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How can reverse constructive mathematics be unified?

S. Simpson: The goal of classical reverse mathematics is to
determine which set existence axioms are needed to prove a
particular theorem of “ordinary” (classical) mathematics [CLASS].

D. Bridges: Constructive reverse mathematics asks

1. Which constructive principles are needed to prove particular
theorems of Bishop’s constructive mathematics [BISH]?

2. Which nonconstructive principles must be added to BISH to
prove particular classical theorems?

W. Veldman: Intuitionistic reverse mathematics asks which
intuitionistic axioms are needed to prove a particular theorem of
intuitionistic analysis [INT].

(A. S. Troelstra, M. Beeson): Russian reverse mathematics asks
which theorems of RUSS depend on one or both of (Extended)
Church’s Thesis (E)CT0 and Markov’s Principle MP0: “If a
recursive algorithm cannot fail to converge, then it converges?”



The Three Main Varieties of Constructive Mathematics:
INT, RUSS and BISH are all concerned with natural numbers (also
coding rationals) and sequences of numbers (also coding reals). All
use intuitionistic (not classical) logic and accept full mathematical
induction and definition of functions by primitive recursion.

For analysis, BISH ( CLASS ∩ INT ∩ RUSS but no two of
CLASS, INT and RUSS are fully compatible, e.g. the axiomatic
form ∀α∃e∀x (α(x) = {e}(x)) of Church’s Thesis is accepted
by RUSS and consistent with BISH, but inconsistent with INT and
CLASS. But INT is consistent with ∀α¬¬∃e∀x (α(x) = {e}(x)),
and all three constructive varieties respect Church’s Rule: Only
general recursive functions can be proved to exist.

Markov’s Principle, which can be thought of as saying that all
integers are standard, is accepted by only RUSS and CLASS but
consistent with INT and BISH. All four respect Markov’s Rule.

Classical reasoning can be rendered intuitionistically using double
negations, including Krauss’ classical quantifiers ∀¬¬ and ¬¬∃.



Working Hypothesis: The goal of reverse constructive analysis
is to determine which function existence axioms are needed to
prove particular theorems of INT, RUSS and BISH about N, NN,
2N, R, 2R, NR, RR, RN, . . . using intuitionistic logic, and which
additional theorems are provable in consistent classical extensions
(e.g. using Markov’s Principle).



Language, logic and basic axioms: First we need to specify a
formal language, with intuitionistic logic and a common core of
mathematical axioms built on a primitive recursive foundation.
Two general principles expressible in the language may then be
called constructively equivalent if each can be derived from
(instances of) the other using the logic and the common axioms.

RUSS can be formalized in the language of arithmetic, and BISH
or INT in a two-sorted language – but only at the cost of arbitrary
assumptions about the representation of functions from NN to N.

Two highly developed formal systems for intuitionistic analysis
(Kleene and Vesley’s FIM, Troelstra’s EL + BI + CC) have been
in use for decades as BISH was developing informally. Veldman’s
BIM and Ishihara’s ELELEM provide alternative minimal systems.
All are two-sorted, with variables for numbers and sequences.

For the common core we choose a three-sorted system M2 whose
restriction M1 to the two-sorted language is already familiar.



Logic: three-sorted intuitionistic logic with number-theoretic
equality. Equality between functions is defined extensionally:
α = β abbreviates ∀x(α(x) = β(x)) and Φ = Ψ abbreviates
∀α(Φ(α) = Ψ(α)). Extensional equality axioms are assumed.

Terms s,t,. . . (of type 0), and functors u,v,. . . of type 1 and
U,V,. . . of type 2 are defined from the variables and primitive
recursive function constants using application and Church’s λ.
If U and v are functors and s is a term, then for example

I U(v) + v(s) is a term,

I λx .(U(v) + v(x)) is a functor of type 1, and

I λα.(U(α) + α(s)) is a functor of type 2.

If t is a term and x a number variable, we write t(x) for t, and t(s)
for the result of substituting s for every free occurrence of x in t.
Similarly for U(α), U(v). The λ-conversion axiom schemas are

I (λx .t(x))(s) = t(s), and

I (λα.U(α))(v) = U(v).



Mathematical axioms for the common constructive core:
First consider the familiar two-sorted minimal systems

I EL (Troelstra) based on a generous two-sorted primitive
recursive Heyting arithmetic HA1, with full mathematical
induction: A(0) ∧ ∀x(A(x) → A(x + 1)) → A(x) for all A(x).

EL assumes quantifier-free countable choice qf-AC00:

∀x∃yA(x , y) → ∃α∀xA(x , α(x))

where A(x , y) is quantifier-free and has no free α.

I M1 (Kleene, Vesley, JRM) based on a frugal two-sorted
intuitionistic arithmetic IA1 with full mathematical induction.

M1 assumes countable function comprehension AC00!:

∀x∃!yA(x , y) → ∃α∀xA(x , α(x))

for every formula A(x , y) with α and x free for y , where
∃!yB(y) abbreviates ∃yB(y) & ∀y∀z(B(y) & B(z) → y = z).



