Constructive set theory – an overview

Benno van den Berg Utrecht University

Heyting dag, Amsterdam, 7 September 2012

Partial history of constructive set theory

- 1967: Bishop's Foundations of constructive analysis.
- 1973: Set theories **IZF** (Friedman) and **IZF**_R (Myhill).
- 1975: Myhill, Constructive set theory. Set theory CST.
- 1977: Friedman, *Set theoretic foundations for constructive analysis.* Set theories **B**, **T**₁, **T**₂, **T**₃, **T**₄.
- 1978: Aczel, *Type-theoretic interpretation of constructive set theory*. Set theory **CZF**.

I will concentrate on IZF and CZF.

The axioms of **ZFC**

The axioms of **ZFC** are:

- Extensionality
- Pairing
- Union
- Full separation
- Infinity
- Powerset
- Replacement
- Regularity (foundation)
- Choice

Choice

Two axioms in **ZFC** imply **LEM**.

Theorem (Goodman, Myhill, Diaconescu)

The axiom of choice implies LEM.

Proof.

We use the axiom of choice in the form: every surjection has a section. Let p be any proposition. Consider the equivalence relation \sim on $\{0,1\}$ with $0 \sim 1$ iff p. Let $q: \{0,1\} \rightarrow \{0,1\}/\sim$ be the quotient map and s be its section (using choice). Then we have s([0]) = s([1]) iff p. But the former statement is decidable.

Regularity

Regularity says: every non-empty set x has an element disjoint from x.

Theorem

Regularity implies **LEM**.

Proof.

Let *p* be a proposition and consider $x = \{0 : p\} \cup \{1\}$. Regularity gives us an element $y \in x$ disjoint from *x*. We have $y = 0 \lor y = 1$ and $y = 0 \leftrightarrow p$. So *p* is decidable.

IZF_R and IZF

The set theory IZF_R is obtained from ZFC by:

- replacing classical by constructive logic.
- dropping the axiom of choice.
- reformulating regularity as set induction:

$$(\forall x) \left((\forall \in x) \varphi(y) \rightarrow \varphi(x) \right) \rightarrow (\forall x) \varphi(x)$$

The set theory **IZF** is obtained from IZF_R by strengthening replacement to the collection axiom:

$$(\forall x \in a) (\exists y) \varphi(x, y) \rightarrow (\exists b) (\forall x \in a) (\exists y \in b) \varphi(x, y).$$

In **ZF** this axiom follows from the combination of Replacement and Regularity. Constructively that is not true, and IZF and IZF_R are different theories.

Models

Much work has been done on **IZF** in the seventies and eighties, and as a consequence **IZF** is very well understood. This also due to the fact that **IZF** has a nice model theory, with topological, Heyting-valued, sheaf and realizability models; and this semantics can be formalised inside **IZF** itself.

This is not true for $IZF_R!$ In fact, this theory remains a bit mysterious.

Replacement vs collection

IZF	IZF _R		
Good semantics	No good semantics		
Does not have the set existence	Does have the set existence		
property (Friedman)	property (Myhill)		
As strong as ZF	Probably weaker than ZF		

Theorem (Friedman)

There is a double-negation translation of **ZF** into **IZF**.

Theorem (Friedman)

IZF and **IZF**_R do not have the same provably recursive functions.

Conjecture (Friedman)

IZF proves the consistency of IZF_R .

Axioms of CZF

Peter Aczel's set theory **CZF** is obtained from **IZF** by:

- Weakening full to bounded separation.
- Strengthening collection to strong collection:

$$(\forall x \in a) (\exists y) \varphi(x, y) \rightarrow (\exists b) ((\forall x \in a) (\exists y \in b) \varphi(x, y) \land (\forall y \in b) (\exists x \in a) \varphi(x, y)).$$

• Weakening powerset axiom to fullness: for any two sets *a* and *b* there is a set *c* of total relations from *a* to *b*, such that any total relation from *a* to *b* is a superset of an element of *c*.

Properties of **CZF**

- Note IZF ⊢ CZF.
- CZF can be interpreted in Martin-Löf theory (ML₁V), using a "sets as trees" interpretation (Aczel). In fact, CZF and ML₁V have the same proof-theoretic strength.
- CZF ∀ Powerset and CZF ∀ Full Separation.
- CZF is "predicative".
- CZF has a good model theory, with realizability and sheaf models formalisable in CZF itself.
- **CZF** ⊢ Exponentiation.

Exponentiation vs fullness

Let CZF_E be CZF with exponentiation instead of fullness.

CZF	CZF _E	
Good semantics	No good semantics	
Does not have the set existence	Does have the set existence	
property (Swan)	property (Rathjen)	
Dedekind reals form a set	Dedekind reals cannot be	
(Aczel)	shown to be a set (Lubarsky)	

 CZF_E and CZF do have the same strength.

Formal topology: "predicative locale theory".

Formal space: essentially Grothendieck site on a preorder.

Idea: notion of basis as primitive, other notions (like that of a point) are derived.

Basis elements: preordered set \mathbb{P} .

A downwards closed subset of $\downarrow a = \{p \in \mathbb{P} : p \leq a\}$ we call a *sieve* on *a*.

Formal space

A coverage Cov on \mathbb{P} is given by assigning to every object $a \in \mathbb{P}$ a collection Cov(a) of sieves on a such that the following axioms are satisfied:

(Maximality) The maximal sieve $\downarrow a$ belongs to Cov(a).

(Stability) If S belongs to Cov(a) and $b \le a$, then b^*S belongs to Cov(b).

(Local character) Suppose S is a sieve on a. If $R \in Cov(a)$ and all restrictions b^*S to elements $b \in R$ belong to Cov(b), then $S \in Cov(a)$.

Here $b^*S = S \cap \downarrow b$.

