
Incremental Reading for Question Answering

Samira Abnar∗
University of Amsterdam

s.abnar@uva.nl

Tania Bedrax-Weiss
Google

tbedrax@google.com

Tom Kwiatkowski
Google

tomkwiat@google.com

William W Cohen
Google

wcohen@google.com

Abstract

Any system which performs goal-directed continual learning must not only learn
incrementally but process and absorb information incrementally. Such a system
also has to understand when its goals have been achieved. In this paper, we consider
these issues in the context of question answering. Current state-of-the-art question
answering models reason over an entire passage, not incrementally. As we will
show, naive approaches to incremental reading, such as restriction to unidirectional
language models in the model, perform poorly. We present extensions to the DocQA
[2] model to allow incremental reading without loss of accuracy. The model also
jointly learns to provide the best answer given the text that is seen so far and predict
whether this best-so-far answer is sufficient.

1 Introduction

Humans can read and comprehend text incrementally. For instance, given a piece of text, our mental
state gets updated as we read [10]. We do not necessarily wait until the end of a long document to under-
stand its first sentence. This incremental reading mechanism allows us to avoid consuming more input if
we have already reached our goal, and is analogous to the problem faced by a goal-directed continuous
learning system, which must also incrementally absorb new information, determine how to use it, and de-
termine if its goals have been achieved. Inspired by how humans read and learn from text incrementally,
we introduce incremental models for text comprehension. Our primary goal is to address the problem
of incremental reading in the context of language comprehension and Question Answering (QA). We
formulate the problem as designing a model for question-answering that consumes text incrementally.

By design and definition, Recurrent Neural Networks (RNNs), e.g. Long Short-Term Memory
networks (LSTMs) [5], process data sequentially, and update their internal states as they read the new
tokens. However, on tasks like Question Answering, in all the existing well-performing models, RNNs
are employed in a bidirectional way, or a self-attention mechanism is employed [11, 2, 4, 8]. This
means these models need to processes the whole input sequence to compute the final answer. This
is a reasonable approach if the input sequence is as short as a sentence, but it becomes less effective
and efficient as the length of the input sequence increases.

We introduce a new incremental model based on DocQA[2], which is an RNN based model proposed
for QA. The incremental DocQA performs similarly to the original system but can process the input
text incrementally. We propose the use of slicing to build incremental models. Slicing RNNs were
introduced in [13] with the motivation of enabling parallelization and speeding up sequence processing.
Here, we explore using slicing to facilitate incremental processing of the input sequence.

∗Work done during Samira’s Internship at Google.

CL Workshop at 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

ar
X

iv
:1

90
1.

04
93

6v
1

 [
cs

.C
L

]
 1

5
Ja

n
20

19

(a) Sliced DocQA (b) Global prediction layer

(c) Step transfer

Figure 1: Sliced Models

Besides the fact that incremental reading is more plausible from the cognitive perspective, it can also
provide an inductive bias for the models, which will make it easier for them to find a more generalizable
solution [1]. Moreover, incrementality allows the model to be applied to tasks where we do not have
the whole input in the beginning, and we need to compute some intermediate outputs. E.g. when the
input is a stream, or we are in the context of a dialogue. We observed that, even if the whole input text is
available, it is not always necessary to read the whole text to answer a given question. In fact, our model
achieves its highest performance when it is limited to read only a few tokens after the answer, rather
than when it is allowed access to the entire context. Considering this, we also augment the incremental
DocQA with an “early stopping” strategy, where it stops consuming the rest of the input text as soon as it
is confident that it has found the answer. Learning to stop reading or reasoning when the goal is reached
is addressed for tasks like text classification [3] and question answering [9, 12, 6], but the main challenge
is that implementing early stopping strategies is only possible when we have an incremental model.

2 Architecture of the models

We use DocQA as the baseline model [2]. The architecture of DocQA is illustrated in Figure 4a. The
output of this model is two vectors with the length of the given context. One of the vectors indicates
the probability of each token in the context to be the start token of the answer span. The other vector
indicates the probability of each token in the context to be the end of the answer span. The gold labels
indicate the ground truth begin and end of the answer spans. DocQA is inherently bidirectional thus
making it hard to process the input incrementally. It is possible to remove the bidirectionality by
replacing the bidirectional layers with single-directional layers and replacing the global attention with
an attention layer that only attends to the past, but this change significantly reduces performance.

Sliced DocQA In order to enable the DocQA model to process the context sequence incrementally
despite having bidirectional RNN and attention layers, we use the concept of slicing [13]. We divide
the context sequence into slices and apply the model to each slice. We call this “Sliced DocQA”. We
explore different ways of using Sliced DocQA for incremental question answering.

