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Preface

In The Graduate, Benjamin Braddock (Dustin Hoffman) is told that the future can be summed
up in one word: “Plastics”. I still recall that in roughly 1990, Judea Pearl told me (and anyone
else who would listen!) that the future was in causality. I credit Judea with inspiring my in-
terest in causality. We ended up writing a paper on actual causality that forms the basis of this
book. I was fortunate to have other coauthors who helped me on my (still ongoing) journey
to a deeper understanding of causality and related notions, particularly Hana Chockler, Chris
Hitchcock, and Tobi Gerstenberg. Our joint work features prominently in this book as well.

I thank Sander Beckers for extended email discussions on causality, Robert Maxton for
his careful proofreading, and Chris Hitchcock, David Lagnado, Jonathan Livengood, Robert
Maxton, and Laurie Paul, for their terrific comments on earlier drafts of the book. Of course,
I am completely responsible for any errors that remain.

My work on causality has been funded in part by the NSF, AFOSR, and ARO; an NSF
grant for work on Causal Databases was particularly helpful.
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Chapter 1

Introduction and Overview

Felix qui potuit rerum cognoscere causas. (Happy is one who could understand
the causes of things.)

Virgil, Georgics ii.490

Causality plays a central role in the way people structure the world. People constantly seek
causal explanations for their observations. Why is my friend depressed? Why won’t that file
display properly on my computer? Why are the bees suddenly dying?

Philosophers have typically distinguished two notions of causality, which they have called
type causality (sometimes called general causality) and actual causality (sometimes called
token causality or specific causality; I use the term “actual causality” throughout the book).
Type causality is perhaps what scientists are most concerned with. These are general state-
ments, such as “smoking causes lung cancer” and “printing money causes inflation”. By way
of contrast, actual causality focuses on particular events: “the fact that David smoked like a
chimney for 30 years caused him to get cancer last year”; “the fact that an asteroid struck the
Yucatan Peninsula roughly 66 million years ago caused the extinction of the dinosaurs”; “the
car’s faulty brakes caused the accident (not the pouring rain or the driver’s drunkenness)”.

The reason that scientists are interested in type causality is that a statement of type causality
allows them to make predictions: “if you smoke a lot, you will get (or, perhaps better, are
likely to get) lung cancer”; “if a government prints $1 billion, they are likely to see 3%
inflation”. Because actual causality talks about specific instances, it is less useful for making
predictions, although it still may be useful in understanding how we can prevent outcomes
similar to that specific instance in the future. We may be interested in knowing that Robert’s
sleeping in caused him to miss the appointment, because it suggests that getting him a good
alarm clock would be useful.

Actual causality is also a critical component of blame and responsibility assignment. That
is perhaps why it arises so frequently in the law. In the law, we often know the relevant facts
but still need to determine causality. David really did smoke and he really did die of lung
cancer; the question is whether David’s smoking was the cause of him dying of lung cancer.
Similarly, the car had faulty brakes, it was pouring rain, and the driver was drunk. Were the
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2 Chapter 1. Introduction and Overview

faulty brakes the cause of the accident? Or was it the rain or the driver’s drunkenness? Of
course, as the dinosaur-extinction example shows, questions of actual causality can also be
of great interest to scientists. And issues of type causality are clearly relevant in the law as
well. A jury is hardly likely to award large damages to David’s wife if they do not believe that
smoking causes cancer.

As these examples show, type causality is typically forward-looking and used for predic-
tion. Actual causality, in contrast, is more often backward-looking. With actual causality, we
know the outcome (David died of lung cancer; there was a car accident), and we retrospec-
tively ask why it occurred. Type causality and actual causality are both of great interest and
are clearly intertwined; however, as its title suggests, in this book, I focus almost exclusively
on actual causality and notions related to it.

Most of the book focuses on how to define these notions. What does it mean to say that
the faulty brakes were the cause of the accident and not the driver’s drunkenness? What does
it mean to say that one voter is more responsible than another for the outcome of an election?
Defining causality is surprisingly difficult; there have been many attempts to do so, going
back to Aristotle. The goal is to get a definition that matches our natural language usage of
the word “causality” (and related words such as “responsibility” and “blame”) and is also
useful, so that it can be used, for example, to provide guidance to a jury when deciding a legal
case, to help a computer scientist decide which line in a program is the cause of the program
crashing, and to help an economist in determining whether instituting an austerity program
caused a depression a year later.

The modern view of causality arguably dates back to Hume. (For the exact citation, see
the notes at the end of this chapter.) Hume wrote:

We may define a cause to be an object followed by another, and where all the
objects, similar to the first, are followed by objects similar to the second. Or, in
other words, where, if the first object had not been, the second never had existed.

Although Hume says “in other words”, he seems to be conflating two quite different notions of
causality here. The first has been called the regularity definition. According to this definition,
we can discern causality by considering just what actually happens, specifically, which events
precede others. Roughly speaking, A causes B if As typically precede Bs. (Note that this is
type causality.)

By way of contrast, the second notion involves counterfactuals, statements counter to fact.
It does not consider just what actually happened but also what might have happened, had
things been different. Research in psychology has shown that such counterfactual thinking
plays a key role in determining causality. People really do consider “what might have been”
as well as “what was”.

A recent experiment illustrates this nicely. Compare Figures 1.1(a) and (b). In both, ball
A is heading toward a goal. In Figure 1.1(a), its path is blocked by a brick; in Figure 1.1(b),
it is not blocked. Now ball B hits A. As a result, instead of going straight toward the goal,
A banks off the wall and goes into the goal. In both figures, the same thing happens: B hits
A, then A banks off the wall and goes into the goal. But when people are asked whether B
hitting A caused A to go into the goal, they typically answer “yes” for Figure 1.1(a) and “no”
for Figure 1.1(b). Thus, they are clearly taking the counterfactual (what would have happened
had A not hit B) into account when they answer the question.
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(a) Brick would have blocked ball A.
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(b) Brick would not have blocked ball A.
Figure 1.1: Considering counterfactuals.

There have been many definitions of causality that involve counterfactuals. In this book, I
consider only one of them (although it comes in three variants), which Judea Pearl and I de-
veloped; this has been called the Halpern-Pearl definition; I call it simply the “HP definition”
throughout this book. I focus on this definition partly because it is the one that I like best and
am most familiar with. But it has a further advantage that is quite relevant to the purposes
of this book: it has been extended to deal with notions such as responsibility, blame, and ex-
planation. That said, many of the points that I make for the HP definition can be extended to
other approaches to causality involving counterfactuals.

Pretty much all approaches involving counterfactuals take as their starting point what has
been called in the law the “but-for” test. A is a cause of B if, but for A, B would not have
happened. Put another way, this says that the occurrence of A is necessary for the occurrence
of B. Had A not occurred, B would not have occurred. When we say that A caused B, we
invariably require (among other things) that A and B both occurred, so when we contemplate
A not happening, we are considering a counterfactual. This kind of counterfactual reasoning
clearly applies in the example above. In Figure 1.1(a), had A not hit B, B would not have
landed in the goal, so A hitting B is viewed as a cause of B going in the goal. In contrast, in
Figure 1.1(b), B would have gone in the goal even if it had not been hit by A, so A hitting B
is not viewed as a cause of B going in the goal.

But the but-for test is not always enough to determine causality. Consider the following
story, to which I will return frequently:

Suzy and Billy both pick up rocks and throw them at a bottle. Suzy’s rock
gets there first, shattering the bottle. Because both throws are perfectly accu-
rate, Billy’s would have shattered the bottle had it not been preempted by Suzy’s
throw.

Here the but-for test fails. Even if Suzy hadn’t thrown, the bottle would have shattered.
Nevertheless, we want to call Suzy’s throw a cause of the bottle shattering and do not want to
call Billy’s throw a cause.

The HP definition deals with this problem by allowing the but-for test to be applied under
certain contingencies. In the case of Suzy and Billy, we consider the contingency where Billy
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4 Chapter 1. Introduction and Overview

does not throw a rock. Clearly, if Billy does not throw, then had Suzy not thrown, the bottle
would not have shattered.

There is an obvious problem with this solution: we can also consider the contingency
where Suzy does not throw. Then the but-for definition would say that Billy’s throw is also
a cause of the bottle shattering. But this is certainly not what most people would say. After
all, it was Suzy’s rock that hit the bottle (duh . . . ). To capture the “duh” reaction, the defini-
tion of causality needs another clause. Roughly speaking, it says that, under the appropriate
contingencies, Suzy’s throw is sufficient for the bottle to shatter. By requiring sufficiency to
hold under an appropriate set of contingencies, which takes into account what actually hap-
pened (in particular, that Billy’s rock didn’t hit the bottle), we can declare Suzy’s throw to be
a cause but not Billy’s throw. Making this precise in a way that does not fall prey to numerous
counterexamples is surprisingly difficult.

I conclude this introduction with a brief overview of the rest of the book. In the next chap-
ter, I carefully formalize the HP definition. Doing so requires me to introduce the notion of
structural equations. The definition involves a number of technical details; I try to introduce
them as gently as possible. I then show how the definition handles the rock-throwing example
and a number of other subtle examples that have come up in the philosophy and law litera-
tures. I also show how it deals with issues of transitivity, and how it can be extended to deal
with situations where we have probabilities on outcomes.

There are several examples that the basic HP definition does not handle well. It is well
known in the psychology literature that when people evaluate causality, they take into account
considerations of normality and typicality. As Kahneman and Miller have pointed out, “[in
determining causality], an event is more likely to be undone by altering exceptional than
routine aspects of the causal chain that led to it”. In Chapter 3, I present an extension of the
basic HP definition that takes normality into account and show that the extension deals with
some of the problematic cases mentioned in Chapter 2.

The HP definition of causality is model-relative. A can be a cause of B in one model but
not in another. As a result, two opposing lawyers can disagree about whether A is a cause of B
even if they are both working with the HP definition; they are simply using different models.
This suggests that it is important to have techniques for distinguishing whether one model is
more appropriate than another. More generally, we need techniques for deciding what makes
a model “good”. These issues are the focus of Chapter 4.

For an approach to causality to be psychologically plausible, humans need to be able to
represent causal information in a reasonably compact way. For an approach to be computa-
tionally feasible, the questions asked must be computable in some reasonable time. Issues of
compact representations and computational questions are discussed in Chapter 5. In addition,
I discuss an axiomatization of the language of causality.

Causality is an all-or-nothing concept; either A is a cause of B or it is not. The HP defini-
tion would declare each voter in an 11–0 vote a cause of the outcome; it would also call each
of the six people who voted in favor of the outcome a cause in a 6–5 victory. But people tend
to view the degree of responsibility as being much lower in the first case than the second. In
Chapter 6, I show how the HP definition can be extended to provide notions of responsibility
and blame that arguably capture our intuitions in these cases.
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Notes 5

Causality and explanation are clearly closely related. If A is a cause of B, then we think
of A as providing an explanation as to why B happened. In Chapter 7, I extend the structural-
model approach to causality to provide a definition of explanation.

I conclude in Chapter 8 with some discussion of where we stand and some examples of
applications of causality.

I have tried to write this book in as modular a fashion as possible. In particular, all the
chapters following Chapter 2 can be read independently of each other, in any order, except
that Sections 4.4, 4.7, 5.2, and 6.3 depend on Section 3.2. Even in Chapter 2, the only material
that is really critical in later chapters is Sections 2.1–2.3. I have tried to make the main text in
each chapter as readable as possible. Thus, I have deferred technical proofs to a final section
in each chapter (which can be skipped without loss of continuity) and have avoided in some
cases a careful discussion of the many viewpoints on some of the more subtle issues. There are
a few proofs in the main text; these are ones that I would encourage even non-mathematical
readers to try reading, just to get comfortable with the notation and concepts. However, they
can also be skipped with no loss of continuity.

Each chapter ends with a section of notes, which provides references to material discussed
in the chapter, pointers to where more detailed discussions of the issues can be found, and,
occasionally, more detail on some material not covered in the chapter.

There has been a great deal of work on causality in philosophy, law, economics, and psy-
chology. Although I have tried to cover the highlights, the bibliography is by no means ex-
haustive. Still, I hope that there is enough material there to guide the interested reader’s
exploration of the literature.

Notes
The hypothesis that the dinosaur extinction was due to a meteor striking the earth was pro-
posed by Luis and Walter Alvarez [Alvarez et al. 1980]. While originally viewed as quite
radical, this hypothesis is getting increasing support from the evidence, including evidence of
a meteor strike in Chicxulub in the Yucatan Peninsula at the appropriate time. Pälike [2013]
provides a summary of research on the topic.

The distinction between actual causality and type causality has been related to the dis-
tinction between causes of effects—that is, the possible causes of a particular outcome—and
effects of causes—that is, the possible effects of a given event. Some have claimed that rea-
soning about actual causality is equivalent to reasoning about causes of effects, because both
typically focus on individual events (e.g., the particular outcome of interest), whereas rea-
soning about type causality is equivalent to reasoning about effects of causes, because when
thinking of effects of causes, we are typically interested in understanding whether a certain
type of behavior brings about a certain type of outcome. Although this may typically be the
case, it is clearly not always the case; Livengood [2015] gives a number of examples that
illustrate this point. Dawid [2007] argued that reasoning about effects of causes is typically
forward-looking and reasoning about causes of effects is typically backward-looking. The
idea that type causality is forward-looking and actual causality is backward-looking seems to
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6 Chapter 1. Introduction and Overview

have been first published by Hitchcock [2013], although as the work of Dawid [2007] shows,
it seems to have been in the air for a while.

The exact relationship between actual and type causality has been a matter of some debate.
Some have argued that two separate theories are needed (see, e.g., [Eells 1991; Good 1961a;
Good 1961b; Sober 1984]); others (e.g., [Hitchcock 1995]) have argued for one basic notion.
Statisticians have largely focused on type causality and effects of causes; Dawid, Faigman,
and Fienberg [2014] discuss how statistical techniques can be used for causes of effects. My
current feeling is that type causation arises from many instances of actual causation, so that
actual causation is more fundamental, but nothing in this book hinges on that.

Work on causality goes back to Aristotle [Falcon 2014]. Hume [1748] arguably started
more modern work on causality. Robinson [1962] discusses Hume’s two definitions of causal-
ity in more detail. Perhaps the best-known definition involving regularity (in the spirit of the
first sentence in the earlier Hume quotation) is due to Mackie [1974], who introduced what
has been called the INUS condition: A is a cause of B if A is an insufficient but necessary part
of a condition that is itself unnecessary but sufficient for B. The basic intuition behind this
condition is that A should be a cause of B if A is necessary and sufficient for B to happen,
but there are many counterexamples to this simple claim. Ball A hitting B is not necessary
for B to go into the goal, even in Figure 1.1(b); removing the brick would also work. Mackie
modified this basic intuition by taking A to be a cause of B if there exist X and Y such that
adding (A∧X)∨Y is necessary and sufficient for B, but neither A nor X by itself is sufficient
to entail B. If this definition is taken apart carefully, it gives us INUS:

A is, by assumption, insufficient for B (that’s the I in INUS).

A is a necessary part of condition sufficient for B, namely, A∧X (that’s the N and the
S)—A is necessary because X by itself is not sufficient. Note that A is necessary in
this A ∧X because, by assumption, X by itself is not sufficient.

A∧X is unnecessary for B (that’s the U) because there is another cause of B, namely,
Y .

Note that the notion of necessity and sufficiency used here is related to, but different from, that
used when considering counterfactual theories of causality. While Mackie’s INUS condition
is no longer viewed as an appropriate definition of causality (e.g., it has trouble with cases
of preemption such as the rock-throwing example, where there is a backup ready to bring
about the outcome in case what we would like to call the actual cause fails to do so), work
on defining causality in terms of regularity still continues; Baumgartner [2013] and Strevens
[2009] are recent exemplars.

I make no attempt to do justice to all the alternative approaches to defining causality; my
focus is just the HP definition, which was introduced in [Halpern and Pearl 2001; Halpern and
Pearl 2005a]. As I said, the HP definition is formalized carefully in Chapter 2. There is some
discussion of alternative approaches to defining causality in the notes to Chapter 2. Paul and
Hall [2013] provide a good overview of work on causality, along with a critical analysis of
the strengths and weaknesses of various approaches.

The experiment with ball B hitting ball A is discussed by Gerstenberg, Goodman,
Lagnado, and Tenenbaum [2014]. Figure 1.1 is taken from their paper (which also reports
on a number of other related experiments).
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Notes 7

The rock-throwing example is due to Lewis [2000]. It is but one of many examples of
preemption in both the law and philosophy literatures.

Hart and Honoré [1985] discuss the but-for condition and, more generally, the use of actual
causality in the law; it is the classic reference on the topic. Honoré [2010] and Moore [2009]
provide more recent discussions. Lewis [1973a] initiated modern work in philosophy on
counterfactual theories of causation; Menzies [2014] provides an overview of the work on
the counterfactual approach to causation in philosophy. Sloman [2009] discusses how people
ascribe causality, taking counterfactuals into account.

Although the focus in this book is on work on causality in philosophy, law, and psychology,
causality also has a long tradition in other fields. The seminal work of Adam Smith [1994],
considered a foundation of economics, is titled “An Inquiry into the Nature and Causes of
the Wealth of Nations”. Hoover [2008] provides an overview of work on causality in eco-
nomics. Statistics is, of course, very concerned with causal influence; Pearl [2009] provides
an overview of work in statistics on causation. Discussion of causality in physics comes
up frequently, particularly in the context of the Einstein-Podolsky-Rosen paradox, where the
question is whether A can be a cause of B even though B happened so shortly after A that a
signal traveling at the speed of light from A could not have reached B (see [Bell 1964]). More
recently, (the HP definition of) causality has been applied in computer science; I discuss some
of these applications in Chapter 8. The volume edited by Illari, Russo, and Williamson [2011]
provides a broad overview of the role of causality in the social sciences, health sciences, and
physical sciences.
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Chapter 2

The HP Definition of Causality

The fluttering of a butterfly’s wing in Rio de Janeiro, amplified by atmospheric
currents, could cause a tornado in Texas two weeks later.

Edward Lorenz

There is only one constant, one universal. It is the only real truth. Causality.
Action, reaction. Cause and effect.

Merovingian, The Matrix Reloaded

In this chapter, I go through the HP definition in detail. The HP definition is a formal, math-
ematical definition. Although this does add some initial overhead, it has an important advan-
tage: it prevents ambiguity about whether A counts as a cause of B. There is no need, as in
many other definitions, to try to understand how to interpret the words. For example, recall the
INUS condition from the notes in Chapter 1. For A to be a cause of B under this definition,
A has to be a necessary part of a condition that is itself unnecessary but insufficient for B.
But what is a “condition”? The formalization of INUS suggests that it is a formula or set of
formulas. Is there any constraint on this set? What language is it expressed in?

This lack of ambiguity is obviously critical if we want to apply causal reasoning in the
law. But as we shall see in Chapter 8, it is equally important in other applications of causality,
such as program verification, auditing, and database queries. However, even if there is no
ambiguity about the definition, it does not follow that there can be no disagreement about
whether A is a cause of B.

To understand how this can be the case, it is best to outline the general approach. The
first step in the HP definition involves building a formal model in which causality can be
determined unambiguously. Among other things, the model determines the language that is
used to describe the world. We then define only what it means for A to be a cause of B in
model M . It is possible to construct two closely related models M1 and M2 such that A is a
cause of B in M1 but not in M2. I do not believe that there is, in general, a “right” model;
in any case, the definition is silent on what makes one model better than another. (This is an
important issue, however. I do think that there are criteria that can help judge whether one
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10 Chapter 2. The HP Definition of Causality

model is better than another; see below and Chapter 4 for more on this point.) Here we already
see one instance where, even if there is agreement regarding the definition of causality, we can
get disagreements regarding causality: there may be disagreement about which model better
describes the real world. This is arguably a feature of the definition. It moves the question
of actual causality to the right arena—debating which of two (or more) models of the world
is a better representation of those aspects of the world that one wishes to capture and reason
about. This, indeed, is the type of debate that goes on in informal (and legal) arguments all
the time.

2.1 Causal Models
The model assumes that the world is described in terms of variables; these variables can take
on various values. For example, if we are trying to determine whether a forest fire was caused
by lightning or an arsonist, we can take the world to be described by three variables:

FF for forest fire, where FF = 1 if there is a forest fire and FF = 0 otherwise;

L for lightning, where L = 1 if lightning occurred and L = 0 otherwise;

MD for match dropped (by arsonist), where MD = 1 if the arsonist dropped a lit match
and MD = 0 otherwise.

If we are considering a voting scenario where there are eleven voters voting for either Billy
or Suzy, we can describe the world using twelve variables, V1, . . . , V11,W , where Vi = 0 if
voter i voted for Billy and V1 = 1 if voter i voted for Suzy, for i = 1, . . . , 11, W = 0 if Billy
wins, and W = 1 if Suzy wins.

In these two examples, all the variables are binary, that is, they take on only two values.
There is no problem allowing a variable to have more than two possible values. For example,
the variable Vi could be either 0, 1, or 2, where Vi = 2 if i does not vote; similarly, we could
take W = 2 if the vote is tied, so neither Billy nor Suzy wins.

The choice of variables determines the language used to frame the situation. Although
there is no “right” choice, clearly some choices are more appropriate than others. For example,
if there is no variable corresponding to smoking in model M , then in M , smoking cannot be
a cause of Sam’s lung cancer. Thus, if we want to consider smoking as a potential cause of
lung cancer, M is an inappropriate model. (As an aside, the reader may note that here and
elsewhere I put “right” in quotes; that is because it is not clear to me that the notion of being
“right” is even well defined.)

Some variables may have a causal influence on others. This influence is modeled by a set
of structural equations. For example, if we want to model the fact that if the arsonist drops
a match or lightning strikes then a fire starts, we could use the variables MD , FF , and L as
above, with the equation FF = max(L,MD); that is, the value of the variable FF is the
maximum of the values of the variables MD and L. This equation says, among other things,
that if MD = 0 and L = 1, then FF = 1. The equality sign in this equation should be thought
of more like an assignment statement in programming languages; once we set the values of
MD and L, the value of FF is set to their maximum. However, despite the equality, a forest
fire starting some other way does not force the value of either MD or L to be 1.
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2.1 Causal Models 11

Alternatively, if we want to model the fact that a fire requires both a lightning strike and
a dropped match (perhaps the wood is so wet that it needs two sources of fire to get going),
then the only change in the model is that the equation for FF becomes FF = min(L,MD);
the value of FF is the minimum of the values of MD and L. The only way that FF = 1 is if
both L = 1 and MD = 1.

Just a notational aside before going on: I sometimes identify binary variables with primitive
propositions in propositional logic. And, as in propositional logic, the symbols ∧, ∨, and ¬ are
used to denote conjunction, disjunction, and negation, respectively. With that identification,
instead of writing max(L,MD), I write L ∨ MD ; instead of writing min(L,MD), I write
L∧MD ; and instead of writing 1−L or 1−MD , I write ¬L or ¬MD . Most people seem to
find the logic notation easier to absorb. I hope that the intention will be clear from context.

Going on with the forest-fire example, it is clear that both of these models are somewhat
simplistic. Lightning does not always result in a fire, nor does dropping a lit match. One way
of dealing with this would be to make the assignment statements probabilistic. For example,
we could say that the probability that FF = 1 conditional on L = 1 is .8. I discuss this
approach in more detail in Section 2.5. It is much simpler to think of all the equations as
being deterministic and then use enough variables to capture all the conditions that determine
whether there is a forest fire. One way to do this is simply to add those variables explicitly.
For example, we could add variables that talk about the dryness of the wood, the amount of
undergrowth, the presence of sufficient oxygen (fires do not start so easily on the top of high
mountains), and so on. If a modeler does not want to add all these variables explicitly (the
details may simply not be relevant to the analysis), then another alternative is to use a single
variable, say U , which intuitively incorporates all the relevant factors, without describing
them explicitly. The value of U would determine whether the lightning strikes and whether
the match is dropped by the arsonist.

The value of U could also determine whether both the match and lightning are needed
to start a fire or just one of them suffices. For simplicity, rather than using U in this way,
I consider two causal models. In one, called the conjunctive model, both the match and
lightning are needed to start the forest fire; in the other, called the disjunctive model, only
one is needed. In each of these models, U determines only whether the lightning strakes
and whether the match is dropped. Thus, I assume that U can take on four possible values
of the form (i, j), where i and j are each either 0 or 1. Intuitively, i describes whether the
external conditions are such that the lightning strikes (and encapsulates all such conditions,
e.g., humidity and temperature), and j describes whether the arsonist drops the match (and
thus encapsulates all the psychological conditions that determine this). For future reference,
let U1 and U2 denote the components of the value of U in this example, so that if U = (i, j),
then U1 = i and U2 = j.

Here I have assumed a single variable U that determines the values of both L and MD . I
could have split U into two variables, say UL and UMD , where UL determines the value of L
and UMD determines the value of MD . It turns out that whether we use a single variable with
four possible values or two variables, each with two values, makes no real difference. (Other
modeling choices can make a big difference—I return to this point below.)

It is reasonable to ask why I have chosen to describe the world in terms of variables and
their values, related via structural equations. Using variables and their values is quite standard
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12 Chapter 2. The HP Definition of Causality

in fields such as statistics and econometrics for good reason; it is a natural way to describe
situations. The examples later in this section should help make that point. It is also quite close
to propositional logic; we can think of a primitive proposition in classical logic as a binary
variable, whose values are either true or false. Although there may well be other reasonable
ways of representing the world, this seems like a useful approach.

As for the use of structural equations, recall that my goal is to give a definition of actual
causality in terms of counterfactuals. Certainly if the but-for test applies, so that, but for A, B
would not have happened, I want the definition to declare that A is a cause of B. That means
I need a model rich enough to capture the fact that, but for A, B would not have happened.
Because I model the world in terms of variables and their values, the A and the B in the
definition will be statements such as X = x and Y = y. Thus, I want to say that if X had
taken on some value x′ different from x, then Y would not have had value y. To do this, I
need a model that makes it possible to consider the effect of intervening on X and changing its
value from x to x′. Describing the world in terms of variables and their values makes it easy
to describe such interventions; using structural equations makes it easy to define the effect of
an intervention.

This can be seen already in the forest-fire example. In the conjunctive model, if we
see a forest fire, then we can say that if the arsonist hadn’t dropped a match, there would
have been no forest fire. This follows in the model because setting MD = 0 makes
FF = min(L,MD) = 0.

Before going into further details, I give an example of the power of structural equations.
Suppose that we are interested in the relationship between education, an employee’s skill
level, and his salary. Suppose that education can affect skill level (but does not necessarily
always do so, since a student may not pay attention or have poor teachers) and skill level
affects salary. We can give a simplified model of this situation using four variables:

E for education level, with values 0 (no education), 1 (one year of education), and 2 (2
years of education);

SL for skill level, with values 0 (low), 1 (medium), and 2 (high);

S for salary, which for simplicity we can also take to have three values: 0 (low), 1
(medium), and 2 (high);

U , a variable that determines whether education will have an impact on skill level.

There are two relevant equations. The first says that education determines skill level, provided
that the external conditions (determined by U ) are favorable, and otherwise has no impact:

SL =

{
E if U = 1
0 if U = 0.

The second says that skill level determines salary:

S = SL.

Although this model significantly simplifies some complicated relationships, we can already
use it to answer interesting questions. Suppose that, in fact, we observe that Fred has salary
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2.1 Causal Models 13

level 1. We can thus infer that U = E = SL = 1. We can ask what Fred’s salary level
would have been had he attained education level 2. This amounts to intervening and setting
E = 2. Since U = 1, it follows that SL = 2 and thus S = 2; Fred would have a high salary.
Similarly, if we observe that Fred’s education level is 1 but his salary is low, then we can infer
that U = 0 and SL = 0, and we can say that his salary would still be low even if he had an
extra year of education.

A more sophisticated model would doubtless include extra factors and more sensitive de-
pendencies. Still, even at this level, I hope it is clear that the structural equations framework
can give reasonable answers.

When working with structural equations, it turns out to be conceptually useful to split
the variables into two sets: the exogenous variables, whose values are determined by factors
outside the model, and the endogenous variables, whose values are ultimately determined by
the exogenous variables. In the forest-fire example, the variable U , which determines whether
the lightning strikes and whether the arsonist drops a match, is exogenous; the variables FF ,
L, and MD are endogenous. The value of U determines the values of L and MD , which in turn
determine the value of FF . We have structural equations for the three endogenous variables
that describe how this is done. In general, there is a structural equation for each endogenous
variable, but there are no equations for the exogenous variables; as I said, their values are
determined by factors outside the model. That is, the model does not try to “explain” the
values of the exogenous variables; they are treated as given.

The split between exogenous and endogenous variables has another advantage. The struc-
tural equations are all deterministic. As we shall see in Section 2.5, when we want to talk
about the probability that A is a cause of B, we can do so quite easily by putting a probability
distribution on the values of the exogenous variables. This gives us a way of talking about the
probability of there being a fire if lightning strikes, while still using deterministic equations.

In any case, with this background, we can formally define a causal model M as a pair
(S,F), where S is a signature, which explicitly lists the endogenous and exogenous variables
and characterizes their possible values, and F defines a set of structural equations, relating the
values of the variables. In the next two paragraphs, I define S and F formally; the definitions
can be skipped by the less mathematically inclined reader.

A signature S is a tuple (U ,V,R), where U is a set of exogenous variables, V is a set of
endogenous variables, and R associates with every variable Y ∈ U ∪V a nonempty set R(Y )
of possible values for Y (i.e., the set of values over which Y ranges). As suggested earlier,
in the forest-fire example, we can take U = {U}; that is, U is exogenous, R(U) consists of
the four possible values of U discussed earlier, V = {FF , L,MD}, and R(FF ) = R(L) =
R(MD) = {0, 1}.

The function F associates with each endogenous variable X ∈ V a function denoted FX

such that FX maps ×Z∈(U∪V−{X})R(Z) to R(X). (Recall that U∪V−{X} is the set consist-
ing of all the variables in either U or V that are not in {X}. The notation ×Z∈(U∪V−{X})R(Z)
denotes the cross-product of R(Z), where Z ranges over the variables in U ∪ V − {X}; thus,
if U ∪ V − {X} = {Z1, . . . , Zk}, then ×Z∈(U∪V−{X})R(Z) consists of tuples of the form
(z1, . . . , zk), where zi is a possible value of Zi, for i = 1, . . . , k.) This mathematical notation
just makes precise the fact that FX determines the value of X , given the values of all the
other variables in U ∪ V . In the running forest-fire example, FFF would depend on whether
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14 Chapter 2. The HP Definition of Causality

we are considering the conjunctive model (where both the lightning strike and dropped match
are needed for the fire) or the disjunctive model (where only one of the two is needed). In
the conjunctive model, as I have already noted, FFF (L,MD , U) = 1 iff (“iff” means “if and
only if”—this standard abbreviation is used throughout the book) min(L,MD) = 1; in the
disjunctive model, FFF (L,MD , U) = 1 iff max(L,MD) = 1. Note that, in both cases, the
value of FFF is independent of U ; it depends only on the values of L and MD . Put another
way, this means that when we hold the values of L and MD fixed, changing the value of U
has no effect on the value of FFF . While the values of MD and L do depend on the value of
U , writing things in this way allows us to consider the effects of external interventions that
may override U . For example, we can consider FFF (0, 1, (1, 1)); this tells us what happens
if the lightning does not strike and the match is dropped, even if the value of U is such that
L = 1. In what follows, we will be interested only in interventions on endogenous variables.
As I said, we take the values of the exogenous variables as given, so do not intervene on them.

The notation FX(Y, Y ′, U) for the equation describing how the value of X depends on Y ,
Y ′, and U is not terribly user-friendly. I typically simplify notation and write X = Y + U
instead of FX(Y, Y ′, U) = Y + U . (Note that the variable Y ′ does not appear on the right-
hand side of the equation. That means that the value of X does not depend on that of Y ′.) With
this simplified notation, the equations for the forest-fire example are L = U1, MD = U2, and
either FF = min(L,MD) or FF = max(L,MD), depending on whether we are considering
the conjunctive or disjunctive model.

Although I may write something like X = Y + U , the fact that X is assigned Y + U does
not imply that Y is assigned X − U ; that is, FY (X,Y ′, U) = X − U does not necessarily
hold. The equation X = Y + U implies that if Y = 3 and U = 2, then X = 5, regardless
of how Y ′ is set. Going back to the forest-fire example, setting FF = 0 does not mean that
the match is “undropped”! This asymmetry in the treatment of the variables on the left- and
right-hand sides of the equality sign means that (the value of) Y can depend on (the value of)
X without X depending on Y . This, in turn, is why causality is typically asymmetric in the
formal definition that I give shortly: if A is a cause of B, then B will typically not be a cause
of A. (See the end of Section 2.7 for more discussion of this issue.)

As I suggested earlier, the key role of the structural equations is that they allow us to
determine what happens if things had been other than they were, perhaps due to an external
intervention; for example, the equations tell us what would happen if the arsonist had not
dropped a match (even if in fact he did). This will be critical in defining causality.

Since a world in a causal model is described by the values of variables, understanding
what would happen if things were other than they were amounts to asking what would happen
if some variables were set to values perhaps different from their actual values. Setting the
value of some variable X to x in a causal model M = (S,F) results in a new causal model
denoted MX←x. In the new causal model, the equation for X is simple: X is just set to
x; the remaining equations are unchanged. More formally, MX←x = (S,FX←x), where
FX←x is the result of replacing the equation for X in F by X = x and leaving the remaining
equations untouched. Thus, if MC is the conjunctive model of the forest fire, then in MC

MD←0,
the model that results from intervening in MC by having the arsonist not drop a match, the
equation MD = U2 is replaced by MD = 0.
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2.1 Causal Models 15

As I said in Chapter 1, the HP definition involves counterfactuals. The equations in a
causal model can be given a straightforward counterfactual interpretation. An equation such
as x = FX(u, y) should be thought of as saying that in a context where the exogenous variable
U has value u, if Y were set to y by some means (not specified in the model), then X would
take on the value x. As I noted earlier, when Y is set to y, this can override the value of Y
according to the equations. For example, MD can be set to 0 even in a context where the
exogenous variable U = (1, 1), so MD would be 1.

It may seem somewhat circular to use causal models, which clearly already encode causal
relationships, to define causality. There is some validity to this concern. After all, how do we
determine whether a particular equation holds? We might believe that dropping a lit match
results in a forest burning in part because of our experience with lit matches and dry wood,
and thus believe that a causal relationship holds between the lit match and the dry wood.
We might also have a general theory of which this is a particular outcome, but there too,
roughly speaking, the theory is being understood causally. Nevertheless, I would claim that
this definition is useful. In many examples, there is general agreement as to the appropriate
causal model. The structural equations do not express actual causality; rather, they express
the effects of interventions or, more generally, of variables taking on values other than their
actual values.

Of course, there may be uncertainty about the effects of interventions, just as there may be
uncertainty about the true setting of the values of the exogenous variables in a causal model.
For example, we may be uncertain about whether smoking causes cancer (this represents un-
certainty about the causal model), uncertain about whether a particular patient Sam actually
smoked (this is uncertainty about the value of the exogenous variables that determine whether
Sam smokes), and uncertain about whether Sam’s brother Jack, who did smoke and got can-
cer, would have gotten cancer had he not smoked (this is uncertainty about the effect of an
intervention, which amounts to uncertainty about the values of exogenous variables and pos-
sibly the equations). All this uncertainty can be described by putting a probability on causal
models and on the values of the exogenous variables. We can then talk about the probability
that A is a cause of B. (See Section 2.5 for further discussion of this point.)

Using (the equations in) a causal model, we can determine whether a variable Y is
(in)dependent of variable X . Y depends on X if there is some setting of all the variables
in U ∪ V other than X and Y such that varying the value of X in that setting results in a
variation in the value of Y ; that is, there is a setting z⃗ of the variables other than X and Y and
values x and x′ of X such that FY (x, z⃗) ̸= FY (x′, z⃗). (The z⃗ represents the values of all the
other variables. This vector notation is a useful shorthand that is used throughout the book; I
say more about it for readers unfamiliar with it at the end of the section.) Note that by “de-
pendency” here I mean something closer to “immediate dependency” or “direct dependency”.
This notion of dependency is not transitive; that is, if X1 depends on X2 and X2 depends on
X3, then it is not necessarily the case that X1 depends on X3. If Y does not depend on X ,
then Y is independent of X .

Whether Y depends on X may depend in part on the variables in the language. In the
original description of the voting scenario, we had just twelve variables, and W depended on
each of V1, . . . , V11. However, suppose that the votes are tabulated by a machine. We can add
a variable T that describes that final tabulation of the machine, where T can have any value

This content downloaded from 145.109.19.147 on Tue, 13 Feb 2018 22:15:10 UTC
All use subject to http://about.jstor.org/terms



16 Chapter 2. The HP Definition of Causality

of the form (t1, t2), where t1 represents the number of votes for Billy and t2 represents the
number of votes for Suzy (so that t1 and t2 are non-negative integers whose sum is 11). Now
W depends only on T , while T depends on V1, . . . , V11.

In general, every variable can depend on every other variable. But in most interesting sit-
uations, each variable depends on relatively few other variables. The dependencies between
variables in a causal model M can be described using a causal network (sometimes called
a causal graph), consisting of nodes and directed edges. I often omit the exogenous vari-
ables from the graph. Thus, both Figure 2.1(a) (where the exogenous variable is included)
and Figure 2.1(b) (where it is omitted) would be used to describe the forest-fire example.
Figure 2.1(c) is yet another description of the forest-fire example, this time replacing the sin-
gle exogenous variable U by an exogenous variable U1 that determines L and an exogenous
variable U2 that determines MD . Again, Figure 2.1(b) is the causal graph that results when
the exogenous variables in Figure 2.1(c) are omitted. Since all the “action” happens with the
endogenous variables, Figure 2.1(b) really gives us all the information we need to analyze this
example.
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Figure 2.1: A graphical representation of structural equations.

The fact that there is a directed edge from U to both L and MD in Figure 2.1(a) (with the
direction marked by the arrow) says that the value of the exogenous variable U affects the
value of L and MD , but nothing else affects it. The directed edges from L and MD to FF
say that only the values of MD and L directly affect the value of FF . (The value of U also
affects the value of FF , but it does so indirectly, through its effect on L and MD .)

Causal networks convey only the qualitative pattern of dependence; they do not tell us
how a variable depends on others. For example, the same causal network would be used for
both the conjunctive and disjunctive models of the forest-fire example. Nevertheless, causal
networks are useful representations of causal models.

I will be particularly interested in causal models where there are no circular dependencies.
For example, it is not the case that X depends on Y and Y depends X or, more generally,
that X1 depends on X2, which depends on X3, which depends on X4, which depends on X1.
Informally, a model is said to be recursive (or acyclic) if there are no such dependency cycles
(sometimes called feedback cycles) among the variables.
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2.1 Causal Models 17

The intuition that the values of exogenous variables are determined by factors outside the
model is formalized by requiring that an exogenous variable does not depend on any other
variables. (Actually, nothing in the following discussion changes if we allow an exogenous
variable to depend on other exogenous variables. All that matters is that an exogenous vari-
able does not depend on any endogenous variables.) In a recursive model, we can say more
about how the values of endogenous are determined. Specifically, the values of some of the
endogenous variables depend only on the values of the exogenous variables. This is the case
for the variables L and MD in the forest-fire example depicted in Figure 2.1. Think of these as
the “first-level” endogenous variables. The values of the “second-level” endogenous variables
depend only on the values of exogenous variables and the values of first-level endogenous
variables. The variable FF is a second-level variable in this sense; its value is determined by
that of L and MD , and these are first-level variables. We can then define third-level variables,
fourth-level variables, and so on.

Actually, the intuition I have just given is for what I call a strongly recursive model. It is
easy to see that in a strongly recursive model, the values of all variables are determined given
a context, that is, a setting u⃗ for the exogenous variables in U . Given u⃗, we can determine
the values of the first-level variables using the equations; we can then determine the values
of the second-level variables (whose values depend only on the context and the values of the
first-level variables), then the third-level variables, and so on. The notion of a recursive model
generalizes the definition of a strongly recursive model (every strongly recursive model is
recursive, but the converse is not necessarily true) while still keeping this key feature of having
the context determine the values of all the endogenous variables. In a recursive model, the
partition of endogenous variables into first-level variables, second-level variables, and so on
can depend on the context; in different contexts, the partition might be different. Moreover,
in a recursive model, our definition guarantees that causality is asymmetric: it cannot be the
case that A is a cause of B and B is a cause of A if A and B are distinct. (See the discussion
at the end of Section 2.7.)

The next four paragraphs provide a formal definition of recursive models. They can be
skipped on a first reading.

Say that a model M is strongly recursive (or acyclic) if there is some partial order ≼ on
the endogenous variables in M (the ones in V) such that unless X ≼ Y , Y is not affected
by X . Roughly speaking, X ≼ Y denotes that X affects Y (think of “affects” here as the
transitive closure of the direct dependency relation discussed earlier; X affects Y if there is
some chain X1, . . . , Xk such that X = X1, Y = Xk, and Xi+1 directly depends on Xi for
i = 1, . . . , k−1. The fact that ≼ is a partial order means that ≼ is a reflexive, anti-symmetric,
and transitive relation. Reflexivity means that X ≼ X for each variable X—X affects X;
anti-symmetry means that if X ≼ Y and Y ≼ X , then X = Y —if X affects Y and Y affects
X , then we must have X = Y ; finally, transitivity means that if X ≼ Y and Y ≼ Z, then
X ≼ Z—if X affects Y and Y affects Z, then X affects Z. Since ≼ is partial, it may be the
case that for some variables X and Y , neither X ≼ Y nor Y ≼ X holds; that is, X does not
affect Y and Y does not affect X .

While reflexivity and transitivity seem to be natural properties of the “affects” relation,
anti-symmetry is a nontrivial assumption. The fact that ≼ is anti-symmetric and transitive
means that there is no cycle of dependence between a collection X1, . . . , Xn of variables. It
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18 Chapter 2. The HP Definition of Causality

cannot be the case that X1 affects X2, X2 affects X3, . . . , Xn−1 affects Xn, and Xn affects
X1. For then we would have X1 ≼ X2, X2 ≼ X3, . . . , Xn−1 ≼ Xn, and Xn ≼ X1. By tran-
sitivity, we would have X2 ≼ X1, violating anti-symmetry. A causal network corresponding
to a causal model where there is no such cyclic dependence between the variables is acyclic.
That is, there is no sequence of directed edges that both starts and ends at the same node.

A model M is recursive if, for each context (setting of the exogenous variables) u⃗, there is
a partial order ≼u⃗ of the endogenous variables such that unless X ≼u⃗ Y , Y is independent of
X in (M, u⃗), where Y is independent of X in (M, u⃗) if, for all settings z⃗ of the endogenous
variables other than X and Y , and all values x and x′ of X , FY (x, z⃗, u⃗) = FY (x′, z⃗, u⃗). If M
is a strongly recursive model, then we can assume that all the partial orders ≼u⃗ are the same;
in a recursive model, they may differ. Example 2.3.3 below shows why it is useful to consider
the more general notion of recursive model.

As I said, if M is a recursive causal model, then given a context u⃗, there is a unique
solution for all the equations. We simply solve for the variables in the order given by ≺u⃗

(where X ≺u⃗ Y if X ≼u⃗ Y and X ̸= Y ). The value of the variables that come first in the
order, that is, the variables X such that there is no variable Y such that Y ≺u⃗ X , depend
only on the exogenous variables, so their value is immediately determined by the values of
the exogenous variables. The values of variables later in the order can be determined from the
equations once we have determined the values of all the variables earlier in the order.

With the definition of recursive model under our belt, we can get back to the issue of
choosing the “right” model. There are many nontrivial decisions to be made when choosing
the causal model to describe a given situation. One significant decision is the set of variables
used. As we shall see, the events that can be causes and those that can be caused are expressed
in terms of these variables, as are all the intermediate events. The choice of variables essen-
tially determines the “language” of the discussion; new events cannot be created on the fly, so
to speak. In our running forest-fire example, the fact that there is no variable for unattended
campfires means that the model does not allow us to consider unattended campfires as a cause
of the forest fire.