Proposition 1. M1 proves qf-AC00 and

CF0: ∀x(A(x) ∨ ¬A(x)) → ∃χ∀x(χ(x) = 0 ↔ A(x)),

where χ is not free in A(x). M1 also proves

AC01!: ∀x∃!αA(x , α) → ∃β∀xA(x , λy .β(x , y)),

where β, x are free for α in A(x , α) and β(x , y) ≡ β(2x · 3y ).

Theorem 2. (G. Vafeiadou)

(a) EL does not prove CF0. That is, EL cannot prove that every
detachable subset of N has a characteristic function.

(b) EL + CF0 proves AC00!.

Let EL+ be the definitional extension of EL including symbols and
defining axioms for the finitely many constants of M1. Then

(c) EL+ is a conservative extension of the theory M−
1 obtained by

replacing AC00! by qf-AC00.

(d) EL+ + CF0 is a conservative extension of M1.

The relation of BIM to M1 is a only a little more complicated.



Does countable choice belong in the constructive core?
Brouwer and Bishop accepted countable choice but not all
constructivists do. Reverse constructive analysis treats it as an
optional function existence principle. Unlike “unique choice,”
countable choice has many nonequivalent forms, e.g.:

The maximal classically correct subsystem B of Kleene and Vesley’s
two-sorted system FIM for intuitionistic analysis includes an axiom
schema of bar induction and replaces AC00! by countable choice:

AC01: ∀x∃αA(x , α) → ∃β∀xA(x , λy .β(x , y)).

Over IA1, AC01 is stronger than its consequence AC00:

∀x∃yA(x , y) → ∃α∀xA(x , α(x)).

A curious variation on countable choice, which follows from AC00

and is interderivable with AC00! + ¬¬ AC00 over IA1, is AC00!!:

∀x∃yA(x , y) & ∀α∀β[∀xA(x , α(x)) & ∀xA(x , β(x)) → α = β]

→ ∃α∀xA(x , α(x)).



Why “unique choice” belongs in the constructive common
core: Kleene’s choice of AC00! (rather than qf-AC00 or AC00 or
AC01) as the minimal function existence principle for M1 allowed
him to formalize the theory of recursive functionals using finitely
many primitive recursive function and functional constants and to
exploit the difference between classical and intuitionistic logic.

I IA1 + qf-AC00 and EL have natural classical models in which
the type-1 variables range over all general recursive functions.

I IA1 + AC00! (i.e. M1) and EL + CF0 do not, since with
classical logic, CF0 gives full comprehension for all properties
of numbers expressible in the language.

I However, M1 and EL + CF0 only prove the existence of
general recursive functions.

I Classical logic does not distinguish between AC00 and AC00!,
since if any witness exists, so does the unique least witness.

I However, M1 does not prove AC00. (S. Weinstein [1979])



AC00 can be decomposed into a bounded choice schema BC00:

∀x∃y ≤ β(x)A(x, y) → ∃α∀xA(x, α(x))

and a bounding axiom schema AB00:

∀x∃yA(x , y) → ∃β∀x∃y ≤ β(x)A(x , y).

Proposition 3. (a) IA1 + BC00 proves CF0.

(b) IA1 + AB00 proves qf-AC00, so M1 ⊆ IA1 + CF0 + AB00.

(c) IA1 + AB00 + BC00 = IA1 + AC00 = M + AC00.

(d) IA1 + AB00 proves that every Cauchy sequence of reals has a
modulus of convergence (important for constructive analysis).

Theorem 4. (a) IA1 + BC00 does not prove AB00 or qf-AC00 (by

classical model of primitive recursively bounded sequences).

(b) M1 does not prove BC00 (by Weinstein’s Kripke model),

(c) M1 + AB00 does not prove BC00 (J. van Oosten, using
Lifschitz realizability).

Challenge: Does M1 + BC00 prove AB00?
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Our three-sorted minimal theory M2, extending M1, also has a
type-2 function comprehension axiom schema

AC10!: ∀α∃!mA(α, m) → ∃Φ∀αA(α, Φ(α))

which entails AC00! and qf-AC10, guarantees the existence of
type-2 general recursive functions and provides a characteristic
function for each detachable subset of NN. That is, M2 proves

CF1: ∀α(A(α) ∨ ¬A(α)) → ∃Θ∀α(Θ(α) = 0 ↔ A(α)).

Proposition 5. (GV) Let M−
2 be the theory resulting from M2 by

replacing AC10! by qf-AC10 (or equivalently by qf-AC10!). Then

(a) M2 = M−
2 + CF1.

(b) HA2 + qf-AC10 + CF1 entails AC10!, where HA2 has symbols
and axioms for all primitive recursive functions of type 2, with
extensional equality.

(c) CF1 is not provable in M−
2 or in HA2 + qf-AC10.