Sliced Prediction Layer In the simple sliced model, we predict the output for each slice indepen-
dently. Thus, as the model processes each slice, it predicts whether the answer span exists in that slice or
not. We call this sliced prediction (see Figure 1a). To aggregate, we use a softmax layer on the concatena-
tion of the outputs of all slices. This architecture allows us to processes the input incrementally, but each
slice is now processed independently: i.e., when reading the second slice, the model can make no use of
what was read in the first slice. This architecture hence ignores the order of the slices. We propose two
solutions to solve this issue, discussed in more detail below. The first solution is to let the model access
all representations from all slices in the prediction layer: we call this strategy global answer prediction.
The second solution is a novel mechanism to transfer knowledge between slices called step transfer.

Global Answer Prediction While the sliced model processes the context sequence in slices, in
the last layer, we use the encoded information from all the slices of the context to predict the answer.
This means the prediction layer is not sliced. This model is illustrated in Figure 1b. Global answer

2

prediction can be made incremental by applying the prediction once for each slice, with information
from the future slices masked out.

Step Transfer To connect slices incrementally, we can transfer the knowledge between slices by
using the knowledge learned until the current slice to initialize the next slice, as illustrated in Figure
1c. Thus, at the global level we have a uni-directional RNN, but, locally, we can have bidirectional
or self-attention layers. To do this, we use encoded information from the current slice as an input to
a fully connected network to predict the initial state for the next slice.

Early Stopping These incremental models can be used to support early stopping [3, 12]. We use
a supervised approach to predict when the model should stop, with a classifier that is simply trained on
detecting whether an answer is contained in a given context or not. We train this classifier in a multi-task
framework by adding an extra objective function to the QA system. Hence, at each training step, the
model not only tries to predict an answer but also predicts whether the true answer is within the currently
processed input or not. The early stopping classifier is a two-layer fully connected neural network with
RELU activations and a sigmoid output layer. The input to this network is the average of the representa-
tions in the last layer of the current slice, and the output is a scalar indicating the probability of stopping.
At test time the overall decision as to whether to stop early is based on thresholding the cumulative sum
of these predictions, i.e. the probability of stopping at slice i is the sum of the predicted probabilities
of stopping at slices 1 to i. Equation 1 shows how we compute the loss for the early stopping model.

stop_loss=
∑
i

(predicted_stop_probi−gold_stop_labeli)2∗extra_lengthi (1)

Here extra_lengthi is a factor for scaling the early stopping loss, based on the distance from the gold
stop point, in particular: extra_length=log(max(dist_threshold,|length_read−answer_end|)).
In this equation, dist_threshold is a minimum number of tokens after which we start scaling the
loss. Thus, in case the model has not yet reached the answer and decides to stop it will be punished
more if it is too early in contrast to when it will reach the answer by reading a few extra tokens.
Similarly, if the model has already passed the answer span, the more it reads, the bigger the loss will
be. If we are in a distance less than the dist_threshold from the gold stop point, the scaling factor
is log(dist_threshold). In the end, this loss is added to the answer prediction loss to form the total
loss. If the true answer span is not before the chosen stopping point, the answer prediction loss is set
to zero for all possible answers, and the model is only trained to choose a better stopping point.

3 Experiments and Discussion

1 4 8 16 32 64 128

0.4

0.6

0.8

UniDiDocQA

DocQA

Slice Size (number of tokens)

Te
xt

-F
1

Sliced StepTransfer GlobalPrediction

Figure 2: Performance of different versions of the Sliced
DocQA with respect to different slice sizes

Task and Dataset: SQuAD We study the per-
formance of incremental models on short answer
questions answering.

We Evaluate our model on SQuAD v1 [7]
which is a reading comprehension dataset. It
contains question and context pairs, where the
answer to the question is a span in the context.
We will open source the code for reproducing the
experiments.

3.1 Experiments

We experiment with different slice sizes for Sliced DocQA in three different modes: with a sliced
prediction layer, with a sliced prediction layer and step transfer, without step transfer but with a global
prediction layer. In the sliced models, the size of each slice can play a crucial role. The extreme cases
are when the length of the slices are 1, which means we have no bidirectional layer, and when the slices
are as long as the whole sequence, which means we have a fully bidirectional model. Notice that when
slice size is 1, the sliced model with step transfer is not equivalent to the uni-directional DocQA, since
the attention layer is implemented differently.

Effect of slice size Figure 2 shows the performance of the Sliced DocQA models with respect to
different slice sizes. With a sliced prediction layer, as expected, increasing the slice size leads to an
increase in the performance. In this case, having a slice size of 1 means to predict the answer based on
single word representations and still, we can get an accuracy of 31%. We can explain this by the fact

3

(a) Distribution of consumed length of the se-
quence.

(b) Ratio of consumed context per full context length for the
early stopping model.