Once the set of variables is chosen, the next step is to decide which are exogenous and
which are endogenous. As I said earlier, the exogenous variables to some extent encode the
background situation that we want to take as given. Other implicit background assumptions
are encoded in the structural equations themselves. Suppose that we are trying to decide
whether a lightning bolt or a match was the cause of the forest fire, and we want to take as
given that there is sufficient oxygen in the air and the wood is dry. We could model the dryness
of the wood by an exogenous variable D with values 0 (the wood is wet) and 1 (the wood is
dry). (Of course, in practice, we may want to allow D to have more values, indicating the
degree of dryness of the wood, but that level of complexity is unnecessary for the points I
am trying to make here.) By making D exogenous, its value is assumed to be determined by
external factors that are not being modeled. We could also take the amount of oxygen to be
described by an exogenous variable (e.g., there could be a variable O with two values—0, for
insufficient oxygen; and 1, for sufficient oxygen); alternatively, we could choose not to model
oxygen explicitly at all. For example, suppose that we have, as before, a variable MD (match
dropped by arsonist) and another variable WB (wood burning), with values 0 (it’s not) and 1
(it is). The structural equation FWB would describe the dependence of WB on D and MD .
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2.1 Causal Models 19

By setting FWB (1, 1) = 1, we are saying that the wood will burn if the lit match is dropped
and the wood is dry. Thus, the equation is implicitly modeling our assumption that there is
sufficient oxygen for the wood to burn. Whether the modeler should include O in the model
depends on whether the modeler wants to consider contexts where the value of O is 0. If in
all contexts relevant to the modeler there is sufficient oxygen, there is no point in cluttering
up the model by adding the variable O (although adding it will not affect anything).

According to the definition of causality in Section 2.2, only endogenous variables can be
causes or be caused. Thus, if no variables encode the presence of oxygen, or if it is encoded
only in an exogenous variable, then oxygen cannot be a cause of the forest burning in that
model. If we were to explicitly model the amount of oxygen in the air (which certainly might
be relevant if we were analyzing fires on Mount Everest), then FWB would also take values
of O as an argument, and the presence of sufficient oxygen might well be a cause of the wood
burning, and hence the forest burning. Interestingly, in the law, there is a distinction between
what are called conditions and causes. Under typical circumstances, the presence of oxygen
would be considered a condition, and would thus not count as a cause of the forest burn-
ing, whereas the lightning would. While the of oxygen would be considered a condition and
would thus not count as a cause of the forest burning, while the lightning would. Although
the distinction is considered important, it does not seem to have been carefully formalized.
One way of understanding it is in terms of exogenous versus endogenous variables: condi-
tions are exogenous, (potential) causes are endogenous. I discuss an alternative approach to
understanding the distinction, in terms of theories of normality, in Section 3.2.

It is not always straightforward to decide what the “right” causal model is in a given sit-
uation. What is the “right” set of variables to use? Which should be endogenous and which
should be exogenous? As we shall see, different choices of endogenous variables can lead to
different conclusions, although they seem to be describing exactly the same situation. And
even after we have chosen the variables, how do we determine the equations that relate them?
Given two causal models, how do we decide which is better?

These are all important questions. For now, however, I will ignore them. The definition of
causality I give in the next section is relative to a model M and context u⃗. A may be a cause
of B relative to (M, u⃗) and not a cause of B relative to (M ′, u⃗′). Thus, the choice of model
can have a significant impact in determining causality ascriptions. The definition is agnostic
regarding the choice of model; it has nothing to say about whether the choice of variables or
the structural equations used are in some sense “reasonable”. Of course, people may legiti-
mately disagree about how well a particular causal model describes the world. Although the
formalism presented here does not provide techniques to settle disputes about which causal
model is the right one, at least it provides tools for carefully describing the differences be-
tween causal models, so that it should lead to more informed and principled decisions about
those choices. That said, I do return to some of the issues raised earlier when discussing the
examples in this section, and I discuss them in more detail in Chapter 4.

As promised, I conclude this section with a little more discussion of the vector notation, for
readers unfamiliar with it. I use this notation throughout the book to denote sets of variables
or their values. For example, if there are three exogenous variables, say U1, U2, and U3, and
U1 = 0, U2 = 0, and U3 = 1, then I write U⃗ = (0, 0, 1) as an abbreviation of U1 = 0,
U2 = 0, and U3 = 1. This vector notation is also used to describe the values x⃗ of a collection
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20 Chapter 2. The HP Definition of Causality

X⃗ of endogenous variables. I deliberately abuse notation at times and view U⃗ both as a set
of variables and as a sequence of variables. For example, when I write U⃗ = (0, 0, 1), then I
am thinking of U⃗ as the sequence (U1, U2, U3), and this equality means that U1 = 0, U2 = 0,
and U3 = 1. However, in expressions such as U2 ∈ U⃗ and U⃗ ⊆ U⃗ ′, U⃗ should be understood
as the corresponding unordered set {U1, U2, U3}. I hope that the intent is always clear from
context. For the most part, readers who do not want to delve into details can just ignore the
vector arrows.

2.2 A Formal Definition of Actual Cause
In this section, I give the HP definition of causality and show how it works in a number of
examples. But before giving the definition, I have to define a formal language for describing
causes.

2.2.1 A language for describing causality
To make the definition of actual causality precise, it is helpful to have a formal language for
making statements about causality. The language is an extension of propositional logic, where
the primitive events (i.e., primitive propositions) have the form X = x for an endogenous
variable X and some possible value x of X . The primitive event MD = 0 says “the lit match is
not dropped”; similarly, the primitive event L = 1 says “lightning occurred”. These primitive
events can be combined using standard propositional connectives, such as ∧, ∨, and ¬. Thus,
the formula MD = 0∨L = 1 says “either the lit match is not dropped or lightning occurred”,
MD = 0 ∧ L = 1 says “the lit match is not dropped and lightning occurred”, and ¬(L = 1)
says “lightning did not occur” (which is equivalent to L = 0, given that the only possible
values of L are 0 or 1). A Boolean combination of primitive events is a formula obtained by
combining primitive events using ∧, ∨, and ¬. For example, ¬(MD = 0∨L = 1)∧WB = 1
is a Boolean combination of the primitive events MD = 0, L = 1, and WB = 1. The key
novel feature in the language is that we can talk about interventions. A formula of the form
[Y⃗ ← y⃗](X = x) says that after intervening to set the variables in Y⃗ to y⃗, X takes on the
value x.

(A short aside: I am thinking of an event here as a subset of a state space; this is the standard
usage in computer science and probability. Once I give semantics to causal formulas, it will
be clear that we can associate a causal formula ϕ with a set of contexts—the set of context
where ϕ is true—so it can indeed be identified with an event in this sense. In the philosophy
literature, the use of the word “event” is somewhat different, and what counts as an event is
contentious; see the notes at the end of this chapter and at the end of Chapter 4.)

Now for the formal details. Given a signature S = (U ,V,R), a primitive event is a formula
of the form X = x, for X ∈ V and x ∈ R(X). A causal formula (over S) is one of the form
[Y1 ← y1, . . . , Yk ← yk]ϕ, where

ϕ is a Boolean combination of primitive events,

Y1, . . . , Yk are distinct variables in V , and
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2.2 A Formal Definition of Actual Cause 21

yi ∈ R(Yi).

Such a formula is abbreviated as [Y⃗ ← y⃗]ϕ, using the vector notation. The special case where
k = 0 is abbreviated as [ ]ϕ or, more often, just ϕ. Intuitively, [Y1 ← y1, . . . , Yk ← yk]ϕ says
that ϕ would hold if Yi were set to yi, for i = 1, . . . , k. It is worth emphasizing that the
commas in [Y1 ← y1, . . . , Yk ← yk]ϕ are really acting like conjunctions; this says that if Y1

were set to y1 and . . . and Yk were set to yk, then ϕ would hold. I follow convention and use
the comma rather than ∧. I write Yj ← yj rather than Yj = yj to emphasize that here Yj is
assigned the value yj , as the result of an intervention. For S = (U ,V,R), let L(S) consist
of all Boolean combinations of causal formulas, where the variables in the formulas are taken
from V and the sets of possible values of these variables are determined by R.

The language above lets us talk about interventions. What we need next is a way of defining
the semantics of causal formulas: that is, a way of determining when a causal formula is
true. A causal formula ψ is true or false in a causal model, given a context. I call a pair
(M, u⃗) consisting of a causal model M and context u⃗ a causal setting. I write (M, u⃗) |= ψ
if the causal formula ψ is true in the causal setting (M, u⃗). For now, I restrict attention to
recursive models, where, given a context, there are no cyclic dependencies. In a recursive
model, (M, u⃗) |= X = x if the value of X is x once we set the exogenous variables to u⃗.
Here I am using the fact that, in a recursive model, the values of all the endogenous variables
are determined by the context. If ψ is an arbitrary Boolean combination of primitive events,
then whether (M, u⃗) |= ψ can be determined by the usual rules of propositional logic. For
example, (M, u⃗) |= X = x ∨ Y = y if either (M, u⃗) |= X = x or (M, u⃗) |= Y = y.

Using causal models makes it easy to give the semantics of formulas of the form
[Y⃗ ← y⃗](X = x) and, more generally, [Y⃗ ← y⃗]ψ. Recall that the latter formula says that,
after intervening to set the variables in Y⃗ to y⃗, ψ holds. Given a model M , the model that
describes the result of this intervention is MY⃗←y⃗ . Thus,

(M, u⃗) |= [Y⃗ ← y⃗]ψ iff (MY⃗←y⃗, u⃗) |= ψ.

The mathematics just formalizes the intuition that the formula [Y⃗ ← y⃗]ψ is true in the causal
setting (M, u⃗) exactly if the formula ψ is true in the model that results from the intervention,
in the same context u⃗.

For example, if Md is the disjunctive model for the forest fire described earlier, then
(Md, (1, 1)) |= [MD ← 0](FF = 1): even if the arsonist is somehow prevented from
dropping the match, the forest burns (thanks to the lightning); that is, (Md

MD←0, (1, 1)) |=
FF = 1. Similarly, (Md, (1, 1)) |= [L ← 0](FF = 1). However, (Md, (1, 1)) |=
[L ← 0;MD ← 0](FF = 0): if the arsonist does not drop the lit match and the lightning
does not strike, then the forest does not burn.

The notation (M, u⃗) |= ϕ is standard in the logic and philosophy communities. It is,
unfortunately, not at all standard in other communities, such as statistics and economet-
rics. Although notation is not completely standard in these communities, the general ap-
proach has been to suppress the model M and make the context u⃗ an argument of the en-
dogenous variables. Thus, for example, instead of writing (M, u⃗) |= X = x, in these
communities they would write X(u⃗) = x. (Sometimes the exogenous variables are also
suppressed, or taken as given, so just X = x is written.) More interestingly, instead of
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22 Chapter 2. The HP Definition of Causality

(M, u⃗) |= [X ← x](Y = y), in these communities they would write Yx(u⃗) = y. Al-
though the latter notation, which I henceforth call statisticians’ notation (although it is more
widespread), is clearly more compact, the compactness occasionally comes at the price of
clarity. For example, in the disjunctive forest-fire example, what does FF 0(1, 1) = 1 mean?
Is it (Md, (1, 1)) |= [MD ← 0](FF = 1) or (Md, (1, 1)) |= [L ← 0](FF = 1)? This prob-
lem can be solved by adding the variable being intervened on to the subscript if it is necessary
to remove ambiguity, writing, for example, FFL←0(1, 1) = 0. Things get more complicated
when we want to write (M, u⃗) |= [X ← x]ϕ, where ϕ is a Boolean combination of primitive
events, or when there are several causal models in the picture and it is important to keep track
of them. That said, there are many situations when writing something like Yx(u) = y is com-
pletely unambiguous, and it is certainly more compact. To make things easier for those used
to this notation, I translate various statements into statisticians’ notation, particularly those
where it leads to more compact formulations. This will hopefully have the added advantage
of making both notations familiar to all communities.

2.2.2 The HP definition of actual causality

I now give the HP definition of actual causality.
The types of events that the HP definition allows as actual causes are ones of the form

X1 = x1 ∧ . . .∧Xk = xk—that is, conjunctions of primitive events; this is often abbreviated
as X⃗ = x⃗. The events that can be caused are arbitrary Boolean combinations of primitive
events. The definition does not allow statements of the form “A or A′ is a cause of B,”
although this could be treated as being equivalent to “either A is a cause of B or A′ is a cause
of B”. However, statements such as “A is a cause of either B or B′” are allowed; this is not
equivalent to “either A is a cause of B or A is a cause of B′”.

Note that this means that the relata of causality (what can be a cause and what can be
caused) depend on the language. It is also worth remarking that there is a great deal of debate
in the philosophical literature about the relata of causality. Although it is standard in that
literature to take the relata of causality to be events, exactly what counts as an event is also a
matter of great debate. I do not delve further into these issues here; see the notes at the end of
the chapter for references and a little more discussion.

Although I have been talking up to now about “the” HP definition of causality, I will ac-
tually consider three definitions, all with the same basic structure. Judea Pearl and I started
with a relatively simple definition that gradually became more complicated as we discovered
examples that our various attempts could not handle. One of the examples was discovered
after our definition was published in a conference paper. So we updated the definition for the
journal version of the paper. Later work showed that the problem that caused us to change the
definition was not as serious as originally thought. However, recently I have considered a def-
inition that is much simpler than either of the two previous versions, which has the additional
merit of dealing better with a number of problems. It is not clear that the third definition is
the last word. Moreover, showing how the earlier definitions deal with the various problems
that have been posed lends further insight into the difficulties and subtleties involved with
finding a definition of causality. Thus, I consider all three definitions in this book. Following
Einstein, my goal is to make things as simple as possible, but no simpler!
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2.2 A Formal Definition of Actual Cause 23

Like the definition of truth on which it depends, the HP definition of causality is relative to
a causal setting. All three variants of the definition consist of three clauses. The first and third
are simple and straightforward, and the same for all the definitions. All the work is done by
the second clause; this is where the definitions differ.

Definition 2.2.1 X⃗ = x⃗ is an actual cause of ϕ in the causal setting (M, u⃗) if the following
three conditions hold:

AC1. (M, u⃗) |= (X⃗ = x⃗) and (M, u⃗) |= ϕ.

AC2. See below.

AC3. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such that X⃗ ′ = x⃗′ satisfies conditions
AC1 and AC2, where x⃗′ is the restriction of x⃗ to the variables in X⃗ .

AC1 just says that X⃗ = x⃗ cannot be considered a cause of ϕ unless both X⃗ = x⃗ and ϕ
actually happen. (I am implicitly taking (M, u⃗) to characterize the “actual world” here.) AC3
is a minimality condition, which ensures that only those elements of the conjunction X⃗ = x⃗
that are essential are considered part of a cause; inessential elements are pruned. Without
AC3, if dropping a lit match qualified as a cause of the forest fire, then dropping a match and
sneezing would also pass the tests of AC1 and AC2. AC3 serves here to strip “sneezing” and
other irrelevant, over-specific details from the cause. AC3 can be viewed as capturing part of
the spirit of the INUS condition; roughly speaking, it says that all the primitive events in the
cause are necessary for the effect.

It is now time to bite the bullet and look at AC2. In the first two versions of the HP
definition, AC2 consists of two parts. I start by considering the first of them, denoted AC2(a).
AC2(a) is a necessity condition. It says that for X = x to be a cause of ϕ, there must be a value
x′ in the range of X such that if X is set to x′, ϕ no longer holds. This is the but-for clause;
but for the fact that X = x occurred, ϕ would not have occurred. As we saw in the Billy-Suzy
rock-throwing example in Chapter 1, the naive but-for clause will not suffice. We must be
allowed to apply it under certain contingencies, that is, under certain counterfactual settings,
where some variables are set to values other than those they take in the actual situation or held
to certain values while other variables change. For example, in the case of Suzy and Billy, we
consider a contingency where Billy does not throw.

Here is the formal version of the necessity condition:

AC2(a). There is a partition of V (the set of endogenous variables) into two disjoint subsets
Z⃗ and W⃗ (so that Z⃗ ∩ W⃗ = ∅) with X⃗ ⊆ Z⃗ and a setting x⃗′ and w⃗ of the variables in
X⃗ and W⃗ , respectively, such that

(M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗]¬ϕ.

Using statisticians’ notation, if ϕ is Y⃗ = y⃗, then the displayed formula becomes Yx⃗′w⃗(u⃗) ̸= y⃗.
Roughly speaking, AC2(a) says that the but-for condition holds under the contingency

W⃗ = w⃗. We can think of the variables in Z⃗ as making up the “causal path” from X⃗ to ϕ.
Intuitively, changing the value of some variable in X⃗ results in changing the value(s) of some
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24 Chapter 2. The HP Definition of Causality

variable(s) in Z⃗, which results in the values of some other variable(s) in Z⃗ being changed,
which finally results in the truth value of ϕ changing. (Whether we can think of the variables
in Z⃗ as making up a causal path from some variable in X⃗ to some variable in ϕ turns out
to depend in part on which variant of the HP definition we consider. See Section 2.9 for a
formalization and more discussion.) The remaining endogenous variables, the ones in W⃗ , are
off to the side, so to speak, but may still have an indirect effect on what happens.

Unfortunately, AC1, AC2(a), and AC3 do not suffice for a good definition of causality. In
the rock-throwing example, with just AC1, AC2(a), and AC3, Billy would be a cause of the
bottle shattering. We need a sufficiency condition to block Billy. The sufficiency condition
used in the original definition, roughly speaking, requires that if the variables in X⃗ and an
arbitrary subset Z⃗ of other variables on the causal path (i.e., besides those in X⃗) are held at
their values in the actual context (where the value of a variable Y in the actual context is the
value y∗ such that (M,u) |= Y = y∗; the values of the variables in X⃗ in the actual context is
x⃗, by AC1), then ϕ holds even if W⃗ is set to w⃗ (the setting for W⃗ used in AC2(a)). This is
formalized by the following condition:

AC2(bo). If z⃗∗ is such that (M, u⃗) |= Z⃗ = z⃗∗, then for all subsets Z⃗ ′ of Z⃗ − X⃗ , we have

(M, u⃗) |= [X⃗ ← x⃗, W⃗ ← w⃗, Z⃗ ′ ← z⃗∗]ϕ.

Again, taking ϕ to be Y⃗ = y⃗, in statisticians’ notation this becomes “if Z⃗(u⃗) = z⃗∗, then for
all subsets Z⃗ ′ of Z⃗, we have Y⃗X⃗←x⃗,W⃗←w⃗,Z⃗′←z⃗∗(u⃗) = y⃗.” It is important to write at least the
Z⃗ ′ explicitly in the subscript here, since we are quantifying over it.

Note that, due to setting W⃗ to w⃗, the values of the variables in Z⃗ may change. AC2(bo)
says that this change does not affect ϕ; ϕ continues to be true. Indeed, ϕ continues to be true
even if some variables in Z⃗ are forced to their original values.

Before going on, I need to make a brief technical digression to explain a slight abuse of
notation in AC2(bo). Suppose that Z⃗ = (Z1, Z2), z⃗ = (1, 0), and Z⃗ ′ = (Z1). Then Z⃗ ′ ← z⃗
is intended to be an abbreviation for Z1 ← 1; that is, I am ignoring the second component of
z⃗ here. More generally, when I write Z⃗ ′ ← z⃗, I am picking out the values in z⃗ that correspond
to the variables in Z⃗ ′ and ignoring those that correspond to the variables in Z⃗− Z⃗ ′. I similarly
write W⃗ ′ ← w⃗ if W⃗ ′ is a subset of W⃗ .

For reasons that will become clearer in Example 2.8.1, the original definition was updated
to use a stronger version of AC2(bo). Sufficiency is now required to hold if the variables in
any subset W⃗ ′ of W⃗ are set to the values in w⃗ (as well as the variables in any subset Z⃗ ′ of
Z⃗ − X⃗ being set to their values in the actual context). Taking Z⃗ and W⃗ as in AC2(a) (and
AC2(bo)), here is the updated definition:

AC2(bu). If z⃗∗ is such that (M, u⃗) |= Z⃗ = z⃗∗, then for all subsets W⃗ ′ of W⃗ and subsets Z⃗ ′

of Z⃗ − X⃗ , we have (M, u⃗) |= [X⃗ ← x⃗, W⃗ ′ ← w⃗, Z⃗ ′ ← z⃗∗]ϕ.

In statisticians’ notation, this becomes “if Z⃗(u⃗) = z⃗∗, then for all subsets Z⃗ ′ of Z⃗ and W⃗ ′

of W⃗ , we have Y⃗X⃗←x⃗,W⃗ ′←w⃗,Z⃗′←z⃗∗(u⃗) = y⃗.” Again, we need to write the variables in the
subscript here.

The only difference between AC2(bo) and AC2(bu) lies in the clause “for all subsets W⃗ ′

of W⃗ ”: AC2(bu) must hold even if only a subset W⃗ ′ of the variables in W⃗ are set to their
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2.2 A Formal Definition of Actual Cause 25

values in w⃗. This means that the variables in W⃗ − W⃗ ′ essentially act as they do in the real
world; that is, their values are determined by the structural equations, rather than being set to
their values in w⃗.

The superscripts o and u in AC2(bo) and AC2(bu) are intended to denote “original” and
“updated”.

I conclude by considering the simpler modified definition. This definition is motivated by
the intuition that only what happens in the actual situation should matter. Thus, the only
settings of variables allowed are ones that occur in the actual situation. Specifically, the
modified definition simplifies AC2(a) by requiring that the only setting w⃗ of the variables
in W⃗ that can be considered is the value of these variables in the actual context. Here is the
modified AC2(a), denoted AC2(am) (the m stands for “modified”):

AC2(am). There is a set W⃗ of variables in V and a setting x⃗′ of the variables in X⃗ such that
if (M, u⃗) |= W⃗ = w⃗∗, then

(M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗∗]¬ϕ.

That is, we can show the counterfactual dependence of ϕ on X⃗ by keeping the variables in W⃗
fixed at their actual values. In statisticians’ notation (with ϕ being Y⃗ = y⃗), this becomes “if
W⃗ (u⃗) = w⃗∗, then Y⃗x⃗′w⃗∗(u⃗) ̸= y⃗”.

It is easy to see that AC2(bo) holds if all the variables in W⃗ are fixed at their values in the
actual context: because w⃗∗ records the value of the variables in W⃗ in the actual context, if
X⃗ is (re)set to x⃗, its value in the actual context, then ϕ must hold (since, by AC1, X⃗ = x⃗ and
ϕ both hold in the actual context); that is, we have (M, u⃗) |= [X⃗ ← x⃗, W⃗ ← w⃗∗]ϕ if w⃗∗ is
the value of the variables in W⃗ in the actual context. For similar reasons, AC2(bu) holds if
all the variables in W⃗ are fixed at their values in the actual context. Thus, there is no need
for an analogue to AC2(bo) or AC2(bu) in the modified definition. This shows that the need
for a sufficiency condition arises only if we are considering contingencies that differ from the
actual setting in AC2(a). It is also worth noting that the modified definition does not need to
mention Z⃗ (although Z⃗ can be taken to be the complement of W⃗ ).

For future reference, for all variants of the HP definition, the tuple (W⃗ , w⃗, x⃗′) in AC2 is
said to be a witness to the fact that X⃗ = x⃗ is a cause of ϕ. (I take the witness to be (∅, ∅, x⃗′)
in the special case that W⃗ = ∅.)

As I said, AC3 is a minimality condition. Technically, just as there are three versions of
AC2, there are three corresponding versions of AC3. For example, in the case of the modified
definition, AC3 should really say “there is no subset of X⃗ satisfying AC1 and AC2(am)”. I
will not bother writing out these versions of AC3; I hope that the intent is clear whenever I
refer to AC3.

If I need to specify which variant of the HP definition I am considering, I will say that
X⃗ = x⃗ is a cause of ϕ according to the original (resp., updated, modified) HP definition. If
X⃗ = x⃗ is a cause of ϕ according to all three variants, I often just say “X⃗ = x⃗ is a cause of
ϕ in (M, u⃗)”. Each conjunct in X⃗ = x⃗ is called part of a cause of ϕ in context (M, u⃗). As
we shall see, what we think of as causes in natural language correspond to parts of causes,
especially with the modified HP definition. Indeed, it may be better to use a term such as
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26 Chapter 2. The HP Definition of Causality

“complete cause” for what I have been calling cause and then reserve “cause” for what I have
called “part of a cause”. I return to this point after looking at a few examples.

Actually, although X⃗ = x⃗ is an abbreviation for the conjunction X1 = x1∧ . . .∧Xk = xk,
when we talk about X⃗ = x⃗ being a cause of ϕ (particularly for the modified HP definition), it
might in some ways be better to think of the disjunction. Roughly speaking, X⃗ = x⃗ is a cause
of ϕ if it is the case that if none of the variables in X⃗ had their actual value, then ϕ might not
have occurred. However, if X⃗ has more than one variable, then just changing the value of a
single variable in X⃗ (or, indeed, any strict subset of the variables in X⃗) is not enough by itself
to bring about ¬ϕ (given the context). Thus, there is a sense in which the disjunction can be
viewed as a but-for cause of ϕ. This will be clearer when we see the examples.

Note that all three variants of the HP definition declare X = x a cause of itself in (M,u)
as long as (M,u) |= X = x. This does not seem to me so unreasonable. At any rate, it
seems fairly harmless, so I do not bother excluding it (although nothing would change if we
did exclude it).

At this point, ideally, I would prove a theorem showing that some variant of the HP def-
inition of actual causality is the “right” definition of actual causality. But I know of no way
to argue convincingly that a definition is the “right” one; the best we can hope to do is to
show that it is useful. As a first step, I show that all the definitions agree in the simplest and
arguably most common case: but-for causes. Formally, say that X = x is a but-for cause of
ϕ in (M, u⃗) if AC1 holds (so that (M, u⃗) |= (X = x) ∧ ϕ) and there exists some x′ such that
(M, u⃗) |= [X ← x′]¬ϕ. Note here I am assuming that the cause is a single conjunct.

Proposition 2.2.2 If X = x is a but-for cause of Y = y in (M, u⃗), then X = x is a cause of
Y = y according to all three variants of the HP definition.

Proof: Suppose that X = x is a but-for cause of Y = y. There must be a possible value
x′ of X such that (M, u⃗) |= [X ← x′]¬ϕ. Then (∅, ∅, x′) (i.e., W⃗ = ∅ and X = x′) is a
witness to X = x being a cause of ϕ for all three variants of the definition. Thus, AC2(a)
and AC2(am) hold if we take W⃗ = ∅. Since (M, u⃗) |= X = x, if (M, u⃗) |= Z⃗ = z⃗∗, where
Z⃗ = V − {X}, then it is easy to see that (M, u⃗) |= [X ← x](Z⃗ = z⃗∗): since X = x and
Z⃗ = z⃗∗ in the (unique) solution to the equations in context u⃗, this is still the case in the unique
solution to the equations in MX←x. For similar reasons, (M, u⃗) |= [X⃗ ← x⃗, Z⃗ ′ ← z⃗∗]ϕ for
all subsets Z⃗ ′ of V−{X}. (See Lemma 2.10.2, where these statements are formalized.) Thus,
AC2(bo) holds. Because W⃗ = ∅, AC2(bu) follows immediately from AC2(bo).

Of course, the definitions do not always agree. Other connections between the definitions
are given in the following theorem. In the statement of the theorem, the notation |X⃗| denotes
the cardinality of X⃗ .
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2.2 A Formal Definition of Actual Cause 27

Theorem 2.2.3

(a) If X = x is part of a cause of ϕ in (M, u⃗) according to the modified HP definition, then
X = x is a cause of ϕ in (M, u⃗) according to the original HP definition.

(b) If X = x is part of a cause of ϕ in (M, u⃗) according to the modified HP definition, then
X = x is a cause of ϕ in (M, u⃗) according to the updated HP definition.

(c) If X = x is part of a cause of ϕ in (M, u⃗) according to the updated HP definition, then
X = x is a cause of ϕ in (M, u⃗) according to the original HP definition.

(d) If X⃗ = x⃗ is a cause of ϕ in (M, u⃗) according to the original HP definition, then |X⃗| = 1
(i.e., X⃗ is a singleton).

Of course, (a) follows from (b) and (c); I state it separately just to emphasize the relations.
Although it may not look like it at first glance, part (d) is quite similar in spirit to parts (a),
(b), and (c); an equivalent reformulation of (d) is: “If X = x is part of a cause of ϕ in (M, u⃗)
according to the original HP definition, then X = x is a cause of ϕ in (M, u⃗) according to
the original HP definition.” Call this statement (d′). Clearly (d) implies (d′). For the converse,
suppose that (d′) holds, X⃗ = x⃗ is a cause of ϕ in (M, u⃗), and |X⃗| > 1. Then if X = x is a
conjunct of X⃗ = x⃗, by (d′), X = x is a cause of ϕ in (M, u⃗). But by AC3, this can hold only
if X = x is the only conjunct of X⃗ = x⃗, so |X⃗| = 1.

Parts (a), (b), and (c) of Theorem 2.2.3 show that, in a sense, the original HP definition is
the most permissive of the three and the modified HP definition is the most restrictive, with
the updated HP definition lying somewhere in between. The converses of (a), (b), and (c)
do not hold. As Example 2.8.1 shows, if X = x is a cause of ϕ according to the original
HP definition, it is not, in general, part of a cause according to the modified or updated HP
definition. In this example, we actually do not want causality to hold, so the example can
be viewed as showing that the original definition is too permissive (although this claim is
not quite as clear as it may appear at first; see the discussion in Section 2.8). Example 2.8.2
shows that part of a cause according to the updated HP definition need not be (part of) a cause
according to the modified HP definition.

The bottom line here is that, although these definitions often agree, they do not always
agree. It is typically on the most problematic examples on which they disagree. This is
perhaps not surprising given that the original definition was updated and modified precisely
to handle such examples. However, even in cases where the original definition seems to
give “wrong” answers, there are often ways of dealing with the problem that do not require
modifying the definition. Moreover, the fact that causes are always singletons with the original
definition makes it attractive in some ways. The jury is still out on what the “right” definition
of causality is. Although my current preference is the modified HP definition, I will consider
all three definitions throughout the book. Despite the extra burden for the reader (for which I
apologize in advance!), I think doing so gives a deeper insight into the subtleties of causality.

The proof of Theorem 2.2.3 can be found in Section 2.10.1. I recommend that the interested
reader defer reading the proof until after going through the examples in the next section, since
they provide more intuition for the definitions.
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28 Chapter 2. The HP Definition of Causality

2.3 Examples
Because I cannot prove a theorem showing that (some variant of) the HP definition is the
“right” definition of causality, all I can do to argue that the definition is reasonable is to
show how it works in some of the examples that have proved difficult for other definitions to
handle. That is one of the goals of this section. I also give examples that illustrate the subtle
differences between the variants of the HP definition. I start with a few basic examples mainly
intended to show how the definition works.

Example 2.3.1 For the forest-fire example, I consider two causal models, M c and Md, for
the conjunctive and disjunctive cases, respectively. These models were described earlier; the
endogenous variables are L, MD , and FF , and U is the only exogenous variable. In both
cases, I want to consider the context (1, 1), so the lightning strikes and the arsonist drops the
match. In the conjunctive model, both the lightning and the dropped match are but-for causes
of the forest fire; if either one had not occurred, the fire would not have happened. Hence, by
Proposition 2.2.2, both L = 1 and MD = 1 are causes of FF = 1 in (M c, (1, 1)) according
to all three variants of the definition. By AC3, it follows that L = 1 ∧MD = 1 is not a cause
of FF = 1 in (M c, (1, 1)). This already shows that causes might not be unique; there may be
more than one cause of a given outcome.

However, in the disjunctive case, there are differences. With the original and updated
definition, again, we have that both L = 1 and MD = 1 are causes of FF = 1 in (Md, (1, 1)).
I give the argument in the case of L = 1; the argument for MD = 1 is identical. Clearly
(Md, (1, 1)) |= FF = 1 and (Md, (1, 1)) |= L = 1; in the context (1, 1), the lightning
strikes and the forest burns down. Thus, AC1 is satisfied. AC3 is trivially satisfied: since X⃗
consists of only one element, L, X⃗ must be minimal.

For AC2, as suggested earlier, let Z⃗ = {L,FF}, W⃗ = {MD}, x′ = 0, and w = 0.
Clearly, (Md, (1, 1)) |= [L ← 0,MD ← 0](FF ̸= 1); if the lightning does not strike and the
match is not dropped, the forest does not burn down, so AC2(a) is satisfied. To see the effect
of the lightning, we must consider the contingency where the match is not dropped; AC2(a)
allows us to do that by setting MD to 0. (Note that setting L and MD to 0 overrides the effects
of U ; this is critical.) Moreover,

(Md, (1, 1)) |= [L ← 1,MD ← 0](FF = 1) and (Md, (1, 1)) |= [L ← 1](FF = 1);

in context (1, 1), if the lightning strikes, then the forest burns down even if the lit match is
not dropped, so AC2(bo) and AC2(bu) are satisfied. (Note that since Z⃗ = {L,FF}, the only
subsets of Z⃗−X⃗ are the empty set and the singleton set consisting of just FF ; similarly, since
W⃗ = {MD}, the only subsets of W⃗ are the empty set and the singleton set consisting of MD
itself. Thus, we have considered all the relevant cases here.)

This argument fails in the case of the modified definition because the setting MD = 0 is
not allowed. The only witnesses that can be considered are ones where W⃗ has the value it does
in the actual context; in the actual context here, MD = 1. So, with the modified definition,
neither L = 1 nor MD = 1 is a cause. However, it is not hard to see that L = 1 ∧MD = 1
is a cause of FF = 1. This shows why it is critical to consider only single conjuncts in
Proposition 2.2.2 and Theorem 2.2.3 is worded in terms of parts of causes. Although L =
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1 ∧MD = 1 is a cause of FF = 1 according to the modified HP definition, it is not a cause
according to either the original or updated HP definition. In contrast, L = 1 and MD = 1 are
both parts of a cause of FF = 1 according to all three definitions.

It is arguably a feature of the original and updated HP definition that they call both L = 1
and MD = 1 causes of FF = 1. Calling the conjunction L = 1 ∧ MD = 1 a cause of
FF = 1 does not seem to accord with natural language usage. There are two ways to address
this concern. As I suggested earlier, with the modified HP definition, it may be better to think
of parts of causes as coming closer to what we call causes in natural language. That would
already deal with this concern. A second approach, which I also hinted at earlier, is to observe
that it may be better to think of the disjunction L = 1 ∨MD = 1 as being the cause. Indeed,
we can think of MD = 1 ∨ L = 1 as a but-for cause of FF = 1; if it does not hold, then it
must be the case both L = 0 and MD = 0, so there is no fire. The reader should keep in mind
both of these ways of thinking of conjunctive causes with the modified HP definition.

As we shall see, the notion of responsibility, discussed in Chapter 6, allows the original
and updated HP definition to distinguish these two scenarios, as does the notion of sufficient
cause, discussed in Section 2.6.

This simple example already reveals some of the power of the HP definition. The case
where the forest fire is caused by either the lightning or the dropped match (this is said to be a
case of overdetermination in the literature) cannot be handled by the simple but-for definition
used in the law. It seems reasonable to call both the lightning and the dropped match causes,
or at least parts of causes. We certainly wouldn’t want to say that there is no cause, as a
naive application of the but-for definition would do. (However, as I noted above, if we allow
disjunctive causes, then a case can be made that the disjunction L = 1∨MD = 1 is a but-for
cause of the forest fire.) Overdetermination occurs frequently in legal cases; a victim may
be shot by two people, for example. It occurs in voting as well; I look at this a little more
carefully in the following example.

Example 2.3.2 Consider the voting scenario discussed earlier where there are 11 voters. If
Suzy wins 6–5, then all the definitions agree that each of the voters for Suzy is a cause of
Suzy’s victory; indeed, they are all but-for causes. But suppose that Suzy wins 11–0. Here
we have overdetermination. The original and updated HP definition would still call each of
the voters a cause of Suzy winning; the witness involves switching the votes of 5 voters.
Since the modified HP definition does not allow such switching, according to the modified
HP definition, any subset of six voters is a cause of Suzy winning (and every individual is part
of a cause). Again, if we think of the subset as being represented by a disjunction, it can be
thought of as a but-for cause of Suzy winning. If all six voters had switched their votes to
Billy, then Suzy would not have won. Minimality holds; if a set of fewer than six voters had
voted for Billy, then Suzy would still have won.

We do have an intuition that a voter for Suzy is somehow “less” of a cause of the victory
in an 11–0 victory than in a 6–5 victory. This intuition is perhaps most compatible with the
modified HP definition. In this case, X⃗ = x⃗ is a cause of ϕ if X⃗ is a minimal set of variables
whose values have to change for ¬ϕ to hold. The bigger X⃗ is, the less of a cause each of its
conjuncts is. I return to this issue when I discuss responsibility in Chapter 6.
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30 Chapter 2. The HP Definition of Causality

Example 2.3.3 Now I (finally!) consider the rock-throwing example, where Suzy and Billy
both throw rocks at a bottle, but Suzy’s hits the bottle, and Billy’s doesn’t (although it would
have hit had Suzy’s not hit first). We get the desired result—that Suzy’s throw is a cause, but
Billy’s is not—but only if we model the story appropriately. Consider first a coarse causal
model, with three endogenous variables:

ST for “Suzy throws”, with values 0 (Suzy does not throw) and 1 (she does);

BT for “Billy throws”, with values 0 (he doesn’t) and 1 (he does);

BS for “bottle shatters’, with values 0 (it doesn’t shatter) and 1 (it does).

For simplicity, assume that there is one exogenous variable u, which determines whether Billy
and Suzy throw. (In most of the subsequent examples, I omit the exogenous variable in both
the description of the story and the corresponding causal network.) Take the formula for BS
to be such that the bottle shatters if either Billy or Suzy throws; that is, BS = BT ∨ ST . (I
am implicitly assuming that Suzy and Billy never miss if they throw. Also, I follow the fairly
standard mathematics convention of saying “if” rather than “if and only if” in definitions;
clearly, the equation is saying that the bottle shatters if and only if either Billy or Suzy throws.)
For future reference, I call this model MRT (where RT stands for “rock throwing”).

BT and ST play symmetric roles in MRT ; there is nothing to distinguish them. Not sur-
prisingly, both Billy’s throw and Suzy’s throw are classified as causes of the bottle shattering
in MRT in the context u where Suzy and Billy both throw according to the original and up-
dated HP definition (the conjunction ST = 1∧BT = 1 is the cause according to the modified
HP definition). The argument is essentially identical to that used for the disjunctive model of
the forest-fire example, where either the lightning or the dropped match is enough to start the
fire. Indeed, the causal network describing this situation looks like that in Figure 2.1, with ST
and BT replacing L and MD . For convenience, I redraw the network here. As I said earlier,
here and in later figures, I typically omit the exogenous variable(s).
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Figure 2.2: MRT—a naive model for the rock-throwing example.

The trouble with MRT is that it cannot distinguish the case where both rocks hit the bottle
simultaneously (in which case it would be reasonable to say that both ST = 1 and BT = 1
are causes of BS = 1) from the case where Suzy’s rock hits first. MRT has to be refined
to express this distinction. One way is to invoke a dynamic model. Although this can be
done (see the notes at the end of the chapter for more discussion), a simpler way to gain
the expressiveness needed here is to allow BS to be three-valued, with values 0 (the bottle
doesn’t shatter), 1 (it shatters as a result of being hit by Suzy’s rock), and 2 (it shatters as a
result of being hit by Billy’s rock). I leave it to the reader to check that ST = 1 is a cause
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of BS = 1, but BT = 1 is not (if Suzy doesn’t throw but Billy does, then we would have
BS = 2). To some extent, this solves our problem. But it borders on cheating; the answer is
almost programmed into the model by invoking the relation “as a result of” in the definition
of BS = 2, which requires the identification of the actual cause.

A more useful choice is to add two new variables to the model:

BH for “Billy’s rock hits the (intact) bottle”, with values 0 (it doesn’t) and 1 (it does);
and

SH for “Suzy’s rock hits the bottle”, again with values 0 and 1.

We now modify the equations as follows:

BS = 1 if SH = 1 or BH = 1;

SH = 1 if ST = 1;

BH = 1 if BT = 1 and SH = 0.

Thus, Billy’s throw hits if Billy throws and Suzy’s rock doesn’t hit. The last equation implic-
itly assumes that Suzy throws slightly ahead of Billy, or slightly harder.

Call this model M ′
RT . M ′

RT is described by the graph in Figure 2.3 (where again the
exogenous variables are omitted). The asymmetry between BH and SH (in particular, the
fact that Billy’s throw doesn’t hit the bottle if Suzy throws) is modeled by the fact that there
is an edge from SH to BH but not one in the other direction; BH depends (in part) on SH
but not vice versa.
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Figure 2.3: M ′
RT—a better model for the rock-throwing example.

Taking u to be the context where Billy and Suzy both throw, according to all three variants
of the HP definition, ST = 1 is a cause of BS = 1 in (M ′

RT , u), but BT = 1 is not. To
see that ST = 1 is a cause according to the original and updated HP definition, note that it
is immediate that AC1 and AC3 hold. To see that AC2 holds, one possibility is to choose
Z⃗ = {ST ,SH ,BH ,BS}, W⃗ = {BT}, and w = 0. When BT is set to 0, BS tracks ST :
if Suzy throws, the bottle shatters, and if she doesn’t throw, the bottle does not shatter. It
immediately follows that AC2(a) and AC2(bo) hold. AC2(bu) is equivalent to AC2(bo) in this
case, since W⃗ is a singleton.
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32 Chapter 2. The HP Definition of Causality

To see that BT = 1 is not a cause of BS = 1 in (M ′
RT , u), we must check that there is no

partition of the endogenous variables into sets Z⃗ and W⃗ that satisfies AC2. Attempting the
symmetric choice with Z⃗ = {BT ,BH ,SH BS}, W⃗ = {ST}, and w = 0 violates AC2(bo)
and AC2(bu). To see this, take Z⃗ ′ = {BH }. In the context where Suzy and Billy both throw,
BH = 0. If BH is set to 0, then the bottle does not shatter if Billy throws and Suzy does
not. It is precisely because, in this context, Suzy’s throw hits the bottle and Billy’s does not
that we declare Suzy’s throw to be the cause of the bottle shattering. AC2(bo) and AC2(bu)
capture that intuition by forcing us to consider the contingency where BH = 0 (i.e., where
BH takes on its actual value), despite the fact that Billy throws.

Of course, just checking that this particular partition into Z⃗ and W⃗ does not make BT = 1
a cause does not suffice to establish that BT = 1 is not a cause according to the original or
updated definitions; we must check all possible partitions. I just sketch the argument here:
The key is to consider whether BH is in W⃗ or Z⃗. If BH is in W⃗ , then how we set BT has
no effect on the value of BS : If BH is set to 0, then the value of BS is determined by the
value of ST ; and if BH is set to 1, then BS = 1 no matter what BT is. (It may seem strange
to intervene and set BH to 1 if BT = 0. It means that somehow Billy hits the bottle even if
he doesn’t throw. Such “miraculous” interventions are allowed by the definition; part of the
motivation for the notion of normality considered in Chapter 3 is to minimize their usage.)
This shows that we cannot have BH in W⃗ . If BH is in Z⃗, then we get the same problem with
AC2(bo) or AC2(bu) as above; it is easy to see that at least one of SH or ST must be in W⃗ ,
and w⃗ must be such that whichever is in W⃗ is set to 0.

