *Only general recursive functions can be proved to exist.*

Markov's Principle, which can be thought of as saying that all integers are standard, is accepted by only RUSS and CLASS but consistent with INT and BISH. All four respect **Markov's Rule**.

Classical reasoning can be rendered intuitionistically using double negations, including Krauss' classical quantifiers $\forall \neg \neg$ and $\neg \neg \exists$.

Working Hypothesis: The goal of reverse constructive analysis is to determine which *function existence axioms* are needed to prove particular theorems of INT, RUSS and BISH about N, N^N, 2^N, R, 2^R, N^R, R^R, R^N, ... using intuitionistic logic, and which additional theorems are provable in *consistent classical extensions* (e.g. using Markov's Principle). **Language, logic and basic axioms:** First we need to specify a formal language, with intuitionistic logic and a common core of mathematical axioms built on a primitive recursive foundation. Two general principles expressible in the language may then be called **constructively equivalent** if each can be derived from (instances of) the other using the logic and the common axioms.

RUSS can be formalized in the language of arithmetic, and BISH or INT in a two-sorted language – but only at the cost of arbitrary assumptions about the *representation* of functions from N^N to N.

Two highly developed formal systems for intuitionistic analysis (Kleene and Vesley's **FIM**, Troelstra's **EL** + BI + CC) have been in use for decades as BISH was developing informally. Veldman's **BIM** and Ishihara's **EL**_{ELEM} provide alternative minimal systems. All are two-sorted, with variables for numbers and sequences.

For the common core we choose a three-sorted system M_2 whose restriction M_1 to the two-sorted language is already familiar.

Logic: three-sorted intuitionistic logic with number-theoretic equality. Equality between functions is defined extensionally: $\alpha = \beta$ abbreviates $\forall x(\alpha(x) = \beta(x))$ and $\Phi = \Psi$ abbreviates $\forall \alpha(\Phi(\alpha) = \Psi(\alpha))$. Extensional equality axioms are assumed.

Terms s,t,... (of type 0), and **functors** u,v,... of type 1 and U,V,... of type 2 are defined from the variables and primitive recursive function constants using application and Church's λ . If U and v are functors and s is a term, then for example

- U(v) + v(s) is a term,
- $\lambda x.(U(v) + v(x))$ is a functor of type 1, and
- $\lambda \alpha . (U(\alpha) + \alpha(s))$ is a functor of type 2.

If t is a term and x a number variable, we write t(x) for t, and t(s) for the result of substituting s for every free occurrence of x in t. Similarly for U(α), U(v). The λ -conversion axiom schemas are

- $(\lambda x.t(x))(s) = t(s)$, and
- $(\lambda \alpha. U(\alpha))(v) = U(v).$

Mathematical axioms for the common constructive core: First consider the familiar two-sorted minimal systems

EL (Troelstra) based on a generous two-sorted primitive recursive Heyting arithmetic HA₁, with full mathematical induction: A(0) ∧ ∀x(A(x) → A(x + 1)) → A(x) for all A(x).

EL assumes quantifier-free countable choice qf-AC₀₀:

$$\forall x \exists y A(x, y) \to \exists \alpha \forall x A(x, \alpha(x))$$

where A(x, y) is quantifier-free and has no free α .

- M₁ (Kleene, Vesley, JRM) based on a frugal two-sorted intuitionistic arithmetic IA₁ with full mathematical induction.
 M assumes assume bla function communication AC
 - M_1 assumes countable function comprehension $AC_{00}!$:

$$\forall x \exists ! y A(x, y) \to \exists \alpha \forall x A(x, \alpha(x))$$

for every formula A(x, y) with α and x free for y, where $\exists ! yB(y)$ abbreviates $\exists yB(y) \& \forall y \forall z(B(y) \& B(z) \rightarrow y = z)$.

Proposition 1. M_1 proves qf-AC₀₀ and

 $\mathsf{CF}_0: \qquad \forall x (A(x) \lor \neg A(x)) \to \exists \chi \forall x (\chi(x) = 0 \leftrightarrow A(x)),$

where χ is not free in A(x). **M**₁ also proves

 $\mathsf{AC}_{01}!: \qquad \forall x \exists ! \alpha A(x, \alpha) \to \exists \beta \forall x A(x, \lambda y. \beta(x, y)),$

where β, x are free for α in $A(x, \alpha)$ and $\beta(x, y) \equiv \beta(2^x \cdot 3^y)$.

