Evidence from conditional antecedents suggests that semantic content is remarkably fine-grained.

If switch B was up, or switches A and B were up, the light would be on.

References

Hurford’s constraint

1. If switch B was up, or switches A and B were up, the light would be on.
2. # If John were from Paris or France, he would speak French.

(2) violates Hurford’s constraint

• Typical explained in terms of redundancy (Simons, 2001; Katzir and Singh, 2013; Meyer, 2013, 2014; Ciarrell et al., 2017)

Why does (1) not violate Hurford’s constraint?

Exclusion

(3) \(\text{exh}(P, \text{alt}) = P \land \exists Q \in \text{alt} : \neg(P \rightarrow Q) \rightarrow \neg Q \)

(4) \(\text{alt}(B \lor (A \land B)) = \{A, B\} \)

(5) \(\text{exh}(B) \lor \text{exh}(A \land B) = (B \land \neg A) \lor (A \land B) \)

1. If switch B was up, or switches A and B were up, the light would be on.
2. If switch B was up but not A, the light would be on.

Semantic frameworks

• Possible worlds (Stalnaker, 1968; Lewis, 1973): \((B \lor (A \land B)) = \{B\} \)
• Inquisitive semantics (Ciarrelli et al., 2018): \((B \lor (A \land B)) = \{B\} \)
• Alternative semantics (Alonso-Ovalle, 2009): \((B \lor (A \land B)) = \{|B|, |A \land B|\} \neq \{|B|\} = \{|B|\}
• Truthmaker semantics (Fine, 2012)

Counterfactual exhaustification

(7) "If (B up, or A and B up)"

(8) a. \(\text{exh}_0((\text{switch B is up}) \land \neg ((\text{switch B is up}) \land (\text{nothing happened to switch A}))) \)

b. Switch B is up, and nothing happened to switch A

c. \(\forall w \in f((\text{switch B is up}, w) : \text{switch B is up in } w, \text{ and } w \text{ agrees with } w \text{ on the position of switch B}) \)