In the two-sorted language, Kleene expressed continuous choice in
terms of an intelligent modulus of continuity for a choice
functional. “Weak continuity” and “continuous non-choice”
partially separated the roles of continuity and choice.
In the three-sorted language, continuous choice can be naturally
decomposed into a classically correct choice axiom schema

AC10: ∀α∃y A(α, y) → ∃Ψ∀αA(α, Ψ(α))

and an intuitionistic continuity principle ∀ΦCont(Φ).

In turn, AC10 can be decomposed into a bounded choice schema

BC10: ∀α∃y ≤ Φ(α) A(α, y) → ∃Ψ∀αA(α, Ψ(α))

and a bounding axiom schema

AB10: ∀α∃yA(α, y) → ∃Φ∀α∃y ≤ Φ(α) A(α, y).

AB10 guarantees that every continuous functional has a modulus of
continuity, but the modulus is not required to code the functional.

Challenge: Does M2 + BC10 prove AB10?



Kleene specified some primitive recursive coding:

I (y0, . . . , yn) = 2y0 · . . . · pyn
n where pn is the nth prime.

I (y)n is the exponent of pn in the prime factorization of y .

I lh(y) = Σn<y sg((y)n) (the number of nonzero exponents in
the prime factorization of y).

I Seq(y) ≡ ∀n < lh(y) (y)n > 0.

I 〈 〉 = 1 and 〈x0, . . . , xn〉 = (x0 + 1, . . . , xn + 1).

I ∗ denotes concatenation of sequence numbers.

I α(0) = 〈 〉 and α(y + 1) = 〈α(0), . . . , α(y)〉.
In the three-sorted language, countable choice can be stated

AC02: ∀x∃ΦA(x ,Φ) → ∃Ψ∀xA(x , (λβ.Ψ(λt.x , β)))

where Ψ(α, β) ≡ Ψ(λt.(α(t), β(t))) ≡ Ψ(λt.(2α(t) · 3β(t))).

Challenge: Show that M2 does not prove AC02.



As Kohlenbach [2002] observed, continuity properties of functionals
can be directly expressed in the three-sorted language, for example

I “Φ is (pointwise) continuous at α” by Contα(Φ):

∃y∀β[β(y) = α(y) → Φ(β) = Φ(α)].

I “Φ is sequentially continuous at α” by SeqContα(Φ):

∀β[∀n(β)n(n) = α(n) → ∃n∀m > n Φ((β)m) = Φ(α)].

I “Φ is effectively discontinuous at α” by EffDiscontα(Φ):

∀n∃β[β(n) = α(n) & Φ(β) 6= Φ(α)].

I “Φ is continuous” by Cont(Φ) ≡ ∀αContα(Φ), etc.

Proposition 7. (a) IA2 proves ∀α[Contα(Φ) → SeqContα(Φ)].

(b) IA2 + qf-AC00 proves SeqCont(Φ) → ∀β¬EffDiscontβ(Φ).

(c) IA2 + qf-AC00 + qf-(*) proves SeqCont(Φ) → ¬¬Cont(Φ),
where (*) is ∀x¬¬∃yA(x , y) → ¬¬∀x∃yA(x , y).

qf-(*) is weaker than Markov’s Principle, as FIM + qf-(*) 6 ` MP∨.



Kohlenbach proves SeqCont(Φ) → Cont(Φ) in a weak classical
three-sorted theory (RCA2

0 = E-PRA2 + qf-AC00) with restricted
induction.

We were unable to prove this in IA2 + qf-AC00 + MP. However,

Proposition 8. IA2 + qf-AC00 + Π0
1-MP proves

SeqCont(Φ) → Cont(Φ),

where Π0
1-MP is like Markov’s Principle for Π0

1 relations:

¬¬∃x∀yα(x , y) = 0 → ∃x∀yα(x , y) = 0.

Conjecture 9. IA2 + qf-AC00 + ∀Φ[SeqCont(Φ) → Cont(Φ)] does
not prove Π0

1-MP.

Argument. The natural three-sorted intuitionistic system FIM2

should prove IA2 + qf-AC00 + ∀ΦCont(Φ) but not Π0
1-MP.



Kohlenbach uses Grilliot’s trick to prove that over RCA2
0 the axiom

(∃2): ∃Θ∀α(Θ(α) = 0 ↔ ∃xα(x) = 0)

is equivalent to ∃Φ¬SeqCont(Φ) and entails comprehension for all
three-sorted formulas with only arithmetical quantifiers.

Over M2 (with intuitionistic logic) (∃2) is equivalent to full
Σ0

1-LEM, which entails the Law of Excluded Middle for all formulas
of the three-sorted language having only arithmetical quantifiers, in
particular ∀α[∃xα(x) 6= 0 ∨ ∀xα(x) = 0], which conflicts with INT
and RUSS. Kohlenbach’s article deserves a complete analysis from
the constructive viewpoint.

Recent precise work by Ishihara, Josef Berger, Iris Loeb and
Hannes Diener, and of course Veldman’s reverse intuitionistic
mathematical studies of Brouwer’s bar and fan theorems, can
readily be incorporated into our general framework. At the very
least, Vafeiadou’s precise comparison of minimal constructive
formalisms helps to clarify a rapidly developing subject.
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