Theorem 2. (G. Vafeiadou)

- (a) **EL** does *not* prove CF_0 . That is, **EL** cannot prove that every detachable subset of **N** has a characteristic function.
- (b) $\mathbf{EL} + CF_0$ proves $AC_{00}!$.

Let \mathbf{EL}^+ be the definitional extension of \mathbf{EL} including symbols and defining axioms for the finitely many constants of \mathbf{M}_1 . Then

(c) EL^+ is a conservative extension of the theory M_1^- obtained by replacing $AC_{00}!$ by qf- AC_{00} .

(d) $\mathbf{EL}^+ + CF_0$ is a conservative extension of \mathbf{M}_1 .

The relation of **BIM** to M_1 is a only a little more complicated.

Does countable choice belong in the constructive core? Brouwer and Bishop accepted countable choice but not all constructivists do. Reverse constructive analysis treats it as an *optional* function existence principle. Unlike "unique choice," countable choice has many nonequivalent forms, e.g.:

The maximal classically correct subsystem **B** of Kleene and Vesley's two-sorted system **FIM** for intuitionistic analysis includes an axiom schema of bar induction and replaces AC_{00} ! by **countable choice:**

 $\mathsf{AC}_{01}: \qquad \forall x \exists \alpha A(x, \alpha) \to \exists \beta \forall x A(x, \lambda y. \beta(x, y)).$

Over IA₁, AC₀₁ is stronger than its consequence AC₀₀: $\forall x \exists y A(x, y) \rightarrow \exists \alpha \forall x A(x, \alpha(x)).$

A curious variation on countable choice, which follows from AC_{00} and is interderivable with $AC_{00}! + \neg \neg AC_{00}$ over IA_1 , is $AC_{00}!!$: $\forall x \exists y A(x, y) \& \forall \alpha \forall \beta [\forall x A(x, \alpha(x)) \& \forall x A(x, \beta(x)) \rightarrow \alpha = \beta]$ $\rightarrow \exists \alpha \forall x A(x, \alpha(x)).$ Why "unique choice" belongs in the constructive common core: Kleene's choice of AC_{00} ! (rather than qf- AC_{00} or AC_{01}) as the minimal function existence principle for M_1 allowed him to formalize the theory of recursive functionals using finitely many primitive recursive function and functional constants and to exploit the difference between classical and intuitionistic logic.

- ► IA₁ + qf-AC₀₀ and EL have natural classical models in which the type-1 variables range over all general recursive functions.
- ► IA₁ + AC₀₀! (i.e. M₁) and EL + CF₀ do not, since with classical logic, CF₀ gives full comprehension for all properties of numbers expressible in the language.
- However, M₁ and EL + CF₀ only prove the existence of general recursive functions.
- Classical logic does not distinguish between AC₀₀ and AC₀₀!, since if any witness exists, so does the unique least witness.
- ▶ However, **M**₁ does not prove AC₀₀. (S. Weinstein [1979])

 AC_{00} can be decomposed into a *bounded choice schema* BC_{00} : $\forall x \exists y \leq \beta(x)A(x, y) \rightarrow \exists \alpha \forall xA(x, \alpha(x))$

and a bounding axiom schema **AB**₀₀:

 $\forall x \exists y A(x, y) \rightarrow \exists \beta \forall x \exists y \leq \beta(x) A(x, y).$

Proposition 3. (a) $IA_1 + BC_{00}$ proves CF_0 .

- (b) $IA_1 + AB_{00}$ proves qf-AC₀₀, so $M_1 \subseteq IA_1 + CF_0 + AB_{00}$.
- (c) $\mathbf{IA}_1 + AB_{00} + BC_{00} = \mathbf{IA}_1 + AC_{00} = \mathbf{M} + AC_{00}$.
- (d) $IA_1 + AB_{00}$ proves that every Cauchy sequence of reals has a modulus of convergence (important for constructive analysis).
- Theorem 4. (a) $IA_1 + BC_{00}$ does not prove AB_{00} or qf- AC_{00} (by classical model of primitive recursively bounded sequences).
- (b) $\boldsymbol{\mathsf{M}}_1$ does not prove BC_{00} (by Weinstein's Kripke model),
- (c) $M_1 + AB_{00}$ does not prove BC_{00} (J. van Oosten, using Lifschitz realizability).

Challenge: Does $M_1 + BC_{00}$ prove AB_{00} ?