Note that, in this argument, it is critical that in AC2(bo) and AC2(bu) we allow setting an
arbitrary subset of variables in Z⃗−X⃗ to their original values. There is a trivial reason for this:
if we set all variables in Z⃗ − X⃗ to their original values in M ′

RT , then, among other things, we
will set BS to 1. We will never be able to show that Billy’s throw is not a cause if BS is set
to 1. But even requiring that all the variables in Z⃗ − {BS ,BT} be set to their original values
does not work. For suppose that we take W⃗ = {ST} and take w⃗ such that ST = 0. Clearly
AC2(a) holds because if BT = 0, then BS = 0. But if all the variables in Z⃗ − {BT ,BS} are
set to their original values, then SH is set to 1, so the bottle shatters. To show that BT = 1
is not a cause, we must be able to set BH to its original value of 0 while keeping SH at 0.
Setting BH to 0 captures the intuition that Billy’s throw is not a cause because, in the actual
world, his rock did not hit the bottle (BH = 0).

Finally, consider the modified HP definition. Here things are much simpler. In this case,
taking W⃗ = {BT} does not work to show that ST = 1 is a cause of BS = 1; we are
not allowed to change BT from 1 to 0. However, we can take W⃗ = {BH }. Fixing BH
at 0 (its setting in the actual context), if ST is set to 0, then BS = 0, that is, (M,u) |=
[ST ← 0,BH ← 0](BS = 0). Thus, ST = 1 is a cause of BS = 1 according to the modified
HP definition. (Taking W⃗ = {BH } would also have worked to show that ST = 1 is a cause
of BS = 1 according to the original and updated HP definition. Indeed, by Theorem 2.2.3,
showing that ST = 1 is a cause of BS = 1 according to the modified definition suffices to
show that it is also a cause according to the original and updated definition. I went through
the argument for the original and updated definition because the more obvious choice for W⃗
in that case is {BT}, and it works under those definitions.) But now it is also easy to check
that BT = 1 is not a cause of BS = 1 according to the modified HP definition. No matter
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which subset of variables other than BT are held to their values in u and no matter how we
set BT , we have SH = 1 and thus BS = 1.

I did not completely specify M ′
RT in the example above. Specifically, I did not specify

the set of possible contexts. What happens in other contexts is irrelevant for determining
whether ST = 1 or BT = 1 is a cause of BS = 1 in (M ′

RT , u). But once I take normality
considerations into account in Chapter 3, it will become relevant. I described u above as the
context where Billy and Suzy both throw, implicitly suggesting that there are four contexts,
determining the four possible combinations of Billy throwing and Suzy throwing. So we can
take MRT ′ to be the model with these four contexts.

There is arguably a problem with this definition of M ′
RT : it “bakes in” the temporal order-

ing of events, in particular, that Suzy’s rock hits before Billy’s rock. If we want a model that
describes “rock-throwing situations for Billy and Suzy” more generally, we would not want
to necessarily assume that Billy and Suzy are accurate, nor that Suzy always hits before Billy
if they both throw. Whatever assumptions we make along these lines can be captured by the
context. That is, we can have the context determine (a) whether Suzy and Billy throw, (b) how
accurate they are (would Billy hit if he were the only one to throw, and similarly for Suzy),
and (c) whose rock hits first if they both throw and are accurate (allowing for the possibility
that they both hit at the same time). This richer model would thus have 48 contexts: there are
four choices of which subset of Billy and Suzy throw, four possibilities for accuracy (both are
accurate, Suzy is accurate and Billy is not, and so on), and three choices regarding who hits
first if they both throw. If we use this richer model, we would also want to expand the lan-
guage to include variables such as SA (Suzy is accurate), BA (Billy is accurate), SF (Suzy’s
throw arrives first if both Billy and Suzy throw), and BF (Bily’s throw arrives first). Call this
richer model M∗

RT . In M∗
RT , the values of ST , BT , SA, BA, SF , and BF are determined

by the context. As with MRT and M ′
RT , the bottle shatters if either Suzy or Billy hit it, so

we have the equation BS = BH ∨ SH . But now the equations for BH and SH depend on
ST , BT , SA, BA, SF , and BF . Of course SH = 0 if Suzy doesn’t throw (i.e., if ST = 0)
or is inaccurate (SA = 0), but even in this case, the equations need to tell us what would have
happened had Suzy thrown and been accurate, so that we can determine the truth of formulas
such as [ST ← 1,SA ← 1](SH = 0). As suggested by the discussion above, the equation
for SH is

SH =

{
1 if ST = 1, SA = 1, and either BT = 0, BA = 0, or SF = 1;
0 otherwise.

In words, Suzy hits the bottle if she throws and is accurate, and either (a) Billy doesn’t throw,
(b) Billy is inaccurate, or (c) Billy throws and is accurate but Suzy’s rock arrives at the bottle
first (or at the same time as Billy’s); otherwise, Suzy doesn’t hit the bottle.

The context u in M ′
RT corresponds to the context u∗ in M∗

RT where Billy and Suzy both
throw, both are accurate, and Suzy’s throw hits first. Exactly the same argument as that above
shows that ST = 1 is a cause of (M∗

RT , u∗), and BT = 1 is not. In the model M∗
RT , the

direction of the edge in the causal network between SH and BH depends on the context. In
some contexts (the ones where both Suzy and Billy are accurate and Suzy would hit first if
they both throw), BH depends on SH ; in other contexts, SH depends on BH . As a result,
M∗

RT is not what I called a strongly recursive model. M∗
RT is still a recursive model because

in each context u′ in M∗
RT , there are no cyclic dependencies; there is still an ordering ≼u′ on
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the endogenous variables such that unless X ≼u′ Y , Y is independent of X in (M ′
RT , u′). In

particular, although SH ≼u∗ BH and there is a context u′′ in M∗
RT such that BH ≼u′′ SH ,

M∗
RT is still considered recursive.
It is critical in this analysis of the rock-throwing example that the model includes the

variables BH and SH , that is, that Billy’s rock hitting the bottle is taken to be a different
event than Suzy’s rock hitting the bottle (although there is no problem if it includes extra
variables). To understand the need for BH and SH (or some analogous variables), consider
an observer watching the situation. Why would she declare Suzy’s throw to be a cause and
Billy’s throw not to be a cause? Presumably, precisely because it was Suzy’s rock that hit the
bottle and not Billy’s. If this is the reason for the declaration, then it must be modeled. Of
course, using the variables BH and SH is not the only way of doing this. All that is needed
is that the language be rich enough to allow us to distinguish the situation where Suzy’s rock
hits and Billy’s rock does not from the one where Billy’s rock hits and Suzy’s rock does
not. (That is why I said “or some analogous variables” above.) An alternative approach to
incorporating temporal information is to have time-indexed variables (e.g., to have a family
of variables BSk for “bottle shatters at time k” and a family Hk for “bottle is hit at time k”).
With these variables and the appropriate equations, we can dispense with SH and BH and
just have the variables H1, H2, . . . that talk about the bottle being hit at time k, without the
variable specifying who hit the bottle. For example, if we assume that all the action happens
at times 1, 2, and 3, then the equations are H1 = ST (if Suzy throws, then the bottle is hit at
time 1), H2 = BT ∧ ¬H1 (the bottle is hit at time 2 if Billy throws and the bottle was not
already hit at time 1), and BS = H1 ∨H2 (if the bottle is hit, then it shatters). Again, these
equations model the fact that Suzy hits first if she throws. And again, we could assume that
the equations for H1 and H2 are context-dependent, so that Suzy hits first in u, but Billy hits
first in u′. In any case, in context u where Suzy and Billy both throw but Suzy’s rock arrives
at the bottle first, Suzy is still the cause, and Billy isn’t, using essentially the same analysis as
that above.

To summarize the key point here, the language (i.e., the variables chosen and the equations
for them) must be rich enough to capture the significant features of the story, but there is more
than one language that can do this. As we shall see in Chapter 4, the choice of language can
in general have a major impact on causality judgments.

The rock-throwing example emphasizes an important moral. If we want to argue in a case
of preemption that X = x rather than Y = y is the cause of ϕ, then there must be a variable
(BH in this case) that takes on different values depending on whether X = x or Y = y is
the actual cause. If the model does not contain such a variable, then it will not be possible to
determine which one is in fact the cause. The need for such variables is certainly consistent
with intuition and the way we present evidence. If we want to argue (say, in a court of law)
that it was A’s shot that killed C and not B’s, then, assuming that A shot from C’s left and
B from the right, we would present evidence such as the bullet entering C from the left side.
The side from which the shot entered is the relevant variable in this case. The variable may
involve temporal evidence (if C’s shot had been the lethal one, then the death would have
occurred a few seconds later), but it certainly does not have to.

The rock-throwing example also emphasizes the critical role of what happens in the actual
situation in the definition. Specifically, we make use of the fact that, in the actual context,

This content downloaded from 145.109.19.147 on Tue, 13 Feb 2018 22:15:10 UTC
All use subject to http://about.jstor.org/terms
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Billy’s rock did not hit the bottle. In the original and updated HP definition, this fact is applied
in AC2(b): to show that Billy is a cause, we would have to show that the bottle shatters when
Billy throws, even if BH is set to its actual value of 0. In the modified HP definition, it is
applied in AC2(am) to show that Suzy’s throw is a cause: we can set ST = 0 while keeping
BH fixed at 0. The analogous argument would not work to show that Billy’s throw is a cause.

Although what happens in the actual context certainly affects people’s causality judgments,
why is the way that this is captured in AC2(am), AC2(bo), or AC2(bu) the “right” way of cap-
turing it? I do not have a compelling answer to this question, beyond showing that these
definitions work well in examples. I have tried to choose examples that, although not always
realistic, capture important features of causality. For example, while the rock-throwing ex-
ample may not seem so important in and of itself, it is an abstraction of a situation that arises
frequently in legal cases, where one potential cause is preempted by another. Monopolistic
practices by a big company cause a small company to go bankrupt, but it would have gone
bankrupt anyway because of poor management; a smoker dies in a car accident, but he would
have died soon due to inoperable lung cancer had there not been an accident. A good def-
inition of causality is critical for teasing out what is a cause and what is not in such cases.
Many of the other examples in this section are also intended to capture the essence of other
important issues that arise in legal (and everyday) reasoning. It is thus worth understanding
in all these cases exactly what the role of the actual context is.

Example 2.3.4 This example considers the problem of what has been called double preven-
tion.

Suzy and Billy have grown up just in time to get involved in World War III. Suzy
is piloting a bomber on a mission to blow up an enemy target, and Billy is piloting
a fighter as her lone escort. Along comes an enemy fighter plane, piloted by
Enemy. Sharp-eyed Billy spots Enemy, zooms in, and pulls the trigger; Enemy’s
plane goes down in flames. Suzy’s mission is undisturbed, and the bombing takes
place as planned.

Is Billy a cause of the success of the mission? After all, he prevented Enemy from prevent-
ing Suzy from carrying out the mission. Intuitively, it seems that the answer is yes, and the
obvious causal model gives us this. Suppose that we have the following variables:

BPT for “Billy pulls trigger”, with values 0 (he doesn’t) and 1 (he does);

EE for “Enemy eludes Billy”, with values 0 (he doesn’t) and 1 (he does);

ESS for “Enemy shoots Suzy”, with values 0 (he doesn’t) and 1 (he does);

SBT for “Suzy bombs target”, with values 0 (she doesn’t) and 1 (she does);

TD for “target destroyed”, with values 0 (it isn’t) and 1 (it is).

The causal network corresponding to this model is given in Figure 2.4.

In this model, BPT = 1 is a but-for cause of TD = 1, as is SBT = 1, so both BPT = 1
and SBT = 1 are causes of TD = 1 according to all the variants of the HP definition.
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Figure 2.4: Blowing up the target.

We can make the story more complicated by adding a second fighter plane escorting Suzy,
piloted by Hillary. Billy still shoots down Enemy, but if he hadn’t, Hillary would have. The
natural way of dealing with this is to add just one more variable HPT representing Hillary’s
pulling the trigger iff EE = 1 (see Figure 2.5), but then, using the naive but-for criterion,
one might conclude that the target will be destroyed (TD = 1) regardless of Billy’s action, so
BPT = 1 would not be a cause of TD = 1. All three variants of the HP definition still declare
BPT = 1 to be a cause of TD = 1, as expected. We now take W⃗ = {HPT} and fix HPT
at its value in the actual context, namely, 0. Although Billy’s action seems superfluous under
ideal conditions, it becomes essential under a contingency where Hillary for some reason fails
to pull the trigger. This contingency is represented by fixing HPT at 0 irrespective of EE .
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Figure 2.5: Blowing up the target, with Billy and Hillary.

So far, this may all seem reasonable. But now go back to the original story and suppose
that, again, Billy goes up along with Suzy, but Enemy does not actually show up. Is Billy
going up a cause of the target being destroyed? Clearly, if Enemy had shown up, then Billy
would have shot him down, and he would have been a but-for cause of the target being de-
stroyed. But what about the context where Enemy does not show up? It seems that the original
and updated HP definition would say that, even in that context, Billy going up is a cause of
the target being destroyed. For if we consider the contingency where Enemy had shown up,
then the target would not have been destroyed if Billy weren’t there, but since he is, the target
is destroyed.

This may seem disconcerting. Suppose it is known that just about all the enemy’s aircraft
have been destroyed, and no one has been coming up for days. Is Billy going up still a cause?
The concern is that, if so, almost any A can become a cause of any B by telling a story of how
there might have been a C that, but for A, would have prevented B from happening (just as
there might have been an Enemy that prevented the target being destroyed had Billy not been
there).

Does the HP definition really declare Billy showing up a cause of the target being destroyed
in this case? Let’s look a little more carefully at how we model this story. If we want to call
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Billy going up a cause, then we need to add to the model a variable BGU corresponding to
Billy going up. Similarly, we should add a variable ESU corresponding to Enemy showing
up. We have the obvious equations, which say that (in the contexts of interest) BPT = 1
(i.e., Billy pulls the trigger) only if Billy goes up and Enemy shows up, and EE = 0 only
if either Enemy doesn’t show up or Billy pulls the trigger. This gives us the model shown in
Figure 2.6.
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Figure 2.6: Blowing up the target, where Enemy may not show up.

In the actual world, where Billy goes up and Enemy doesn’t, Billy doesn’t pull the trigger
(why should he?), so BPT = 0. Now it is easy to see that Billy going up (i.e., BGU = 1) is
not a cause of the target being destroyed if Enemy doesn’t show up. AC2(bo) fails (and hence
so does AC2(bu)): if Enemy shows up, the target won’t be destroyed, even if Billy shows up,
because in the actual world BPT = 0. The modified HP definition addresses the problem
even more straightforwardly. No matter which variables we fix to their actual values, TD = 1
even if BGU = 0.

Cases of prevention and double prevention are quite standard in the real world. It is stan-
dard to install fire alarms, which, of course, are intended to prevent fires. When the batteries
in a fire alarm become weak, fire alarms typically “chirp”. Deactivating the chirping sound
could be a cause of a fire not being detected due to double prevention: deactivating the chirp-
ing sound prevents the fire alarm from sounding, which in turn prevents the fire from being
detected.

Example 2.3.5 Can not performing an action be (part of) a cause? Consider the following
story.

Billy, having stayed out in the cold too long throwing rocks, contracts a serious
but nonfatal disease. He is hospitalized and treated on Monday, so is fine Tuesday
morning.

But now suppose that the doctor does not treat Billy on Monday. Is the doctor’s not treating
Billy a cause of Billy’s being sick on Tuesday? It seems that it should be, and indeed it is
according to all variants of the HP definition. Suppose that u⃗ is the context where, among
other things, Billy is sick on Monday and the doctor forgets to administer the medication
Monday. It seems reasonable that the model should have two variables:
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38 Chapter 2. The HP Definition of Causality

MT for “Monday treatment”, with values 0 (the doctor does not treat Billy on Monday)
and 1 (he does); and

BMC for “Billy’s medical condition”, with values 0 (recovered) and 1 (still sick).

Sure enough, in the obvious causal setting, MT = 0 is a but-for cause of BMC = 1, and
hence a cause according to all three variants of the HP definition.

This may seem somewhat disconcerting at first. Suppose there are 100 doctors in the
hospital. Although only one of them was assigned to Billy (and he forgot to give medication),
in principle, any of the other 99 doctors could have given Billy his medication. Is the fact that
they didn’t give him the medication also part of the cause of him still being sick on Tuesday?

In the causal model above, the other doctors’ failure to give Billy his medication is not a
cause, since the model has no variables to model the other doctors’ actions, just as there was
no variable in the causal model of Example 2.3.1 to model the presence of oxygen. Their lack
of action is part of the context. We factor it out because (quite reasonably) we want to focus
on the actions of Billy’s doctor.

If we had included endogenous variables corresponding to the other doctors, then they too
would be causes of Billy’s being sick on Tuesday. The more refined definition of causal-
ity given in Chapter 3, which takes normality into account, provides a way of avoiding this
problem even if the model includes endogenous variables for the other doctors.

Causation by omission is a major issue in the law. To take just one of many examples, a
surgeon can be sued for the harm caused due to a surgical sponge that he did not remove after
an operation.

The next example again emphasizes how the choice of model can change what counts as a
cause.

Example 2.3.6 The engineer is standing by a switch in the railroad tracks. A train approaches
in the distance. She flips the switch, so that the train travels down the right track instead of the
left. Because the tracks reconverge up ahead, the train arrives at its destination all the same.

If we model this story using three variables—F for “flip”, with values 0 (the engineer
doesn’t flip the switch) and 1 (she does); T for “track”, with values 0 (the train goes on the
left track) and 1 (it goes on the right track); and A for “arrival”, with values 0 (the train does
not arrive at the point of reconvergence) and 1 (it does)—then all three definitions agree that
flipping the switch is not a cause of the train arriving.

But now suppose that we replace T with two binary variables, LB (for left track blocked),
which is 0 if the left track is not blocked, and 1 if it is, and RB (for right track blocked),
defined symmetrically. Suppose that LB, RB, and F are determined by the context, while
the value of A is determined in the obvious way by which track the train is going down
(which is determined by how the switch is set) and whether the track that it is going down
is blocked; specifically, A = (F ∧ ¬LB) ∨ (¬F ∧ ¬RB). In the actual context, F = 1 and
LB = RB = 0. Under the original and updated HP definition, F = 1 is a cause of A = 1.
For in the contingency where LB = 1, if F = 1, then the train arrives, whereas if F = 0,
then the train does not arrive. While adding the variables LB and RB suggests that we care
about whether a track is blocked, it seems strange to call flipping the switch a cause of the
train arriving when in fact both tracks are unblocked. This problem can be dealt with to some

This content downloaded from 145.109.19.147 on Tue, 13 Feb 2018 22:15:10 UTC
All use subject to http://about.jstor.org/terms



2.3 Examples 39

extent by invoking normality considerations, but not completely (see Example 3.4.3). With
the modified definition, the problem disappears. Flipping the switch is not a cause of the train
arriving if both tracks are unblocked, nor is it a cause of the train not arriving if both tracks
are blocked.

Example 2.3.7 Suppose that a captain and a sergeant stand before a private, both shout
“Charge!” at the same time, and the private charges. Some have argued that, because orders
from higher-ranking officers trump those of lower-ranking officers, the captain is a cause of
the charge, whereas the sergeant is not.

It turns out that which of the sergeant or captain is a cause depends in part on the variant
of the HP definition we consider and in part on what the possible actions of the sergeant and
captain are. First, suppose that the sergeant and the captain can each either order an advance,
order a retreat, or do nothing. Formally, let C and S represent the captain’s and sergeant’s
order, respectively. Then C and S can each take three values, 1, −1, or 0, depending on the
order (attack, retreat, no order). The actual value of C and S is determined by the context. P
describes what the private does; as the story suggests, P = C if C ̸= 0; otherwise P = S. In
the actual context, C = S = P = 1.

C = 1 is a but-for cause of P = 1; setting C to −1 would result in P = −1. Thus, C = 1
is a cause of P = 1 according to all variants of the HP definition. S = 1 is not a cause of
B = 1 according to the modified HP definition; changing S to 0 while keeping C fixed at
1 will not affect the private’s action. However, S = 1 is a cause of P = 1 according to the
original and updated HP definition, with witness ({C}, 0, 0) (i.e., in the witness world, C = 0
and S = 0): if the captain does nothing, then what the private does is completely determined
by the sergeant’s action.

Next, suppose that the captain and sergeant can only order an attack or a retreat; that is,
the range of each of C and S is {−1, 1}. Now it is easy to check that C = 1 is the only
cause of P = 1 according to all the variants of the HP definition. For the original and updated
definition, S = 1 is not a cause because there is no setting of C that will allow the sergeant’s
action to make a difference.

Finally, suppose that the captain and sergeant can only order an attack or do nothing; that is,
the range of each of C and S is {0, 1}. C = 1 and S = 1 are both causes of P = 1 according
to the original and updated HP definition, using the same argument used to show that S = 1
was a cause when it was also possible to order a retreat. Neither is a cause according to the
modified HP definition, but C = 1 ∧ S = 1 is a cause, so both C = 1 and S = 1 are parts of
a cause.

Note that if the range of the variables C and S is {0, 1}, then there is no way to capture the
fact that in the case of conflicting orders, the private obeys the captain. In this setting, we can
capture the fact that the private is “really” obeying the captain if both the captain and sergeant
give orders by adding a new variable SE that captures the sergeant’s “effective” order. If the
captain does not issue any orders (i.e., if C = 0), then SE = S. If the captain does issue
an order, then SE = 0; the sergeant’s order is effectively blocked. In this model, P = C if
C ̸= 0; otherwise, P = SE . The causal network for this model is given in Figure 2.7.

In this model, the captain causes the private to advance, but the sergeant does not, according
to all variants of the HP definition. To see that the captain is a cause according to the modified
HP definition, hold SE fixed at 0 and set C = 0; clearly P = 0. By Theorem 2.2.3, C = 1 is
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Figure 2.7: A model of commands that captures trumping.

a cause of P = 1 according to the original and updated definition as well. To show that S = 1
is not (part of) a cause according to all variants of the HP definition, it suffices to show it is
not a cause according to the original HP definition. Suppose that we want to argue that S = 1
causes P = 1. The obvious thing to do is to take W⃗ = {C} and Z⃗ = {S,SE , P}. However,
this choice does not satisfy AC2(bo): if C = 0, SE = 0 (its original value), and S = 1, then
P = 0, not 1. The key point is that this more refined model allows a setting where C = 0,
S = 1, and P = 0 (because SE = 0). That is, despite the sergeant issuing an order to attack
and the captain being silent, the private does nothing.

The final example in this section touches on issues of responsibility in the law.

Example 2.3.8 Suppose that two companies both dump pollutant into the river. Company A
dumps 100 kilograms of pollutant; company B dumps 60 kilograms. The fish in the river die.
Biologists determine that k kilograms of pollutant suffice for the fish to die. Which company
is the cause of the fish dying if k = 120, if k = 80, and if k = 50?

It is easy to see that if k = 120, then both companies are causes of the fish dying, according
to all three definitions (each company is a but-for cause of the outcome). If k = 50, then each
company is still a cause according to the original and updated HP definition. For example, to
see that company B is a cause, we consider the contingency where company A does not dump
any pollutant. Then the fish die if company B pollutes, but they survive if B does not pollute.
With the modified definition, neither company individually is a cause; there is no variable that
we can hold at its actual value that would make company A or company B a but-for cause.
However, both companies together are the cause.

The situation gets more interesting if k = 80. Now the modified definition says that only
A is a cause; if A dumps 100 tons of pollutant, then what B does has no impact. The original
and updated definition also agree that A is a cause if k = 80. Whether B is a cause depends
on the possible amounts of pollutant that A can dump. If A can dump only 0 or 100 kilograms
of pollutant, then B is not a cause; no setting of A’s action can result in B’s action making a
difference. However, if A can dump some amount between 20 and 79 kilograms, then B is a
cause.

It’s not clear what the “right” answer should be here if k = 80. The law typically wants to
declare B a contributing cause to the death of the fish (in addition to A), but should this depend
on the amount of pollutant that A can dump? As we shall see in Section 6.2, thinking in
terms of responsibility and blame helps clarify the issue (see Example 6.2.5). Under minimal
assumptions about how likely various amounts of pollutant are to be dumped, B will get some
degree of blame according to the modified definition, even when it is not a cause.
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2.4 Transitivity
Example 2.4.1 Now consider the following modification of Example 2.3.5.

Suppose that Monday’s doctor is reliable and administers the medicine first thing
in the morning, so that Billy is fully recovered by Tuesday afternoon. Tuesday’s
doctor is also reliable and would have treated Billy if Monday’s doctor had failed
to. . . . And let us add a twist: one dose of medication is harmless, but two doses
are lethal.

Is the fact that Tuesday’s doctor did not treat Billy the cause of him being alive (and recovered)
on Wednesday morning?

The causal model MB for this story is straightforward. There are three variables:

MT for Monday’s treatment (1 if Billy was treated Monday; 0 otherwise);

TT for Tuesday’s treatment (1 if Billy was treated Tuesday; 0 otherwise); and

BMC for Billy’s medical condition (0 if Billy feels fine both Tuesday morning and
Wednesday morning; 1 if Billy feels sick Tuesday morning, fine Wednesday morning;
2 if Billy feels sick both Tuesday and Wednesday morning; 3 if Billy feels fine Tuesday
morning and is dead Wednesday morning).

We can then describe Billy’s condition as a function of the four possible combinations of
treatment/nontreatment on Monday and Tuesday. I omit the obvious structural equations cor-
responding to this discussion; the causal network is shown in Figure 2.8.
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Figure 2.8: Billy’s medical condition.

In the context where Billy is sick and Monday’s doctor treats him, MT = 1 is a but-for
cause of BMC = 0; if Billy had not been treated on Monday, then Billy would not have felt
fine on Tuesday. MT = 1 is also a but-for cause of TT = 0, and TT = 0 is a but-for cause
of Billy’s being alive (BMC ̸= 3, or equivalently, BMC = 0 ∨ BMC = 1 ∨ BMC = 2).
However, MT = 1 is not part of a cause of Billy’s being alive, according to any variant of the
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HP definition. It suffices to show that it is not a cause according the original HP definition.
This follows because setting MT = 0 cannot result in Billy dying, not matter how we fix TT .

This shows that causality is not transitive according to the HP definition. Although MT =
1 is a cause of TT = 0 and TT = 0 is a cause of BMC = 0 ∨ BMC = 1 ∨ BMC = 2,
MT = 1 is not a cause of BMC = 0 ∨ BMC = 1 ∨ BMC = 2. Nor is causality closed
under right weakening; that is, replacing a conclusion by something it implies. If A is a cause
of B and B logically implies B′, then A may not be a cause of B′. In this case, MT = 1 is a
cause of BMC = 0, which logically implies BMC = 0 ∨ BMC = 1 ∨ BMC = 2, which is
not caused by MT = 1.

Although this example may seem somewhat forced, there are many quite realistic exam-
ples of lack of transitivity with exactly the same structure. Consider the body’s homeostatic
system. An increase in external temperature causes a short-term increase in core body tem-
perature, which in turn causes the homeostatic system to kick in and return the body to normal
core body temperature shortly thereafter. But if we say that the increase in external tempera-
ture happened at time 0 and the return to normal core body temperature happened at time 1,
we certainly would not want to say that the increase in external temperature at time 0 caused
the body temperature to be normal at time 1!

There is another reason that causality is intransitive, which is illustrated by the following
example.

Example 2.4.2 Suppose that a dog bites Jim’s right hand. Jim was planning to detonate a
bomb, which he normally would do by pressing the button with his right forefinger. Because
of the dog bite, he presses the button with his left forefinger. The bomb still goes off.

Consider the causal model with variables DB (the dog bites, with values 0 and 1), P (the
press of the button, with values 0, 1, and 2, depending on whether the button is not pressed
at all, pressed with the right hand, or pressed with the left hand), and B (the bomb goes off).
We have the obvious equations: DB is determined by the context, P = DB + 1, and B = 1
if P is either 1 or 2. In the context where DB = 1, it is clear that DB = 1 is a but-for cause
of P = 2 (if the dog had not bitten, P would have been 1), and P = 2 is a but-for cause of
B = 1 (if P were 0, then B woud be 0), but DB = 1 is not a cause of P = 1. Regardless
of whether the dog had bitten Jim, the button would have been pressed, and the bomb would
have detonated.

In retrospect, the failure of right weakening is not so surprising. Taking true to be a tau-
tology, if A is a cause of B, then we do not want to say that A is a cause of true, although B
logically implies true. However, the failure of transitivity is quite surprising. Indeed, despite
Examples 2.4.1 and 2.4.2, it seems natural to think of causality as transitive. People often
think in terms of causal chains: A caused B, B caused C, C caused D, and therefore A
caused D, where transitivity seems natural (although the law does not treat causality as tran-
sitive in long causal chains; see Section 3.4.4). Not surprisingly, there are some definitions
of causality that require causality to be transitive; see the notes at the end of the chapter for
details.

Why do we feel that causality is transitive? I believe that this is because, in typical settings,
causality is indeed transitive. I give below two simple sets of conditions that are sufficient to
guarantee transitivity. Because I expect that these conditions apply in many cases, it may
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explain why we naturally generalize to thinking of causality as transitive and are surprised
when it is not.

For the purposes of this section, I restrict attention to but-for causes. This is what the law
has focused on and seems to be the situation that arises most often in practice (although I will
admit I have only anecdotal evidence to support this); certainly the law has done reasonably
well by considering only but-for causality. Restricting to but-for causality has the further
advantage that all the variants of the HP definition agree on what counts as a cause. (Thus, in
this section, I do not specify which variant of the definition I am considering.) Restricting to
but-for causality does not solve the transitivity problem. As Examples 2.4.1 and 2.4.2 already
show, even if X1 = x1 is a but-for cause of X2 = x2 and X2 = x2 is a but-for cause of
X3 = x3, it may not be the case that X1 = x1 is a cause of X3 = x3.

The first set of conditions assumes that X1, X2, and X3 each has a default setting. Such
default settings make sense in many applications; “nothing happens” can be often taken as the
default. Suppose, for example, a billiards expert hits ball A, causing it to hit ball B, causing
it to carom into ball C, which then drops into the pocket. In this case, we can take the default
setting for the shot to be the expert doing nothing and the default setting for the balls to be
that they are not in motion. Let the default setting be denoted by the value 0.

Proposition 2.4.3 Suppose that

(a) X1 = x1 is a but-for cause of X2 = x2 in (M, u⃗),

(b) X2 = x2 is a but-for cause of X3 = x3 in (M, u⃗),

(c) x3 ̸= 0,

(d) (M, u⃗) |= [X1 ← 0](X2 = 0), and

(e) (M, u⃗) |= [X1 ← 0, X2 ← 0](X3 = 0).

Then X1 = x1 is a but-for cause of X3 = x3 in (M, u⃗).

Proof: If X2 = 0 in the unique solution to the equations in the causal model MX1←0 in
context u⃗ and X3 = 0 in the unique solution to the equations in MX1←0,X2←0 in context u⃗,
then it is immediate that X3 = 0 in the unique solution to the equations in MX1←0 in context
u⃗. That is, (M, u⃗) |= [X1 ← 0](X3 = 0). It follows from assumption (a) that (M, u⃗) |=
X1 = x1. We must thus have x1 ̸= 0; otherwise, (M, u⃗) |= X1 = 0 ∧ [X1 ← 0](X3 = 0),
so (M, u⃗) |= X3 = 0, which contradicts assumptions (b) and (c). Thus, X1 = x1 is a but-for
cause of X3 = x3, since the value of X3 depends counterfactually on that of X1.

Although the conditions of Proposition 2.4.3 are clearly rather specialized, they arise often
in practice. Conditions (d) and (e) say that if X1 remains in its default state, then so will
X2, and if both X1 and X2 remain in their default states, then so will X3. Put another way,
this says that the reason for X2 not being in its default state is X1 not being in its default
state, and the reason for X3 not being in its default state is X1 and X2 both not being in their
default states. The billiard example can be viewed as a paradigmatic example of when these
conditions apply. It seems reasonable to assume that if the expert does not shoot, then ball A
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44 Chapter 2. The HP Definition of Causality

does not move; and if the expert does not shoot and ball A does not move (in the context of
interest), then ball B does not move, and so on.

Of course, the conditions on Proposition 2.4.3 do not apply in either Example 2.4.1 or
Example 2.4.2. The obvious default values in Example 2.4.1 are MT = TT = 0, but
the equations say that in all contexts u⃗ of the causal model MB for this example, we have
(MB , u⃗) |= [MT ← 0](TT = 1). In the second example, if we take DB = 0 and P = 0 to
be the default values of DB and P , then in all contexts u⃗ of the causal model MD, we have
(MD, u⃗) |= [DB ← 0](P = 1).

While Proposition 2.4.3 is useful, there are many examples where there is no obvious
default value. When considering the body’s homeostatic system, even if there is arguably a
default value for core body temperature, what is the default value for the external temperature?
But it turns out that the key ideas of the proof of Proposition 2.4.3 apply even if there is
no default value. Suppose that X1 = x1 is a but-for cause of X2 = x2 in (M, u⃗) and
X2 = x2 is a but-for cause of X3 = x3 in (M, u⃗). Then to get transitivity, it suffices
to find values x′

1, x′
2, and x′

3 such that x3 ̸= x′
3, (M, u⃗) |= [X1 ← x′

1](X2 = x′
2), and

(M, u⃗) |= [X1 ← x′
1, X2 ← x′

2](X3 = x′
3). The argument in the proof of Proposition 2.4.3

(formalized in Lemma 2.10.2) shows that (M, u⃗) |= [X1 ← x′
1](X3 = x′

3). It then follows
that X1 = x1 is a but-for cause of X3 = x3 in (M, u⃗). In Proposition 2.4.3, x′

1, x′
2, and

x′
3 were all 0, but there is nothing special about the fact that 0 is a default value here. As

long as we can find some values x′
1, x′

2, and x′
3, these conditions apply. I formalize this as

Proposition 2.4.4, which is a straightforward generalization of Proposition 2.4.3.

Proposition 2.4.4 Suppose that there exist values x′
1, x′

2, and x′
3 such that

(a) X1 = x1 is a but-for cause of X2 = x2 in (M, u⃗),

(b) X2 = x2 is a but-for cause of X3 = x3 in (M, u⃗),

(c) x3 ̸= x′
3,

(d) (M, u⃗) |= [X1 ← x′
1](X2 = x′

2) (i.e., (X2)x′
1
(u⃗) = x′

2), and

(e) (M, u⃗) |= [X1 ← x′
1, X2 ← x′

2](X3 = x′
3) (i.e., (X3)x′

1x
′
2
(u⃗) = x′

3).

Then X1 = x1 is a but-for cause of X3 = x3 in (M, u⃗).

To see how these ideas apply, suppose that a student receives an A+ in a course, which
causes her to be accepted at Cornell University (her top choice, of course!), which in turn
causes her to move to Ithaca. Further suppose that if she had received an A in the course,
she would have gone to university U1 and as a result moved to city C1, and if she had gotten
anything else, she would have gone to university at U2 and moved to city C2. This story can
be captured by a causal model with three variables: G for her grade, U for the university she
goes to, and C for the city she moves to. There are no obvious default values for any of these
three variables. Nevertheless, we have transitivity here: The student’s A+ was a cause of her
being accepted at Cornell, and being accepted at Cornell was a cause of her move to Ithaca;
it seems like a reasonable conclusion that the student’s A+ was a cause of her move to Ithaca.
Indeed, transitivity follows from Proposition 2.4.4. We can take the student getting an A to be
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2.4 Transitivity 45

x′
1, the student being accepted at university U1 to be x′

2, and the student moving to C1 to be
x′
3 (assuming that U1 is not Cornell and that C1 is not Ithaca, of course).

The conditions provided in Proposition 2.4.4 are not only sufficient for causality to be
transitive, they are necessary as well, as the following result shows.

Proposition 2.4.5 If X1 = x1 is a but-for cause of X3 = x3 in (M, u⃗), then there exist
values x′

1, x′
2, and x′

3 such that x3 ̸= x′
3, (M, u⃗) |= [X1 ← x′

1](X2 = x′
2), and (M, u⃗) |=

[X1 ← x′
1, X2 ← x′

2](X3 = x′
3).

Proof: Since X1 = x1 is a but-for cause of X3 = x3 in (M, u⃗), there must exist a
value x′

1 ̸= x1 such that (M, u⃗) |= [X1 ← x′
1](X3 ̸= x3). Let x′

2 and x′
3 ̸= x3

be such that (M, u⃗) |= [X1 ← x′
1](X2 = x′

2 ∧ X3 = x′
3). It easily follows that

(M, u⃗) |= [X1 ← x′
1, X2 ← x′

2](X3 = x′
3).

In light of Propositions 2.4.4 and 2.4.5, understanding why causality is so often taken
to be transitive comes down to finding sufficient conditions to guarantee the assumptions of
Proposition 2.4.4. I now present a set of conditions sufficient to guarantee the assumptions
of Proposition 2.4.4, motivated by the two examples showing that causality is not transitive.
To deal with the problem in Example 2.4.2, I require that for every value x′

2 in the range of
X2, there is a value x′

1 in the range of X1 such that (M, u⃗) |= [X1 ← x′
1](X2 = x′

2). This
requirement holds in many cases of interest; it is guaranteed to hold if X1 = x1 is a but-for
cause of X2 = x2 and X2 is binary (since but-for causality requires that two different values
of X1 result in different values of X2). But this requirement does not hold in Example 2.4.2;
no setting of DB can force P to be 0.

Imposing this requirement still does not deal with the problem in Example 2.4.1. To do
that, we need one more condition: X2 must lie on every causal path from X1 to X3. Roughly
speaking, this says that all the influence of X1 on X3 goes through X2. This condition does
not hold in Example 2.4.1: as Figure 2.8 shows, there is a direct causal path from MT to
BMC that does not include TT . However, this condition does hold in many cases of interest.
Going back to the example of the student’s grade, the only way that the student’s grade can
influence which city the student moves to is via the university that accepts the student.

To make this precise, I first need to define causal path. A causal path in a causal setting
(M, u⃗) is a sequence (Y1, . . . , Yk) of variables such that Yj+1 depends on Yj in context u⃗ for
j = 1, . . . , k − 1. Since there is an edge between Yj and Yj+1 in the causal network for M
(assuming that we fix context u⃗) exactly if Yj+1 depends on Yj , a causal path is just a path in
the causal network. A causal path in (M, u⃗) from X1 to X2 is just a causal path whose first
node is X1 and whose last node is X2. Finally, Y lies on a causal path in (M, u⃗) from X1 to
X2 if Y is a node (possibly X1 or X2) on a causal path in (M, u⃗) from X1 to X2.

The following result summarizes the second set of conditions sufficient for transitivity.
(Recall that R(X) denotes the range of the variable X .)

Proposition 2.4.6 Suppose that X1 = x1 is a but-for cause of X2 = x2 in the causal setting
(M, u⃗), X2 = x2 is a but-for cause of X3 = x3 in (M, u⃗), and the following two conditions
hold:

(a) for every value x′
2 ∈ R(X2), there exists a value x′

1 ∈ R(X1) such that (M, u⃗) |=
[X1 ← x′

1](X2 = x′
2) (i.e., (X2)x′

1
(u⃗) = x′

2);
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46 Chapter 2. The HP Definition of Causality

(b) X2 is on every causal path in (M, u⃗) from X1 to X3.

Then X1 = x1 is a but-for cause of X3 = x3.

The proof of Proposition 2.4.6 is not hard, although we must be careful to get all the details
right. The high-level idea of the proof is easy to explain. Suppose that X2 = x2 is a but-for
cause of X3 = x3 in (M, u⃗). Then there must be some values x2 ̸= x′

2 and x3 ̸= x′
3 such

that (M, u⃗) |= [X2 ← x′
2](X3 = x′

3). By assumption, there exists a value x′
1 ∈ R(X1) such

that (M, u⃗) |= [X1 ← x′
1](X2 = x′

2). The requirement that X2 is on every causal path from
X1 to X3 guarantees that [X2 ← x′

2](X3 = x3) implies [X1 ← x′
1, X2 ← x′

2](X3 = x3) in
(M, u⃗) (i.e., (X3)x′

2
(u⃗) = x3 implies (X3)x′

1x
′
2
(u⃗) = x3). Roughly speaking, X2 “screens

off” the effect of X1 on X3, since it is on every causal path from X1 to X3. Now we can
apply Proposition 2.4.4. I defer the formal argument to Section 2.10.2.

It is easy to construct examples showing that the conditions of Proposition 2.4.6 are not
necessary for causality to be transitive. Suppose that X1 = x1 causes X2 = x2, X2 = x2

causes X3 = x3, and there are several causal paths from X1 to X3. Roughly speaking, the
reason that X1 = x1 may not be a but-for cause of X3 = x3 is that the effects of X1 on X3

may “cancel out” along the various causal paths. This is what happens in the homeostasis
example. If X2 is on all the causal paths from X1 to X3, then as we have seen, all the effect
of X1 on X3 is mediated by X2, so the effect of X1 on X3 on different causal paths cannot
“cancel out”. But even if X2 is not on all the causal paths from X1 to X3, the effects of X1 on
X3 may not cancel out along the causal paths, and X1 = x1 may still be a cause of X3 = x3.
That said, it seems difficult to find a weakening of the condition in Proposition 2.4.6 that is
simple to state and suffices for causality to be transitive.

2.5 Probability and Causality
In general, an agent trying to determine whether A is a cause of B may not know the exact
model or context. An agent may be uncertain about whether Suzy and Billy both threw, or
just Suzy threw; he may be uncertain about who will hit first if both Suzy and Billy throw
(or perhaps they hit simultaneously). In a perhaps more interesting setting, at some point,
people were uncertain about whether smoking caused cancer or whether smoking and cancer
were both the outcome of the same genetic problem, which would lead to smoking and cancer
being correlated, but no causal relationship between the two. To deal with such uncertainty,
an agent can put a probability on causal settings. For each causal setting (M, u⃗), the agent
can determine whether A is a cause of B in (M, u⃗), and so compute the probability that A
is a cause of B. Having probabilities on causal settings will be relevant in the discussion of
blame in Chapter 6. Here I focus on what seems to be a different source of uncertainty: un-
certainty in the equations. In causal models, all the equations are assumed to be deterministic.
However, as was observed, in many cases, it seems more reasonable to think of outcomes
as probabilistic. So rather than thinking of Suzy’s rock as definitely hitting the bottle if she
throws, we can think of her as hitting with probability .9. That is, rather than taking Suzy to
always be accurate, we can take her to be accurate with some probability.

The first step in considering how to define causality in the presence of uncertain outcomes
is to show how this uncertainty can be captured in the formal framework. Earlier, I assumed
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2.5 Probability and Causality 47

that, for each endogenous variable X , there was a deterministic function FX that described
the value of X as a function of all the other variables. Now, rather than assuming that FX

returns a particular value, I assume that it returns a distribution over the values of X given the
values of all other variables. This is perhaps easiest to understand by means of an example.
In the rock-throwing example, rather than assuming that if Suzy throws a rock, she definitely
hits the bottle, suppose we assume that she only only hits it with probability .9 and misses
with probability .1. Suppose that if Billy throws and Suzy hasn’t hit the bottle, then Billy will
hit it with probability .8 and miss with probability .2. Finally, for simplicity, assume that, if
hit by either Billy or Suzy, the bottle will definitely shatter.

The next two paragraphs show how the probabilistic version of this story can be modeled
formally in the structural-equations framework and can be skipped on a first reading. Recall
that for the more sophisticated model M ′

RT of the (deterministic) rock-throwing story, al-
though I earlier wrote the equation for SH as SH = ST , this is really an abbreviation for the
function FSH (i1, i2, i3, i4, i5) = i2: FSH is a function of the values of the exogenous variable
U (which is not described in the causal network but determines the values of BT and ST ) and
the endogenous variables ST , BT , BH , and BS . These values are given by i1, . . . , i5. The
equation SH = ST says that the value of SH depends only on the value of ST and is equal to
it; that explains the output i2. For the probabilistic version of the story, FSH (i1, 1, i3, i4, i5)
is the probability distribution that places probability .9 on the value 1 and probability .1 on
the value 0. In words, this says that if Suzy throws (ST = 1), then no matter what the values
i1, i3, i4, and i5 of U , BT , BH , and BS are, respectively, FSH (i1, 1, i3, i4, i5) is the proba-
bility distribution that puts probability .9 on the event SH = 1 and probability .1 on the event
SH = 0. This captures the fact that if Suzy throws, then she has a probability .9 of hitting
the bottle (no matter what Billy does). Similarly, FSH (i1, 0, i3, i4, i5) is the distribution that
places probability 1 on the value 0: if Suzy doesn’t throw, then she certainly won’t hit the
bottle, so the event SH = 0 has probability 1.