A pair (\mathbb{P} ,Cov) consisting of a poset \mathbb{P} and a coverage Cov on it is called a *formal topology* or a *formal space*.

The well-behaved formal spaces are those that are *set-presented*.

For example, if you want to take sheaves over a formal space and get a model of **CZF** inside **CZF**, then the formal space has to be set-presented (Grayson, Gambino).

A formal topology (\mathbb{P} , Cov) is called *set-presented*, if there is a function BCov which yields, for every $a \in \mathbb{P}$, a *small* collection of sieves BCov(a) such that:

$$S \in Cov(a) \Leftrightarrow \exists R \in BCov(a): R \subseteq S.$$

(Btw, note this is an empty condition impredicatively!)

Examples

Formal Cantor space: basic opens are finite 01-sequences, with $S \in Cov(a)$ iff there is an $n \in \mathbb{N}$ such that all extensions of a of length n belong to S.

This formal space is set-presented, by construction.

Formal Baire space: basic opens are finite sequences of natural numbers and the topology is inductively generated by:

 $\{u \ * \ \langle n \rangle \colon n \in \mathbb{N}\}$ covers u.

This defines a formal space in **CZF**.

But is it also set-presented?

A dilemma

One would hope that CZF would be a nice foundation for formal topology.

But **CZF** is unable to show that many formal spaces are set-presented. Indeed:

Theorem (BvdB-Moerdijk)

CZF cannot show that formal Baire space is set-presented.

The proof shows that "formal Baire space is set-presented" implies the consistency of **CZF**.

Solution

As far as I am aware, there are two solutions:

- Add the Regular Extension Axiom **REA** (Aczel).
- Add W-types and the Axiom of Multiple Choice (Moerdijk, Palmgren, BvdB).

Both extensions

- imply the Set Compactness Theorem which implies that all "inductively generated formal topologies" (like formal Baire space) are set-presented.
- can be interpreted in $\mathbf{ML}_{1W}\mathbf{V}$.
- indeed, have the same proof-theoretic strength as $ML_{1W}V$.
- are therefore much stronger theories than **CZF**, but are still "generalised predicative".
- have a good model theory.
- are not subsystems of IZF (or even ZF!).

Foundations of formal topology

Still, there are results in formal topology which seem to go beyond CZF + REA and CZF + WS + AMC. Several axioms have been proposed to remedy this:

- strengthenings of **REA** (Aczel).
- the set-generatedness axiom **SGA** (Aczel, Ishihara).
- the principle for non-deterministic inductive definitions NID (BvdB).
- A lot remains to be clarified!

CZF vs IZF 1

It is interesting to find differences between predicative \mbox{CZF} and impredicative $\mbox{IZF}.$

One difference is:

- CZF + LEM = ZF, which is much stronger than CZF.
- IZF + LEM = ZF, which is as strong as IZF.

Therefore:

- there can be no double-negation translation of CZF + LEM inside CZF (problem: fullness, or exponentiation).
- **CZF** cannot prove the existence of *set-presented* boolean formal spaces.

CZF vs IZF 2

Theorem (Friedman, Lubarsky, Streicher, BvdB)

There is a model of **CZF** in which the following principles hold:

- Full separation.
- The regular extension axiom **REA**.
- WS and AMC.
- The presentation axiom PAx (existence of enough projectives).
- All sets are subcountable (the surjective image of a subset of the natural numbers).
- The general uniformity principle **GUP**:

$$(\forall x) (\exists y \in a) \varphi(x, y) \rightarrow (\exists y \in a) (\forall x) \varphi(x, y).$$

The last two principles are incompatible with the power set axiom.

This model appears as the hereditarily subcountable sets in McCarty's realizability model of **IZF**.

CZF vs IZF 3

Especially GUP

$$(\forall x) (\exists y \in a) \varphi(x, y) \rightarrow (\exists y \in a) (\forall x) \varphi(x, y)$$

is interesting.

- Curi has shown it contradicts certain locale-theoretic results concerning Stone-Čech compactification, valid in IZF (or topos theory). Therefore these results fail in formal topology in CZF + REA.
- I have shown it implies that the only singletons are injective in the category of sets and functions.

Open problems

- Is a general uniformity rule a derived rule of CZF? (Jaap van Oosten)
- CZF + PAx proves the same arithmetical sentences as CZF. Is the same true for IZF + PAx and IZF? (Rathjen)
- Idem dito but for DC or RDC instead of PAx? (Beeson)

Even weaker

Friedman has observed that for developing the mathematics in Bishop's book you only need natural and set induction for bounded formulas.

Let CZF_0 be CZF with natural and set induction restricted to bounded formulas. It is related to Friedman's set theory **B**.

Theorem (Friedman, Beeson, Gordeev)

 CZF_0 is a conservative extension of HA.

But CZF_0 is probably not strong enough to do formal topology!

Table

Set theory	Arithmetical theory	Type theory
B , T ₁ , CZF ₀	PA , ACA ₀	ML ₀
CST , T ₂	$\Sigma_1^1 - AC$	ML_1
CZF, KP ω , T ₃	ID_1	ML_1V
CZF + REA, KPi	Δ_2^1 -CA + Bl	$ML_{1W}V$
$\textbf{CZF} + Full Separation, ~\textbf{T}_4$	PA ₂	System F

More open questions

- Is **CZF** conservative for arithmetical sentences over an intuitionistic version of **ID**₁?
- Is **CZF** + Full Separation conservative for arithmetical sentences over **HA**₂?
- Is it possible to give a *simple* proof of the conservativity of CZF₀ over HA?
- Crosilla and Rathjen have a system $CZF^- + INAC$ which has the same strength as ATR_0 . Is there a natural constructive set theory having the same strength as $\Pi_1^1 CA_0$?