Our three-sorted minimal theory M_2 , extending M_1 , also has a type-2 function comprehension axiom schema

 $\mathsf{AC}_{10}!: \qquad \forall \alpha \exists ! \mathit{mA}(\alpha, \mathit{m}) \to \exists \Phi \forall \alpha \mathit{A}(\alpha, \Phi(\alpha))$

which entails AC₀₀! and qf-AC₁₀, guarantees the existence of type-2 general recursive functions and provides a characteristic function for each detachable subset of $\mathbf{N}^{\mathbf{N}}$. That is, \mathbf{M}_2 proves

$$\mathbf{CF}_1: \quad \forall \alpha (A(\alpha) \lor \neg A(\alpha)) \to \exists \Theta \forall \alpha (\Theta(\alpha) = \mathbf{0} \leftrightarrow A(\alpha)).$$

Proposition 5. (GV) Let M_2^- be the theory resulting from M_2 by replacing AC₁₀! by qf-AC₁₀ (or equivalently by qf-AC₁₀!). Then

(a)
$$\mathbf{M}_2 = \mathbf{M}_2^- + CF_1$$
.

- (b) $HA_2 + qf-AC_{10} + CF_1$ entails $AC_{10}!$, where HA_2 has symbols and axioms for all primitive recursive functions of type 2, with extensional equality.
- (c) CF₁ is not provable in M_2^- or in $HA_2 + qf-AC_{10}$.

In the two-sorted language, Kleene expressed continuous choice in terms of an intelligent modulus of continuity for a choice functional. "Weak continuity" and "continuous non-choice" partially separated the roles of continuity and choice. In the three-sorted language, continuous choice can be naturally decomposed into a classically correct choice axiom schema **AC**₁₀: $\forall \alpha \exists y \ A(\alpha, y) \rightarrow \exists \Psi \forall \alpha A(\alpha, \Psi(\alpha))$ and an intuitionistic continuity principle $\forall \Phi Cont(\Phi)$. In turn, AC_{10} can be decomposed into a bounded choice schema $\forall \alpha \exists y \leq \Phi(\alpha) \ A(\alpha, y) \rightarrow \exists \Psi \forall \alpha A(\alpha, \Psi(\alpha))$ **BC**₁₀: and a bounding axiom schema

$$\mathsf{AB}_{10}: \qquad \forall \alpha \exists y \mathsf{A}(\alpha, y) \to \exists \Phi \forall \alpha \exists y \leq \Phi(\alpha) \mathsf{A}(\alpha, y).$$

 AB_{10} guarantees that every continuous functional has a modulus of continuity, but the modulus is not required to code the functional.

Challenge: Does $M_2 + BC_{10}$ prove AB_{10} ?

Kleene specified some primitive recursive coding:

- $(y_0, \ldots, y_n) = 2^{y_0} \cdot \ldots \cdot p_n^{y_n}$ where p_n is the *n*th prime.
- $(y)_n$ is the exponent of p_n in the prime factorization of y.
- Ih(y) = Σ_{n<y}sg((y)_n) (the number of nonzero exponents in the prime factorization of y).

•
$$Seq(y) \equiv \forall n < lh(y)(y)_n > 0.$$

$$\blacktriangleright \langle \rangle = 1 \text{ and } \langle x_0, \dots, x_n \rangle = (x_0 + 1, \dots, x_n + 1).$$

* denotes concatenation of sequence numbers.

•
$$\overline{\alpha}(0) = \langle \rangle$$
 and $\overline{\alpha}(y+1) = \langle \alpha(0), \dots, \alpha(y) \rangle$.

In the three-sorted language, countable choice can be stated \mathbf{AC}_{02} : $\forall x \exists \Phi A(x, \Phi) \rightarrow \exists \Psi \forall x A(x, (\lambda \beta. \Psi(\lambda t. x, \beta)))$ where $\Psi(\alpha, \beta) \equiv \Psi(\lambda t. (\alpha(t), \beta(t))) \equiv \Psi(\lambda t. (2^{\alpha(t)} \cdot 3^{\beta(t)})).$

Challenge: Show that M_2 does not prove AC_{02} .

As Kohlenbach [2002] observed, continuity properties of functionals can be directly expressed in the three-sorted language, for example

- " Φ is (pointwise) continuous at α " by $Cont_{\alpha}(\Phi)$: $\exists y \forall \beta [\overline{\beta}(y) = \overline{\alpha}(y) \rightarrow \Phi(\beta) = \Phi(\alpha)].$
- " Φ is sequentially continuous at α " by SeqCont_{α}(Φ): $\forall \beta [\forall n \overline{(\beta)_n}(n) = \overline{\alpha}(n) \rightarrow \exists n \forall m > n \Phi((\beta)_m) = \Phi(\alpha)].$
- " Φ is effectively discontinuous at α " by EffDiscont_{α}(Φ): $\forall n \exists \beta [\overline{\beta}(n) = \overline{\alpha}(n) \& \Phi(\beta) \neq \Phi(\alpha)].$
- " Φ is continuous" by Cont(Φ) $\equiv \forall \alpha Cont_{\alpha}(\Phi)$, etc.