Similarly, in the deterministic model of the rock-throwing example, The function FBH is
such that FBH (i1, i2, i3, i4, i5) = 1 if (i3, i4) = (1, 0), and is 0 otherwise. That is, taking
i1, . . . , i5 to be the values of U , ST , BT , SH , and BS , respectively, Billy’s throw hits the
bottle only if he throws (i3 = 1) and Suzy doesn’t hit the bottle (i4 = 0). For the probabilistic
version of the story, FBH (i1, i2, i3, i4, i5) is the distribution that puts probability .8 on 1 and
probability .2 on 0; for all other values of i3 and i4, FBH (i1, i2, 1, 0, i5) puts probability
1 on 0. (Henceforth, I just describe the probabilities in words rather than using the formal
notation.)

The interpretation of these probabilities is similar to the interpretation of the deterministic
equations we have used up to now. For example, the fact that Suzy’s rock hits with probability
.9 does not mean that the probability of Suzy’s rock hitting conditional on her throwing is .9;
rather, it means that if there is an intervention that results in Suzy throwing, the probability
of her hitting is .9. The probability of rain conditional on a low barometer reading is high.
However, intervening on the barometer reading, say, by setting the needle to point to a low
reading, does not affect the probability of rain.

There have been many attempts to give a definition of causality that takes probability into
account. They typically take A to be a cause of B if A raises the probability of B. I am going
to take a different approach here. I take a standard technique in computer science to “pull
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48 Chapter 2. The HP Definition of Causality

out the probability”, allowing me to convert a single causal setting where the equations are
probabilistic to a probability over causal settings, where in each causal setting, the equations
are deterministic. This, in turn, will allow me to avoid giving a separate definition of prob-
abilistic causality. Rather, I will be able to use the definition of causality already given for
deterministic models and talk about the probability of causality, that is, the probability that
A is a cause of B. As we shall see, this approach seems to deal naturally with a number of
problems regarding probabilistic causality that have been raised in the literature.

The assumption is that the equations would be deterministic if we knew all the relevant
details. This assumption is probably false at the quantum level; most physicists believe that
at this level, the world is genuinely probabilistic. But for the macroscopic events that I focus
on in this book (and that most people are interested in when applying causality judgments),
it seems reasonable to view the world as fundamentally deterministic. With this viewpoint, if
Suzy hits the rock with probability .9, then there must be (perhaps poorly understood) reasons
that cause her to miss: an unexpected gust of wind or a momentary distraction throwing off
her aim. We can “package up” all these factors and make them exogenous. That is, we can
have an exogenous variable U ′ with values either 0 or 1 depending on whether the features
that cause Suzy to miss are present, where U ′ = 0 with probability .1 and U ′ = 1 with
probability .9. By introducing such a variable U ′ (and a corresponding variable for Billy),
we have essentially pulled the probability out of the equations and put it into the exogenous
variable.

I now show in more detail how this approach plays out in the context of the rock-throwing
example with the probabilities given above. Consider the causal setting where Suzy and Billy
both throw. We may be interested in knowing the probability that Suzy or Billy will be a cause
of the bottle shattering if we don’t know whether the bottle will in fact shatter, or in knowing
the probability that Suzy or Billy is the cause if we know that the bottle actually did shatter.
(Notice that in the former case, we are asking about an effect of a (possible) cause, whereas in
the latter case, we are asking about the cause of an effect.) When we pull out the probability,
there are four causal models that arise here, depending on whether Suzy’s rock hits the bottle
and whether Billy’s rock hits the bottle if Suzy’s rock does not hit. Specifically, consider the
following four models, in a context where both Suzy and Billy throw rocks:

M1: Suzy’s rock hits and Billy’s rock would hit if Suzy missed;

M2: Suzy’s rock hits but Billy’s rock would not hit if Suzy missed;

M3: Suzy’s rock misses and Billy’s rock hits;

M4: neither rock hits.

Note that these models differ in their structural equations, although they involve the same
exogenous and endogenous variables. M1 is just the model considered earlier, described in
Figure 2.3. Suzy’s throw is a cause in M1 and M2; Billy’s throw is a cause in M3.

If we know that the bottle shattered, Suzy’s rock hit, and Billy’s didn’t, then the probability
that Suzy is the cause is 1. We are conditioning on the model being either M1 or M2 because
these are the models where Suzy’s rock hits, and Suzy is the cause of the bottle shattering in
both. But suppose that all we know is that the bottle shattered, and we are trying to determine
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the probability that Suzy is the cause. Now we can condition on the model being either M1,
M2, or M3, so if the prior probability of M4 is p, then the probability that Suzy is a cause of
the bottle shattering is .9/(1 − p): Suzy is a cause of the bottle shattering as long as she hits
the bottle and it shatters (i.e., in models M1 and M2). Unfortunately, the story does not give
us that the probability of M4. It is .1− q, where q is the prior probability of M3, but the story
does not tell us that either. We can say more if we make a reasonable additional assumption:
that whether Suzy’s rock hits is independent of whether Billy’s rock would hit if Suzy missed.
Then M1 has probability .72 (= .9× .8), M2 has probability .18, M3 has probability .08, and
M4 has probability .02. With this assumption and no further information, the probability of
Suzy being a cause of the bottle shatter is .9/.98 = 45/49.

Although it seems reasonable to view the outcomes “Suzy’s rock hits the bottle” and
“Billy’s rock would have hit the bottle if Suzy’s hadn’t” as independent, they certainly do
not have to be. We could, for example, assume that Billy and Suzy are perfectly accurate
when there are no wind gusts and miss when there are wind gusts, and that wind gusts occur
with probability .7. Then it would be the case that Suzy’s rock hits with probability .7 and
that Billy’s rock would have hit with probability .7 if Suzy’s had missed, but there would have
been only two causal models: the one that we considered in the deterministic case, which
would be the actual model with probability .7, and the one where both miss. (A better model
of this situation might have an exogenous variable U ′ such that U ′ = 1 if there are wind gusts
and U ′ = 0 if there aren’t, and then have deterministic equations for SH and BH .) The key
message here is that, in general, further information might be needed to determine the prob-
ability of causality beyond what is provided by probabilistic structural equations as defined
above.

A few more examples should help illustrate how this approach works and how much we
can say.

Example 2.5.1 Suppose that a doctor treats Billy on Monday. The treatment will result in
Billy recovering on Tuesday with probability .9. But Billy might also recover with no treat-
ment due to some other factors, with independent probability .1. By “independent probability”
here, I mean that conditional on Billy being treated on Monday, the events “Billy recovers due
to the treatment” and “Billy recovers due to other factors” are independent; thus, the probabil-
ity that Billy will not recover on Tuesday given that he is treated on Monday is (.1)(.9). Now,
in fact, Billy is treated on Monday and he recovers on Tuesday. Is the treatment the cause of
Billy getting better?

The standard answer is yes, because the treatment greatly increases the likelihood of Billy
getting better. But there is still the nagging concern that Billy’s recovery was not due to the
treatment. He might have gotten better if he had just been left alone.

Formally, we have a causal model with three endogenous binary variables: MT (the doctor
treats Billy on Monday), OF (the other factors that would make Billy get better occur), and
BMC (Billy’s medical condition, which we can take to be 1 if he gets better and 0 otherwise).
The exogenous variable(s) determine MT and OF . The probability that MT = 1 does not
matter for this analysis; for definiteness, assume that MT = 1 with probability .8. According
to the story, OF = 1 with probability .9. Finally, BMC = 1 if OF = 1, BMC = 0 if
MT = OF = 0, and BMC = 1 with probability .9 if MT = 1 and OF = 0. Again, after
we pull out the probability, there are eight models, which differ in whether MT is set to 0 or
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1, whether OF is set to 0 or 1, and whether BMC = 1 when MT = 1 and OF = 0. Treating
these choices as independent (as is suggested by the story), it is straightforward to calculate
the probability of each of the eight models. Since we know that Billy actually did get better
and was treated by his doctor, we ignore the four models where MT = 0 and the model where
MT = 1, OF = 0, and BMC = 0 if MT = 1 and OF = 0. The remaining three models
have probability .8(1−(.9)(.1)). MT = 1 is a cause of BMC = 0 in two of the three models;
it is not a cause only in the model where OF = 1, MT = 1, but BMC would be 0 if OF
were set to 0. This latter model has prior probability .8(.1)(.1). Straightforward calculations
now show that the treatment cause of Billy’s recovery with probability .9

1−(.9)(.1) = 90/91.
Similarly, the probability that Billy’s recovery was caused by other factors is .1

1−(.1)(.9) =

10/91. These probabilities sum to more than 1 because with probability (.1)(.9)
1−(.1)(.9) = 9/91,

both are causes; Billy’s recovery is overdetermined.
Now suppose that we can perform a (somewhat expensive) test to determine whether the

doctor’s treatment actually caused Billy to get better. Again, the doctor treats Billy and Billy
recovers, but the test is carried out, and it is shown that the treatment was not the cause. It is
still the case that the treatment significantly raises the probability of Billy recovering, but now
we certainly don’t want to call the treatment the cause. And, indeed, it is not. Conditioning
on the information, we can discard three of the four models. The only one left is the one in
which Billy’s recovery is due to other factors (with probability 1). Moreover, this conclusion
does not depend on the independence assumption.

Example 2.5.2 Now suppose that there is another doctor who can treat Billy on Monday,
with different medication. Both treatments are individually effective with probability .9. Un-
fortunately, if Billy gets both treatments and both are effective, then, with probability .8, there
will be a bad interaction, and Billy will die. For this version of the story, suppose that there are
no other factors involved; if Billy gets neither treatment, he will not recover. Further suppose
that we can perform a test to see whether a treatment was effective. Suppose that in fact both
doctors treat Billy and, despite that, Billy recovers on Tuesday. Without further information,
there are three relevant models: in the first, only the first doctor’s medication was effective; in
the second, only the second doctor’s medication was effective; in the third, both are effective.
If further testing shows that both treatments were effective, then there is no uncertainty; we
are down to just one model: the third one. According to the original and updated HP def-
inition, both treatments are the cause of Billy’s recovery, with probability 1. (According to
the modified HP definition, they are both parts of the cause.) This is true despite the fact that,
given that the first doctor treated Billy, the second doctor treating Billy significantly lowers the
probability of Billy recovering (and symmetrically with the roles of the doctors reversed).

Example 2.5.3 Now suppose that a doctor has treated 1,000 patients. They each would have
had probability .9 of recovering even without the treatment. With the treatment, they recover
with independent probability .1 In fact, 908 patients recovered, and Billy is one of them. What
is the probability that the treatment was the cause of Billy’s recovery? Calculations similar
to those in Example 2.5.1 show that it is 10/91. Standard probabilistic calculations show that
there is quite a high probability that the treatment is a cause of at least one patient’s recovery.
Indeed, there is quite a high probability that the treatment is the unique cause of at least one
patient’s recovery. But we do not know which patient that is.
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2.5 Probability and Causality 51

Example 2.5.4 Again, Billy and Suzy throw rocks at a bottle. If either Billy or Suzy throws a
rock, it will hit the bottle. But now the bottle is heavy and will, in general, not topple over if it
is hit. If only Billy hits the bottle, it will topple over with probability .2; similarly, if only Suzy
hits the bottle, it will topple over with probability .2. If they hit the bottle simultaneously, it
will topple with probability .7. In fact, both Billy and Suzy throw rocks at the bottle, and it
topples over. We are interested in the extent to which Suzy and Billy are the causes of the
bottle toppling over.

For simplicity, I restrict attention to contexts where both Billy and Suzy throw, both hit,
and the bottle topples over. After pulling out the probability, there are four causal models of
interest, depending on what would have happened if just Suzy had hit the bottle and if just
Billy had hit the bottle:

M1: the bottle would have toppled over if either only Suzy’s rock had hit it or if only
Billy’s rock had hit it;

M2: the bottle would have toppled over if only Suzy’s rock had hit it but not if only
Billy’s rock had hit it;

M3: the bottle would have toppled over if only Billy’s rock had hit it but not if only
Suzy’s rock had hit it;

M4: the bottle would not have toppled over if either only Billy’s rock or only Suzy’s
rock had hit it.

I further simplify by treating the outcomes “the bottle would have toppled over had only
Suzy’s rock hit it” and “the bottle would have toppled over had only Billy’s rock hit it” as
independent (even though neither may be independent of the outcome “the bottle would have
toppled over had both Billy and Suzy’s rocks hit it”). With this assumption, the probability
of M1 (conditional on the bottle toppling over if both Suzy’s and Billy’s rock hit it) is .04,
the conditional probability of M2 is .16, the conditional probability of M3 is .16, and the
conditional probability of M4 is .64.

It is easy to check that Suzy’s throw is a cause of the bottle toppling in models M1, M2, and
M4, but not in M3. Similarly, Billy’s throw is a cause in models M1, M3, and M4. They are
both causes in models M1 and M4 according to the original and updated HP definition, as well
as in M4 according to the modified HP definition; in M1, the conjunction ST = 1 ∧BT = 1
is a cause according to the modified HP definition. Thus, the probability that Suzy’s throw is
part of a cause of the bottle shattering is .84, and likewise for Billy. The probability that both
are parts of causes is .68 (since this is the case in models M1 and M4).

As these examples show, the HP definition lets us make perfectly sensible statements about
the probability of causality. There is nothing special about these examples; all other examples
can be handled equally well. Perhaps the key message here is that there is no need to work
hard on getting a definition of probabilistic causality, at least at the macroscopic level; it
suffices to get a good definition of deterministic causality. But what about if we want to treat
events at the quantum level, which seems inherently probabilistic? A case can still be made
that it is psychologically useful to think deterministically. Whether the HP definitions can be
extended successfully to an inherently probabilistic framework still remains open.
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52 Chapter 2. The HP Definition of Causality

Even if we ignore issues at the microscopic level, there is still an important question to be
addressed: In what sense is the single model with probabilistic equations equivalent to the
set of deterministic causal models with a probability on them? In a naive sense, the answer
is no. The examples above show that the probabilistic equations do not in general suffice to
determine the probability of the deterministic causal models. Thus, there is a sense in which
deterministic causal models with a probability on them carry more information than a single
probabilistic model. Moreover, this extra information is useful. As we have seen, it may be
necessary to determine the answer to questions such as “How probable is it that Billy is the
cause of the bottle shattering?” when all we see is a shattered bottle and know that Billy and
Suzy both threw. Such a determination can be quite important in, for example, legal cases.
Although bottle shattering may not be of great legal interest, we may well want to know the
probability of Bob being the cause of Charlie dying in a case where there are multiple potential
causes.

If we make reasonable independence assumptions, then a probabilistic model determines a
probability on deterministic models. Moreover, under the obvious assumptions regarding the
semantics of causal models with probabilistic equations, formulas in the language described
in Section 2.2.1 have the same probability of being true under both approaches. Consider
Example 2.5.4 again. What is the probability of a formula like [ST ← 0](BS = 1) (if Suzy
hadn’t thrown, the bottle would have shattered)? Clearly, of the four deterministic models
described in the discussion of this example, the formula is true only in M1 and M3; thus, it
has probability .2. Although I have not given a semantics for formulas in this language in
probabilistic causal models (i.e., models where the equations are probabilistic), if we assume
that the outcomes “the bottle would have toppled over had only Suzy’s rock hit it” and “the
bottle would have toppled over had only Billy’s rock hit it” are independent, as I assumed
when assigning probabilities to the deterministic models, we would expect this statement to
also be true in the probabilistic model. The converse holds as well: if a statement about the
probability of causality holds in the probabilistic model, then it holds in the corresponding
deterministic model.

This means that (under the independence assumption) as far as the causal language of Sec-
tion 2.2.1 is concerned, the two approaches are equivalent. Put another way, to distinguish the
two approaches, we need a richer language. More generally, although we can debate whether
pulling out the probability “really” gives an equivalent formulation of the situation, to the ex-
tent that the notion of (probabilistic) causality is expressible in the language of Section 2.2.1,
the two approaches are equivalent. In this sense, it is safe to reduce to deterministic models.

This observation leads to two further points. Suppose that we do not want to make the
relevant independence assumptions. Is there a natural way to augment probabilistic causal
models to represent this information (beyond just going directly to a probability over deter-
ministic causal models)? See Section 5.1 for further discussion of this point.

Of course, we do not have to use probability to represent uncertainty; other representations
of uncertainty could be used as well. Indeed, there is a benefit to using a representation
that involves sets of probabilities. Since, in general, probabilistic structural equations do
not determine the probability of the deterministic models that arise when we pull out the
probability, all we have is a set of possible probabilities on the deterministic models. Given
that, it seems reasonable to start with sets of probabilities on the equations as well. This
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makes sense if, for example, we do not know the exact probability that Suzy’s rock would hit
the bottle, but we know that it would hit it with probability between .6 and .8. It seems that
the same general approach of pulling out the probabilities works if we represent uncertainty
using sets of probabilities, but I have not explored this approach in detail.

2.6 Sufficient Causality
Although counterfactual dependence is a key feature of causality, people’s causality judg-
ments are clearly influenced by another quite different feature: how sensitive the causality
ascription is to changes in various other factors. If we assume that Suzy is very accurate, then
her throwing a rock is a robust cause of the bottle shattering. The bottle will shatter regardless
of whether Billy throws, even if the bottle is in a slightly different position and even if it is
slightly windy. On the other hand, suppose instead that we consider a long causal chain like
the following: Suzy throws a rock at a lock, causing it to open, causing the lion that was in
the locked cage to escape, frightening the cat, which leapt up on to the table and knocked over
the bottle, which then shattered. Although Suzy’s throw is still a but-for cause of the bottle
shattering, the shattering is clearly sensitive to many other factors. If Suzy’s throw had not
broken the lock, if the lion had run in a different direction, or if the cat had not jumped on
the table, then the bottle would not have shattered. People seem inclined to assign less blame
to Suzy’s throw in this case. I return to the issue of long causal chains in Sections 3.4.4 and
provide a solution to it using the notion of blame in Section 6.2. Here I define a notion of suf-
ficient causality that captures some of the intuitions behind insensitive causation. Sufficient
causality also turns out to be related to the notion of explanation that I define in Chapter 7, so
it is worth considering in its own right, although it will not be a focus of this book.

The key intuition behind the definition of sufficient causality is that not only does X⃗ = x⃗
suffice to bring about ϕ in the actual context (which is the intuition that AC2(bo) and AC2(bu)
are trying to capture), but it also brings it about in other “nearby” contexts. Since the frame-
work does not provide a metric on contexts, there is no obvious way to define nearby context.
Thus, in the formal definition below, I start by considering all contexts. Since conjunction
plays a somewhat different role in this definition than it does in the definition of actual causal-
ity (particularly in the modified HP definition), I take seriously here the intuition that what we
really care about are parts of causes, rather than causes.

Again, there are three variants of the notion of sufficient causality, depending on which
version of AC2 we use. The differences between these variants do not play a role in our
discussion, so I just write AC2 below. Of course, if we want to distinguish, AC2 below can
be replaced by either AC2(a) and AC2(bo), AC2(a) and AC2(bu), or AC2(am), depending on
which version of the HP definition is being considered.

Definition 2.6.1 X⃗ = x⃗ is a sufficient cause of ϕ in the causal setting (M, u⃗) if the following
conditions hold:

SC1. (M, u⃗) |= (X⃗ = x⃗) and (M, u⃗) |= ϕ.

SC2. Some conjunct of X⃗ = x⃗ is part of a cause of ϕ in (M, u⃗). More precisely, there exists
a conjunct X = x of X⃗ = X⃗ and another (possibly empty) conjunction Y⃗ = y⃗ such
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54 Chapter 2. The HP Definition of Causality

that X = x ∧ Y⃗ = y⃗ is a cause of ϕ in (M, u⃗); that is, AC1, AC2, and AC3 hold for
X = x ∧ Y⃗ = y⃗.

SC3. (M, u⃗′) |= [X⃗ ← x⃗]ϕ for all contexts u⃗′.

SC4. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such that X⃗ ′ = x⃗′ satisfies conditions
SC1, SC2, and SC3, where x⃗′ is the restriction of x⃗ to the variables in X⃗ .

SC3 is the key condition here; it says that X⃗ = x⃗ suffices to bring about ϕ in all contexts.
Thus, in the case of the 11–0 victory, any set of six voters becomes a sufficient cause (no mat-
ter which variant of the HP definition we use), assuming that there are contexts corresponding
to all possible voting configurations. This suggests that sufficient causality is related to the
modified HP definition, which, in this case, would also take any subset of six voters to be a
cause. However, this is misleading, as the next example shows.

Consider the forest-fire example again. In the disjunctive model, each of L = 1 and
MD = 1 is a sufficient cause; in the conjunctive model, L = 1 ∧ MD = 1 is a sufficient
cause, assuming that there is a context where there is no lightning and another where the
arsonist does not drop a match. This is the case for all variants of the HP definition. Recall
that this is just the opposite of what the modified HP definition does with actual causality; it
would declare L = 1 ∧ MD = 1 the cause in the disjunctive model and both L = 1 and
MD = 1 individually causes in the conjunctive model.

I wrote SC2 as I did so as to take seriously the notion that all we really care about when
using the modified (and updated) definition is parts of causes. Thus, in the disjunctive model
for the forest fire example, L = 1 and MD = 1 are both sufficient causes of the forest
fire in the context (1, 1) where there is both a lightning strike and a dropped match, even
if we use AC2(am) in SC2. By assumption, SC3 holds: both [L ← 1](FF = 1) and
[MD ← 1](FF = 1) hold in all contexts. Moreover, both L = 1 and MD = 1 are parts
of a cause of FF = 1 (namely, L = 1 ∧MD = 1), so SC2 holds.

The forest-fire example shows that sufficient causality lets us distinguish what can be called
joint causes from independent causes. In the disjunctive forest-fire model, the lightning and
the dropped match can each be viewed as independent causes of the fire; each suffices to
bring it about. In the conjunctive model, the lightning and the dropped match are joint causes;
their joint action is needed to bring about the forest fire. The distinction between joint and
independent causality seems to be one that people are quite sensitive to. Not surprisingly, it
plays a role in legal judgments.

Going on with examples, consider the sophisticated rock-throwing model M ′
RT from Ex-

ample 2.3.3 again. Assume that Suzy is always accurate; that is, she is accurate in all contexts
where she throws, and would be accurate even in contexts where she doesn’t throw if (coun-
terfactually) she were to throw; that is, assume that [ST ← 1](BS = 1) holds in all contexts,
even if Suzy does not actually throw. Then Suzy’s throw is a sufficient cause of the bottle
shattering in the context that we have been considering, where both Billy and Suzy throw,
and Suzy’s throw actually hits the bottle. Billy’s throw is not a sufficient cause in this context
because it is not even (part of) a cause. However, if we consider the model M∗

RT , which has a
larger set of contexts, including ones where Suzy might throw and miss, then ST = 1 is not a
sufficient cause of BS = 1 in the context u∗ where Suzy is accurate and her rock hits before

This content downloaded from 145.109.19.147 on Tue, 13 Feb 2018 22:15:10 UTC
All use subject to http://about.jstor.org/terms



2.6 Sufficient Causality 55

Billy’s, but SH = 1 is. Recall that ST = 1 remains a cause of BS = 1 in (M∗
RT , u∗). This

shows that (part of) a cause is not necessarily part of a sufficient cause.

In the double-prevention example (Example 2.3.4), assuming that Suzy is accurate,
SBT = 1 (Suzy bombing the target) is a sufficient cause of TD = 1 (the target being
destroyed). In contrast, Billy pulling the trigger and shooting down Enemy is not, if there are
contexts where Suzy does not go up, and thus does not destroy the target. More generally, a
but-for cause at the beginning of a long causal chain is unlikely to be a sufficient cause.

The definition of actual causality (Definition 2.2.1) focuses on the actual context; the set
of possible contexts plays no role. By way of contrast, the set of contexts plays a major
role in the definition of sufficient causality. The use of SC3 makes sufficient causality quite
sensitive to the choice of the set of possible contexts. It also may make it an unreasonably
strong requirement in some cases. Do we want to require SC3 to hold even in some extremely
unlikely contexts? A sensible way to weaken SC3 would be to add probability to the picture,
especially if we have a probability on contexts, as in Section 2.5. Rather than requiring SC3 to
hold for all contexts, we could then consider the probability of the set of contexts for which it
holds. That is, we can take X⃗ = x⃗ to be a sufficient cause of ϕ with probability α in (M, u⃗) if
SC1, SC2, and SC4 hold and the set of contexts for which SC3 holds has probability at least α.

Notice that with this change, there is a tradeoff between minimality and probability of
sufficiency. Consider Suzy throwing rocks. Suppose that, although Suzy is quite accurate,
there is a (quite unlikely) context where there are high winds, so Suzy misses the bottle. In
this model, a sufficient cause for the bottle shattering is “Suzy throws and there are no high
winds”. Suzy throwing is not by itself sufficient. But it is sufficient in all contexts but the one
in which there are high winds. If the context with high winds has probability .1, then Suzy’s
throw is a sufficient cause of the bottle shattering with probability .9.

This tradeoff between minimality and probability of sufficiency comes up again in the
context of the definition of explanation, considered in Section 7.1, so I do not dwell on it
here. But thinking in terms of probability provides some insight into whether not performing
an action should be treated as a sufficient cause. Consider Example 2.3.5, where Billy is
hospitalized. Besides Billy’s doctor, there are other doctors at the hospital who could, in
principle, treat Billy. But they are unlikely to do so. Indeed, they will not even check up on
Billy unless they are told to; they presumably have other priorities.

Now consider a context where in fact no doctor treats Billy. In that case, Billy’s doctor
not treating Billy on Monday is a sufficient cause for Billy feeling sick on Tuesday with high
probability because, with high probability, no other doctor would treat him either. However,
another doctor not treating Billy has only a low probability of being a sufficient cause for
Billy feeling sick on Tuesday because, with high probability, Billy’s doctor does treat him.
This intuition is similar in spirit to the way normality considerations are brought to bear on
this example in Chapter 3 (see Example 3.2.2).

For the most part, I do not focus on sufficient causality in this book. I think that notions
such as normality, blame, and explanation capture many of the same intuitions as sufficient
causality in an arguably better way. However, it is worth keeping sufficient causality in mind
when we consider these other notions.
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2.7 Causality in Nonrecursive Models

Up to now, I have considered causality only in recursive (i.e., acyclic) causal models. Recur-
sive models are also my focus throughout the rest of the book. However, there are examples
that arguably involve nonrecursive models. For example, the connection between pressure
and volume is given by Boyle’s Law, which says that PV = k: the product of pressure and
volume is a constant (if the temperature remains constant). Thus, increasing the pressure de-
creases the volume, and decreasing the volume increases the pressure. There is no direction
of causality in this equation. However, in any particular setting, we are typically manipulating
either the pressure or the volume, so there is (in that setting) a “direction” of causality.

Perhaps a more interesting example is one of collusion. Imagine two arsonists who agree
to burn down the forest, when only one match suffices to burn down the forest. (So we are
essentially in the disjunctive model.) However, the arsonists make it clear to each other that
each will not drop a lighted match unless the other does. At the critical moment, they look
in each others’ eyes, and both drop their lit matches, resulting in the forest burning down. In
this setting, it is plausible that each arsonist caused the other to throw the match, and together
they caused the forest to burn down. That is, if MD i stands for “arsonist i drops a lit match”,
for i = 1, 2, and U is an exogenous variable that determines whether the arsonists initially
intend to drop the match, we can take the equation for MD1 to be such that MD1 = 1 if and
only if U = 1 and MD2 = 1, and similarly for MD2. This model is not recursive; in all
contexts, MD1 depends on MD2 and MD2 depends on MD1. In this section, I show how the
HP definition(s) can be extended to deal with such nonrecursive models.

In nonrecursive models, there may be more than one solution to an equation in a given
context, or there may be none. In particular, this means that a context no longer necessarily
determines the values of the endogenous variables. Earlier, I identified a primitive event
such as X = x with the basic causal formula [ ](X = x), that is, a formula of the form
[Y1 ← y1, . . . , Yk ← yk](X = x) with k = 0. In recursive causal models, where there is
a unique solution to the equations in a given context, we can define [ ](X = x) to be true in
(M, u⃗) if X = x is the unique solution to the equations in context u⃗. It seems reasonable to
identify [ ](X = x) with X = x in this case. But it is not so reasonable if there may be several
solutions to the equations or none.

What we really want to do is to be able to say that X = x under a particular setting of the
variables. Thus, we now take the truth of a primitive event such as X = x to be relative not
just to a context but to a complete assignment: a complete description (u⃗, v⃗) of the values of
both the exogenous and the endogenous variables. As before, the context u⃗ assigns a value
to all the exogenous variables; v⃗ assigns a value to all the endogenous variables. Now define
(M, u⃗, v⃗) |= X = x if X has value x in v⃗. Since the truth of X = x depends on just v⃗, not u⃗,
I sometimes write (M, v⃗) |= X = x.

This definition can be extended to Boolean combinations of primitive events in the standard
way. Define (M, u⃗, v⃗) |= [Y⃗ ← y⃗]ϕ iff (M, v⃗′) |= ϕ for all solutions (u⃗, v⃗′) to the equations
in MY⃗←y⃗ . Since the truth of [Y⃗ ← y⃗](X = x) depends only on the setting u⃗ of the exogenous
variables, and not on v⃗, I write (M, u⃗) |= [Y⃗ ← y⃗](X = x) to emphasize this.

With these definitions in hand, it is easy to extend the HP definition of causality to arbitrary
models. Causality is now defined with respect to a tuple (M, u⃗, v⃗) because we need to know
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the values of the endogenous variables to determine the truth of some formulas. That is, we
now talk about X⃗ = x⃗ being an actual cause of ϕ in (M, u⃗, v⃗). As before, we have conditions
AC1–AC3. AC1 and AC3 remain unchanged. AC2 depends on whether we want to consider
the original, updated, or modified definition. For the updated definition, we have:

AC2. There exists a partition (Z⃗, W⃗ ) of V with X⃗ ⊆ Z⃗ and some setting (x⃗′, w⃗′) of the
variables in (X⃗, W⃗ ) such that

(a) (M, u⃗) |= ¬[X⃗ ← x⃗′, W⃗ ← w⃗′]ϕ.

(bu) If z⃗∗ is such that (M, u⃗, v⃗) |= Z⃗ = z⃗∗, then, for all subsets W⃗ ′ of W⃗ and Z⃗ ′ of
Z⃗ − X⃗ , (M, u⃗) |= [X⃗ ← x⃗, W⃗ ′ ← w⃗, Z⃗ ′ ← z⃗∗]ϕ.

In recursive models, the formula ¬[X⃗ ← x⃗′, W⃗ ← w⃗′]ϕ in the version of AC2(a) above is
equivalent to [X⃗ ← x⃗′, W⃗ ← w⃗′]¬ϕ, the formula used in the original formulation of AC2(a).
Given a recursive model M , there is a unique solution to the equations in MX⃗←x⃗′,W⃗←w⃗′ ;
¬ϕ holds in that solution iff ϕ does not hold. However, with nonrecursive models, there may
several solutions; AC2(a) holds if ϕ does not hold in at least one of them. By way of contrast,
for AC2(bu) to hold, ϕ must stay true in all solutions to the equations in MX⃗←x⃗,W⃗ ′←w⃗,Z⃗′←z⃗∗

in context u⃗. AC2(a) already says that there is some contingency in which setting X⃗ to x⃗
is necessary to bring about ϕ (since setting X⃗ to something other than x⃗ in that contingency
may result in ϕ no longer holding). Requiring ¬ϕ to hold in only one solution to the equations
seems in the spirit of the necessity requirement. However, AC2(bu) says that setting X⃗ to x⃗ is
sufficient to bring about ϕ in all relevant settings, so it makes sense that we want ϕ to hold in
all solutions. That’s part of the intuition for sufficiency. Clearly, in the recursive case, where
there is only one solution, this definition agrees with the definition given earlier.

Analogous changes are required to extend the original and modified HP definition to the
nonrecursive case. For AC2(bo), we require only that for all subsets Z⃗ of Z⃗ − X⃗ , we have
(M, u⃗) |= [X⃗ ← x⃗, W⃗ ← w⃗, Z⃗ ′ ← z⃗∗]ϕ, and do not require this to hold for all subsets W⃗ ′ of
W⃗ ; for AC2(am), we require that w⃗ consist of the values of the variables in W⃗ in the actual
context. Again, these definitions agree with the earlier definitions in the recursive case.

Note that, with these definitions, all definitions agree that MD1 = 1 and MD2 = 1 are
causes of the fire in the collusive disjunctive scenario discussed above. This is perhaps most
interesting in the case of the modified HP definition, where in the original disjunctive scenario,
the cause was the conjunction MD = 1 ∧ L = 1. However, in this case, each arsonist is a
but-for cause of the fire. Although it takes only one match to start the fire, if arsonist 1 does
not drop his match, then arsonist 2 won’t drop his match either, so there will not be a fire. The
key point is that the arsonists do not act independently here, whereas in the original story, the
arsonist and lightning were viewed as independent.

Interestingly, we can make even the collusion story recursive. Suppose that we add a
variable EC for eye contact (allowing for the possibility that the arsonists avoid each other’s
eyes), where the equations are such that each drops the match only if they do indeed have
eye contact. Now we are back at a model where each arsonist is (separately) a cause of the
fire (as is the eye contact) according to the original and updated HP definition, and MD1 =
1 ∧MD2 = 1 is a cause according to the modified HP definition. We can debate which is the
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“better” model here. But I have no reason to believe that we can always replace a nonrecursive
model by a recursive model and still describe essentially the same situation.

Finally, it is worth noting that causality is not necessarily asymmetric in nonrecursive mod-
els; we can have X = x being a cause of Y = y and Y = y being a cause of X = x. For
example, in the model of the collusive story above (without the variable EC ), MD1 = 1 is a
cause of MD2 = 1 and MD2 = 1 is a cause of MD1 = 1. It should not be so surprising that
we can have such symmetric causality relations in nonrecursive models. However, it is easy
to see that causality is asymmetric in recursive models, according to all the variants of the HP
definition. AC2(a) and AC2(am) guarantee that if X = x is a cause of Y = y in (M,u), then
Y depends on X in context u. Similarly, X must depend on Y if Y = y is a cause of X = x
in (M,u). This cannot be the case in a recursive model.

Although the definition of causality in nonrecursive models given here seems like the most
natural generalization of the definition for recursive models, I do not have convincing exam-
ples suggesting that this is the “right” definition, nor do I have examples showing that this
definition is problematic in some ways. This is because all the standard examples are most
naturally modeled using recursive models. It would be useful to have more examples of sce-
narios that are best captured by nonrecursive models for which we have reasonable intuitions
regarding the ascription of causality.

2.8 AC2(bo) vs. AC2(bu)
In this section, I consider more carefully AC2(bo) and AC2(bu), to give the reader a sense of
the subtle differences between original and updated HP definition. I start with the example
that originally motivated replacing AC2(bo) by AC2(bu).

Example 2.8.1 Suppose that a prisoner dies either if A loads B’s gun and B shoots or if
C loads and shoots his gun. Taking D to represent the prisoner’s death and making the
obvious assumptions about the meaning of the variables, we have that D = (A ∧B) ∨ C.
(Note that here I am identifying the binary variables A, B, C, and D with primitive propo-
sitions in propositional logic, as I said earlier I would. I could have also written this as
D = max(min(A,B), C).) Suppose that in the actual context u, A loads B’s gun, B
does not shoot, but C does load and shoot his gun, so the prisoner dies. That is, A = 1,
B = 0, and C = 1. Clearly C = 1 is a cause of D = 1. We would not want
to say that A = 1 is a cause of D = 1, given that B did not shoot (i.e., given that
B = 0). However, suppose that we take the obvious model with the variables A, B, C,
D. With AC2(bo), A = 1 is a cause of D = 1. For we can take W⃗ = {B,C} and
consider the contingency where B = 1 and C = 0. It is easy to check that AC2(a)
and AC2(bo) hold for this contingency, since (M,u) |= [A ← 0, B ← 1, C ← 0](D = 0),
whereas (M,u) |= [A ← 1, B ← 1, C ← 0](D = 1). Thus, according to the original HP
definition, A = 1 is a cause of D = 1. However, AC2(bu) fails in this case because
(M,u) |= [A ← 1, C ← 0](D = 0). The key point is that AC2(bu) says that for A = 1
to be a cause of D = 1, it must be the case that D = 1 even if only some of the values in W⃗
are set to their values w⃗. In this case, by setting only A to 1 and leaving B unset, B takes on
its original value of 0, in which case D = 0. AC2(bo) does not consider this case.
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Note that the modified HP definition also does not call A = 1 a cause of D = 1. This fol-
lows from Theorem 2.2.3 and the observations above; it can also be seen easily by observing
that if the values of any subset of variables are fixed at their actual values in context u, setting
A = 0 will not make D = 0.

Although it seems clear that we do not want A = 1 to be a cause of D = 1, the situation
for the original HP definition is not as bleak as it may appear. We can deal with this example
using the original HP definition if we add extra variables, as we did with the Billy-Suzy rock-
throwing example. Specifically, suppose that we add a variable B′ for “B shoots a loaded
gun”, where B′ = A ∧ B and D = B′ ∨ C. This slight change prevents A = 1 from being
a cause of D = 1, even according to the original HP definition. I leave it to the reader to
check that any attempt to now declare A = 1 a cause of D = 1 according to the original
HP definition would have to put B′ into Z⃗. However, because B′ = 0 in the actual world,
AC2(bo) does not hold. As I show in Section 4.3, this approach to dealing with the problem
generalizes. There is a sense in which, by adding enough extra variables, we can always use
AC2(bo) instead of AC2(bu) to get equivalent judgments of causality.

There are advantages to using AC2(bo). For one thing, it follows from Theorem 2.2.3(d)
that with AC2(bo), causes are always single conjuncts. This is not the case with AC2(bu), as
the following example shows.

Example 2.8.2 A votes for a candidate. A’s vote is recorded in two optical scanners B and
C. D collects the output of the scanners; D′ records whether just scanner B records a vote for
the candidate. The candidate wins (i.e., WIN = 1) if any of A, D, or D′ is 1. The value of A
is determined by the exogenous variable. The following structural equations characterize the
value of the remaining variables:

B = A;

C = A;

D = B ∧ C;

D′ = B ∧ ¬A; and

WIN = A ∨D ∨D′.

Call this causal model MV . Roughly speaking, D′ acts like BH in the rock-throwing example
as modeled by M ′

RT . The causal network for MV is shown in Figure 2.9.
In the actual context u, A = 1, so B = C = D = WIN = 1 and D′ = 0. I claim

that B = 1 ∧ C = 1 is a cause of WIN = 1 in (MV , u) according to the updated HP
definition (which means that, by AC3, neither B = 1 nor C = 1 is cause of WIN = 1 in
(MV , u)). To see this, first observe that AC1 clearly holds. For AC2, consider the witness
where W⃗ = {A} (so Z⃗ = {B,C,D,D′,WIN }) and w = 0 (so we are considering the
contingency where A = 0). Clearly, (MV , u) |= [A ← 0, B ← 0, C ← 0](WIN = 0), so
AC2(a) holds, and (MV , u) |= [A ← 0, B ← 1, C ← 1](WIN = 1). Moreover, (MV , u) |=
[B ← 1, C ← 1](WIN = 1), and WIN = 1 continues to hold even if D is set to 1 and/or D′

is set to 0 (their values in (MV , u)). Thus, AC2 holds.
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Figure 2.9: Another voting scenario.

It remains to show that AC3 holds and, in particular, that neither B = 1 nor C = 1 is
a cause of WIN = 1 in (MV , u) according to the updated HP definition. The argument is
essentially the same for both B = 1 and C = 1, so I just show it for B = 1. Roughly
speaking, B = 1 does not satisfy AC2(a) and AC2(bu) for the same reason that BT = 1
does not satisfy it in the rock-throwing example. For suppose that B = 1 satisfies AC2(a)
and AC2(bu). Then we would have to have A ∈ W⃗ , and we would need to consider the
contingency where A = 0 (otherwise WIN = 1 no matter how we set B). Now we need
to consider two cases: D′ ∈ W⃗ and D′ ∈ Z⃗. If D′ ∈ W⃗ , then if we set D′ = 0, we have
(MV , u) |= [A ← 0, B ← 1, D′ ← 0](WIN = 0), so AC2(bu) fails (no matter whether
C and D are in W⃗ or Z⃗). And if we set D′ = 1, then AC2(a) fails, since (MV , u) |=
[A ← 0, B ← 0, D′ ← 1](WIN = 1). Now if D′ ∈ Z⃗, note that (MV , u) |= D′ = 0. Since
(MV , u) |= [A ← 0, B ← 1, D′ ← 0](WIN = 0), again AC2(bu) fails (no matter whether
C or D are in W⃗ or Z⃗). Thus, B = 1 is not a cause of WIN = 1 in (MV , u) according to the
updated HP definition.

By way of contrast, B = 1 and C = 1 are causes of WIN = 1 in (MV , u) according to
the original HP definition (as we would expect from Theorem 2.2.3). Although B = 1 and
C = 1 do not satisfy AC2(bu), they do satisfy AC2(bo). To see that B = 1 satisfies AC2(bo),
take Z⃗ = {B,D,WIN } and consider the witness where A = 0, C = 1, and D′ = 0. Clearly
we have both that (MV , u) |= [B ← 0, A ← 0, C ← 1, D′ ← 0](WIN = 0) and that
(MV , u) |= [B ← 1, A ← 0, C ← 1, D′ ← 0](WIN = 1), and this continues to hold if D is
set to 1 (its original value). A similar argument shows that C = 1 is a cause.

Interestingly, none of B = 1, C = 1, or B = 1∧C = 1 is a cause of WIN = 1 in (MV , u)
according to the modified HP definition. This follows from Theorem 2.2.3; if B = 1 were
part of a cause according to the modified HP definition, then it would be a cause according
to the updated HP definition, and similarly for C = 1. It can also be seen directly: setting
B = C = 0 has no effect on WIN if A = 1. The only cause of WIN = 1 in (MV , u)
according to the modified HP definition is A = 1 (which, of course, is also a cause according
to the original and updated definitions).

The fact that causes may not be singletons has implications for the difficulty of determining
whether A is an actual cause of B (see Section 5.3). Although this may suggest that we should
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then use the original HP definition, adding extra variables if needed, this conclusion is not
necessarily warranted either. For one thing, it may not be obvious when modeling a problem
that extra variables are needed. Moreover, the advantages of lower complexity may be lost
if sufficiently many additional variables need to be added. The modified HP definition has
the benefits of both typically giving the “right” answer without the need for extra variables
(but see Section 4.3), while having lower complexity than either the original and modified HP
definition (again, see Section 5.3).

I conclude this section with one more example that I hope clarifies some of the details of
AC2(bu) (and AC2(bo)). Recall that AC2(bu) requires that ϕ remain true if X⃗ is set to x⃗,
even if only a subset of the variables in W⃗ are set to their values in w⃗ and all the variables
in an arbitrary subset Z⃗ ′ of Z⃗ are set to their original values z⃗∗ (i.e., the values they had in
the original context, where X⃗ = x⃗). Since I have viewed the variables in Z⃗ as being on the
causal path to ϕ (although that is not quite right; see Section 2.9), we might hope that not
only is setting X⃗ to x⃗ sufficient to make ϕ true, but it is also enough to force all the variables
in Z⃗ to their original values. Indeed, there is a definition of actual causality that makes this
requirement (see the bibliographic notes). Formally, we might hope that if (M, u⃗) |= Z⃗ = z⃗∗,
then the following holds:

(M, u⃗) |= [X⃗ ← x⃗, W⃗ ′ ← w⃗](Z = z∗) for all Z ∈ Z⃗ and all W⃗ ′ ⊆ W⃗ . (2.1)

It is not hard to show (see Lemma 2.10.2) that, in the presence of (2.1), AC2(bu) can be
simplified to

(M, u⃗) |= [X⃗ ← x⃗, W⃗ ′ ← w⃗]ϕ;

there is no need to include the subsets Z ′. Although (2.1) holds in many examples, it seems
unreasonable to require it in general, as the following example shows.