Figure 3: Earlystopping Results (For the earlystopping model slice size is 128).

that 30% of answers in the SQuAD are single words, e.g. when the questions are of type when, where
or who. We expect to find a slice size for which the performance of the model reaches the performance
of the complete, not sliced, model. This is because, only local attention might be enough to correctly
understand the meaning of the input sequence at each step, and also to predict whether each token is
part of the answer or not. We observe that by slice size = 32, the model already reaches the performance
of the uni-directional DocQA, and by slice size = 128 it almost reaches the performance of the normal
DocQA. The interesting finding here is that there is a limit to which increasing the slice size leads to
an increase in the performance, e.g. for the SQuAD, as soon as the slice size reaches 128 tokens, the
increase in the performance is almost not noticeable.

Step transfer is useful When we have a step transfer mechanism, we observe that for each slice size,
the performance of the model is higher. This means transferring knowledge between slices is useful.
Among these models, the Sliced DocQA with step transfer models incremental comprehension and we
see that for a slice size of 64 its performance is comparable with normal DocQA.

Global answer prediction is effective Surprisingly, with the global prediction layer, the effect of
the slice size is much less. In general, when we have a global prediction layer, the performance of the
model with all slice sizes is higher than when we have a sliced prediction layer. It is interesting to see
that in this model, even with slice size of 1, which means using word embeddings to predict the answer
span, we still get a performance close to when we have larger slice sizes.

Slice size 32 64 128

Sliced DocQA w/o early stopping 0.76 0.77 0.78

Sliced DocQA w early stopping 0.54 (%71) 0.69(%90) 0.77 (%99)
Table 1: Performance of Sliced DocQA with step transfer and early stopping in terms of text-f1.

Effect of early stopping In our early stopping experiments, we employed Sliced DocQA with Step
Transfer as a truly incremental model. In Table 1, we compare the performance of this model with
different slice sizes. As it can be seen, at slice size of 128 it almost achieves the performance of the
model without early stopping (%99). Next, we investigate whether the early stopping model is more
efficient regarding the number of read tokens. We looked into the performance of the model without
early stopping at different context length to find the earliest point at which the model achieves its
highest performance. This can be assumed as an oracle for early stopping model (i.e. best possible
stopping point). In Figure 3a we compare the distribution of best stopping points with the stopping
points of our early stopping model. We observe that (1)For a large number of examples, we have to
read the full context to achieve the best performance. (2)For some examples, the early stopping model
is reading more than it should, and for some, it stops earlier than it should. (3)In general, while with the
best stopping offsets we can read about %15 less text, our model reads about %8 less. We also studied
if there is a correlation between the context length and the ratio of read context length. In Figure 3b, we
see for context length up to 128, we read full context, which is because our slice size is 128. After that
point, we see the trend of reading smaller ratio of longer contexts.

Conclusion
In this paper, we propose a model that reads and comprehends text incrementally. As a testbed for
our approach, we have chosen the question answering task. We aim to build a model that can learn

4

incrementally from text, where the learning goal is to answer a given question. In standard question
answering, we do not care how the context is presented to the model, and for the models that achieve
state of the art results, e.g. [11, 2], they process the full context before making any decisions. We
show that it is possible to modify these models to be incremental while achieving similar performance.
Having an incremental model, allows us to employ an early stopping strategy where the model avoids
reading the rest of the text as soon as it reaches a state where it thinks it has the answer.

References
[1] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zam-

baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

[2] Christopher Clark and Matt Gardner. Simple and effective multi-paragraph reading comprehen-
sion. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 845–855. Association for Computational Linguistics, 2018.

[3] Gabriel Dulac-Arnold, Ludovic Denoyer, and Patrick Gallinari. Text classification: A sequential
reading approach. In European Conference on Information Retrieval, pages 411–423. Springer,
2011.

[4] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Advances in
Neural Information Processing Systems, pages 1693–1701, 2015.

[5] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[6] Alexander Rosenberg Johansen and Richard Socher. Learning when to skim and when to read.
arXiv preprint arXiv:1712.05483, 2017.

[7] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2383–2392. Association for Computational Linguistics,
2016.

[8] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[9] Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. Reasonet: Learning to stop
reading in machine comprehension. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1047–1055. ACM, 2017.

[10] Matthew J Traxler, Michael D Bybee, and Martin J Pickering. Influence of connectives on
language comprehension: eye tracking evidence for incremental interpretation. The Quarterly
Journal of Experimental Psychology: Section A, 50(3):481–497, 1997.

[11] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. arXiv preprint arXiv:1804.09541, 2018.

[12] Adams Wei Yu, Hongrae Lee, and Quoc Le. Learning to skim text. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1880–1890. Association for Computational Linguistics, 2017.

[13] Zeping Yu and Gongshen Liu. Sliced recurrent neural networks. In COLING, 2018.

5

Appendix

3.2 Architecture of Baseline Models

(a) DocQA (b) Uni-directional DocQA

Figure 4: Architecture of Baseline Models. In these figures qi refers to question tokens, ci refers to context tokens, and si
and ei refer to probability of each token being the start and end of the answer span.

6

	1 Introduction
	2 Architecture of the models
	3 Experiments and Discussion
	3.1 Experiments
	3.2 Architecture of Baseline Models