Proposition 7. (a) IA_2 proves $\forall \alpha [Cont_{\alpha}(\Phi) \rightarrow SeqCont_{\alpha}(\Phi)]$. (b) $IA_2 + qf-AC_{00}$ proves $SeqCont(\Phi) \rightarrow \forall \beta \neg EffDiscont_{\beta}(\Phi)$. (c) $IA_2 + qf-AC_{00} + qf-(*)$ proves $SeqCont(\Phi) \rightarrow \neg \neg Cont(\Phi)$, where (*) is $\forall x \neg \neg \exists y A(x, y) \rightarrow \neg \neg \forall x \exists y A(x, y)$. qf-(*) is weaker than Markov's Principle, as $FIM + qf-(*) \not\vdash MP^{\vee}$. Kohlenbach proves SeqCont(Φ) \rightarrow Cont(Φ) in a weak classical three-sorted theory (RCA₀² = E-PRA² + qf-AC₀₀) with restricted induction.

We were unable to prove this in $IA_2 + qf-AC_{00} + MP$. However, *Proposition 8.* $IA_2 + qf-AC_{00} + \Pi_1^0$ -MP proves $SeqCont(\Phi) \rightarrow Cont(\Phi)$,

where Π_1^0 -**MP** is like Markov's Principle for Π_1^0 relations:

$$\neg \neg \exists x \forall y \alpha(x, y) = 0 \rightarrow \exists x \forall y \alpha(x, y) = 0.$$

Conjecture 9. $IA_2 + qf-AC_{00} + \forall \Phi[SeqCont(\Phi) \rightarrow Cont(\Phi)]$ does not prove Π_1^0 -MP.

Argument. The natural three-sorted intuitionistic system FIM_2 should prove $IA_2 + qf-AC_{00} + \forall \Phi Cont(\Phi)$ but not Π_1^0-MP .

Kohlenbach uses Grilliot's trick to prove that over RCA_0^2 the axiom (\exists^2): $\exists \Theta \forall \alpha (\Theta(\alpha) = 0 \leftrightarrow \exists x \alpha(x) = 0)$ is equivalent to $\exists \Phi \neg SeqCont(\Phi)$ and entails comprehension for all

three-sorted formulas with only arithmetical quantifiers.

Over \mathbf{M}_2 (with intuitionistic logic) (\exists^2) is equivalent to full Σ_1^0 -LEM, which entails the Law of Excluded Middle for all formulas of the three-sorted language having only arithmetical quantifiers, in particular $\forall \alpha [\exists x \alpha(x) \neq 0 \lor \forall x \alpha(x) = 0]$, which conflicts with INT and RUSS. Kohlenbach's article deserves a complete analysis from the constructive viewpoint.

Recent precise work by Ishihara, Josef Berger, Iris Loeb and Hannes Diener, and of course Veldman's reverse intuitionistic mathematical studies of Brouwer's bar and fan theorems, can readily be incorporated into our general framework. At the very least, Vafeiadou's precise comparison of minimal constructive formalisms helps to clarify a rapidly developing subject.

Some references:

- Kleene, S. C. and Vesley, R. E., Foundations of intuitionistic mathematics, especially in relation to recursive functions, North-Holland, Amsterdam, 1965. Also Kleene 1969.
- Kohlenbach, U., Higher order reverse mathematics, in Simpson, S. (ed.), Reverse mathematics 2001, LNL21, 2005.
- 3. Moschovakis, J. R. and Vafeiadou, G., Some axioms for constructive analysis, Arch. Math. Logic, 2012.
- 4. Troelstra, A. S. (ed.), Metamathematical investigation of intuitionistic arithmetic and analysis, Springer Lecture Notes in Math. 344, 1974.
- 5. Vafeiadou, G., Formalizing constructive analysis: a comparison of minimal systems and a study of uniqueness principles, PhD dissertation, MPLA, Athens, 2012.
- 6. Veldman, W., Brouwer's Fan Theorem as an axiom and as a contrast to Kleene's alternative, arxiiv, 2011.