Example 2.8.3 Imagine that a vote takes place. For simplicity, two people vote. The measure
is passed if at least one of them votes in favor. In fact, both of them vote in favor, and the
measure passes. This version of the story is almost identical to the situation where either a
match or a lightning strike suffices to bring about a forest fire. If we use V1 and V2 to denote
how the voters vote (Vi = 0 if voter i votes against and Vi = 1 if she votes in favor) and P
to denote whether the measure passes (P = 1 if it passes, P = 0 if it doesn’t), then in the
context where V1 = V2 = 1, it is easy to see that each of V1 = 1 and V2 = 1 is part of a cause
of P = 1 according to the original and updated HP definition. However, suppose that the
story is modified slightly. Now assume that there is a voting machine that tabulates the votes.
Let T represent the total number of votes recorded by the machine. Clearly, T = V1+V2 and
P = 1 iff T ≥ 1. The causal network in Figure 2.10 represents this more refined version of
the story.

In this more refined scenario, V1 = 1 and V2 = 1 are still both causes of P = 1 according
to the original and updated HP definition. Consider V1 = 1. Take Z⃗ = {V1, T, P} and
W⃗ = V2, and consider the contingency V2 = 0. With this witness, P is counterfactually
dependent on V1, so AC2(a) holds. To check that this contingency satisfies AC2(bu) (and
hence also AC2(bo)), note that setting V1 to 1 and V2 to 0 results in P = 1, even if T is set to
2 (its current value). However, (2.1) does not hold here: T does not retain its original value of
2 when V1 = 1 and V2 = 0.
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Figure 2.10: A more refined voting scenario.

Since, in general, one can always imagine that a change in one variable produces some
feeble change in another, it seems unreasonable to insist on the variables in Z⃗ remaining
constant; AC2(bo) and AC2(bu) require merely that changes in Z⃗ not affect ϕ.

2.9 Causal Paths
There is an intuition that causality travels along a path: A causes B, which causes C, which
causes D, so there is a path from A to B to C to D. And, indeed, many accounts of causality
explicitly make use of causal paths. In the original and updated HP definition, AC2 involves
a partition of the endogenous variables into two sets, Z⃗ and W⃗ . In principle, there are no
constraints on what partition to use, other than the requirement that X⃗ be a subset of Z⃗.
However, when introducing AC2(a), I suggested that Z⃗ can be thought of as consisting of the
variables on the causal path from X⃗ to ϕ. (Recall that the notion of a causal path is defined
formally in Section 2.4.) As I said, this intuition is not quite true for the updated HP definition;
however, it is true for the original HP definition. In this section, I examine the role of causal
paths in AC2. In showing that X⃗ is a cause of ϕ, I would like to show that we can take Z⃗
(or V − W⃗ in the case of the modified HP definition) to consist only of variables that lie on
a causal path from some variable in X⃗ to some variable in ϕ. The following example shows
that this is not the case in general with the updated HP definition.

Example 2.9.1 Consider the following variant of the disjunctive forest-fire scenario. Now
there is a second arsonist; he will drop a lit match exactly if the first one does. Thus, we add
a new variable MD ′ with the equation MD ′ = MD . Moreover, FF is no longer a binary
variable; it has three possible values: 0, 1, and 2. We have that FF = 0 if L = MD =
MD ′ = 0; FF = 1 if either L = 1 and MD = MD ′ or MD = MD ′ = 1; and FF = 2
if MD ̸= MD ′. We can suppose that the forest burns asymmetrically (FF = 2) if exactly
one of the arsonists drops a lit match (which does not happen under normal circumstances);
one side of the forest is more damaged than the other (even if the lightning strikes). Call the
resulting causal model M ′

FF . Figure 2.11 shows the causal network corresponding to M ′
FF .
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Figure 2.11: The forest fire with two arsonists.

In the context u where L = MD = 1, L = 1 is a cause of FF = 1 according to the updated
HP definition. Note that there is only one causal path from L to FF : the path consisting of
just the variables L and FF . But to show that L = 1 is a cause of FF = 1 according to the
updated HP definition, we need to take the witness to be ({MD}, 0, 0); in particular, MD ′ is
part of Z⃗, not W⃗ .

To see that this witness works, note that (M ′
FF , u) |= [L ← 0,MD ← 0](FF = 0),

so AC2(a) holds. Since we have both (M ′
FF , u) |= [L ← 1,MD ← 0](FF = 1) and

(M ′
FF , u) |= [L ← 1](FF = 1), AC2(bu) also holds. However, suppose that we wanted

to find a witness where the set W⃗ = {MD ,MD ′} (so that Z⃗ can be the unique causal path
from L to FF ). What do we set MD and MD ′ to in the witness? At least one of them must
be 0, so that when L is set to 0, FF ̸= 1. Setting MD ′ = 0 does not work: (M ′

FF , u) |=
[L ← 1,MD ′ ← 0](FF = 2), so AC2(bu) does not hold. And setting MD = 0 and MD ′ = 1
does not work either, for then FF = 2, independent of the value of L, so again AC2(bu) does
not hold.

By way of contrast, we can take ({MD ,MD ′}, 0⃗, 0) to be a witness to L = 1 being
a cause according to the original HP definition; AC2(bo) holds with this witness because
(M ′

FF , u) |= [L ← 1,MD ← 0,MD ′ ← 0](FF = 1).
Finally, perhaps disconcertingly, L = 1 is not even part of a cause of FF = 1 in (M,u)

according to the modified HP definition. That is because MD = 1 is now a cause; setting MD
to 0 while keeping MD ′ fixed at 1 results in FF being 2. Thus, unlike the original forest-fire
example, L = 1 ∧ MD = 1 is no longer a cause of FF = 1 according to the modified HP
definition. This problem disappears once we take normality into 5account; see Example 3.2.5.
account (see Example 3.2.5).

For the original HP definition, we can take the set Z⃗ in AC2, not just in this example, but in
general, to consist only of variables that lie on a causal path from a variable in X⃗ to a variable
in ϕ. Interestingly, it is also true of the modified HP definition, except in that case we have
to talk about V − W⃗ rather than Z⃗ because V − W⃗ is the analogue of Z⃗ in the modified HP
definition.

Proposition 2.9.2 If X⃗ = x⃗ is a cause of ϕ in (M, u⃗) according to the original or modified
HP definition, then there exists a witness (W⃗ , w⃗, x⃗′) to this such that every variable Z ∈
V − W⃗ lies on a causal path in (M, u⃗) from some variable in X⃗ to some variable in ϕ.

For definiteness, I take X be a variable “in ϕ” if, syntactically, X appears in ϕ, even if
ϕ is equivalent to a formula that does not involve X . For example, if Y is a binary variable,
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I take Y to appear in X = 1 ∧ (Y = 1 ∨ Y = 1), although this formula is equivalent
to X = 1. (The proposition is actually true even if I assume that Y does not appear in
X = 1 ∧ (Y = 1 ∨ Y = 1).) The proof of the proposition can be found in Section 2.10.3.

2.10 Proofs
In this section, I prove some of the results stated earlier. This section can be skipped without
loss of continuity.

2.10.1 Proof of Theorem 2.2.3
I repeat the statements of the theorem here (and in the later sections) for the reader’s conve-
nience.
Theorem 2.2.3:

(a) If X = x is part of a cause of ϕ in (M, u⃗) according to the modified HP definition, then
X = x is a cause of ϕ in (M, u⃗) according to the original HP definition.

(b) If X = x is part of a cause of ϕ in (M, u⃗) according to the modified HP definition, then
X = x is a cause of ϕ in (M, u⃗) according to the updated HP definition.

(c) If X = x is part of a cause of ϕ in (M, u⃗) according to the updated HP definition, then
X = x is a cause of ϕ in (M, u⃗) according to the original HP definition.

(d) If X⃗ = x⃗ is a cause of ϕ in (M, u⃗) according to the original HP definition, then |X⃗| = 1
(i.e., X⃗ is a singleton).

Proof: For part (a), suppose that X = x is part of a cause of ϕ in (M, u⃗) according to the
modified HP definition, so that there is a cause X⃗ = x⃗ such that X = x is one of its conjuncts.
I claim that X = x is a cause of ϕ according to the original HP definition. By definition, there
must exist a value x⃗′ ∈ R(X⃗) and a set W⃗ ⊆ V − X⃗ such that if (M, u⃗) |= W⃗ = w⃗∗, then
(M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗∗]¬ϕ. Moreover, X⃗ is minimal.

To show that X = x is a cause according to the original HP definition, we must find an
appropriate witness. If X⃗ = {X}, then it is immediate that (W⃗ , w⃗∗, x′) is a witness. If |X⃗| >
1, suppose without loss of generality that X⃗ = (X1, . . . , Xn), and X = X1. In general, if Y⃗ is
a vector, I write Y⃗−1 to denote all components of the vector except the first one, so that X⃗−1 =
(X2, . . . , Xn). I want to show that X1 = x1 is a cause of ϕ in (M, u⃗) according to the original
HP definition. Clearly, (M, u⃗) |= (X1 = x1) ∧ ϕ, since X⃗ = x⃗ is a cause of ϕ in (M, u⃗)
according to the modified HP definition, so AC1 holds. The obvious candidate for a witness
for AC2(a) is (X⃗−1 · W⃗ , x⃗′

−1 · w⃗∗, x′
1), where · is the operator that concatenates two vectors

so that, for example, (1, 3) · (2) = (1, 3, 2); that is, roughly speaking, we move X2, . . . , Xn

into W⃗ . This satisfies AC2(a), since (M, u⃗) |= [X1 ← x′
1, X⃗−1 ← x⃗′

−1, W⃗ ← w⃗∗]¬ϕ by
assumption. AC3 trivially holds for X1 = x1, so it remains to deal with AC2(bo). Suppose,
by way of contradiction, that (M, u⃗) |= [X1 ← x1, X⃗−1 ← x⃗′

−1, W⃗ ← w⃗∗]¬ϕ. This means
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that X⃗−1 ← x⃗−1 satisfies AC2(am), showing that AC3 (more precisely, the version of AC3
appropriate for the modified HP definition) is violated (taking ((X1)·W⃗ , (x1)·w⃗∗, x⃗′

−1) as the
witness), and X⃗ ← x⃗ is not a cause of ϕ in (M, u⃗) according to the modified HP definition, a
contradiction. Thus, (M, u⃗) |= [X1 ← x1, X⃗−1 ← x⃗′

−1, W⃗ ← w⃗∗]ϕ.
This does not yet show that AC2(bo) holds: there might be some subset Z⃗ ′ of variables

in V − X⃗−1 ∪ W⃗ that change value when W⃗ is set to w⃗∗ and X⃗−1 is set to x⃗−1, and
when these variables are set to their original values in (M, u⃗), ϕ does not hold, thus vio-
lating AC2(bu). In more detail, suppose that there exist a set Z⃗ ′ = (Z1, . . . , Zk) ⊆ Z⃗
and values z∗j for each variable Zj ∈ Z⃗ ′ such that (i) (M, u⃗) |= Zj = z∗j and (ii)
(M, u⃗) |= [X1 ← x1, X⃗−1 ← x⃗′

−1, W⃗ ← w⃗∗, Z⃗ ′ = z⃗∗]¬ϕ. But then X⃗ = x⃗ is not a cause
of ϕ in (M, u⃗) according the modified HP definition. Condition (ii) shows that AC2(am) is
satisfied for X⃗−1, taking ((X1) · W⃗ · Z⃗ ′, (x1) · w⃗∗ · z⃗∗, x⃗′

−1) as the witness, so again AC3 is
violated. It follows that AC2(bu) holds, completing the proof.

The proof of part (b) is similar in spirit. Indeed, we just need to show one more thing. For
AC2(bu), we must show that if X⃗ ′ ⊆ X⃗−1, W⃗ ′ ⊆ W⃗ , and Z⃗ ′ ⊆ Z⃗, then

(M, u⃗) |= [X1 ← x1, X⃗
′ ← x⃗′

−1, W⃗
′ ← w⃗∗, Z⃗ ′ ← z⃗∗]ϕ. (2.2)

(Here I am using the abuse of notation that I referred to in Section 2.2.2, where if X⃗ ′ ⊆ X⃗
and x⃗ ∈ R(X⃗), I write X⃗ ′ ← x⃗, with the intention that the components of x⃗′

1 not included in
X⃗ ′ are ignored.) It follows easily from AC1 that (2.2) holds if X⃗ ′ = ∅. And if (2.2) does not
hold for some strict nonempty subset X⃗ ′ of X⃗−1, then X⃗ = x⃗ is not a cause of ϕ according
to the modified HP definition because AC3 does not hold; AC2(am) is satisfied for X⃗ ′.

For part (c), the proof is again similar in spirit. Indeed, the proof is identical up to
the point where we must show that AC2(bo) holds. Now if Z⃗ ′ ⊆ Z⃗ and (M, u⃗) |=
[X1 ← x1, X⃗−1 ← x⃗′

−1, W⃗ ← w⃗, Z⃗ ′ ← z⃗∗]¬ϕ, then X⃗−1 ← x⃗−1 satisfies AC2(a) (taking
((X1) · W⃗ · Z⃗ ′, (x1) · w⃗ · z⃗∗, x⃗′

−1) as the witness). It also satisfies AC2(bu), since X⃗ = x⃗
satisfies AC2(bu), by assumption. Thus, the version of AC3 appropriate for the updated HP
definition is violated.

Finally, for part (d), the proof is yet again similar in spirit. Suppose that X⃗ = x⃗ is a cause
of ϕ in (M, u⃗) according to the original HP definition and |X⃗| > 1. Let X = x be a conjunct
of X⃗ = x⃗. Again, we can show that X = x is a cause of ϕ in (M, u⃗) according to the original
HP definition, which is exactly what is needed to prove part (d), using essentially the same
argument as above. I leave the details to the reader.

2.10.2 Proof of Proposition 2.4.6
In this section, I prove Proposition 2.4.6. I start with a simple lemma that states a key (and
obvious!) property of causal paths: if there is no causal path from X to Y , then changing the
value of X cannot change the value of Y . This fact is made precise in the following lemma.
Although it is intuitively obvious, proving it carefully requires a little bit of work. I translate
the proof into statisticians’ notation as well.
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Lemma 2.10.1 If Y and all the variables in X⃗ are endogenous, Y /∈ X⃗ , and there is no
causal path in (M, u⃗) from a variable in X⃗ to Y , then for all sets W⃗ of variables disjoint
from X⃗ and Y , and all settings x⃗ and x⃗′ for X⃗ , y for Y , and w⃗ for W⃗ , we have

(M, u⃗) |= [X⃗ ← x⃗, W⃗ ← w⃗](Y = y) iff (M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗](Y = y)

and
(M, u⃗) |= [X⃗ ← x⃗, W⃗ ← w⃗](Y = y) iff (M, u⃗) |= [W⃗ ← w⃗](Y = y)

(i.e., Yx⃗w⃗(u⃗) = y iff Yx⃗′w⃗(u⃗) = y and Yx⃗w⃗(u⃗) = y iff Yw⃗(u⃗) = y).

Proof: Define the maximum distance of a variable Y in a causal setting (M, u⃗), denoted
maxdist(Y ), to be the length of the longest causal path in (M, u⃗) from an exogenous variable
to Y . We prove both parts of the result simultaneously by induction on maxdist(Y ). If
maxdist(Y ) = 1, then the value of Y depends only on the values of the exogenous variables,
so the result trivially holds. If maxdist(Y ) > 1, let Z1, . . . , Zk be the endogenous variables
on which Y depends. These are the parents of Y in the causal network (i.e., these are exactly
the endogenous variables Z such that there is an edge from Z to Y in the causal network). For
each Z ∈ {Z1, . . . , Zk}, maxdist(Z) < maxdist(Y ): for each causal path in (M, u⃗) from
an exogenous variable to Z, there is a longer path to Y , namely, the one formed by adding
the edge from Z to Y . Moreover, there is no causal path in (M, u⃗) from a variable in X⃗ to
any of Z1, . . . , Zk nor is any of Z1, . . . , Zk in X⃗ (for otherwise there would be a causal path
in (M, u⃗) from a variable in X⃗ to Y , contradicting the assumption of the lemma). Thus, the
inductive hypothesis holds for each of Z1, . . . , Zk. Since the value of each of Z1, . . . , Zk does
not change when we change the setting of X⃗ from x⃗ to x⃗′, and the value of Y depends only
on the values of Z1, . . . , Zk and u⃗ (i.e., the values of the exogenous variables), the value of Y
cannot change either.

I can now prove Proposition 2.4.6. I restate it for the reader’s convenience.
Proposition 2.4.6: Suppose that X1 = x1 is a but-for cause of X2 = x2 in the causal setting
(M, u⃗), X2 = x2 is a but-for cause of X3 = x3 in (M, u⃗), and the following two conditions
hold:

(a) for every value x′
2 ∈ R(X2), there exists a value x′

1 ∈ R(X1) such that (M, u⃗) |=
[X1 ← x′

1](X2 = x′
2) (i.e., (X2)x′

1
(u⃗) = x′

2);

(b) X2 is on every causal path in (M, u⃗) from X1 to X3.

Then X1 = x1 is a but-for cause of X3 = x3.

Proof: Since X2 = x2 is a but-for cause of X3 = x3 in (M, u⃗), there exists a value
x′
2 ̸= x2 such that (M, u⃗) |= [X2 ← x′

2](X3 ̸= x′
3) (i.e., (X3)x′

2
(u⃗) = x′

3). Choose x′
3 such

that (M, u⃗) |= [X2 ← x′
2](X3 = x′

3) (i.e., (X3)x′
2
(u⃗) = x′

3). By assumption, there exists
a value x′

1 such that (M, u⃗) |= [X1 ← x′
1](X2 = x′

2) (i.e., (X2)x′
1
(u⃗) = x′

2). I claim that
(M, u⃗) |= [X1 ← x′

1](X3 = x′
3) (i.e., (X3)x′

1
(u⃗) = x′

3). This follows from a more general
claim. I show that if Y is on a causal path from X2 to X3, then

(M, u⃗) |= [X1 ← x′
1](Y = y) iff (M, u⃗) |= [X2 ← x′

2](Y = y) (2.3)
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(i.e., Yx′
1
(u⃗) = y iff Yx′

2
(u⃗) = y).

Define a partial order ≼ on endogenous variables that lie on a causal path from X2 to X3

by taking Y1 ≺ Y2 if Y1 precedes Y2 on some causal path from X2 to X3. Since M is a
recursive model, if Y1 and Y2 are distinct variables and Y1 ≺ Y2, we cannot have Y2 ≺ Y1

(otherwise there would be a cycle). I prove (2.3) by induction on the ≺ ordering. The least
element in this ordering is clearly X2; X2 must come before every other variable on a causal
path from X2 to X3. (M, u⃗) |= [X1 ← x′

1](X2 = x′
2) (i.e., (X2)x′

1
(u⃗) = x′

2) by assumption,
and clearly (M, u⃗) |= [X2 ← x′

2](X2 = x′
2) (i.e., (X2)x′

2
(u⃗) = x′

2). Thus, (2.3) holds for
X2. Thus completes the base case of the induction.

For the inductive step, let Y be a variable that lies on a causal path in (M, u⃗) from X2 and
X3, and suppose that (2.3) holds for all variables Y ′ such that Y ′ ≺ Y . Let Z1, . . . , Zk be the
endogenous variables that Y depends on in M . For each of these variables Zi, either there is a
causal path in (M, u⃗) from X1 to Zi or there is not. If there is, then the path from X1 to Zi can
be extended to a directed path P from X1 to X3 by going from X1 to Zi, from Zi to Y , and
from Y to X3 (since Y lies on a causal path in (M, u⃗) from X2 to X3). Since, by assumption,
X2 lies on every causal path in (M, u⃗) from X1 to X3, X2 must lie on P . Moreover, X2 must
precede Y on P . (Proof: Since Y lies on a path P ′ from X2 to X3, X2 must precede Y on P ′.
If Y precedes X2 on P , then there is a cycle, which is a contradiction.) Since Zi precedes Y
on P , it follows that Zi ≺ Y , so by the inductive hypothesis, (M, u⃗) |= [X1 ← x′

1](Zi = zi)
iff (M, u⃗) |= [X2 ← x′

2](Zi = zi) (i.e., (Zi)x′
1
(u⃗) = zi iff (Zi)x′

2
(u⃗) = zi).

Now if there is no causal path in (M, u⃗) from X1 to Zi, then there also cannot be a causal
path P from X2 to Zi (otherwise there would be a causal path in (M, u⃗) from X1 to Zi formed
by appending P to a causal path from X1 to X2, which must exist because, if not, it easily
follows from Lemma 2.10.1 that X1 = x1 would not be a cause of X2 = x2). Since there is
no causal path in (M, u⃗) from X1 to Zi, we must have that (M, u⃗) |= [X1 ← x′

1](Zi = zi) iff
(M, u⃗) |= Zi = zi iff (M, u⃗) |= [X2 ← x′

2](Zi = zi) (i.e., (Zi)x′
1
(u⃗) = zi iff (Zi)x′

2
(u⃗) = zi

iff Zi(u⃗) = zi).
Since the value of Y depends only on the values of Z1, . . . , Zk and u⃗, and I have

just shown that (M, u⃗) |= [X1 ← x′
1](Z1 = z1 ∧ . . . ∧ Zk = zk) iff (M, u⃗) |=

[X2 ← x′
2](Z1 = z1 ∧ . . . ∧ Zk = zk) (i.e., (Z1)x′

1
(u⃗) = z1 ∧ . . . ∧ (Zk)x′

1
(u⃗) = zk iff

(Z1)x′
2
(u⃗) = z1 ∧ . . . ∧ (Zk)x′

2
(u⃗) = zk) it follows that (M, u⃗) |= [X1 ← x′

1](Y = y) iff
(M, u⃗) |= [X2 ← x′

2](Y = y) (i.e., Yx′
1
(u⃗) = y iff Yx′

2
(u⃗) = y).

This completes the proof of the induction step. Since X3 is on a causal path in
(M, u⃗) from X2 to X3, it now follows that (M, u⃗) |= [X1 ← x′

1](X3 = x′
3) iff

(M, u⃗) |= [X2 ← x′
2](X3 = x′

3) (i.e., (X3)x′
1
(u⃗) = x′

3 iff (X3)x′
2
(u⃗) = x′

3). Since
(M, u⃗) |= [X2 ← x′

2](X3 = x′
3) (i.e., (X3)x′

2
(u⃗) = x′

3) by construction, we have that
(M, u⃗) |= [X1 ← x′

1](X3 = x′
3) (i.e., (X3)x′

1
(u⃗) = x′

3), as desired. Thus, X1 = x1 is a
but-for cause for X3 = x3.

2.10.3 Proof of Proposition 2.9.2

In this section, I prove Proposition 2.9.2.
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Proposition 2.9.2: If X⃗ = x⃗ is cause of ϕ in (M, u⃗) according to the original or modified HP
definition, then there exists a witness (W⃗ , w⃗, x⃗′) to this such that every variable Z ∈ V − W⃗
lies on a causal path in (M, u⃗) from some variable in X⃗ to some variable in ϕ.

To prove the result, I need to prove a general property of causal models, one sufficiently
important to be an axiom in the axiomatization of causal reasoning given in Section 5.4.

Lemma 2.10.2 If (M, u⃗) |= [X⃗ ← x⃗](Y⃗ = y⃗), then (M, u⃗) |= [X⃗ ← x⃗]ϕ if and only if
(M, u⃗) |= [X⃗ ← x⃗, Y⃗ ← y⃗]ϕ.

Proof: In the unique solution to the equations when X⃗ is set to x⃗, Y⃗ = y⃗. So the unique
solution to the equations when X⃗ is set to x⃗ is the same as the unique solution to the equations
when X⃗ is set to x⃗ and Y⃗ is set to y⃗. The result now follows immediately.

With this background, I can prove Proposition 2.9.2.

Proof of Proposition 2.9.2: Suppose that X⃗ = x⃗ is a cause of ϕ in (M, u⃗) with witness
(W⃗ , w⃗, x⃗′) according to the original (resp., modified) HP definition. Let Z⃗ = V − W⃗ , let
Z⃗ ′ consist of the variables in Z⃗ that lie on a causal path in (M, u⃗) from some variable in
X⃗ to some variable in ϕ, and let W⃗ ′ = V − Z⃗ ′. Notice that W⃗ ′ is a superset of W⃗ . Let
W⃗ ′ − W⃗ = Y⃗ = {Y1, . . . , Yk}. The proof diverges slightly now depending on whether we
consider the original or modified HP definition. In the case of the original HP definition, let
yj be the value of Yj such that (M, u⃗) |= [X⃗ ← x⃗, W⃗ ← w⃗](Yj = yj); in the case of the
modified HP definition, let yj be the value of Yj such that (M, u⃗) |= Yj = yj . I claim that
(W⃗ · Y⃗ , w⃗ · y⃗, x′) is a witness to X⃗ = x⃗ being a cause of ϕ in (M, u⃗) according to the original
(resp., modified) HP definition. (Recall from the proof of Theorem 2.2.3 that x⃗ · y⃗ denotes
the result of concatenating the vectors x⃗ and y⃗.) Once I prove this, I will have proved the
proposition.

Since X⃗ = x⃗ is a cause of ϕ by assumption, AC1 and AC3 hold; they are independent of
the witness. This suffices to prove that AC2(a) and AC2(bo) (resp., AC2(am)) hold for this
witness.

Since (W⃗ , w⃗, x′) is a witness to X⃗ = x⃗ being a cause of ϕ in (M, u⃗) according to the
original (resp., modified) HP definition, by AC2(a) (resp., AC2(am)), it follows that

(M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗]¬ϕ. (2.4)

Since no variable in Y⃗ is on a causal path in (M, u⃗) from a variable in X⃗ to a variable in
ϕ, for each Y ∈ Y⃗ , either there is no causal path in (M, u⃗) from a variable in X⃗ to Y or there
is no causal path in (M, u⃗) from Y to a variable in ϕ (or both). Without loss of generality, we
can assume that the variables in Y⃗ are ordered so that there is no causal path in (M, u⃗) from a
variable in X⃗ to any of the first j variables, Y1, . . . , Yj , and there is no causal path in (M, u⃗)
from any of the last k − j variables, Yj+1, . . . , Yk, to a variable in ϕ.

I first do the argument in the case of the modified HP definition. In this case, w⃗ must
be the value of the variables in W⃗ in context u⃗; by definition, y⃗ is the value of the vari-
ables in Y⃗ . Thus, W⃗ · Y⃗ is a legitimate witness for AC2(am). Moreover, since (M, u⃗) |=
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(W⃗ = w⃗) ∧ (Y⃗ = y⃗), by Lemma 2.10.2, we have

(M, u⃗) |= [W⃗ ← w⃗](Y1 = y1 ∧ . . . Yj = yj).

Since there is no causal path in (M, u⃗) from X⃗ to any of Y1, . . . , Yj , by Lemma 2.10.1, it
follows that

(M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗](Y1 = y1 ∧ . . . ∧ Yj = yj). (2.5)

Thus, by (2.4), (2.5), and Lemma 2.10.2, it follows that

(M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗, Y1 ← y1, . . . , Yj ← yj ]¬ϕ. (2.6)

Finally, since there is no causal path in (M, u⃗) from any of Yj+1, . . . , Yk to any variable in ϕ,
it follows from (2.6) and Lemma 2.10.1 that

(M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗, Y1 ← y1, . . . , Yk ← yk]¬ϕ,

so AC2(am) holds, and X⃗ = x⃗ is a cause of ϕ in (M, u⃗) according to the modified HP
definition with witness (W⃗ · Y⃗ , w⃗ · y⃗, x⃗′).

We have to work a little harder in the case of the original HP definition (although the basic
ideas are similar) because we can no longer assume that (M, u⃗) |= W⃗ = w⃗. By the definition
of y⃗ in this case, we have (M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗](Y⃗ = y⃗). Thus, by Lemma 2.10.2,

(M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗, Y⃗ ← y⃗]¬ϕ.

This shows that AC2(a) holds for the witness (W⃗ · Y⃗ , w⃗ · y⃗, x⃗′).
For AC2(bo), we must show that (M, u⃗) |= [X ← x, W⃗ ← w⃗, Y⃗ ← y⃗]ϕ. By assumption,

(M, u⃗) |= [X ← x, W⃗ ← w⃗]ϕ. (2.7)

If Y ∈ {Y1, . . . , Yj}, then by choice of y, (M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗](Y = y). Thus, by
Lemma 2.10.1,

(M, u⃗) |= [X⃗ ← x⃗, W⃗ ← w⃗](Y = y). (2.8)

By (2.7), (2.8), and Lemma 2.10.2,

(M, u⃗) |= [X⃗ ← x⃗, W⃗ ← w⃗, Y1 ← y1, . . . , Yj ← yj ]ϕ. (2.9)

Finally, since there is no causal path in (M, u⃗) from any of Yj+1, . . . , Yk to a variable in ϕ, it
follows from (2.9) and Lemma 2.10.1 that

(M, u⃗) |= [X⃗ ← x⃗, W⃗ ← w⃗, Y1 ← y1, . . . , Yk ← yk]ϕ.

Thus, X⃗ = x⃗ is a cause of ϕ in (M, u⃗) according to the original HP definition with witness
(W⃗ · Y⃗ , w⃗ · y⃗, x⃗′).
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Notes

The use of structural equations in models for causality goes back to the geneticist Sewall
Wright [1921] (see [Goldberger 1972] for a discussion). Herb Simon [1953], who won a No-
bel Prize in Economics (and, in addition, made fundamental contributions to Computer Sci-
ence), and the econometrician Trygve Haavelmo [1943] also made use of structural equations.
The formalization used here is due to Judea Pearl, who has been instrumental in pushing for
this approach to causality. Pearl [2000] provides a detailed discussion of structural equations,
their history, and their use.

The assumption that the model is recursive is standard in the literature. The usual definition
says that if the model is recursive, then there is a total order ≼ of the variables such that X
affects Y only if X ≼ Y . I have made two changes to the usual definition here. The first
is to allow the order to be partial; the second is to allow it to depend on the context. As the
discussion of the rock-throwing example (Example 2.3.3) shows, the second assumption is
useful and makes the definition more general; a good model of the rock-throwing example
might well include contexts where Billy hits before Suzy if they both throw. Although it
seems more natural to me to assume a partial order as I have done here, since the partial order
can be read off the causal network, assuming that the order is partial is actually equivalent to
assuming that it is total. Every total order is a partial order, and it is well known that every
partial order can be extended (typically, in many ways) to a total order. If ≼′ is a total order
that extends ≼ and X affects Y only if X ≼ Y , then certainly X affects Y only if X ≼′ Y .
Allowing the partial order to depend on the context u⃗ is also nonstandard, but a rather minimal
change.

As I said in the notes to Chapter 1, the original HP definition was introduced by Halpern
and Pearl in [Halpern and Pearl 2001]; it was updated in [Halpern and Pearl 2005a]; the
modified definition was introduced in [Halpern 2015a]. These definitions were inspired by
Pearl’s original notion of a causal beam [Pearl 1998]. (The definition of causal beam in [Pearl
2000, Chapter 10] is a modification of the original definition that takes into account concerns
raised in an early version of [Halpern and Pearl 2001].) Interestingly, according to the causal
beam definition, A qualifies as an actual cause of B only if something like AC2(am) rather
than AC2(a) holds; otherwise it is called a contributory cause. The distinction between actual
cause and contributory cause is lost in the original and updated HP definition. To some extent,
it resurfaces in the modified HP definition; in some cases, what the causal beam definition
would classify as a contributory cause but not an actual cause would be classified as part of a
cause but not a cause according to the modified HP definition.

Although I focus on (variants of) the HP definition of causality in this book, it is not the
only definition of causality that is given in terms of structural equations. Besides Pearl’s
causal beam notion, other definitions were given by (among others) Glymour and Wimberly
[2007], Hall [2007], Hitchcock [2001, 2007], and Woodward [2003]. Problems have been
pointed out with all these definitions; see [Halpern 2015a] for a discussion of some of them.
As I mentioned in Chapter 1, there are also definitions of causality that use counterfactuals
without using structural equations. The best known is due to Lewis [1973a, 2000]. Paul and
Hall [2013] cover a number of approaches that attempt to reduce causality to counterfactuals.
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Proposition 2.2.2 and parts (a) and (b) of Theorem 2.2.3 are taken from [Halpern 2015a].
Part (d) of Theorem 2.2.3, the fact that with the original HP definition causes are always single
conjuncts, was proved (independently) by Hopkins [2001] and Eiter and Lukasiewicz [2002].

Much of the material in Sections 2.1–2.3 is taken from [Halpern and Pearl 2005a]. The
formal definition of causal model is taken from [Halpern 2000]. Note that in the literature
(especially the statistics literature), what I call here “variables” are called random variables.

In the philosophy community, counterfactuals are typically defined in terms of “closest
worlds” [Lewis 1973b; Stalnaker 1968]; a statement of the form “if A were the case then B
would be true” is taken to be true if in the “closest world(s)” to the actual world where A is
true, B is also true. The modification of equations may be given a simple “closest world”
interpretation: the solution of the equations obtained by replacing the equation for Y with
the equation Y = y, while leaving all other equations unaltered, can be viewed as the closest
world to the actual world where Y = y.

The asymmetry embodied in the structural equations (i.e., the fact that variables on the left-
and right-hand sides of the equality sign are treated differently) can be understood in terms of
closest worlds. Suppose that in the actual world, the arsonist does not drop a match, there is
no lightning, and the forest does not burn down. If either the match or lightning suffices to
start the fire, then in the closest world to the actual world where the arsonist drops a lit match,
the forest burns down. However, it is not necessarily the case that the arsonist drops a match
in the world closest to the actual world where the forest burns down. The formal connection
between causal models and closest-world semantics for counterfactuals is somewhat subtle;
see [Briggs 2012; Galles and Pearl 1998; Halpern 2013; Zhang 2013] for further discussion.

The question of whether there is some circularity in using causal models, where the struc-
tural equations can arguably be viewed as encoding causal relationships, to provide a model
of actual causality was discussed by Woodward [2003]. As he observed, if we intervene to
set X to x, the intervention can be viewed as causing X to have value x. But we are not
interested in defining a causal relationship between interventions and the values of variables
intervened on. Rather, we are interested in defining a causal relation between the values of
some variables and the values of otherwise; for example, we want to say that the fact that
X = x in the actual world is a cause of Y = y in the actual world. As Woodward points out
(and I agree), the definition of actual causality depends (in part) on the fact that intervening
on X by setting it to x causes X = x, but there is no circularity in this dependence.

The causal networks that are used to describe the equations are similar in spirit to Bayesian
networks, which have been widely used to represent and reason about (conditional) depen-
dencies in probability distributions. Indeed, once we add probability to the picture as in
Section 2.5, the connection is even closer. Historically, Judea Pearl [1988, 2000] introduced
Bayesian networks for probabilistic reasoning and then applied them to causal reasoning. This
similarity to Bayesian networks will be exploited in Chapter 5 to provide insight into when
we can obtain compact representations of causal models.

Spirtes, Glymour, and Scheines [1993] study causality by working directly with graphs,
not structural equations. They consider type causality rather than actual causality; their focus
is on (algorithms for) discovering causal structure and causal influence. This can be viewed as
work that will need to be done to construct the structural equations that I am taking as given
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here. The importance of choosing the “right” set of variables comes out clearly in the Spirtes
et al. framework as well.

The difference between conditions and causes in the law is discussed by Katz [1987] and
Mackie [1965], among others.

In the standard philosophical account, causality relates events, that is, for A to be a cause
of B, A and B have to be events. But what counts as an event is open to dispute. There
are different theories of events. (Casati and Varzi [2014] provide a recent overview of this
work; Paul and Hall [2013, pp. 58–60] discuss its relevance to theories of causality.) A
major issue is whether something not happening counts as an event [Paul and Hall 2013, pp.
178–182]. (This issue is also related to that of whether omissions count as causes, discussed
earlier.) The As and Bs that are the relata of causality in the HP definition are arguably closer
to what philosophers have called true propositions (or facts) [Mellor 2004]. Elucidating the
relationship between all these notions is well beyond the scope of this book.

Although I have handled the rock-throwing example here by just adding two additional
variables (BH and SH ), as I said, this is only one of many ways to capture the fact that
Suzy’s rock hit the bottle and Billy’s did not. The alternative of using variables indexed by
time was considered in [Halpern and Pearl 2005a].

Examples 2.3.4 (double prevention), 2.3.5 (omissions as causes), and 2.4.1 (lack of tran-
sitivity) are due to Hall; their descriptions are taken from (an early version of) [Hall 2004].
Again, these problems are well known and were mentioned in the literature much earlier.
See Chapter 3 for more discussion of causation by omission and the notes to that chapter for
references.

Example 2.3.6 is due to Paul [2000]. In [Halpern and Pearl 2005a], it was modeled a little
differently, using variables LT (for train is on the left track) and RT (for train is on the right
track). Thus, in the actual context, where the engineer flips the switch and the train goes
down the right track, we have F = 1, LT = 0, and RT = 0. With this choice of variables,
all three variants of the HP definition declare F = 1 a cause of A = 1 (we can fix RT at
its actual value of 0 to get the counterfactual dependence of A on F ). This problem can be
dealt with using normality considerations (see the last paragraph of Example 3.4.3). In any
case, as Hitchock and I pointed out [Halpern and Hitchcock 2010], this choice of variables is
somewhat problematic because LT and RT are not independent. What would it mean to set
both LT and RT to 1, for example? That the train is simultaneously going down both tracks?
Using LB and FB , as done in [Halpern and Hitchcock 2010], captures the essence of Hall’s
story while avoiding this problem. The issue of being able to set variables independently is
discussed in more detail in Section 4.6.

Example 2.3.8 is taken from [Halpern 2015a].
O’Connor [2012] says that, each year, an estimated 4,000 cases of “retained surgical items”

are reported in the United States and discusses a lawsuit resulting from one such case.
Example 2.3.7 is due to Bas van Fraassen and was introduced by Schaffer [2000b] under

the name trumping preemption. Schaffer (and Lewis [2000]) claimed that, because orders
from higher-ranking officers trump those of lower-ranking officers, the captain is a cause of
the charge and the sergeant is not. The case is not so clearcut to me; the analysis in the main
text shows just how sensitive the determination of causality is to details of the model. Halpern
and Hitchcock [2010] make the point that if C and S have range {0, 1} (and the only variables
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in the causal model are C, S, and P ), then there is no way to capture the fact that in the case
of conflicting orders, the private obeys the captain. The model of the problem that captures
trumping with the extra variable SE , described in Figure 2.7, was introduced in [Halpern and
Pearl 2005a].

Example 2.4.2 is due to McDermott [1995], who also gives other examples of lack of
transitivity, including Example 3.5.2, discussed in Chapter 3.

The question of the transitivity of causality has been the subject of much debate. As Paul
and Hall [2013] say, “Causality seems to be transitive. If C causes D and D causes E, then C
thereby causes E.” Indeed, Paul and Hall [2013, p. 215] suggest that “preserving transitivity
is a basic desideratum for an adequate analysis of causation”. Lewis [1973a, 2000] imposes
transitivity in his definition of causality by taking causality to be the transitive closure (“ances-
tral”, in his terminology) of a one-step causal dependence relation. But numerous examples
have been presented that cast doubt on transitivity; Richard Scheines [personal communica-
tion, 2013] suggested the homeostasis example. Paul and Hall [2013] give a sequence of such
counterexamples, concluding that “What’s needed is a more developed story, according to
which the inference from ‘C causes D’ and ‘D causes E’ to ‘C causes E’ is safe provided
such-and-such conditions obtain—where these conditions can typically be assumed to obtain,
except perhaps in odd cases . . . ”. Hitchcock [2001] argues that the cases that create problems
for transitivity fail to involve appropriate “causal routes” between the relevant events. Propo-
sitions 2.4.3, 2.4.4, and 2.4.6 can be viewed as providing other sets of conditions for when we
can safely assume transitivity. These results are proved in [Halpern 2015b], from where much
of the discussion in Section 2.4 is taken. Since these definitions apply only to but-for causes,
which all counterfactual-based accounts (not just the HP accounts) agree should be causes,
the results should hold for almost all definitions that are based on counterfactual dependence
and structural equations.

As I said, there are a number of probabilistic theories of causation that identify causality
with raising probability. For example, Eells and Sober [1983] take C to be a cause of E
if Pr(E | Ki ∧ C) > Pr(E | Ki ∧ ¬C) for all appropriate maximal specifications Ki of
causally relevant background factors, provided that these conditionals are defined (where they
independently define what it means for a background factor to be causally relevant); see also
[Eells 1991]. Interestingly, Eells and Sober [1983] also give sufficient conditions for causality
to be transitive according to their definition. This definition does not involve counterfactuals
(so the results of Section 2.4 do not apply).

There are also definitions of probabilistic causality in this spirit that do involve counterfac-
tuals. For example, Lewis [1973a] defines a probabilistic version of his notion of dependency,
by taking A to causally depend on B if and only if, had B not occurred, the chance of A’s oc-
curring would be much less than its actual chance; he then takes causality to be the transitive
closure of this causal dependence relation. There are several other ways to define causality in
this spirit; see Fitelson and Hitchcock [2011] for an overview. In any case, as Example 2.5.2
shows, no matter how this is made precise, defining causality this way is problematic. Perhaps
the best-known example of the problem is due to Rosen and is presented by Suppes [1970]: A
golfer lines up to driver her ball, but her swing is off and she slices it badly. The slice clearly
decreases the probability of a hole-in-one. But, as it happens, the ball bounces off a tree trunk
at just the right angle that, in fact, the golfer gets a hole-in-one. We want to say that the slice
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74 Chapter 2. The HP Definition of Causality

caused the hole-in-one (and the definition given here would say that), although slicing the ball
lowers the probability of a hole-in-one.

The difference between the probability of rain conditional on a low barometer reading and
the probability that it rains as a result of intervening to set the barometer reading to low has
been called by Pearl [2000] the difference between seeing and doing.

Examples 2.5.1, 2.5.2, and 2.5.3 are modifications of examples in [Paul and Hall 2013],
with slight modifications; the original version of Example 2.5.3 is due to Frick [2009]. As I
said, the idea of “pulling out the probability” is standard in computer science; see [Halpern
and Tuttle 1993] for further discussion and references. Northcott [2010] defends the view
that using deterministic models may capture important features of the psychology of causal
judgment; he also provides a definition of probabilistic causality. Fenton-Glynn [2016] pro-
vides a definition of probabilistic causality in the spirit of the HP definitions; unfortunately,
he does not consider how his approach fares on the examples in the spirit of those discussed
here. Much of the material in Section 2.5 is taken from [Halpern 2014b].

Example 2.5.4 is in the spirit of an example considered by Hitchcock [2004]. In his ex-
ample, both Juan and Jennifer push a source of polarized photons, which greatly increases
the probability that a photon emitted by the source will be transmitted by a polarizer. In fact,
the polarizer does transmit a photon. Hitchcock says, “It seems clearly wrongheaded to ask
whether the transmission was really due to Juan’s push rather than Jennifer’s push. Rather
. . . each push increased the probability of the effect (the transmission of the photon), and then
it was simply a matter of chance. There are no causal facts of the matter extending beyond
the probabilistic contribution made by each. This is a very simple case in which our intuitions
are not clouded by tacit deterministic assumptions.”

Hitchcock’s example involves events at the microscopic level, where arguably we cannot
pull out the probability. But for macroscopic events, where we can pull out the probability, as
is done in Section 2.5, I believe that we can make sense out of the analogous questions, and
deterministic assumptions are not at all unreasonable.

Balke and Pearl [1994] give a general discussion of how to evaluate probabilistic queries
in a causal model where there is a probability on contexts.

Representation of uncertainty other than probability, including the use of sets of probability
measures, are discussed in [Halpern 2003].

Lewis [1986b, Postscript C] discussed sensitive causation and emphasized that in long
causal chains, causality was quite sensitive. Woodward [2006] goes into these issues in much
more detail and makes the point that people’s causality judgments are clearly influenced by
how sensitive the causality ascription is to changes in various other factors. He points out that
one reason some people tend to view double prevention and absence of causes as not quite
“first-class” causes might be that these are typically quite sensitive causes; in the language of
Section 2.6, they are sufficient causes with only low probability.

Pearl and I [2005a] considered what we called strong causality, which is intended to cap-
ture some of the same intuitions behind sufficient causality. Specifically, we extended the
updated definition by adding the following clause:

AC2(c). (M, u⃗) |= [X⃗ ← x⃗, W⃗ ← w⃗′′]ϕ for all settings w⃗′′ of W⃗ .

Thus, instead of requiring [X⃗ ← x⃗]ϕ to hold in all contexts, some of the same effect is
achieved by requiring that ϕ holds no matter what values of W⃗ are considered. The definition
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given here seems somewhat closer to the intuitions and allows the consideration of probabilis-
tic sufficient causality by putting a probability on contexts. This, in turn, makes it possible to
bring out the connections between sufficient causality, normality, and blame.

Although Pearl [1999, 2000] does not define the notion of sufficient causality, he does talk
about the probability of sufficiency, that is, the probability that X = x is a sufficient cause
of Y = y. Roughly speaking, this is the probability that setting X to x results in Y = y,
conditional on X ̸= x and Y ̸= y. Ignoring the conditioning, this is very close in spirit
to the definition given here. Datta et al. [2015] considered a notion close to the notion of
sufficient causality defined here and pointed out that it could be used to distinguish joint and
independent causality. Honoré [2010] discusses the distinction between joint and independent
causation in the context of the law. Gerstenberg et al. [2015] discuss the impact of sufficient
causality on people’s causality judgments.

The definition of causality in nonrecursive causal models is taken from the appendix of
[Halpern and Pearl 2005a]. Strotz and Wold [1960] discuss recursive and nonrecursive models
as used in econometrics. They argue that our intuitive view of causality really makes sense
only in recursive models, and that once time is taken into account, a nonrecursive model can
typically be viewed as recursive.

Example 2.8.1, which motivated AC2(bu), is due to Hopkins and Pearl [2003]. Exam-
ple 2.8.2 is taken from [Halpern 2008]. Hall [2007] gives a definition of causality that he calls
the H-account that requires (2.1) to hold (but only for W⃗ , not for all subsets W⃗ ′ ⊆ W⃗ ). Ex-
ample 2.8.3, which is taken from [Halpern and Pearl 2005a], shows that the H-account would
not declare V1 = 1 a cause of P = 1, which seems problematic. This example also causes
related problems for Pearl’s [1998, 2000] causal beam definition of causality.

Hall [2007], Hitchcock [2001], and Woodward [2003] are examples of accounts of causal-
ity that explicitly appeal to causal paths. In [Halpern and Pearl 2005a, Proposition A.2], it is
claimed that all the variables in Z⃗ can be taken to lie on a causal path from a variable in X⃗ to
ϕ. As Example 2.9.1 shows, this is not true in general. In fact, the argument used in the proof
of [Halpern and Pearl 2005a, Proposition A.2] does show that with AC2(bo), all the variables
in Z⃗ can be taken to lie on a causal path from a variable in X⃗ to ϕ (and is essentially the ar-
gument used in the proof of Proposition 2.9.2). The definition of causality was changed from
using AC2(bo) to AC2(bu) in the course of writing [Halpern and Pearl 2005a]; Proposition
A.2 was not updated accordingly.
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Chapter 3

Graded Causation and Normality

Perhaps the feelings that we experience when we are in love represent a normal
state.

Anton Chekhov

In a number of the examples presented in Chapter 2, the HP definition gave counterintuitive
ascriptions of causality. I suggested then that taking normality into account would solve
these problems. In this chapter, I fill in the details of this suggestion and show that taking
normality into account solves these and many other problems, in what seems to me a natural
way. Although I apply ideas of normality to the HP definition, these ideas should apply
equally well to a number of other approaches to defining causality.

This approach is based on the observation that norms can affect counterfactual reasoning.
To repeat the Kahneman and Miller quote given in Chapter 1, “[in determining causality], an
event is more likely to be undone by altering exceptional than routine aspects of the causal
chain that led to it”. In the next section, I give a short discussion of issues of defaults, typi-
cality, and normality. I then show how the HP definition can be extended to take normality
into account. The chapter concludes by showing how doing this deals with the problematic
examples from Chapter 2 as well as other concerns.

3.1 Defaults, Typicality, and Normality
The extended account of actual causation incorporates the concepts of defaults, typicality, and
normality. These are related, although somewhat different notions:

A default is an assumption about what happens, or what is the case, when no additional
information is given. For example, we might have as a default assumption that birds
fly. If we are told that Tweety is a bird and given no further information about Tweety,
then it is natural to infer that Tweety flies. Such inferences are defeasible: they can be
overridden by further information. If we are additionally told that Tweety is a penguin,
we retract our conclusion that Tweety flies.

77
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78 Chapter 3. Graded Causation and Normality

To say that birds typically fly is to say not merely that flight is statistically prevalent
among birds, but also that flight is characteristic of the type “bird”. Although not all
birds fly, flying is something that we do characteristically associate with birds.

The word normal is interestingly ambiguous. It seems to have both a descriptive and a
prescriptive dimension. To say that something is normal in the descriptive sense is to
say that it is the statistical mode or mean (or close to it). However, we often use the
shorter form norm in a more prescriptive sense. To conform with a norm is to follow a
prescriptive rule. Prescriptive norms can take many forms. Some norms are moral: to
violate them would be morally wrong. For example, many people believe that there are
situations in which it would be wrong to lie, even if there are no laws or explicit rules
forbidding this behavior. Laws are another kind of norm, adopted for the regulation
of societies. Policies that are adopted by institutions can also be norms. For instance,
a company may have a policy that employees are not allowed to be absent from work
unless they have a note from their doctor. There can also be norms of proper functioning
in machines or organisms. There are specific ways that human hearts and car engines
are supposed to work, where “supposed” here has not merely an epistemic force, but
a kind of normative force. Of course, a car engine that does not work properly is not
guilty of a moral wrong, but there is nonetheless a sense in which it fails to live up to a
certain kind of standard.

Although this might seem like a heterogeneous mix of concepts, they are intertwined in a
number of ways. For example, default inferences are successful to the extent that the default
is normal in the statistical sense. Adopting the default assumption that a bird can fly facili-
tates successful inferences in part because most birds are able to fly. Similarly, we classify
objects into types in part to group objects into classes, most of whose members share cer-
tain features. Thus, the type “bird” is useful partly because there is a suite of characteristics
shared by most birds, including the ability to fly. The relationship between the statistical and
prescriptive senses of “normal” is more subtle. It is, of course, quite possible for a majority
of individuals to act in violation of a given moral or legal norm. Nonetheless, it seems that
the different kinds of norms often serve as heuristic substitutes for one another. For example,
there are well-known experiments showing that we are often poor at explicit statistical rea-
soning, employing instead a variety of heuristics. Rather than tracking statistics about how
many individuals behave in a certain way, we might well reason about how people should
behave in certain situations. The idea is that we use a script or a template for reasoning about
certain situations, rather than actual statistics. Prescriptive norms of various sorts can play a
role in the construction of such scripts. It is true, of course, that conflation of the different
sorts of norm can sometimes have harmful consequences. Less than a hundred years ago, for
example, left-handed students were often forced to learn to write with their right hands. In
retrospect, this looks like an obviously fallacious inference from the premise that the majority
of people write with their right hand to the conclusion that it is somehow wrong to write with
the left hand. But the ease with which such an inference was made illustrates the extent to
which we find it natural to glide between the different senses of “norm”.

When Kahneman and Miller say that “an event is more likely to be undone by altering
exceptional than route aspects of the causal chain that led to it”, they are really talking about
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how we construct counterfactual situations. They are also assuming a close connection be-
tween counterfactuals and causality, since they are effectively claiming that the counterfactual
situation we consider affects our causality judgment. The fact that norms influence causal
judgment has been confirmed experimentally (although the experiments do not show that the
influence goes via counterfactual judgments). To take just one example (see the notes at the
end of the chapter for others), consider the following story from an experiment by Knobe and
Fraser:

The receptionist in the philosophy department keeps her desk stocked with pens.
The administrative assistants are allowed to take the pens, but faculty members
are supposed to buy their own. The administrative assistants typically do take the
pens. Unfortunately, so do the faculty members. The receptionist has repeatedly
emailed them reminders that only administrative assistants are allowed to take
the pens. On Monday morning, one of the administrative assistants encounters
Professor Smith walking past the receptionist’s desk. Both take pens. Later that
day, the receptionist needs to take an important message . . . but she has a problem.
There are no pens left on her desk.

People are much more likely to view Prof. Smith as the cause of there not being pens than
the administrative assistant. The HP definition does not distinguish them, calling them both
causes. The extended HP definition given in the next section does allow us to distinguish
them. Since the HP definition is based on counterfactuals, the key step will be to have the
choice of witness be affected by normality considerations. Although the assumption that
normality considerations affect counterfactual judgments does not follow immediately from
the experimental evidence, it seems like a reasonable inference, given the tight connection
between causality and counterfactuals.

3.2 Extended Causal Models
I add normality to causal models by assuming that an agent has, in addition to a theory of
causal structure (as modeled by the structural equations), a theory of “normality” or “typ-
icality”. This theory includes statements of the form “typically, people do not put poison
in coffee”. There are many ways of giving semantics to such typicality statements (see the
notes at the end of the chapter). All of them give ways to compare the relative “normality” of
some objects. For now, I take those objects to be the worlds in a causal model M , where a
world is an assignment of values to the endogenous variables; that is, a complete description
of the values of the endogenous variables in M . I discuss after Example 3.2.6 why a world
here is taken to be an assignment only to the endogenous variables and not an assignment
to both exogenous and endogenous variables, as in the complete assignments considered in
Section 2.7. A complete assignment is essentially equivalent to the standard philosophers’
notion of a world as a maximal state of affairs, so my usage of “world” here is not quite the
same as the standard philosophers’ usage. In Section 3.5, I discuss an alternative approach,
which puts the normality ordering on contexts, much in the spirit of putting a probability on
contexts as was done in Section 2.5. Since (in a recursive model) a context determines the
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values of all endogenous variables, a context can be identified with a complete assignment,
and thus with the philosophers’ notion of world. But for now I stick with putting a normality
ordering on worlds as I have defined them.

Most approaches to normality/typicality implicitly assume a total normality ordering on
worlds: given a pair of worlds w and w′, either w is more normal than w′, w is less normal
than w′, or the two worlds are equally normal. The approach used here has the advantage of
allowing an extra possibility: w and w′ are incomparable as far as normality goes. (Techni-
cally, this means that the normality ordering is partial, rather than total.)

We can think of a world as a complete description of a situation given the language deter-
mined by the set of endogenous variables. Thus, a world in the forest-fire example might be
one where U = (0, 1), L = 0, MD = 1, and FF = 0; the match is dropped, there is no
lightning, and no forest fire. As this example shows, a “world” does not have to satisfy the
equations of the causal model.

For ease of exposition, I make a somewhat arbitrary stipulation regarding terminology.
In what follows, I use “default” and “typical” when talking about individual variables or
equations. For example, I might say that the default value of a variable is zero or that one
variable typically depends on another in a certain way. I use “normal” when talking about
worlds. Thus, I say that one world is more normal than another. I assume that it is typical
for endogenous variables to be related to one another in the way described by the structural
equations of a model, unless there is some specific reason to think otherwise. This ensures that
the downstream consequences of what is typical are themselves typical (again, in the absence
of any specific reason to think otherwise).

Other than this mild restriction, I make no assumptions on what gets counted as typical.
This introduces a subjective element into a causal model. Different people might well use
different normality orderings, perhaps in part due to focusing on different aspects of normality
(descriptive normality, typicality, prescriptive normality, etc.). This might bother those who
think of causality as an objective feature of the world. In this section, I just focus on the
definitions and give examples where the normality ordering seems uncontroversial; I return to
this issue in Chapter 4. I will point out for now that there are already subjective features in a
model: the choice of variables and which variables are taken to be exogenous and endogenous
is also determined by the modeler.

I now extend causal models to provide a formal model of normality. I do so by assuming
that there is a partial preorder ≽ over worlds. Intuitively, s ≽ s′ means that s is at least
as normal as s′. Recall from Section 2.1 that a partial order on a set S is a reflexive, anti-
symmetric, and transitive relation on S. A partial preorder is reflexive and transitive but not
necessarily anti-symmetric; this means that we can have two worlds s and s′ such that s ≽ s′

and s′ ≽ s without having s = s′. That is, we can have two distinct worlds where each is
at least as normal as the other. By way of contrast, the standard ordering ≥ on the natural
numbers is anti-symmetric; if x ≥ y and y ≥ x, then x = y. (The requirement of anti-
symmetry is what distinguishes a (total or partial) order from a preorder.) I write s ≻ s′ if
s ≽ s′ and it is not the case that s′ ≽ s, and s ≡ s′ if s ≽ s′ and s′ ≽ s. Thus, s ≻ s′ means
that s is strictly more normal than s′, whereas s ≡ s′ means that s and s′ are equally normal.
Note that I am not assuming that ≽ is total; it is quite possible that there are two worlds s and
s′ that are incomparable in terms of normality. The fact that s and s′ are incomparable does
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not mean that s and s′ are equally normal. We can interpret it as saying that the agent is not
prepared to declare either s or s′ as more normal than the other and also not prepared to say
that they are equally normal; they simply cannot be compared in terms of normality.

Recall that normality can be interpreted in terms of frequency. Thus, we say that birds
typically fly in part because the fraction of flying birds is much higher than the fraction of
non-flying birds. We might consider a world where a bird can fly to be more normal than
one where a bird cannot fly. If we were to put a probability on worlds, then a world where a
bird flies might well have a greater probability than one where a bird does not fly. Although
we could interpret s ≻ s′ as meaning “s is more probable than s′”, this interpretation is not
always appropriate. For one thing, interpreting ≽ in terms of probability would make ≽ a total
order—all worlds would be comparable. There are advantages to allowing ≽ to be partial (see
the notes at the end of the chapter for more discussion of this point). More importantly, even
when thinking probabilistically, I view s ≻ s′ as saying that s is much more probable than s′.
I return to this point below.

Take an extended causal model to be a tuple M = (S,F ,≽), where (S,F) is a causal
model and ≽ is a partial preorder on worlds, which can be used to compare how normal
different worlds are. In particular, ≽ can be used to compare the actual world to a world
where some interventions have been made. Which world is the actual world? That depends
on the context. In a recursive extended causal model, a context u⃗ determines a world denoted
su⃗. We can think of the world su⃗ as the actual world in context u⃗; it is the world that would
occur given the setting of the exogenous variables in u⃗, provided that there are no external
interventions.

I now modify the HP definitions slightly to take the ordering of worlds into account. I start
with the original and updated definitions. In this case, define X⃗ = x⃗ to be a cause of ϕ in an
extended model M and context u⃗ if X⃗ = x⃗ is a cause of ϕ according to Definition 2.2.1, except
that in AC2(a), a clause is added requiring that sX⃗=x⃗′,W⃗=w⃗,u⃗ ≽ su⃗, where sX⃗=x⃗′,W⃗=w⃗,u⃗ is
the world that results by setting X⃗ to x⃗′ and W⃗ to w⃗ in context u⃗. This just says that we
require the witness world to be at least as normal as the actual world. Here is the extended
AC2(a), which I denote AC2+(a).

AC2+(a). There is a partition of V (the set of endogenous variables) into two disjoint subsets
Z⃗ and W⃗ with X⃗ ⊆ Z⃗ and a setting x⃗′ and w⃗ of the variables in X⃗ and W⃗ , respectively,
such that sX⃗=x⃗′,W⃗=w⃗,u⃗ ≽ su⃗ and (M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗]¬ϕ.

This can be viewed as a formalization of Kahneman and Miller’s observation that we tend
to consider only possibilities that result from altering atypical features of a world to make
them more typical, rather than vice versa. In this formulation, worlds that result from inter-
ventions on the actual world “come into play” in AC2+(a) only if they are at least as normal
as the actual world. If we are using the modified HP definition, then AC2(am) is extended to
AC2+(am) in exactly the same way; the only difference between AC2+(a) and AC2+(am) is
that, in the latter (just as in AC2(am)), w⃗ is required to consist of the values of the variables
in W⃗ in the actual context (i.e., (M, u⃗) |= W⃗ = w⃗).

Issues of normality are, by and large, orthogonal to the differences between the variants of
the HP definition. For ease of exposition, in the remainder of this chapter, I use the updated
HP definition and AC+(a), unless noted otherwise. Using AC2+(a) rather than AC2(a), with
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reasonable assumptions about normality, takes care of the problems pointed out in Section 2,
although it raises other issues.

Example 3.2.1 As I observed, one way to avoid calling the presence of oxygen a cause of
the forest burning is simply not to include a variable for oxygen in the model or to take the
presence of oxygen to be exogenous. But suppose someone wanted to consider oxygen to be
an endogenous variable. Then as long as a world where there is no oxygen is more abnormal
than a world where there is oxygen, the presence of oxygen is not a cause of the forest fire;
AC2+(a) fails.

However, suppose that the fire occurs when a lit match is dropped in a special chamber in
a scientific laboratory that is normally voided of oxygen. Then there would presumably be
a different normality ordering. Now the presence of oxygen is atypical, and the witness to
oxygen being a cause is as normal as (or at least not strictly less normal than) the witness to
the match being a cause. In this case, I suspect most people would call the presence of oxygen
a cause of the fire.

Example 3.2.2 Recall Example 2.3.5, where there are potentially many doctors who could
treat Billy besides his regular doctor. Although it seems reasonable to call Billy’s regular
doctor a cause of him being sick on Tuesday if the doctor fails to treat him, it does not seem
reasonable to call all the other doctors causes of him being sick. This is easy to deal with
if we take normality into account. It seems perfectly reasonable to take the world where
Billy’s doctor treats Billy to be at least as normal as the world where Billy’s doctor does not
treat Billy; it also seems reasonable to take the worlds where the other doctors treat Billy
as being less normal than the world where they do not treat Billy. With these assumptions,
using AC2+(a), Billy’s doctor not treating Billy is a cause of him being sick, whereas the
other doctors not treating him are not causes. Thus, using normality allows us to capture
intuitions that people seem to have without appealing to probabilistic sufficient causality and
thus requiring a probability on contexts (see, for comparison, the discussion in Section 2.6).

What justifies a normality ordering where it is more normal for Billy’s doctor to treat him
than another random doctor? All the interpretations discussed in Section 3.1 lead to this
judgment.

Statistically, patients are far more likely to be treated by their own doctors than by a
random doctor.

We assume that, by default, a patient will be treated by his doctor.

A patient’s doctor does typically treat the patient, in the sense that this is a characteristic
of being someone’s doctor.

It is a norm that a patient’s doctor will treat the patient.

There are philosophers who claim that an omission—the event of an agent not doing
something—can never count as a cause. Although I do not share this viewpoint, it can be
accommodated in this framework by taking not acting to always be more normal than acting.
That is, given two worlds s and s′ that agree in all respects (i.e., in the values of all variables)
except that in s some agents do not perform an act that they do perform in s′, we would have
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s ≻ s′. (As an aside, since ≽ is allowed to be partial, if different agents perform acts in s and
s′, then we can just take s and s′ to be incomparable.)

We can equally well accommodate a viewpoint that allows all omissions to count as causes.
This is essentially the viewpoint of the basic HP definition, and we can recover the original
HP approach (without normality), and hence drop the distinctions between omissions and
other potential causes, by simply taking all worlds to be equally normal. (Indeed, by doing
this, we are effectively removing normality from the picture and are back at the original HP
definition.)

Of course, the fact that we can accommodate all these viewpoints by choosing an appropri-
ate normality ordering raises the concern that we can reverse-engineer practically any verdict
about causality in this way. Although it is true that adding normality to the model gives a
modeler a great deal of flexibility, the key word here is “appropriate”. A modeler will need
to argue that the normality ordering that she has chosen is reasonable and appropriate to cap-
ture the intuitions we have about the situation being modeled. Although there can certainly
be some disagreement about what counts as “reasonable”, the modeler does not have a blank
check here. I return to this issue in Section 4.7.

These examples already show that, once we take normality into account, causality ascrip-
tions can change significantly. One consequence of this is that but-for causes may no longer
be causes (according to all of the variants of the HP definition). The presence of oxygen is
clearly a but-for cause of fire—if there is no oxygen, there cannot be a fire. But in situations
where we take the presence of oxygen for granted, we do not want to call the presence of
oxygen a cause.

Moreover, although it is still the case that a cause according to the updated HP definition
is a cause according to the original HP definition, the other parts of Theorem 2.2.3 fail once
we take normality into account.

Example 3.2.3 Suppose that two people vote in favor of a particular outcome and it takes
two votes to win. Each is a but-for cause of the outcome, so all the definitions declare each
voter to be a cause. But now suppose that we take the normality ordering to be such that it
is abnormal for the two voters to vote differently, so a world where one voter votes in favor
and the other votes against is less normal than a world where both vote in favor or both vote
against. Taking V1 and V2 the variables describing how the voters vote, and O to describe
the outcome, then with this normality ordering, neither V1 = 1 nor V2 = 1 is a cause of the
outcome according to any of the variants of the HP definition, although V1 = 1 ∧ V2 = 1 is a
cause. So, in particular, this means that causes are not necessarily single conjuncts according
to the original HP definition once it is extended to take normality into account. Moreover, if
the world where V1 = V2 = 0 is also taken to be abnormal, there is no cause at all of O = 1.

The fact that there are no causes in this case may not seem so unreasonable. With this
normality setting, the outcome is essentially being viewed as a foregone conclusion and thus
not in need of a cause. But there are other cases where having no causes seems quite unrea-
sonable.

Example 3.2.4 Suppose that Billy is sick, Billy’s regular doctor treats Billy, and Billy re-
covers the next day. In this case, we would surely want to say that the fact that Billy’s doctor
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treated Billy is a cause of Billy recovering the next day. Indeed, it is even a but-for cause of
Billy recovering. But if we assume that it is more normal for Billy’s regular doctor to treat
Billy when he is sick than not to treat him, then taking normality into account, there is no
cause of Billy recovering! It is easy to construct many other examples where there are no
causes if the normal thing happens (a gardener watering her plants is not a cause of the plants
surviving; if I normally drive home, then the fact that I drove home is not a cause of me being
at home 20 minutes after I left work; and so on). This problem is dealt by the graded causality
approach discussed in Section 3.3.

Example 3.2.5 Consider Example 2.9.1 again, where there is lightning and two arsonists.
As we observed, the lightning is no longer a cause of the forest fire according to the mod-
ified HP definition, since each arsonist by himself is a cause. But suppose that we take a
world where MD ̸= MD ′ to be abnormal. This is consistent with the story, which says that
one arsonist dropping a match “does not happen under normal circumstances”; in particular,
MD ̸= MD ′ is inconsistent with the equations. In that case, neither MD = 1 nor MD ′ = 1 is
a cause of FF = 1 according to modified HP definition in the extended causal model; neither
satisfies AC2+(am). Thus, L = 1 ∧ MD = 1 becomes a cause of FF = 1 according to
modified HP definition, and L = 1 is again part of a cause of FF = 1.

Example 3.2.6 Consider the sophisticated model M ′
RT of the rock-throwing example, and

suppose that we declare the world where Billy throws a rock, Suzy doesn’t throw, and Billy
does not hit abnormal. This world was needed to show that Suzy throwing is a cause according
to the modified HP definition. Thus, with this normality ordering ST = 1 is not a cause;
rather, ST = 1 ∧ BT = 1 is a cause, which seems inappropriate. However, ST = 1 remains
a cause according to the original and updated HP definition, since we can now take the witness
to be the world where ST = 0 and BT = 0; these variants allow the variables in W⃗ to take on
values other than their values in the actual world. Thus, BT = 1 is part of a cause according to
the modified HP definition but not a cause according to the original or updated HP definition.

Example 3.2.6 shows in part why the normality ordering is placed on worlds, which are
assignments of values to the endogenous variables only. The witness world where BT = 1,
BH = 0, and ST = 0 does not seem so abnormal, even if it is abnormal for Billy to throw
and miss in a context where he is presumed accurate.

Putting the normality ordering on worlds does not completely save the day, however. For
one thing, it seems somewhat disconcerting that Billy’s throw should be part of the cause
according to the modified HP definition in Example 3.2.6. But things get even worse. Suppose
that we consider the richer model rock-throwing model M∗

RT , which includes the variable BA,
for “Billy is an accurate rock thrower”. In M∗

RT , we have essentially moved the question of
Billy’s accuracy out of the context and made it an explicit endogenous variable, that is, it is
determined by the world. In the actual world, Billy is accurate; that is, BA = 1. (Note that
we may even have observations confirming this; we could see Billy’s rock passing right over
where the bottle was just after Suzy’s rock hit it and shattered it.) There is still no problem
here for the original and updated HP definition. If s is the actual world, then the world
sBT=0,ST=0,u is arguably at least as normal as su; although BA = 1 in sBT=0,ST=0,u, it is
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not abnormal for Billy not to hit the bottle if he doesn’t throw. On the other hand, in the world
sBH=0,ST=0,u which is needed to show that Suzy’s throw is a cause of the bottle shattering
according to the modified HP definition, we have BT = 1, BA = 1, and BH = 0: although
Billy throws and is accurate, he misses the bottle. This doesn’t seem like such a normal
world. But if we declare this world to be abnormal, then Suzy’s throw is no longer a cause of
the bottle shattering according to the modified HP definition.

It gets even worse (at least according to some people’s judgments of causality) if we replace
Billy the person by Billy the automatic rock-throwing machine, which is programmed to throw
rocks. Again, it does not seem so bad if BA is not part of the language; programming errors
or other malfunctions can still result in a rock-throwing machine missing. But with BA in
the language (in which case we take BA = 1 to mean that the machine doesn’t malfunction
and is programmed correctly), it does not seem so reasonable to take a world where BA = 1,
BT = 1, and BH = 0 to be at least as normal as the actual world.

Does this represent a serious problem for the modified HP definition (when combined with
normality)? I would argue that, although at first it may seem reasonable (and is what was
done in the literature), the real source of the problem is putting normality on worlds. I return
to this point in Section 3.5, where I consider an alternative approach to defining normality.
For now I continue with putting normality on worlds and consider an approach that deals with
the problem in the rock-throwing example in a different way, which has the further advantage
of providing a more general approach to combining normality with causality.

3.3 Graded Causation

AC2+(a) and AC2+(am), as stated, are all-or-nothing conditions; either it is legitimate to
consider a particular world (the one that characterizes the witness) or it is not. However, in
some cases, to show that A is a cause of B, we might need to consider an unlikely intervention;
it is the only one available. This is exactly what happened in the case of the rock-throwing
machine.

As observed in Examples 3.2.3 and 3.2.4, with certain normality orderings, some events
can have no cause at all (although they would have a cause if normality constraints were ig-
nored). We can avoid this problem by using normality to rank actual causes, rather than elim-
inating them altogether. Doing so lets us explain the responses that people make to queries
regarding actual causation. For example, while counterfactual approaches to causation usu-
ally yield multiple causes of an outcome ϕ, people typically mention only one of them when
asked for a cause. One explanation of this is that they are picking the best cause, where best
is judged in terms of normality.

To make this precise, say that world s is a witness world (or just witness) for X⃗ = x⃗ being
a cause of ϕ in context u⃗ if for some choice of W⃗ , w⃗, and x⃗′ for which AC2(a) and AC2(bu)
hold (AC2(a) and AC2(bo) if we are using the original HP definition; AC2(am) if we are
using the modified HP definition), s is the assignment of values to the endogenous variables
that results from setting X⃗ = x⃗′ and W⃗ = w⃗ in context u⃗. In other words, a witness s is a
world that demonstrates that AC2(a) holds. (Calling a world s a witness world is consistent
with calling the triple (W⃗ , w⃗, x⃗′) a witness, as I did in Section 2.2. The triple determines
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a unique world, which is a witness world. I continue to use the word “witness” for both a
witness world and a triple. I hope that the context will make clear which is meant.)

In general, there may be many witness worlds for X⃗ = x⃗ being a cause of ϕ in (M, u⃗).
Say that s is a best witness for X⃗ = x⃗ being a cause of ϕ if there is no other witness s′ such
that s′ ≻ s. (Note that there may be more than one best witness.) We can then grade candidate
causes according to the normality of their best witnesses. We would expect that someone’s
willingness to judge X⃗ = x⃗ an actual cause of ϕ in (M, u⃗) increases as a function of the
normality of the best witness world for X⃗ = x⃗ in comparison to the best witness for other
candidate causes. Thus, we are less inclined to judge that X⃗ = x⃗ is an actual cause of ϕ when
there are other candidate causes with more normal witnesses.

Note that once we allow graded causality, we use AC2(a) (resp., AC2(am)) rather than
AC2+(a) (resp., AC2+(am)); normality is used only to characterize causes as “good” or
“poor”. In Example 3.2.2, each doctor other than Billy’s doctor not treating Billy is still a
cause of Billy being sick on Tuesday, but is such a poor cause that most people are inclined
to ignore it if there is a better cause available. On the other hand, in Example 3.2.4, Billy’s
doctor treating Billy is a cause of Billy recovering the next day, and is the only cause, so it is
what we take as “the” cause. In general, an event whose only causes are poor causes in this
sense is one that we expected all along, so doesn’t require an explanation (see Example 3.4.1).
However, if we are looking for a cause, then even a poor cause is better than nothing.

Before going on, I should note that it has been common in the philosophy literature on
causation to argue that, although people do seem to grade causality, it is a mistake to do so
(see the notes for more discusion on this point). As I said, one of my goals is to get a notion
of causality that matches how people use the word and is useful. Since it is clear that people
make these distinctions, I think it is important to get a reasonable definition of causality that
allows the distinctions to be made. Moreover, I think that people make these distinctions
because they are useful ones. Part of why we want to ascribe causality is to understand how
to solve problems. We might well want to understand why Billy’s doctor did not treat Billy.
We would not feel the need to understand why other doctors did not treat Billy.

3.4 More Examples
In this section, I give a few more examples showing the power of adding normality to the
definition of causality and the advantages of thinking in terms of graded causality.

3.4.1 Knobe effects
Recall the vignette from Knobe and Fraser’s experiment that was discussed in Section 3.1,
where Professor Smith and the administrative assistant both take pens from the receptionist’s
desk. After reading this vignette, subjects were randomly presented with one of the follow-
ing propositions and asked to rank their agreement on a 7-point scale from -3 (completely
disagree) to +3 (completely agree):

Professor Smith caused the problem.
The administrative assistant caused the problem.
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Subjects gave an average rating of 2.2 to the first claim, indicating agreement, but −1.2 to
the second claim, indicating disagreement. Thus, subjects are judging the two claims differ-
ently, due to the different normative status of the two actions. (Note that subjects were only
presented with one of these claims: they were not given a forced choice between the two.)

In another experiment, subjects were presented with a similar vignette, but this time both
professors and administrative assistants were allowed to take pens. In this case, subjects tend
to give intermediate values. That is, when the vignette is changed so that Professor Smith is
not violating a norm when he takes the pen, not only are subjects less inclined to judge that
Professor Smith caused the problem, but they are more inclined to judge that the administra-
tive assistant caused the problem. The most plausible interpretation of these judgments is that
subjects’ increased willingness to say that the administrative assistant caused the problem is
a direct result of their decreased willingness to say that Professor Smith caused the problem.
This suggests that attributions of actual causation are at least partly a comparative affair.

The obvious causal model of the original vignette has three endogenous variables:

PT = 1 if Professor Smith takes the pen, 0 if she does not;

AT = 1 if the administrative assistant takes the pen, 0 if she does not;

PO = 1 if the receptionist is unable to take a message, 0 if no problem occurs.

There is one equation: PO = min(PT ,AT ) (equivalently, PO = PT∧AT ). The exogenous
variables are such that PT and AT are both 1. Therefore, in the actual world, we have
PT = 1, AT = 1, and PO = 1.

Both PT = 1 and AT = 1 are but-for causes of PO = 1 (and so causes according to
all three variants of the definition). The best witness for PT = 1 being a cause is the world
(PT = 0,AT = 1,PO = 0); the best witness for AT = 1 being a cause is (PT = 1,AT =
0,PO = 0). (Here and elsewhere, I describe a world by a tuple consisting of the values
of the endogenous variables in that world.) The original story suggests that the witness for
PT = 1 being a cause is more normal than the witness for AT = 1 by saying “administrative
assistants are allowed to take pens, but professors are supposed to buy their own”. According
to the definition above, this means that people are more likely to judge that PT = 1 is an
actual cause. However, if the vignette does not specify that one of the actions violates a
norm, we would expect the relative normality of the two witnesses to be much closer, which
is reflected in how subjects actually rated the causes.

This example, I believe, illustrates the power of allowing a “graded” approach to causality.
As I said above, there have been claims that it is a mistake to focus on one cause and ignore
others (which is an extreme of the graded approach that occurs often in practice). It seems
to me that the “egalitarian” notion of cause is entirely appropriate at the level of causal struc-
ture, as represented by the equations of a causal model. These equations represent arguably
objective features of the world and are not sensitive to factors such as contextual salience and
human considerations of normality. Pragmatic, subjective factors then determine which actual
causes we select and label “the” causes (or, at least, as “better” causes).
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3.4.2 Bogus prevention
The initial impetus for work on adding normality considerations to basic causal models was
provided by the examples like the following “bogus prevention” example.

Example 3.4.1 Assassin is in possession of a lethal poison but has a last-minute change of
heart and refrains from putting it in Victim’s coffee. Bodyguard puts antidote in the coffee,
which would have neutralized the poison had there been any. Victim drinks the coffee and
survives. Is Bodyguard’s putting in the antidote a cause of Victim surviving? Most people
would say no, but according to the original and updated HP definition, it is. For in the contin-
gency where Assassin puts in the poison, Victim survives iff Bodyguard puts in the antidote.
According to the modified HP definition, Bodyguard putting in the antidote is not a cause, but
is part of a cause (along with Assassin not putting in the poison). Although the latter position
is perhaps not completely unreasonable (after all, if Bodyguard didn’t put in the antidote and
Assassin did put in the poison, Victim would have died), most people would not take either
Bodyguard or Assassin to be causes. Roughly speaking, they would reason that there is no
need to find a cause for something that was expected all along.

What seems to make Example 3.4.1 particularly problematic is that, if we use the obvious
variables to describe the problem, the resulting structural equations are isomorphic to those
in the disjunctive version of the forest-fire example where either the lit match or the lightning
suffices to start the fire. Specifically, take the endogenous variables in Example 3.4.1 to be
A (for “assassin does not put in poison”), B (for “bodyguard puts in antidote”), and VS (for
“victim survives”). That is,

A = 1 if Assassin does not put in the poison, 0 if he does;

B = 1 if Bodyguard adds the antidote, 0 if he does not;

VS = 1 if Victim survives, 0 if he does not.

Then A, B, and VS satisfy exactly the same equations as L, MD , and FF , respectively: A
and B are determined by the environment, and VS = A ∨ B. In the context where there is
lightning and the arsonist drops a lit match, both the lightning and the match are causes of the
forest fire according to the original and updated HP definition (and parts of causes according
to the modified HP definition), which seems reasonable. For similar reasons, in this model,
the original and updated HP definition declare both A = 1 and B = 1 to be causes of VS = 1
(and the modified HP definition declares them to be parts of causes). But here it does not
seem reasonable that Bodyguard’s putting in the antidote is a cause or even part of a cause.
Nevertheless, it seems that any definition that just depends on the structural equations is bound
to give the same answers in these two examples.

Using normality gives us a straightforward way of dealing with the problem. In the actual
world, A = 1, B = 1, and VS = 1. The witness world for B = 1 being a cause of
VS = 1 is the world where A = 0, B = 0, and VS = 0. If we make the assumption that A is
typically 1 and that B is typically 0, this leads to a normality ordering in which the two worlds
(A = 1, B = 1,VS = 1) and (A = 0, B = 0,VS = 0) are incomparable; although both are
abnormal, they are abnormal in incomparable ways. Since the unique witness for B = 1 to
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be an actual cause of VS = 1 is incomparable with the actual world, using AC2+(a), we get
that B = 1 is not an actual cause of VS = 1.

Note that if we require AC2+(a), A = 1 is not a cause of VS = 1 either; the world
(A = 0, B = 0,VS = 0) is also the unique witness world for A = 1 being a cause of
VS = 1. That means VS = 1 has no causes. Again, in this case, we would typically not
look for an explanation or a cause of VS = 1 because it was expected all along. However, if
we are looking for a cause, using graded causality, both A = 1 and B = 1 count as causes
of VS = 1 according to the original and updated HP definition (extended to take normality
into account, of course), although they get a “poor” grade; with the modified HP definition,
the conjunction A = 1 ∧ B = 1 counts as a cause. Again, we are inclined to accept a “poor”
cause as a cause if there are no better alternatives available.

Now suppose that we consider a world where assassination is typical; assassins are hiding
behind every corner. Would we then want to take worlds where A = 0 to be more normal than
worlds where A = 1, all else being fixed? Indeed, even if assassinations were not common-
place, isn’t it typical for assassins to poison drinks? That is what assassins do, after all. Here
we are dealing with two different interpretations of “normality”. Even if assassinations occur
frequently, they are morally wrong, and hence abnormal in the moral sense. Still, perhaps we
would be more willing to accept the assassin not putting in poison as a cause of the victim
surviving in that case; we certainly wouldn’t take VS = 1 to be an event that no longer re-
quires explanation. Indeed, imagine the assassin master sent his crack assassin out to murder
the victim and then discovers that the victim is still alive. Now he would want an explana-
tion, and the explanation that the assassin did not actually put in the poison now seems more
reasonable.

Although (despite the caveats just raised) using normality seems to deal with the assassin
problem, there is another, arguably better, way of modeling this example that avoids issues of
normality altogether. The idea is similar in spirit with how the rock-throwing problem was
handled. We add a variable PN to the model, representing whether a chemical reaction takes
place in which poison is neutralized. Of course PN = 1 exactly if the assassin puts in the
poison and Bodyguard adds the antidote. Thus, the model has the following two equations:

PN = ¬A ∧B (i.e., (1−A)×B) and

VS = max(A,PN ) (i.e., A ∨ PN ).

Thus, in the actual world, where A = 1 and B = 1, PN = 0. The poison is not neutralized
because there was never poison there in the first place. With the addition of PN , B = 1 is no
longer a cause of VS = 1 according to the original or updated HP definitions, without taking
normality into account. Clearly, if B = 1 were to be a cause, the set W⃗ would have to include
A, and we would have to set A = 0. The question is whether PN is in Z⃗ or W⃗ . Either way,
AC2(bo) would not hold. For if PN ∈ Z⃗, then since its original value is 0, if A is set to 0 and
PN is set to its original value of 0, then VS = 0 even if B = 1. In contrast, if PN ∈ W⃗ , we
must set PN = 0 for AC2(a) to hold, and with this setting, AC2(bo) again does not hold.

However, A = 1 is a cause of VS = 1, according to all variants of the HP definition. (If we
fix PN at its actual value of 0 and set A = 0, then VS = 0.) It follows that B = 1 is not even
part of a cause of VS = 1 according to the modified HP definition. (This also follows from
Theorem 2.2.3.) Although it seems reasonable that B = 1 should not be a cause of VS = 1,
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is it reasonable that A = 1 should be a cause? Anecdotally, most people seem to find that less
objectionable than B = 1 being a cause. Normality considerations help explain why people
are not so enthusiastic about calling A = 1 a cause either, although it is a “better” cause than
B = 1.

Interestingly, historically, this example was the motivation for introducing normality con-
siderations. Although normality is perhaps not so necessary to deal with it, it does prove
useful in a small variant of this example.

Example 3.4.2 Again, suppose that Bodyguard puts an antidote in Victim’s coffee, but now
Assassin puts the poison in the coffee. However, Assassin would not have put the poison in
the coffee if Bodyguard hadn’t put the antidote in. (Perhaps Assassin is putting in the poison
only to make Bodyguard look good.) Formally, we have the equation A = ¬B. Now Victim
drinks the coffee and survives.

Is Bodyguard putting in the antidote a cause of Victim surviving? It is easy to see that,
according to all three variants of the HP definition, it is. If we fix A = 0 (its value in the
actual world), then Victim survives if and only if Bodyguard puts in the antidote. Intuition
suggests that this is unreasonable. By putting in the antidote, Bodyguard neutralizes the effect
of the other causal path he sets in action: Assassin putting in the poison.

Here normality considerations prove quite useful. The world where Bodyguard doesn’t put
in the antidote but Assassin puts in the poison anyway (i.e., A = B = 0) directly contradicts
the story. Given the story, this world should be viewed as being less normal than the actual
world, where A = 0 and B = 1. Thus, B = 1 is not a cause of V = 1 in the extended model,
as we would expect.

As the following example shows, normality considerations do not solve all problems.

Example 3.4.3 Consider the train in Example 2.3.6 that can go on different tracks to reach
the station. As we observed, if we model the story using only the variables F (for “flip”)
and T (for “track”), then flipping the switch is not a cause of the train arriving at the station.
But if we add variables LB and RB (for left-hand track blocked and right-hand track blocked,
with LB = RB = 0 in the actual context), then it is, according to the original and updated
HP definition, although not according to the modified HP definition. Most people would not
consider the flip a cause of the train arriving. We can get this outcome even with the original
and updated definition if we take normality into account. Specifically, suppose that the train
was originally going to take the left track and took the right track as a result of the switch.
To show that the switch is a cause, consider the witness world where LB = 1 (and RB = 0).
If we assume, quite reasonably, that this world is less normal than the actual world, where
LB = RB = 0, then flipping the switch no longer counts as a cause, even with the original and
updated HP definition.

But normality doesn’t quite save the day here. Suppose that we consider the context where
both tracks are blocked. In this case, the original and updated HP definitions declare the flip
a cause of the train not arriving (by considering the contingency where LB = 0). Normality
considerations don’t help; the contingency where LB = 0 is more normal than the actual
situation, where the track is blocked. The modified definition again matches intuitions better;
it does not declare flipping the switch a cause.

This content downloaded from 145.109.19.147 on Tue, 13 Feb 2018 22:15:12 UTC
All use subject to http://about.jstor.org/terms



3.4 More Examples 91

As pointed out in the notes to Chapter 2, there is yet another way of modeling the story.
Instead of the variables LB and RB, we use the variables LT (“train went on the left track”)
and RT (“train went on the right track”). In the actual world, F = 1, RT = 1, LT = 0, and
A = 1. Now F = 1 is a cause of A = 1, according to all the variants of the HP definition. If
we simply fix LT = 0 and set F = 0, then A = 0. But in this case, normality conditions do
apply: the world where the train does not go on the left track despite the switch being set to
the left is less normal than the actual world.

3.4.3 Voting examples

Voting can lead to some apparently unreasonable causal outcomes (at least, if we model things
naively). Consider Jack and Jill, who live in an overwhelmingly Republican district. As
expected, the Republican candidate wins with an overwhelming majority. Jill would normally
have voted Democrat but did not vote because she was disgusted by the process. Jack would
normally have voted Republican but did not vote because he (correctly) assumed that his
vote would not affect the outcome. In the naive model, both Jack and Jill are causes of the
Republican victory according to all the variants of the HP definition. For if enough of the
people who voted Republican had switched to voting Democrat or abstaining, then if Jack (or
Jill) had voted Democrat, the Democrat would have won or it would have been a tie, whereas
the Republican would have won had they abstained.

We can do better by constructing a model that takes these preferences into account. One
way to do so is to assume that their preferences are so strong that we may as well take them for
granted. Thus, the preferences become exogenous; the only endogenous variables are whether
they vote (and the outcome); if they vote at all, they vote according to their preferences. In
this case, Jack’s not voting is not a cause of the outcome, but Jill’s not voting is.

More generally, with this approach, the abstention of a voter whose preference is made ex-
ogenous and is a strong supporter of the victor does not count as a cause of victory. This does
not seem so unreasonable. After all, in an analysis of a close political victory in Congress,
when an analyst talks about the cause(s) of victory, she points to the swing voters who voted
one way or the other, not the voters who were taken to be staunch supporters of one particular
side.

That said, making a variable exogenous seems like a somewhat draconian solution to the
problem. It also does not allow us to take into account smaller gradations in depth of feeling.
At what point should a preference switch from being endogenous to exogenous? We can
achieve the same effect in an arguably more natural way by using normality considerations.
In the case of Jack and Jill, we can take voting for a Democrat to be highly abnormal for Jack
and voting for a Republican to be highly abnormal for Jill. To show that Jack (resp., Jill)
abstaining is a cause of the victory, we need to consider a contingency where Jack (resp., Jill)
votes for the Democratic candidate. This would be a change to a highly abnormal world in
the case of Jack but to a more normal world in the case of Jill. Thus, if we use normality as a
criterion for determining causality, Jill would count as a cause, but Jack would not. If we use
normality as a way of grading causes, Jack and Jill would still both count as causes for the
victory, but Jill would be a much better cause. More generally, the more normal it would be
for someone who abstains to vote Democrat, the better a cause that voter would be. The use
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92 Chapter 3. Graded Causation and Normality

of normality here allows for a more nuanced gradation of cause than the rather blunt approach
of either making a variable exogenous or endogenous.

Now consider a vote where everyone can vote for one of three candidates. Suppose that the
actual vote is 17–2–0 (i.e., 17 vote for candidate A, 2 for candidate B, and none for candidate
C). Then not only is every vote for candidate A a cause of A winning, every vote for B is
also a cause of A winning according to the original and updated HP definition. To see this,
consider a contingency where 8 of the voters for A switch to C. Then if one of the voters for
B votes for C, the result is a tie; if that voter switches back to B, then A wins (even if some
subset of the voters who switch from A to C switch back to A). According to the modified
HP definition, each voter for B is part of a cause of A’s victory. The argument is essentially
the same: had a voter for B switched to C along with eight of the voters for A, it would have
been a tie, so A would not have won.

Is this reasonable? What makes it seem particularly unreasonable is that if it had just
been a contest between A and B, with the vote 17–2, then the voters for B would not have
been causes of A winning. Why should adding a third option make a difference? Arguably,
the modified HP definition makes it clear why adding the third option makes a difference: the
third candidate could win according to the appropriate circumstances, and those circumstances
include the voters for B changing their votes.

Indeed, it is clear that adding a third option can well make a difference in some cases. For
example, we speak of Nader costing Gore a victory over Bush in the 2000 election. But we
don’t speak of Gore costing Nader a victory, although in a naive HP model of the situation,
all the voters for Gore are causes of Nader not winning as much as the voters for Nader are
causes of Gore not winning. The discussion above points to a way out of this dilemma. If a
sufficiently large proportion of Bush and Gore voters are taken to be such strong supporters
that they will never change their minds, and we make their votes exogenous, then it is still the
case that Nader caused Gore to lose (assuming that most Nader voters would have voted for
Gore if Nader hadn’t run), but not the case that Gore caused Nader to lose. Similar consid-
erations apply in the case of the 17–2 vote. And again, we can use normality considerations
to give arguably more natural models of these examples. As we shall see in Chapter 6, using
ideas of blame and responsibility give yet another approach to dealing with these concerns.

3.4.4 Causal chains
As I argued in Section 2.4, causation seems transitive when there is a simple causal chain
involving but-for causality, and the final effect counterfactually depends on the initial cause.
By contrast, the law does not assign causal responsibility for sufficiently remote consequences
of an action. For example, in Regina v. Faulkner, a well-known Irish case, a lit match aboard a
ship caused a cask of rum to ignite, causing the ship to burn, which resulted in a large financial
loss by Lloyd’s insurance, leading to the suicide of a financially ruined insurance executive.
The executive’s widow sued for compensation, and it was ruled that the negligent lighting of
the match was not a cause (in the legally relevant sense) of his death. By taking normality
into account, we can make sense of this kind of attenuation.

We can represent the case of Regina v. Faulkner using a causal model with nine variables:

M = 1 if the match is lit, 0 if it is not;
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R = 1 if there is rum in the vicinity of the match, 0 if not;

RI = 1 if the rum ignites, 0 if it does not;

F = 1 if there is further flammable material near the rum, 0 if not;

SD = 1 if the ship is destroyed, 0 if not;

LI = 1 if the ship is insured by Lloyd’s, 0 if not;

LL = 1 if Lloyd’s suffers a loss, 0 if not;

EU = 1 if the insurance executive was mentally unstable, 0 if not; and

ES = 1 if the executive commits suicide, 0 if not.

There are four structural equations:

RI = min(M,R);

SD = min(RI , F );

LL = min(SD ,LI ); and

ES = min(LL,EU ).

This model is shown graphically in Figure 3.1. The exogenous variables are such that M ,
R, F , LI , and EU are all 1, so in the actual world, all variables take the value 1. Intuitively,
the events M = 1, RI = 1, SD = 1, LL = 1, and ES = 1 form a causal chain. The first
four events are but-for causes of ES = 1, and so are causes according to all variants of the
HP definition.

! ! ! ! !
! ! ! !

✲ ✲ ✲ ✲❄ ❄ ❄ ❄
M RI SD LL ES

R F LI EU

Figure 3.1: Attenuation in a causal chain.

Let us now assume that, for the variables M , R, F , LI , and EU , 0 is the typical value, and
1 is the atypical value. Consider a very simple normality ordering, which is such that worlds
where more of these variables take the value 0 are more normal. For simplicity, consider just
the first and last links in the chain of causal reasoning: LL = 1 and M = 1, respectively. The
world w = (M = 0, R = 1,RI = 0, F = 1,SD = 0,LI = 1,LL = 0,EU = 1,ES = 0)
is a witness of M = 1 being a cause of ES = 1 (for any of the variants of the HP definition).
This is quite an abnormal world, although more normal than the actual world, so M = 1
does count as an actual cause of ES = 1, even using AC2+(a). However, note that if any
of the variables R, F , LI , or EU is set to 0, then we no longer have a witness. Intuitively,
ES counterfactually depends on M only when all of these other variables take the value 1.
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94 Chapter 3. Graded Causation and Normality

Now consider the event LL = 1. The world w′ = (M = 0, R = 0,RI = 0, F = 0,
SD = 0,LI = 0,LL = 0,EU = 1,ES = 0) is a witness for LL = 1 being an actual cause
of ES = 1 according to the original and updated HP definition. World w′ is significantly
more normal than the best witness for M = 1 being a cause. Intuitively, LL = 1 needs fewer
atypical conditions to be present in order to generate the outcome ES = 1. It requires only
the instability of the executive, but not the presence of rum, other flammable materials, and so
on. So although both LL = 1 and M = 1 count as causes using AC2+(a), LL = 1 is a better
cause, so we would expect that people would be more strongly inclined to judge that LL = 1
is an actual cause of ES = 1 than M = 1.

Once we take normality into account, we can also have a failure of transitivity. For
example, suppose that we slightly change the normality ordering so that the world w =
(M = 0, R = 1,RI = 0, F = 1,SD = 0,LI = 1,LL = 0,EU = 1,ES = 0) that is a wit-
ness of M = 1 being a cause of ES = 1 is less normal than the actual world, but otherwise
leave the normality ordering untouched. Now M = 1 is no longer a cause of ES = 1 using
AC2+(a). However, causality still holds for each step in the chain: M = 1 is a cause of
RI = 1, RI = 1 is a cause of SD = 1, SD = 1 is a cause of LL = 1, and LL = 1 is a cause
of ES = 1. Thus, normality considerations can explain the lack of transitivity in long causal
chains.

Note that the world w′ is not a witness according to the modified HP definition since, in w′,
the values of the variables R, F , and LI differ from their actual values. Normality does not
seem to help in this example if we use the modified HP definition. However, as we shall see
in Section 6.2, we can deal with this example perfectly well using the modified HP definition
if we use ideas of blame.

It is worth noting that, with the original and updated HP definition, the extent to which we
have attenuation of actual causation over a causal chain is not just a function of the number of
links in the chain. It is, rather, a function of how abnormal the circumstances are that must be
in place in order for the causal chain to run from start to finish.

3.4.5 Legal doctrines of intervening causes
In general, the law holds that one is not causally responsible for some outcome that occurred
only due to either a later deliberate action by some other agent or some very improbable event.
For example, if Anne negligently spills gasoline, and Bob carelessly throws a cigarette into
the spilled gasoline, then Anne’s action is a cause of the fire. But if Bob maliciously throws
a cigarette into the spilled gasoline, then Anne is not considered a cause. (This example is
based on the facts on an actual case: Watson v. Kentucky and Indiana Bridge and Railroad.)
This kind of reasoning can also be modeled using an appropriate normality ordering, as I now
show.

To fully capture the legal concepts, we need to represent the mental states of the agents.
We can do this with the following six variables:

AN = 1 if Anne is negligent, 0 if she isn’t;

AS = 1 if Anne spills the gasoline, 0 if she doesn’t;

BC = 1 if Bob is careless (i.e. doesn’t notice the gasoline), 0 if not;
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BM = 1 if Bob is malicious, 0 otherwise;

BT = 1 if Bob throws a cigarette, 0 if he doesn’t; and

F = 1 if there is a fire, 0 if there isn’t.

We have the following equations:

F = min(AS ,BT ) (i.e., F = AS ∧ BT );

AS = AN ; and

BT = max(BC ,BM , 1− AS ) (i.e., BT = BC ∨ BM ∨ ¬AS ).

This model is shown graphically in Figure 3.2. (Note that the model incorporates certain
assumptions about what happens in the case where Bob is both malicious and careless and in
the cases where Anne does not spill gasoline; what happens in these cases is not clear from
the usual description of the example. These assumptions do not affect the analysis.)

!
!

!
!
! !

❄####$❅
❅
❅
❅❘❄

❄

'
'

'
'✠

❄

AS

AN BC BM

BT

F

Figure 3.2: An intervening cause.

It seems reasonable to assume that BM ,BC , and AN typically take the value 0. But more
can be said. In the law, responsibility requires a mens rea—literally, a guilty mind. Mens rea
comes in various degrees. Starting with an absence of mens rea and then in ascending order
of culpability, these are:

prudent and reasonable: the defendant behaved as a reasonable person would;

negligent: the defendant should have been aware of the risk of harm from his actions;

reckless: the defendant acted in full knowledge of the harm her actions might cause;

criminal/intentional: the defendant intended the harm that occurred.

We can represent this scale in terms of decreasing levels of typicality. Specifically, in decreas-
ing order of typicality, we have

1. BC = 1;

2. AN = 1;

3. BM = 1.
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96 Chapter 3. Graded Causation and Normality

Thus, although “carelessness” is not on the scale, I have implicitly taken it to represent less
culpability than negligence.

In all the examples up to now, I have not needed to compare worlds that differed in the value
of several variables in terms of normality. Here, when comparing the normality of worlds in
which two of these variables take the value 0 and one takes the value 1, we can capture legal
practice by taking the world with BC = 1 to be most normal, the world with AN = 1 to be
next most normal, and the world with BM = 1 to be least normal. Consider first the case
where Bob is careless. Then in the actual world we have

(BM = 0,BC = 1,BT = 1,AN = 1,AS = 1, F = 1).

In the structural equations, F = 1 depends counterfactually on both BC = 1 and AN = 1.
Thus, these are both but-for causes, so are causes according to all the variants of the HP
definition. The best witness for AN = 1 being a cause is

(BM = 0,BC = 1,BT = 1,AN = 0,AS = 0, F = 0),

and the best witness for BC = 1 being a cause is

(BM = 0,BC = 0,BT = 0,AN = 1,AS = 1, F = 0).

Both of these worlds are more normal than the actual world. The first is more normal because
AN takes the value 0 instead of 1. The second world is more normal than the actual world
because BC takes the value 0 instead of 1. Hence, according to AC2+(a), both are actual
causes. However, the best witness for AN = 1 is more normal than the best witness for
BC = 1. The former witness has BC = 1 and AN = 0, and the latter witness has BC = 0
and AN = 1. Since AN = 1 is more atypical than BC = 1, the first witness is more normal.
This means that we are more inclined to judge Anne’s negligence a cause of the fire than
Bob’s carelessness.

Now consider the case where Bob is malicious. The actual world is

(BM = 1,BC = 0,BT = 1,AN = 1,AS = 1, F = 1).

Again, without taking normality into account, both BM = 1 and AN = 1 are actual causes.
The best witness for AN = 1 being a cause is

(BM = 1,BC = 0,BT = 1,AN = 0,AS = 0, F = 0),

and the best witness for BM = 1 is

(BM = 0,BC = 0,BT = 0,AN = 1,AS = 1, F = 0).

However, now the best witness for AN = 1 is less normal than the best witness for BM = 1
because BM = 1 is more atypical than AN = 1. So using this normality ordering, we
are more inclined to judge that Bob’s malice is an actual cause of the fire than that Anne’s
negligence is.

Recall that in Example 3.4.1, judgments of the causal status of the administrative assis-
tant’s action changed, depending on the normative status of the professor’s action. Something
similar is happening here: the causal status of Anne’s action changes with the normative sta-
tus of Bob’s action. This example also illustrates how context can play a role in determining
what is normal and abnormal. In the legal context, there is a clear ranking of norm violations.
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3.5 An Alternative Approach to Incorporating Normality

I now present an alternative approach to incorporating normality concerns in causal models,
inspired by the discussion after Example 3.2.6. As suggested earlier, this approach is also
more compatible with the way that probability was incorporated into causal models. The
first step is to put the normality ordering on causal settings. Since, for the purposes of this
discussion, the causal model is fixed, this amounts to putting a normality ordering on contexts,
rather than on worlds. This means that normality can be viewed as a qualitative generalization
of probability. But, as I suggested before, to the extent that we are thinking probabilistically,
we should interpret u⃗ ≻ u⃗′ as meaning “u⃗ is much more probable than u⃗′”.

Putting the normality ordering on contexts clearly does not by itself solve the problem.
Indeed, as noted in the discussion immediately after Example 3.2.6, the motivation for putting
the normality ordering on worlds rather than contexts was to solve problems that resulted from
putting the normality ordering on context! There is an additional step: lifting the normality
order on contexts to a normality ordering on sets of contexts. Again, this is an idea motivated
by probability. We usually compare events, that is, sets of worlds, using probability, not just
single worlds; I will also be comparing sets of contexts in the alternative approach to using
normality.

When using probability (ignoring measurability concerns), the probability of a set is just
the sum of the probabilities of the elements in the set. But with normality, “sum” is in general
undefined. Nevertheless, we can lift a partial preorder on an arbitrary set S to a partial preorder
on 2S (the set of subsets of S) in a straightforward way. Given sets A and B of contexts, say
A ≽e B if, for all contexts u⃗ ∈ B, there exists a context u⃗′ ∈ A such that u⃗′ ≽ u⃗. (I use the
superscript e to distinguish the order ≽e on events—sets of contexts—from the underlying
order ≽ on contexts.) In words, this says that A is at least as normal as B if, for every context
in B, there is a context in A that is at least as normal.

Clearly we have u ≽ u′ iff {u} ≽e {u}, so ≽e extends ≽ in the obvious sense. The
definition of ≽e has a particularly simple interpretation if ≽ is a total preorder on contexts
and A and B are finite. In that case, there is a most normal context uA in A (there may be
several equally normal contexts in A that are most normal; in that case, let uA be one of them)
and a most normal context uB in B. It is easy to see that A ≽e B iff uA ≽ uB . That is, A
is at least as normal as B if the most normal worlds in A are at least as normal as the most
normal worlds in B. Going back to probability, this says that the qualitative probability of an
event is determined by its most probable element(s). For those familiar with ranking functions
(see the notes at the end of the chapter), this ordering on events is exactly that determined by
ranking functions.

Taking the causal model M to be fixed, let [[ϕ]] denote the event corresponding to a propo-
sitional formula ϕ; that is, [[ϕ]] = {u⃗ : (M, u⃗) |= ϕ} is the set of contexts where ϕ is true.
I now modify AC2+(a) and AC2(am) so that instead of requiring that sX⃗=x⃗′,W⃗=w⃗,u⃗ ≽ su⃗, I
require that [[X⃗ = x⃗′ ∧ W⃗ = w⃗ ∧ ¬ϕ]] ≽e [[X⃗ = x⃗ ∧ ϕ]]; that is, the set of worlds where
the witness X⃗ = x⃗′ ∧ W⃗ = w⃗ ∧ ¬ϕ holds is at least as likely as the set of worlds satisfying
X⃗ = x⃗ ∧ ϕ.
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Doing this solves the problem in the rock-throwing example. For one thing, with this
change, the addition of BA (the accuracy of Billy’s throw) to the language in the rock-
throwing example has no impact. More generally, whether something like accuracy is mod-
eled by an endogenous variable or an exogenous variable has no impact on normality consid-
erations; in either case, we would still consider the same set of contexts when comparing the
normality of [[BH = 0 ∧ ST = 0 ∧ BS = 0]] and [[ST = 1 ∧ BS = 1]]. It seems reasonable
to view BH = 0 ∧ ST = 0 ∧ BS = 0 as being relatively normal. Even if Billy typically
throws and typically is an accurate shot, he does occasionally not throw or throw and miss.
Thinking probabilistically, even if the probability of the event [[BH = 0∧ST = 0∧BS = 0]]
is lower than that of [[ST = 1 ∧ BS = 1]], it is not sufficiently less probable to stop the
former from being as normal as the latter. (Here I am applying the intuition that ≻ represents
“much more probable than” rather than just “more probable than”.) This viewpoint makes
sense even if Billy is replaced by a machine. Put another way, although it may be unlikely that
the rock-throwing machine does not throw or throws and misses, it may not be viewed as all
that abnormal.

Going back to Example 3.2.6, it is still the case that Suzy’s throw by itself is not a cause
of the bottle shattering if [[BH = 0 ∧ ST = 0 ∧ BS = 0]] is not at least as normal as
[[ST = 1 ∧ BS = 1]] according to the modified HP definition (extended to take normality into
account). Similarly, Suzy’s throw is not a cause according to the original and updated HP defi-
nition if [[BT = 0∧ST = 0∧BS = 0]] is not at least as normal as [[ST = 1∧BS = 1]]. Since
Billy not throwing is only one reason that Billy might not hit, [[BH = 0 ∧ ST = 0 ∧ BS = 0]]
is at least as normal as [[BT = 0 ∧ ST = 0 ∧ BS = 0]]. Thus, using the witness
BT = 0 ∧ ST = 0 will not make Suzy’s throw a cause using the original and updated
HP definition if it is not also a cause using the modified HP definition. Since we can always
take BH = 0 to be the witness for the original and updated HP definition, all the variants of
the HP definition will agree on whether ST = 1 is a cause of BS = 1.

Is it so unreasonable to declare both Billy and Suzy throwing a cause of the bottle shattering
if [[BH = 0 ∧ ST = 0 ∧BS = 0]] is not at least as normal as [[ST = 1 ∧BS = 1]]? Roughly
speaking, this says that a situation where the bottle doesn’t shatter is extremely abnormal.
Suzy’s throw is not the cause of the bottle shattering; it was going to happen anyway. The
only way to get it not to happen is to intervene on both Suzy’s throw and Billy’s throw.

We can also apply these ideas to graded causality. Instead of comparing witness worlds,
I now compare witness events. But rather than just considering the best witnesses, I can
now consider all witnesses. That is, suppose that (W⃗1, w⃗1, x⃗′

1), . . . , (W⃗k, w⃗k, x⃗′
k) are the

witnesses to X⃗ = x⃗ being a cause of ϕ in (M, u⃗), and (W⃗ ′
1, w⃗

′
1, y⃗

′
1), . . . , (W⃗

′
m, w⃗′

m, y⃗′m) are
the witnesses to Y⃗ = y⃗ being a cause of ϕ in (M, u⃗). Now we can say that X⃗ = x⃗ is at least
as good a cause of ϕ in (M, u⃗) as Y⃗ = y⃗ if

[[((X⃗ = x⃗′
1 ∧ W⃗1 = w⃗1) ∨ . . . ∨ (X⃗ = x⃗′

k ∧ W⃗k = w⃗k)) ∧ ¬ϕ]]
≽e [[((Y⃗ = y⃗′1 ∧ W⃗ ′

1 = w⃗′
1) ∨ . . . ∨ (Y⃗ = y⃗′m ∧ W⃗ ′

m = w⃗′
m)) ∧ ¬ϕ]].

(3.1)

That is, X⃗ = x⃗ is at least as good a cause of ϕ in (M, u⃗) as Y⃗ = y⃗ if the disjunction of the
(formulas describing the) witness worlds for X⃗ = x⃗ being a cause of ϕ in (M, u⃗) is at least
as normal as the disjunction of the witness worlds for Y⃗ = y⃗ being a cause of ϕ in (M, u⃗).
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We can further extend this idea to parts of causes. (Recall that I earlier made the claim that
it is arguably better to redefine cause to be what I am now calling part of a cause.) Suppose
that X⃗1 = x⃗1, . . . , X⃗k = x⃗k are all the causes of ϕ in (M, u⃗) that include X = x as a
conjunct, with (W⃗1, w⃗1, x⃗′

1), . . . , (W⃗k, w⃗k, x⃗′
k) the corresponding witnesses. (It may be the

case that X⃗j = X⃗j′ and x⃗j = x⃗j′ for j ̸= j′ although the corresponding witnesses are
different; a single cause may have a number of distinct witnesses.) Similarly, suppose that
Y⃗1 = y⃗1, . . . , Y⃗m = y⃗m are all the causes of ϕ in (M, u⃗) that include Y = y as a conjunct,
with (W⃗ ′

1, w⃗
′
1, y⃗

′
1), . . . , (W⃗

′
m, w⃗′

m, y⃗′m) the corresponding witnesses. Again, we can say that
X = x is at least as good a part of a cause for ϕ in (M, u⃗) as Y = y if (3.1) holds.

The analysis for all the examples in Section 3.4 remains unchanged using the alternative
approach, with the exception of the causal chain example in Section 3.4.4. Now the analysis
for the original and updated HP definition becomes the same as for the modified HP definition.
To determine the best cause, we need to compare the normality of [[M = 1 ∧ES = 0]] to that
of [[LL = 1 ∧ ES = 0]]. There is no reason to prefer one to the other; the length of the causal
chain from M to ES plays no role in this consideration. As I said, this example can be dealt
with by considering blame, without appealing to normality (see Section 6.2).

This modified definition of graded causality, using (3.1), has some advantages.

Example 3.5.1 There is a team consisting of Alice, Bob, Chuck, and Dan. In order to com-
pete in the International Salsa Tournament, a team must have at least one male and one female
member. All four of the team members are supposed to show up for the competition, but in
fact none of them does. According to the original and updated definition, each of Alice, Bob,
Chuck, and Dan is a cause of the team not being able to compete. However, using the alter-
native approach to graded causality, with (3.1), Alice is a better cause than Bob, Chuck, or
Dan. Every context where Alice shows up and at least one of Bob, Chuck, or Dan shows up
gives a witness world for Alice not showing up being a cause; the only witness worlds for
Bob not showing up being a cause are those where both Alice and Bob show up. Thus, the set
of witnesses for Alice being a cause is a strict superset of those for Bob being a cause. Under
minimal assumptions on the normality ordering (e.g., the contexts where just Alice and Bob
show up, the contexts where just Alice and Chuck show up, and the contexts where Alice and
Dan show up are all mutually incomparable) a cause are incomparable both to the contexts
where Chuck is a cause and the contexts where Dan is a cause, and similarly for Chuck and
Dan), Alice is a better cause.

According to the modified HP definition, Alice by herself is not a cause for the team
not being able to compete; neither is Bob. However, both are parts of a cause. The same
argument then shows that Alice is a better part of a cause than Bob according to the modified
HP definition.

With the normality definition in Section 3.2, each of Alice, Bob, Charlie, and Dan would
be considered equally good causes according to the original and updated HP definition, and
equally good parts of causes according to the modified HP definition. People do judge Alice
to be a better cause; the alternative approach seems to capture this intuition better. (See also
the discussion of Example 6.3.2 in Chapter 6.)
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Although this alternative approach to AC2+(a) and graded causality deals with the rock-
throwing example and gives reasonable answer in Example 3.5.1, it does not solve all the
problems involving normality and causality, as the following example shows.

Example 3.5.2 A and B each control a switch. There are wires going from an electricity
source to these switches and then continuing on to C. A must first decide whether to flip his
switch left or right, then B must decide (knowing A’s choice). The current flows, resulting in
a bulb at C turning on, iff both switches are in the same position. B wants to wants to turn on
the bulb, so flips her switch to the same position as A does, and the bulb turns on.

Intuition suggests that A’s action should not be viewed as a cause of the C bulb being on,
whereas B’s should. But suppose that we consider a model with three binary variables, A,
B, and C. A = 0 means that A flips his switch left and A = 1 means that A flips his switch
right; similarly for B. C = 0 if the bulb at C does not turn on, and C = 1 if it does. In this
model, whose causal network is given in Figure 3.3, A’s value is determined by the context,
and we have the equations

B = A and

C = 1 iff A = B.

!

!

!

❄

❙
❙
❙
❙
❙❙✇
✓

✓
✓

✓
✓✓✴C

B

A

Figure 3.3: Who caused the bulb to turn on?

Without taking normality considerations into account, in the context where A = 1, both
A = 1 and B = 1 are causes of C = 1, according to all variants of the HP definition. B = 1
is in fact a but-for cause of C = 1; to show that A = 1 is a cause of C = 1 for all variants of
the HP definition, we can simply hold B at its actual value 1 and set A = 0. Similarly, for all
other contexts, both A and B are causes of the outcome. However, people tend to view B as
the only cause in all contexts.

Turning on a light bulb is ethically neutral. Does the situation change at all if instead of a
bulb turning on, the result of the current flowing is that a person gets a shock?

Before considering normality, it is worth noting that the causal network in Figure 3.3 is
isomorphic to that given in Figure 2.8 for Billy’s medical condition. Moreover, we can make
the stories isomorphic by modifying the story in Example 2.4.1 slightly. Suppose we say that
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3.5 An Alternative Approach to Incorporating Normality 101

Billy is fine on Wednesday morning if exactly one doctor treats him and sick otherwise (so
now BMC becomes a binary variable, with value 0 if Billy is fine on Wednesday morning
and 1 if he is sick). If both doctors treat Billy, then I suspect most people would say that
Tuesday’s doctor is the cause of Billy being sick; but if neither does, I suspect that Monday’s
doctor would also be viewed as having a significant causal impact. Moreover, in the normal
situation where Monday’s doctor treats Billy and Tuesday’s does not, I suspect that Monday’s
doctor would be viewed as more of a cause of Billy feeling fine on Wednesday than Tuesday’s
doctor.

If the HP definition is going to account for the differences between the stories, somehow
normality considerations should do it. They do help to some extent in the second story. In
particular, normality considerations work just right in the case that both doctors treat Billy (if
we take the most normal situation to be the one where Monday’s doctor treats him and Tues-
day’s doesn’t). But if neither doctor treats Billy, the same normality considerations suggest
that Monday’s doctor is a better cause than Tuesday’s doctor. Although this may not be so
unreasonable, I suspect that people would still be inclined to ascribe a significant degree of
causality to Tuesday’s doctor. I return to this point below.

Now suppose instead that (what we have taken to be) the normal thing happens: just Mon-
day’s doctor treats Billy. As expected, Billy feels fine on Wednesday. Most people would say
that Monday’s doctor is the cause of Billy feeling fine, not Tuesdays’s doctor. Unfortunately,
AC2+(a) (or AC2+(am)) is violated no matter who we try to view as the cause. What about
graded causality? The witness for Monday’s doctor being a cause is sMT=0,TT=0,u; the wit-
ness for Tuesday’s doctor being a cause is sTT=1,u. In the first witness, we get two violations
to normality: Billy’s doctor doesn’t do what he is supposed to do, nor does Tuesday’s doc-
tor. In the second witness, we get only one violation (Tuesday’s doctor treating Billy when
he shouldn’t). However, a case can still be made that the world where neither doctor treats
Billy (MT = 0,TT = 0) should be viewed as more normal than the world where both do
(MT = 1,TT = 1). The former witness might arise if, for example, both doctors are too
busy to treat Billy. If Billy’s condition is not that serious, then they might sensibly decide that
he can wait. However, for the second witness to arise, Tuesday’s doctor must have treated
Billy despite Billy’s medical chart showing that Monday’s doctor treated him. Tuesday’s doc-
tor could have also easily talked to Billy to confirm this. Arguably, this makes the latter world
more of a violation of normality than the former. (The alternative approach works the same
way for this example.)

When it comes to determining the cause of the bulb turning on, the situation is more
problematic. Taking u to be the context where A = 1, both sA=0,B=1,u and sB=0,u seem
less normal than su, and there seems to be no reason to prefer one to the other, so graded
causality does not help in determining a cause. Similarly, for the alternative approach, both
[[A = 0∧B = 1∧C = 0]] and [[B = 0∧C = 0]] are less normal than either [[A = 1∧C = 1]]
or [[B = 1 ∧ C = 1]]. Again, there is no reason to prefer B = 1 as a cause. If instead we
consider the version of the story where, instead of a light bulb turning on, the result is a person
being shocked, we can view both [[A = 0 ∧ B = 1 ∧ C = 0]] and [[B = 0 ∧ C = 0]] as more
normal than either [[A = 1 ∧ C = 1]] or [[B = 1 ∧ C = 1]], since shocking someone can be
viewed as abnormal. Now if we take normality into account, both A = 1 and B = 1 become
causes, but there is still no reason to prefer B = 1.
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102 Chapter 3. Graded Causation and Normality

We can deal with both of these issues by making one further change to how we take nor-
mality into account. Rather than considering the “absolute” normality of a witness, we can
consider the change in normality in going from the actual world to the witness and prefer the
witness that leads to the greatest increase (or smallest decrease) in normality. If the normality
ordering is total, then whether we consider the absolute normality or the change in normality
makes no difference. If witness w1 is more normal than witness w2, then the increase in nor-
mality from the actual world to w1 is bound to be greater than the increase in normality from
the actual world to w2. But if the normality ordering is partial, then considering the change in
normality from the actual world can make a difference.

Going back to Billy’s doctors, it seems reasonable to take the increase in normality go-
ing from sMT=1,TT=1,u to sMT=1,TT=0,u to be much greater than that of going from
sMT=1,TT=1,u to sMT=0,TT=1,u. Thus, if both doctors treat Billy, then Tuesday’s doctor
is a much better cause of Billy feeling sick on Wednesday than Monday’s doctor. In contrast,
the increase in normality in going from sMT=0,TT=0,u to sMT=1,TT=0,u is arguably greater
(although not much greater) than that of going from sMT=0,TT=0,u to sMT=0,TT=1,u. Thus,
if neither doctor treats Billy, then Monday’s doctor is a better cause of Billy feeling sick on
Wednesday than Tuesday’s doctor, but perhaps not a much better cause. Note that we can
have such a relative ordering if the normality ordering is partial (in particular, if the worlds
sMT=0,TT=0,u and sMT=1,TT=1,u are incomparable), but not if the normality ordering is
total.

Similar considerations apply to the light bulb example. Now we can take the change from
the world where both A = 1 and B = 1 to the world where A = 1 and B = 0 to be smaller
than the one to the world where A = 0 and B = 1, because the latter change involves changing
what A does as well as violating normality (in the sense that B does not act according to the
equations), while the former change requires only that B violate normality. This gives us a
reason to prefer B = 1 as a cause.

Considering not just how normal a witness is but the change in normality in going from
the actual world to the witness requires a richer model of normality, where we can consider
differences. I do not attempt to formalize such a model here, although I believe that it is
worth exploring. These considerations also arise when dealing with responsibility (see Exam-
ple 6.3.4 for further discussion).

Notes
Much of the material in this chapter is taken from [Halpern and Hitchcock 2015] (in some
cases, verbatim); more discussion can be found there regarding the use of normality and
how it relates to other approaches. A formal model that takes normality into account in the
spirit of the definitions presented here already appears in preliminary form in the original HP
papers [Halpern and Pearl 2001; Halpern and Pearl 2005a] and in [Halpern 2008]. Others
have suggested incorporating considerations of normality and defaults in a formal definition
of actual causality, including Hall [2007], Hitchcock [2007], and Menzies [2004, 2007].

The idea that normality considerations are important when considering causality goes back
to the work of psychologists. Exploring the effect of norms on judgments of causality is also
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an active area of research. I mention here some representatives of this work, although these
references do not do anywhere close to full justice to the ongoing work:

Kahneman and Tversky [1982] and Kahneman and Miller [1986] showed that both
statistical and prescriptive norms can affect counterfactual reasoning.

Alicke [1992] and Alicke et al. [2011] showed that subjects are more likely to judge
that someone caused some negative outcome when they have a negative evaluation of
that person.

Cushman, Knobe, and Sinnott-Armstrong [2008] showed that subjects are more likely
to judge that an agent’s action causes some outcome when they hold that the action is
morally wrong; Knobe and Fraser [2008] showed that subjects are more likely to judge
that an action causes some outcome if it violates a policy (the Prof. Smith example in
Section 3.1 is taken from their paper); Hitchcock and Knobe [2009] showed that this
effect occurs with norms of proper functioning.

McGill and Tenbrunsel [2000] considered the effect of likelihood and what they call
mutability and propensity on normality judgments (and hence on causality judgments).
Roughly speaking, propensity would judge a witness world to be more normal if it had
a higher prior probability of occurring; if we are trying to determine whether X = x is
a cause of ϕ and the witness world has X = x′, then mutability takes into account how
“easy” it is to change X from x to x′. These issues are best explained by an example.
Mandel and Lehman [1996] considered a scenario where an executive who chose to
take a different route home was hit by a drunk teenager. Drunk driving is more likely to
cause accidents than taking nonstandard routes home. Thus, propensity considerations
(as well as notions of normality involving conventions) would say that the teenager
should be a cause. However, if the teenager were perceived to be incapable of changing
his drinking behavior (perhaps he is under heavy social pressure), then the causality
ascribed to the choice of route goes up. McGill and Tenbrunsel [2000] showed that the
cause with higher propensity is typically chosen, provided it is perceived to be mutable.

Approaches to giving semantics to typicality statements include preferential structures
[Kraus, Lehmann, and Magidor 1990; Shoham 1987], ϵ-semantics [Adams 1975; Geffner
1992; Pearl 1989], possibility measures [Dubois and Prade 1991], and ranking functions
[Goldszmidt and Pearl 1992; Spohn 1988]. The details of these approaches do not matter
for our purposes; see [Halpern 2003] for an overview of these approaches. The approach used
in Section 3.2 is the one used in [Halpern and Hitchcock 2015]; it can be viewed as an instance
of preferential structures, which allow a partial preorder on worlds. By way of contrast, pos-
sibility measures and ranking functions put a total preorder on worlds. The model of causality
that took normality considerations into account that I gave in [Halpern 2008] used ranking
functions and, as a consequence, made the normality ordering total. Using a total normality
order causes problems in some examples (see below).

There has been a great deal of discussion in the philosophy community regarding whether
omissions count as causes. Beebee [2004] and Moore [2009], for example, argue against
the existence of causation by omission in general; Lewis [2000, 2004] and Schaffer [2000a,
2004, 2012] argue that omissions are genuine causes in such cases; Dowe [2000] and Hall
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104 Chapter 3. Graded Causation and Normality

[2004] argue that omissions have a kind of secondary causal status; and McGrath [2005]
argues that the causal status of omissions depends on their normative status. For example,
Billy’s doctor’s failure to treat Billy is a cause of Billy’s sickness because he was supposed
to treat Billy; the fact that other doctors also failed to treat Billy does not make them causes.
As I observed in the main text, by taking an appropriate normality ordering, we can capture
all these points of view. Wolff, Barbey, and Hausknecht [2010] and Livengood and Machery
[2007] provide some experimental evidence showing how people view causality by omission
and when they allow for causes that are omissions. Their results support the role of normality
in these causality judgments (although the papers do not mention normality).

As I said in the main text, there have been claims that it is a mistake to focus on one cause.
For example, John Stuart Mill [1856, pp. 360–361] writes:

. . . it is very common to single out one only of the antecedents under the denom-
ination of Cause, calling the others mere Conditions. . . . The real cause, is the
whole of these antecedents; and we have, philosophically speaking, no right to
give the name of cause to one of them, exclusively of the others.

Lewis [1973a, pp. 558–559] also seems to object to this practice, saying:

We sometimes single out one among all the causes of some event and call it “the”
cause, as if there were no others. Or we single out a few as the “causes”, calling
the rest mere “causal factors” or “causal conditions”. . . . I have nothing to say
about these principles of invidious discrimination.

Hall [2004, p. 228] adds:

When delineating the causes of some given event, we typically make what are,
from the present perspective, invidious distinctions, ignoring perfectly good
causes because they are not sufficiently salient. We say that the lightning bolt
caused the forest fire, failing to mention the contribution of the oxygen in the air,
or the presence of a sufficient quantity of flammable material. But in the egalitar-
ian sense of “cause”, a complete inventory of the fire’s causes must include the
presence of oxygen and of dry wood.

Sytsma, Livengood, and Rose [2012] conducted the follow-up to the Knobe and Fraser
[2008] experiment discussed in Example 3.4.1 and Section 3.1. They had their subjects rate
their agreement on a 7-point scale from 1 (completely disagree) to 7 (completely agree) with
the statements “Professor Smith caused the problem” and “The administrative assistant caused
the problem”. When they repeated Knobe and Fraser’s original experiment, they got an aver-
age rating of 4.05 for Professor Smith and 2.51 for the administrative assistant. Although their
difference is less dramatic than Knobe and Fraser’s, it is still statistically significant. When
they altered the vignette so that Professor Smith’s action was permissible, subjects gave an
average rating of 3.0 for Professor Smith and 3.53 for the administrative assistant.

The bogus prevention problem is due to Hitchcock [2007]; it is based on an example due
to Hiddleston [2005]. Using a normality ordering that is total (as I did in [Halpern 2008])
causes problems in dealing with Example 3.4.1. With a total preorder, we cannot declare
(A = 1, B = 0,VS = 0) and (A = 0, B = 1,VS = 1) to be incomparable; we must
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compare them. To argue A = 1 is not a cause, we have to assume that (A = 1, B = 1,VS =
1) is more normal than (A = 0, B = 0,VS = 0). This ordering does not seem so natural.

Example 3.4.2 is due to Hitchcock [2007], where it is called “counterexample to Hitch-
cock”. Its structure is similar to Hall’s short-circuit example [Hall 2007, Section 5.3]; the
same analysis applies to both. The observation that normality considerations deal well with
it is taken from [Halpern 2015a]. The observation that normality considerations do not com-
pletely solve the railroad switch problem, as shown in Example 3.4.3, is due to Schumacher
[2014]. The version of the switch problem with the variables LT and RT is essentially how
Hall [2007] and Halpern and Pearl [2005a] modeled the problem. The voting examples in
Section 3.4.3 are due to Livengood [2013]; the analysis given here in terms of normality is
taken from [Halpern 2014a]. The analysis of all the other examples in Section 3.4 is taken
from [Halpern and Hitchcock 2015].

For the details of Regina v. Faulkner, see [Regina v. Faulkner 1877]. Moore [2009] uses
this type of case to argue that our ordinary notion of actual causation is graded, rather than
all-or-nothing, and that it can attenuate over the course of a causal chain. In the postscript of
[Lewis 1986b], Lewis uses the phrase “sensitive causation” to describe cases of causation that
depend on a complex configuration of background circumstances. For example, he describes
a case where he writes a strong letter of recommendation for candidate A, thus earning him
a job and displacing second-place candidate B, who then accepts a job at her second choice
of institution, displacing runner-up C, who then accepts a job at another university, where he
meets his spouse, and they have a child, who later dies. Lewis claims that although his writing
the letter is indeed a cause of the death, it is a highly sensitive cause, requiring an elaborate set
of detailed conditions to be present. Woodward [2006] says that such causes are “unstable”.
Had the circumstances been slightly different, writing the letter would not have produced this
effect (either the effect would not have occurred or it would not have been counterfactually
dependent on the letter). Woodward argues that considerations of stability often inform our
causal judgments. The extended HP definition allows us to take these considerations into
account.

The Watson v. Kentucky and Indiana Bridge and Railroad can be found in [Watson v.
Kentucky and Indiana Bridge and Railroad 1910].

Sander Beckers [private communication, 2015] pointed out that putting a normality order-
ing on worlds does not really solve the problem of making BT = 1 part of a cause of BS = 1
(see the discussion after Example 3.2.6), thus providing the impetus for the alternative defini-
tion of normality discussed in Section 3.5. Example 3.5.1 is due to Zultan, Gerstenberg, and
Lagnado [2012], as are the experiments showing that people view Alice as a better cause than
Bob in this example. The work of Zultan, Gerstenberg, and Lagnado related to this example is
discussed further in the notes to Chapter 6. The example of C being shocked in Example 3.5.2
is due to McDermott [1995]. He viewed it as an example of lack of transitivity: A’s flipping
right causes B to flip right, which in turn causes C to get a shock, but most people don’t view
A’s flip as being a cause of C’s shock, according to McDermott. As I observed, normality
considerations can also be used to give us this outcome. Various approaches to extending a
partial ordering ≽ on worlds to an ordering ≽e on events are discussed in [Halpern 1997]; the
notation ≽e is taken from [Halpern 2003].
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Chapter 4

The Art of Causal Modeling

Fashion models and financial models are similar. They bear a similar relation-
ship to the everyday world. Like supermodels, financial models are idealized
representations of the real world, they are not real, they don’t quite work the way
that the real world works. There is celebrity in both worlds. In the end, there is
the same inevitable disappointment.

Satyajit Das, Traders, Guns & Money: Knowns and Unknowns in the Dazzling World of
Derivatives

Essentially, all models are wrong, but some are useful.

G. E. P. Box and N. R. Draper, Empirical Model Building and Response Surfaces

In the HP definition of causality, causality is relative to a causal model. X = x can be the
cause of ϕ in one causal model and not in another. Many features of a causal model can
impact claims of causality. It is clear that the structural equations can have a major impact
on the conclusions we draw about causality. For example, it is the equations that allow us to
conclude that lower air pressure is the cause of the lower barometer reading and not the other
way around; increasing the barometer reading will not result in higher air pressure.

But it is not just the structural equations that matter. As shown by the Suzy-Billy rock-
throwing example (Example 2.3.3), adding extra variables to a model can change a cause to a
non-cause. Since only endogenous variables can be causes, the split of variables into exoge-
nous and endogenous can clearly affect what counts as a cause, as we saw in the case of the
oxygen and the forest fire. As a number of examples in Chapter 3 showed, if we take normal-
ity considerations into account, the choice of normality ordering can affect causality. Even
the set of possible values of the variables in the model makes a difference, as Example 2.3.7
(where both the sergeant and captain give orders) illustrates.

Some have argued that causality should be an objective feature of the world. Particularly in
the philosophy literature, the (often implicit) assumption has been that the job of the philoso-
pher is to analyze the (objective) notion of causation, rather like that of a chemist analyzing
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108 Chapter 4. The Art of Causal Modeling

the structure of a molecule. In the context of the HP approach, this would amount to desig-
nating one causal model as the “right” model. I do not believe that there is one “right” model.
Indeed, in the spirit of the quote at the beginning of this chapter, I am not sure that there are
any “right” models, but some models may be more useful, or better representations of reality,
than others. Moreover, even for a single situation, there may be several useful models. For
example, suppose that we ask for the cause of a serious traffic accident. A traffic engineer
might say that the bad road design was the cause; an educator might focus on poor driver
education; a sociologist might point to the pub near the highway where the driver got drunk; a
psychologist might say that the cause is the driver’s recent breakup with his girlfriend. Each of
these answers is reasonable. By appropriately choosing the variables, the structural-equations
framework can accommodate them all.

That said, it is useful to have principles by which we can argue that one model is more
reasonable/useful/appropriate than another. Suppose that a lawyer argues that, although his
client was drunk and it was pouring rain, the cause of the accident was the car’s faulty brakes,
which is why his client is suing GM for $5,000,000. If the lawyer were using the HP definition
of causality, he would then have to present a causal model in which the brakes were the cause.
His opponent would presumably then present a different model in which the drunkenness or
the rain was a cause. We would clearly want to say that a model that made the faulty brakes a
cause because it did not include the rain as an endogenous variable, or it took drunkenness to
be normal, was not an appropriate model.

The structural equations can be viewed as describing objective features of the world. At
least in principle, we can test the effects of interventions to see whether they are correctly
captured by the equations. In some cases, we might be able to argue that the set of values
of variables is somewhat objective. In the example above, if C can only report values 0 and
1, then it seems inappropriate to take {0, 1, 2} to be its set of values. But clearly what is
exogenous and what is endogenous is to some extent subjective, as is the choice of variables,
and the normality ordering. Is there anything useful that we can say about them? In this
chapter, I look at the issue and its impact more carefully.

4.1 Adding Variables to Structure a Causal Scenario
A modeler has considerable leeway in choosing which variables to include in a model. As the
Suzy-Billy rock-throwing example shows, if we want to argue that X = x is the cause of ϕ
rather than Y = y, then there must be a variable that takes on different values depending on
whether X = x or Y = y is the actual cause. If the model does not contain such a variable,
then there is no way to argue that X = x is the cause. There is a general principle at play here.
Informally, say that a model is insufficiently expressive if it cannot distinguish two different
scenarios (intuitively, ones for which we would like to make different causal attributions).
The naive rock-throwing model of Figure 2.2, which just has the endogenous variables ST ,
BT , and BS , is insufficiently expressive in this sense because it cannot distinguish between a
situation where Suzy and Billy’s rock hit the bottle simultaneously (in which case we would
want to call Billy’s throw a cause) and the one where Suzy hits first (so Billy’s throw is not
a cause). What about the bogus prevention example from Section 3.4.2? As we saw, here
too adding an extra variable can give us a more reasonable outcome (without appealing to
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4.1 Adding Variables to Structure a Causal Scenario 109

normality considerations). I would argue that in this case as well, the problem is that the
original model was insufficiently expressive.

The next four examples show the importance of having variables that bring out the causal
structure of a scenario and to distinguish two causal scenarios. One way of understanding the
role of the variables SH and BH in the rock-throwing example is that they help us distinguish
the scenario where Suzy and Billy hit simultaneously from the one where Suzy hits first. The
following examples show that this need to distinguish scenarios is quite widespread.

Example 4.1.1 There are four endogenous binary variables, A, B, C, and S, taking values
1 (on) and 0 (off). Intuitively, A and B are supposed to be alternative causes of C, and S acts
as a switch. If S = 0, the causal route from A to C is active and that from B to C is dead;
and if S = 1, the causal route from A to C is dead and the one from B to C is active. There
are no causal relations between A, B, and S; their values are determined by the context. The
equation for C is C = (¬S ∧A) ∨ (S ∧B).

Suppose that the context is such that A = B = S = 1, so C = 1. B = 1 is a but-for cause
of C = 1, so all the variants of the HP definition agree that it is a causes, as we would hope.
Unfortunately, the original and updated definition also yield A = 1 as a cause of C = 1. The
argument is that in the contingency where S is set to 0, if A = 0, then C = 0, whereas if
A = 1, then C = 1. This does not seem so reasonable. Intuitively, if S = 1, then the value of
A is irrelevant to the outcome. Considerations of normality do not help here; all worlds seem
to be equally normal. Although the modified HP definition does not take A = 1 to be a cause,
it is part of a cause: A = 1 ∧ S = 1 is a cause of C = 1 because if A and S are both set to 0,
C = 0.

This might seem to represent a victory for the modified HP definition, but the situation is
a little more nuanced. Consider a slightly different story. This time, we view B as the switch,
rather than S. If B = 1, then C = 1 if either A = 1 or S = 1; if B = 0, then C = 1 only if
A = 1 and S = 0. That is, C = (B ∧ (A ∨ S)) ∨ (¬B ∧ A ∧ ¬S). Although this is perhaps
not as natural a story as the original, such a switch is surely implementable. In any case, a
little playing with propositional logic shows that, in this story, C satisfies exactly the same
equation as before: (¬S ∧ A) ∨ (S ∧ B) is equivalent to (B ∧ (A ∨ S)) ∨ (¬B ∧ A ∧ ¬S).
The key point is that, unlike the first story, in the second story, it seems to me quite reasonable
to say that A = 1 is a cause of C = 1 (as is B = 1). Having A = 1 is necessary for the first
“mechanism” to work. But as long as we model both stories using just the variables A, B, C,
and S, they have the same models with the same equations, so no variant of the HP definition
can distinguish them.

Given that we have different causal intuitions for the stories, we should model them dif-
ferently. One way to distinguish them is to add two more endogenous random variables, say
D and E, that describe the ways that C could be 1. In the original story, we would have the
equations D = ¬S ∧ A, E = S ∧ B, and C = D ∨ E. In this model, since D = 0 in the
actual context, it is not hard to see that all variants of the HP definition agree that A = 1 is
not a cause of C = 1 (nor is it part of a cause), whereas B = 1 and S = 1 are causes, as they
should be. Thus, in this model, we correctly capture our intuitions for the original story.

To capture the second story, we can add variables D′ and E′ such that D′ = B ∧ (A∨ S),
E′ = ¬B ∧ A ∧ S, and C = D′ ∨ E′. In this model, it is not hard to see that according to
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110 Chapter 4. The Art of Causal Modeling

the original and updated definition, all of A = 1, B = 1, and S = 1 are causes of C = 1;
according to the modified HP definition, the causes stay the same: B = 1 and A = 1∧S = 1.

Now, as I said above, we can certainly create these setups in the real world. Consider
the original story. We can design a circuit where there is a source of power at A and B, a
physical switch at S, and a bulb at C that turns on (C = 1) if either the circuit is connected
to A (A = 1) and the switch is turned left (S = 0) or the circuit is connected to B (B = 1)
and the switch is turned right (S = 1). We can similarly design a circuit that captures the
second story. With this circuit, we can think of D as representing “there is current flowing
between power source A and bulb C”; there are similar physical analogues of E, D′, and E′.
But even without physical analogues, these “structuring” variables can play an important role.
Suppose that the agent does not see the underlying physical setup. All he sees are switches
corresponding to A, B, and S, which can be manipulated. In the first setup, flipping the switch
for A connects or disconnects the circuit and the A battery, and similarly for B, while flipping
the switch for S connects C either to the A or B battery. In the second story, the switches
for A, B, and S work differently, but as far as the observer is concerned, all interventions
lead to the same outcome on the bulb C in both cases. A modeler could usefully introduce D
and E (resp., D′ and E′) to disambiguate these models. These variables can be viewed as the
modeler’s proxies for the underlying physical circuit; they help describe the mechanisms that
result in C being 1.

Note that we do not want to think of D as being defined to take the value 1 if A = 1 and
S = 0. For then we could not intervene to set D = 0 if A = 1 and S = 0. Adding a variable
to the model commits us to being able to intervene on it. (I return to this point in Section 4.6.)
In the real world, setting D to 0 despite having A = 1 and S = 0 might correspond to the
connection being faulty when the switch is turned left.

Example 4.1.2 A lamp L is controlled by three switches, A, B, and C, each of which has
three possible positions, −1, 0, and 1. The lamp switches on iff two or more of the switches
are in the same position. Thus, L = 1 iff (A = B) ∨ (B = C) ∨ (A = C). Suppose that, in
the actual context, A = 1, B = −1, and C = −1. Intuition suggests that although B = −1
and C = −1 should be causes of L = 1, A = 1 should not: since the setting of A does not
match that of either B or C, it has no causal impact on the outcome.

Since B = −1 and C = −1 are but-for causes of L = 1, all three variants of the HP
definition declare them to be causes. Unfortunately, the original and updated definition also
declare A = 1 to be a cause. For in the contingency where B = 1 and C = −1, if A = 1,
then L = 1, whereas if A = 0, then L = 0. Adding defaults to the picture does not solve the
problem. Again, the modified HP definition does the “right” thing here and does not declare
A = 1 to be a cause or even part of a cause.

However, just as in Example 4.1.1, another story can be told here, where the observed
variables have the same values and are connected by the same structural equations. Now
suppose that L = 1 iff either (a) none of A, B, or C is in position −1; (b) none of A, B, or C
is in position 0; or (c) none of A, B, or C is in position 1. It is easy to see that the equations
for L are literally the same as in the original example. But now it seems more reasonable to
say that A = 1 is a cause of L = 1. Certainly A = 1 causes L = 1 as a result of no values
being 0; had A been 0, then the lamp would still have been on, but now it would be as a result
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4.1 Adding Variables to Structure a Causal Scenario 111

of no values being −1. Considering the contingency where B = 1 and C = −1 “uncovers”
the causal impact of A.

Again, the distinction between the two stories can be captured by adding more variables.
For the second story, add the variables NOT (−1), NOT (0), and NOT (1), where NOT (i)
is 1 iff none of A, B, or C is i. Then L = NOT (−1) ∨ NOT (0) ∨ NOT (1). Now all three
variants of the HP definition agree that A = 1 is a cause of L = 1 (as well as B = −1 and
C = −1). For the original story, add the variables TWO(−1), TWO(0), and TWO(1),
where TWO(i) = 1 iff at least two of A, B, and C are i, and take L = TWO(−1) ∨
TWO(0)∨TWO(1). In this case, all three variants agree that A = 1 is not a cause of L = 1
(whereas B = −1 and C = −1 continue to be causes).

Once again, I think of the variables NOT (−1),NOT (0), and NOT (1)(resp., TWO(−1),
TWO(0), and TWO(1)) as “structuring” variables that help the modeler distinguish the two
scenarios and, specifically, the mechanisms that lead to the lamp turning on.

This example (and the others in this section) show that causality is to some extent depen-
dent on how we describe a situation. If we describe the rule for the lamp being on as “it is on
if two or more of the switches are in the same position”, we get a different answer than if we
say “it is on if there is a position such that none of the switches are in that position”, despite
the fact that these two rules lead to the same outcomes. This seems to me compatible with
human ascriptions of causality. But even if accept that, where does this leave a modeler who
is thinking in terms of, say, the first rule, and to whom the second rule does not even occur?
My sense is that the description of the first rule naturally suggests a “structuring” in terms
of the variables TWO(−1), TWO(0), and TWO(1), so it is good modeling practice to add
these variables even if no other way of structuring the story occurs to the modeler.

Example 4.1.3 Consider a model M with four endogenous variables, A, B, D, and E. The
values of A and D are determined by the context. The values of B and E are given by the
equations B = A and E = D. Suppose that the context u is such that A = D = 1. Then
clearly, in (M,u), A = 1 is a cause of B = 1 and not a cause of E = 1, whereas D = 1 is a
cause of E = 1 and not of B = 1. The problem comes if we replace A in the model by X ,
where, intuitively, X = 1 iff A and D agree (i.e., X = 1 if the context would have been such
that A = D = 1 or A = D = 0). The value of A can be recovered from the values of D and
X . Indeed, it is easy to see that A = 1 iff X = D = 1 or X = D = 0. Thus, we can rewrite
the equation for B by taking B = 1 iff X = D = 1 or X = D = 0. Formally, we have a new
model M ′ with endogenous variables X , B, D, and E. The value of D and X is given by the
context; as suggested above, equations for the B and E are

B =

{
1 if X = D
0 if X ̸= D;

E = D.

The context u is such that D = X = 1, so B = E = 1. In (M ′, u), it is still the case that
D = 1 is a cause of E = 1, but now D = 1 is also a cause of B = 1.

Is it so unreasonable that D = 1 is a cause of B = 1 in M ′ but is not a cause of B = 1 in
M? Of course, if we have in mind the story represented by model M , then it is unreasonable
for D = 1 to be a cause. But M ′ can also represent quite a different situation. Consider the
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112 Chapter 4. The Art of Causal Modeling

following two stories. We are trying to determine the preferences of two people, Betty and
Edward, in an election. B = 1 if Betty is recorded as preferring the Democrats and B = 0
if Betty is recorded as preferring the Republicans, and similarly for E. In the first story, we
send Alice to talk to Betty and David to talk to Edward to find out their preferences (both are
assumed to be truthful and good at finding things out). When Alice reports that Betty prefers
the Democrats (A = 1), then Betty is reported as preferring the Democrats (B = 1); similarly
for David and Edward. Clearly, in this story (which is modeled by M ), D = 1 causes E = 1
but not B = 1.

But now suppose instead of sending Alice to talk to Betty, Xavier is sent to talk to Carol,
who knows only whether Betty and Edward have the same preferences. Carol tells Xavier
that they indeed have the same preferences (X = 1). Upon hearing that X = D = 1, the
vote tabulator correctly concludes that B = 1. This story is modeled by M ′. But in this case,
it strikes me as perfectly reasonable that D = 1 should be a cause of B = 1. This is true
despite the fact that if we had included the variable A in M ′, it would have been the case that
A = B = 1.

Again, we have two different stories; we need to have different models to disambiguate
them.

At the risk of overkill, here is yet one more example:

Example 4.1.4 A ranch has five individuals: a1, . . . , a5. They have to vote on two possible
outcomes: staying at the campfire (O = 0) or going on a round-up (O = 1). Let Ai be
the random variable denoting ai’s vote, so Ai = j if ai votes for outcome j. There is a
complicated rule for deciding on the outcome. If a1 and a2 agree (i.e., if A1 = A2), then that
is the outcome. If a2, . . . , a5 agree and a1 votes differently, then the outcome is given by a1’s
vote (i.e., O = A1). Otherwise, majority rules. In the actual situation, A1 = A2 = 1 and
A3 = A4 = A5 = 0, so by the first mechanism, O = 1. The question is what were the causes
of O = 1.

Using the naive causal model with just the variables A1, . . . , A5, O, and the obvious equa-
tions describing O in terms of A1, . . . , A5, it is almost immediate that A1 = 1 is a but-for
cause of O = 1. Changing A1 to 0 results in O = 0. Somewhat surprisingly, in this naive
model, A2 = 1, A3 = 0, A4 = 0, and A5 = 0 are also causes according to the original and
updated HP definition. To see that A2 = 1 is a cause, consider the contingency where A3 = 1.
Now if A2 = 0, then O = 0 (majority rules); if A2 = 1, then O = 1, since A1 = A2 = 1, and
O = 1 even if A3 is set back to its original value of 0. The argument that A3 = 0, A4 = 0,
and A5 = 0 are causes according to the original and updated definition is the same; I will give
the argument for A3 = 0 here. Consider the contingency where A2 = 0, so that all voters but
a1 vote for 0 (staying at the campsite). If A3 = 1, then O = 0 (majority rules). If A3 = 0,
then O = 1, by the second mechanism (a1 is the only vote for 0), whereas if A2 is set to
its original value of 1, then we still have O = 1, now by the first mechanism. Although the
modified HP definition does not declare any of A2 = 1, A3 = 0, A4 = 0, or A5 = 0 to be
causes, it does declare each of the conjunctions A2 = 1 ∧ A3 = 0, A2 = 1 ∧ A4 = 0, and
A2 = 1 ∧ A5 = 0 to be a cause; for example, if the values of A2 and A3 are changed, then
O = 0. So, according to the modified HP definition, each of A2 = 1, A3 = 0, A4 = 0, and
A5 = 0 is part of a cause.
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4.1 Adding Variables to Structure a Causal Scenario 113

An arguably better model of the story is suggested by the analysis, which talks about the
first and second mechanisms. This, in turn, suggests that the choice of mechanism should be
part of the model. There are several ways of doing this. One is to add three new variables,
call them M1, M2, and M3. These variables have values in {0, 1, 2}, where Mj = 0 if
mechanism j is active and suggests an outcome 0, Mj = 1 if mechanism j is active and
suggests an outcome of 1, and Mj = 2 if mechanism j is not active. (We actually don’t need
the value M3 = 2; mechanism 3 is always active, because there is always a majority with 5
voters, all of whom must vote.) There are obvious equations linking the value of M1, M2,
and M3 to the values of A1, . . . , A5. (Actually, since the mechanisms are now represented by
variables that can be intervened on, we would have to define what happens as a result of an
“unnatural” intervention that sets both M1 = 1 and M2 = 1; for definiteness, say in that case
that mechanism M1 is applied.)

Now the value of O just depends on the values of M1, M2, and M3: if M1 ̸= 2, then
O = M1; if M1 = 2 and M2 ̸= 2, then O = M2; and if M1 = M2 = 2, then O = M3. It is
easy to see that in this model, in the context where A1 = A2 = 1 and A3 = A4 = A5 = 0,
then, according to all the variants of the HP definition, none of A3 = 0, A4 = 0, or A5 = 0
is a cause, whereas A1 = 1 is a cause, as we would expect, as are A2 = 1 and M2 = 1.
This seems reasonable: the second mechanism was the one that resulted in the outcome, and
it required A1 = A2 = 1.

Now suppose that we change the description of the voting rule. We take O = 1 if one of
the following two mechanisms applies:

A1 = 1 and it is not the case that both A2 = 0 and exactly one of A3, A4, and A5 is 1.

A1 = 0, A2 = 1, and exactly two of A3, A4, and A5 are 1.

It is not hard to check that, although the description is different, O satisfies the same equation
in both stories. But now it does not seem so unreasonable that A2 = 1, A3 = 0, A4 = 0,
and A5 = 0 are causes of O = 1. And indeed, if we construct a model in terms of these two
mechanisms (i.e., add variables M ′

1 and M ′
2 that correspond to these two mechanisms), then it

is not hard to see that A1 = 1, A2 = 1, A3 = 0, A4 = 0, and A5 = 0 are all causes according
to the original and updated HP definition. With the modified definition, things are unchanged:
A1 = 1, A2 = 1 ∧ A3 = 0, A2 = 1 ∧ A4 = 0, and A2 = 1 ∧ A5 = 0 continue to be causes
(again, {A2, A3}, {A2, A4}, and {A2, A5} are minimal sets of variables whose values have
to change to change the outcome if the first mechanism is used).

Here the role of the structuring variables M1, M2, and M3 (resp. M ′
1 and M ′

2) as descrip-
tors of the mechanism being invoked seems particularly clear. For example, setting M1 = 2
says that the first mechanism will not be applied, even if A1 = A2; setting M1 = 1 says that
we act as if both a1 and a2 voted in favor, even if that is not the case.

The examples considered so far in this section show how, by adding variables that describe
the mechanism of causality, we can distinguish two situations that otherwise seem identical.
As the following example shows, adding variables that describe the mechanism also allows
us to convert a part of a cause (according to the modified HP definition) to a cause.

Example 4.1.5 Suppose that we add variables A, B, and C to the disjunctive forest-fire
example (Example 2.3.1), where A = L ∧ ¬MD , B = ¬L ∧ MD , and C = L ∧ MD . We
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114 Chapter 4. The Art of Causal Modeling

then replace the earlier equation for FF (i.e., FF = L ∨ MD) by FF = A ∨ B ∨ C. The
variables A, B, and C can be viewed as describing the mechanism by which the forest fire
happened. Did it happen because of the dropped match only, because of the lightning only,
or because of both? In this model, not only are L = 1 and MD = 1 causes of FF = 1
according to the original and updated HP definition, they are also causes according to the
modified definition. For if we fix A and B at their actual values of 0, then FF = 0 if L is set
to 0, so AC2(am) is satisfied and L = 1 is a cause; an analogous argument applies to MD .

I would argue that this is a feature of the modified definition, not a bug. Suppose, for ex-
ample, that we interpret A, B, and C as describing the mechanism by which the fire occurred.
If these variables are in the model, then this suggests that we care about the mechanism. The
fact that L = 1 is part of the reason that FF = 1 occurred thanks to mechanism C. Although
the forest fire would still have occurred if the lightning hadn’t struck, it would have been due
to a different mechanism. (As an aside, adding mechanisms in this way is actually a general
approach for converting conjunctive causes in the the modified HP definition to single con-
juncts. It is easy to see that a similar approach would work for Example 2.3.2, where Suzy
wins the election 11–0, although now we would have to add

(11
6

)
new variables, one for each

possible subset of 6 voters.)
In the original model, we essentially do not care about the details of how the fire comes

about. Now suppose that we care only about whether lightning was a cause. In that case, we
would add only the variable B, with B = ¬L ∧MD , as above, and set FF = L ∨ B. In this
case, in the context where L = MD = 1, all three variants of the HP definition agree that
only L = 1 is a cause of FF = 1; MD = 1 is not (and is not even part of a cause). Again,
I would argue that this is a feature. The structure of the model tells us that we should care
about how the fire came about, but only to the extent of whether it was due to L = 1. In the
actual context, MD = 1 has no impact on whether L = 1.

But now consider the variant of the disjunctive model considered in Example 2.9.1. Recall
that in this variant, there are two arsonists; in the abnormal setting where only one of them
drops a match, FF = 2: there is a less significant fire. In this model, MD = 1 is a cause of
the forest fire according to modified HP definition, as we would expect, but L = 1 is not even
part of a cause, since L = 1∧MD = 1 is no longer a cause (MD = 1 is a cause all by itself).
This seems at least mildly disconcerting. But now normality considerations save the day. By
assumption, the witness MD = 1∧MD ′ = 0∧FF = 2 needed to declare MD = 1 a cause is
abnormal, so AC2+(am) does not hold. Using graded causality, L = 1 ∧MD = 1 is a better
cause than MD = 1.

4.2 Conservative Extensions
In the rock-throwing example, by adding the variables SH and BH , and moving from the
naive model MRT to M ′

RT , BT = 1 changed from being a cause to not being a cause of
BS = 1. Similarly, adding extra variables affected causality in all the examples in Section 4.1.
Of course, without any constraints, it is easy to add variables to get any desired result. For
example, consider the “sophisticated” rock-throwing model M ′

RT . Suppose that a variable
BH 1 is added with equations that set BH 1 = BT and BS = SH ∨ BT ∨ BH 1, giving a
new causal model M ′′

RT . In M ′′
RT , there is a new causal path from BT to BS going through
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4.2 Conservative Extensions 115

BH 1, independent of all other paths. Not surprisingly, in M ′′
RT , BT = 1 is indeed a cause of

BS = 1.
But this seems like cheating. Adding this new causal path fundamentally changes the

scenario; Billy’s throw has a new way of affecting whether the bottle shatters. Although it
seems reasonable to refine a model by adding new information, we want to do so in a way
that does not affect what we know about the old variables. Intuitively, suppose that we had a
better magnifying glass and could look more carefully at the model. We might discover new
variables that were previously hidden. But we want it to be the case that any setting of the old
variables results in the same observations. That is, while adding the new variable refines the
model, it does not fundamentally change it. This is made precise in the following definition.

Definition 4.2.1 A causal model M ′ = ((U ′,V ′,R′),F ′) is a conservative extension of
M = ((U ,V,R),F) if U = U ′, V ⊂ V ′, and for all contexts u⃗, all variables X ∈ V , and
all settings w⃗ of the variables in W⃗ = V − {X}, we have (M, u⃗) |= [W⃗ ← w⃗](X = x) iff
(M ′, u⃗) |= [W⃗ ← w⃗](X = x). That is, no matter how we set the variables in M other than
X , X has the same value in context u⃗ in both M and M ′.

According to Definition 4.2.1, M ′ is a conservative extension of M iff, for certain formulas
ψ involving only variables in V , namely, those of the form [W⃗ ← w⃗](X = x), (M, u⃗) |= ψ iff
(M ′, u⃗) |= ψ. As the following lemma shows, this is actually true for all formulas involving
only variables in V , not just ones of a special form. (It is perhaps worth noting that here is
a case where we cannot get away with omitting the causal model when using statisticians’
notation. The notion of a conservative extension requires comparing the truth of the same
formula in two different causal models.)

Lemma 4.2.2 Suppose that M ′ is a conservative extension of M = ((U ,V,R),F). Then for
all causal formulas ϕ that mention only variables in V and all contexts u⃗, we have (M, u⃗) |= ϕ
iff (M ′, u⃗) |= ϕ.

It is not hard to show that the “sophisticated” model for the rock-throwing example M ′
RT

is a conservative extension of MRT .

Proposition 4.2.3 M ′
RT is a conservative extension of MRT .

Proof: It suffices to show that, whatever the setting of U , BT , and ST , the value of BS is
the same in both MRT and M ′

RT . It is easy to check this by considering all the cases: in both
models, BS = 1 if either ST = 1 or BT = 1, and BS = 0 if ST = BT = 0 (independent
of the value of U ).

The model M∗
RT , which has additional endogenous variables SA, BA, SF , and BF , is not

a conservative extension of either M ′
RT or MRT . The fact that Suzy and Billy are accurate

shots and that, if both throw, Suzy hits first, are no longer baked in with M∗
RT . This means

that M∗
RT differs from MRT and M ′

RT in some fundamental ways. We can’t really think of
the contexts as being the same in MRT and M∗

RT ; the context in M∗
RT determines the values

of BA, SA, BF , and SF , as well as that of ST and BT .
As this discussion shows, the requirement in Definition 4.2.1 that U = U ′ is quite a strong

one. Roughly speaking, it says that whatever extra endogenous variables are added in going
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116 Chapter 4. The Art of Causal Modeling

from M to M ′, their values are determined by the (exogenous and endogenous) variables
already in M . This is the case in going from MRT to M ′

RT : the value of SH is determined by
that of ST , whereas the value of BH is determined by that of SH and BT . However, this is
not the case in going from M ′

RT to M∗
RT . For example, nothing in M ′

RT determines the value
of BA or SA; both are implicitly assumed to always be 1 in M ′

RT . At the end of Section 4.4,
I discuss a context-relative generalization of the notion of conservative extension that can be
applied to M∗

RT and M ′
RT . For now, I continue with the notion of conservative extension as

defined above. It is quite widely applicable. In particular, in all the examples in Section 4.1,
the model obtained by adding extra variables is a conservative extension of the original model.
This can be proved by using arguments similar to those used in Proposition 4.2.3; I leave
details to the reader.

4.3 Using the Original HP Definition Instead of the Updated
Definition

Recall that Example 2.8.1 was the one that originally motivated using the updated rather than
the orignal HP definition. In this example, a prisoner dies either if A loads B’s gun and B
shoots, or if C loads and shoots his gun. In the actual context u, A loads B’s gun, B does not
shoot, but C does load and shoot his gun, so that the prisoner dies. The original HP definition,
using AC2(bo), would declare A = 1 a cause of D = 1 (the prisoner dies); the updated
definition, using AC2(bu), would not, provided that only the variables A, B, C, and D are
used. But, as I showed, by adding an additional variable, the original HP definition gives
the desired result. The following result, proved in Section 4.8.2, shows that this approach
generalizes: we can always use the original HP definition rather than the updated HP definition
by adding extra variables.

Theorem 4.3.1 If X = x is not a cause of Y = y in (M, u⃗) according to the updated HP
definition but is a cause according to the original HP definition, then there is a model M ′

that is a conservative extension of M such that X = x is not a cause of Y = y in (M ′, u⃗)
according to either the original or updated HP definitions.

Recall that parts (c) and (d) of Theorem 2.2.3 show that if X = x is not a cause of ϕ
according to the original HP definition, then it is not part of a cause according to the updated
HP definition. Example 2.8.1 shows that the converse is not true in general. Theorem 4.3.1
suggests that, by adding extra variables appropriately, we can construct a model where X =
x is a cause of ϕ according to the original HP definition iff it is a cause according to the
updated HP definition. As I mentioned earlier, this gives the original HP definition some
technical advantages. With the original HP definition, causes are always single conjuncts; as
Example 2.8.2 shows, this is not in general the case with the updated definition. (Many other
examples show that it is not the case with the modified HP definition either.) Moreover, as I
discuss in Section 5.3, testing for causality is harder for the updated HP definition (and the
modified HP definition) than it is for the original HP definition.

But adding extra variables so as to avoid the use of AC2(bu) may result in a rather “unnatu-
ral” model (of course, this presumes that we can agree on what “natural” means!). Moreover,
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4.4 The Stability of (Non-)Causality 117

as I mentioned earlier, in some cases it does not seem appropriate to add these variables (see
Chapter 8). More experience is needed to determine which of AC2(bu) and AC2(bo) is most
appropriate or whether (as I now suspect) using the modified HP definition is the right thing
to do. Fortunately, in many cases, the causality judgment is independent of which we use.

4.4 The Stability of (Non-)Causality
The examples in Section 4.1 raise a potential concern. Consider the rock-throwing example
again. Adding extra variables changed BT = 1 from being a cause of BS = 1 to not being
a cause. Could adding even more variables convert BT = 1 back to being a cause? Could it
then alternate further?

Indeed it can, at least in the case of the original and updated HP definition. In general, we
can convert an event from being a cause to a non-cause and then back again infinitely often
by adding variables. We have essentially already seen this in the bogus prevention problem.
Suppose that we just start with Bodyguard, who puts the antidote in the victim’s coffee. To
start with, there is no assassin, so surely Bodyguard putting in the antidote is not a cause of
the victim surviving. Now we introduce an assassin. Since there will be a number of potential
assassins, call this first assassin Assassin #1. Assassin #1 is not a serious assassin. Although
in principle he could put in poison, and has toyed with the idea, in fact, he does not. As we
have seen, just the fact that he could put in poison is enough to make Bodyguard putting in the
antidote a cause of Victim surviving according to the original and updated HP definition and
part of a cause according to the modified definition. But, as we also saw in Section 3.4, once
we add a variable PN 1 that talks about whether the poison was neutralized by the antidote,
Bodyguard is no longer a cause.

Now we can repeat this process. Suppose that we discover that there is a second assassin,
Assassin #2. Now Bodyguard putting in the antidote becomes (part of) a cause again; add
PN 2, and it is no longer a cause. This can go on arbitrarily often.

I now formalize this. Specifically, I construct a sequence M0,M1,M2, . . . of causal models
and a context u such that Mn+1 is a conservative extension Mn for all n ≥ 0, B = 1 is not
part of a cause of VS = 1 in the even-numbered models in context u, and B = 1 is part
of a cause of VS = 1 in the odd-numbered models in context u. That is, the answer to the
question “Is B = 1 part of a cause of VS = 1?” alternates as we go along the sequence of
models.

M0 is just the model with two binary endogenous variables B and VS and one binary
exogenous variable U . The values of both B and VS are determined by the context: in the
context uj where U = j, B = VS = j, for j ∈ {0, 1}. The models M1,M2,M3, . . . are
defined inductively. For n ≥ 0, we get M2n+1 from M2n by adding a new variable An+1;
we get M2n+2 from M2n+1 by adding a new variable PN n+1. Thus, the model M2n+1 has
the endogenous variables B,VS , A1, . . . , An+1,PN 1, . . . ,PN n; the model M2n+2 has the
endogenous variables B,VS , A1, . . . , An+1,PN 1, . . . ,PN n+1. All these models have just
one binary exogenous variable U . The exogenous variable determines the value of B and
A1, . . . , An+1 in models M2n+1 and M2n+2; in the context u1, these variables all have value
1. In the context u0, these variables all have value 0; in addition, the equations are such that
in u0, VS = 0 no matter how the other variables are set. Poor Victim has a terminal illness in
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118 Chapter 4. The Art of Causal Modeling

u0, so does not survive no matter what else happens. The equation for PN j in all the models
where it is a variable (namely, M2j ,M2j+1, . . .) is just the analogue of the equation for PN
in the original bogus prevention problem in Section 3.4.1:

PN j = ¬Aj ∧B (i.e., PN j = (1−Aj)×B).

Assassin #j’s poison is neutralized if he actually puts poison in the coffee (recall Aj = 0
means that assassin #j puts poison in the coffee) and B puts in antidote. Finally, for VS , the
equation depends on the model. In all cases, in u0, VS = 0; in u1,

VS = (A1 ∨ PN 1) ∧ . . . ∧ (An ∨ PN n) ∧ (An+1 ∨B) in M2n+1;

VS = (A1 ∨ PN 1) ∧ . . . ∧ (An ∨ PN n) ∧ (An+1 ∨ PN n+1) in M2n+2.

Note that in M1, VS = A1 ∨B, and in M2, VS = A1 ∨PN 1, so M1 and M2 are essentially
the two models that were considered in Section 3.4.1.

The following theorem, whose proof can be found in Section 4.8.3, summarizes the situa-
tion with regard to the models M0,M1,M2, . . . defined above.

Theorem 4.4.1 For all n ≥ 0, Mn+1 is a conservative extension of Mn. Moreover, B = 1
is not part of a cause of VS = 1 in (M2n, u1), and B = 1 is part of a cause of VS = 1 in
(M2n+1, u1), for n = 0, 1, 2, . . . (according to all variants of the HP definition).

Theorem 4.4.1 is somewhat disconcerting. It seems that looking more and more carefully at
a situation should not result in our view of X = x being a cause of Y = y alternating between
“yes” and “no”, at least not if we do not discover anything inconsistent with our understanding
of the relations between previously known variables. Yet, Theorem 4.4.1 shows that this can
happen. Moreover, the construction used in Theorem 4.4.1 can be applied to any model M
such that (M, u⃗) |= B = 1 ∧ C = 1, but B and C are independent of each other (so that,
in particular, B = 1 is not a cause of C = 1), to get a sequence of models M0,M1, . . .,
with M = M0 and Mn+1 a conservative extension of Mn such that the truth of the statement
“B = 1 is part of a cause of C = 1 in (Mn, u⃗)” alternates as we go along the sequence.

While disconcerting, I do not believe that, in fact, this is a serious problem. First, it is worth
observing that while Theorem 4.4.1 applies to the original and updated HP definition even for
(full) causes (this is immediate from the proof), with the modified definition, the fact that we
are considering parts of causes rather than (full) causes is critical. Indeed, the following result
is almost immediate from the definition of conservative extension.

Theorem 4.4.2 If M ′ is a conservative extension of M , and X⃗ = x⃗ is a cause of ϕ in (M, u⃗)
according to the modified HP definition, then there exists a (not necessarily strict) subset X⃗1

of X⃗ such that X⃗1 = x⃗1 is a cause of ϕ in (M, u⃗), where x⃗1 is the restriction of x⃗ to the
variables in X⃗1.

Proof: Suppose that X⃗ = x⃗ is a cause of ϕ in (M, u⃗) according to the modified HP defini-
tion. Then (a) (M, u⃗) |= X⃗ = x⃗∧ϕ and (b) there exists a set W⃗ of endogenous variables and a
setting x⃗′ of the variables in X⃗ a setting w⃗∗ of the variables in W⃗ such that (M, u⃗) |= W⃗ = w⃗∗

and (M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗∗]¬ϕ. (Part (b) is just the statement of AC2(am).) Since M ′
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4.4 The Stability of (Non-)Causality 119

is a conservative extension of M , (a) and (b) hold with M replaced by M ′. So the only way
that X⃗ = x⃗ can fail to be a cause of ϕ in (M ′, u⃗) is if it fails AC3, which means that there
must be a strict subset of X⃗1 of X⃗ such that X⃗1 = x⃗1 is a cause of ϕ.

Thus, for the modified HP definition, for causes involving a single variable, causality is
stable. For causes involving several conjuncts, we can get some instability, but not too much.
It follows from Theorem 4.4.2 that we can get at most one alternation from non-causality to
causality to non-causality. Once X⃗ = x⃗ goes from being a cause of ϕ in (M, u⃗) to being a
non-cause in (M ′, u⃗), it cannot go back to being a cause again in (M ′′, u⃗) for a conservative
extension M ′′ of M ′ (since then X⃗1 = x⃗1 is a cause of ϕ in (M ′, u⃗) for some strict subset
X⃗1 of X⃗ , so there must be a (not necessarily strict) subset X⃗2 of X⃗ such that X⃗2 = x⃗2 is a
cause of ϕ in (M ′′, u). Thus, by AC3, X⃗1 = x⃗1 cannot be a cause of ϕ in (M ′′, u).)

The rock-throwing example shows that we can have a little alternation. Suzy’s throw
(ST = 1) is not a cause of the bottle shattering in the naive rock-throwing model MRT

in the context where both Billy and Suzy throw; rather, according to the modified HP defi-
nition, ST = 1 ∧ BT = 1 is a cause, so Suzy’s throw in only part of a cause. In contrast,
Suzy’s throw is a cause in the more sophisticated rock-throwing model. But it follows from
Theorem 4.4.2 that Suzy’s throw will continue to be a cause of the bottle shattering in any
conservative extension of the sophisticated rock-throwing model according to the modified
HP definition. More generally, arguably, stability is not a problem for full causality using the
modified HP definition.

But even according to the original and updated HP definition, and for parts of causes with
the modified HP definition, I don’t think that the situation is so dire. A child may start with a
primitive understanding of how the world works and believe that just throwing a rock causes
a bottle to shatter. Later he may become aware of the importance of the rock actually hitting
the bottle. Still later, he may become aware of other features critical to bottles shattering.
This increased awareness can and should result in causality ascriptions changing. However,
in practice, there are very few new features that should matter. We can make this precise
by observing that most new features that we become aware of are almost surely irrelevant to
the bottle shattering, except perhaps in highly abnormal circumstances. If the new variables
were relevant, we probably would have become aware of them sooner. The fact that we don’t
become aware of them suggests that we need to use an abnormal setting of these variables to
uncover the causality.

As I now show, once we take normality into account, under reasonable assumptions, non-
causality is stable. To make this precise, I must first extend the notion of conservative ex-
tension to extended causal models so as to take the normality ordering into account. For
definiteness, I use the definitions in Section 3.2, where normality is defined on worlds, rather
than the alternative definition in Section 3.5, although essentially the same arguments work
in both cases. I do make some brief comments throughout about the modifications needed to
deal with the alternative definition.

Definition 4.4.3 An extended causal model M ′ = (S ′,F ′,≽′) is a conservative extension
of an extended causal model M = (S,F ,≽) if the causal model (S ′,F ′) underlying M ′ is a
conservative extension of the causal model (S,F) underlying M according to Definition 4.2.1
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120 Chapter 4. The Art of Causal Modeling

and, in addition, the following condition holds, where V is the set of endogenous variables in
M :

CE. For all contexts u⃗, if W⃗ ⊆ V , then sW⃗=w⃗,u⃗ ≽ su⃗ iff sW⃗=w⃗,u⃗ ≽′ su⃗.

Roughly speaking, CE says that the normality ordering when restricted to worlds character-
ized by settings of the variables in V is the same in M and M ′. (Actually, CE says less than
this. I could have taken a stronger version of CE that would be closer to this English gloss:
if W⃗ ∪ W⃗ ′ ⊆ V , then sW⃗=w⃗,u⃗ ≽ sW⃗ ′=w⃗′,u⃗ iff sW⃗=w⃗,u⃗ ≽′ sW⃗ ′=w⃗′,u⃗. The version of CE
that I consider suffices to prove the results below, but this stronger version seems reasonable
as well.) With the alternative definition, where the normality ordering is on contexts, the
analogue of CE is even simpler: it just requires that the normality ordering in M and M ′ is
identical (since the set of contexts is the same in both models).

For the remainder of this section, I work with extended causal models M and M ′ and use
the definition of causality that takes normality into account (i.e., I use AC2+(a) for the original
and updated definition and use AC2+(am) for the modified definition), although, for ease of
exposition, I do not mention this explicitly. As above, I take ≽ and ≽′ to be the preorders in
M and M ′, respectively.

Note that Theorem 4.4.2 applies to the modified HP definition even for extended causal
models. Thus, again, stability is not a serious problem for the modified HP definition in
extended causal models. I now provide a condition that almost ensures that non-causality is
stable for all the versions of the HP definition. Roughly speaking, I want it to be abnormal for
a variable to take on a value other than that specified by the equations. Formally, say that in
world s, V takes on a value other than that specified by the equations in (M, u⃗) if, taking W⃗ ∗

to consist of all endogenous variables in M other than V , if w⃗∗ gives the values of the variables
in W⃗ ∗ in s, and v is the value of V in s, then (M, u⃗) |= [W⃗ ∗ ← w⃗∗](V ̸= v). For future
reference, note that it is easy to check that if W⃗ ⊆ W⃗ ∗ and (M, u⃗) |= [W⃗ ← w⃗](V ̸= v),
then V takes on a value other than that specified by the equations in sW⃗←w⃗,u⃗. The normality
ordering in M respects the equations for V relative to u⃗ if, for all worlds s such that V takes
on a value in s other than that specified by the equations in (M, u⃗), we have s ̸≽ su⃗ (where
≽ is the preorder on worlds in M ). Using the alternative definition of normality, there is an
analogous condition: if u⃗′ is a context where V takes on a value different from that specified
by the equations in (M, u⃗), then we have u⃗′ ̸≽ u⃗. Since the normality ordering on contexts is
the same in M and M ′, this means that unless u⃗′ ̸≽ u⃗, the value that V takes on in context u⃗′

in M ′ must be that specified by the equations in (M, u⃗).
To show that B = 1 is a cause of VS = 1 in (M2n+1, u1), we consider a witness s where

An+1 = 0. If we assume that the normality ordering in M2n+1 respects the equations for
An+1 relative to u1, then s is less normal than su1 , so cannot be used to satisfy AC2+(a) or
AC2+(am) when we are considering causality in (M,u1). As a consequence, it follows that
B = 1 is not a cause of VS = 1 in M2n+1 under this assumption. More generally, as I now
show, if the normality ordering respects the equations for all the variables added in going from
M to a conservative extension M ′ relative to u⃗, then causality in (M, u⃗) is stable. Exactly
how stable it is depends in part on the variant of the HP definition considered. The next
theorem gives the key result.
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4.4 The Stability of (Non-)Causality 121

Theorem 4.4.4 Suppose that M and M ′ are extended causal models such that M ′ is a
conservative extension of M , the normality ordering in M ′ respects the equations for all
variables in V ′ − V relative to u⃗, where V and V ′ are the sets of endogenous variables in M
and M ′, respectively, and all the variables in ϕ are in V . Then the following holds:

(a) According to the original and updated HP definition, if X⃗ = x⃗ is not a cause of ϕ in
(M, u⃗), then either X⃗ = x⃗ is not a cause of ϕ in (M ′, u⃗) or there is a strict subset X⃗1

of X⃗ such that X⃗1 = x⃗1 is a cause of ϕ in (M, u⃗), where x⃗1 is the restriction of x⃗ to
the variables in X⃗1.

(b) According to the modified HP definition, X⃗ = x⃗ is a cause of ϕ in (M, u⃗) iff X⃗ = x⃗
is a cause of ϕ in (M ′, u⃗) (so, in particular, a cause of ϕ in (M ′, u⃗) cannot involve a
variable in V ′ − V).

It is immediate from part (b) that, under the assumptions of Theorem 4.4.4, both causality
and non-causality are stable for the modified HP definition. It is also immediate from part
(a) that, for the original and updated HP definition, non-causality is stable for causes that are
single conjuncts. I believe that for the original HP definition, non-causality is stable even for
causes that are not single conjuncts (recall that with the original HP definition, there can be
causes that are not single conjuncts once we take normality into account; see Example 3.2.3),
although I have not yet proved this. However, for the updated HP definition, non-causality
may not be stable for conjuncts that are not single conjuncts (see Example 4.8.2 below). But
we cannot get too much alternation. Given the appropriate assumptions about the normality
ordering, the following result shows that X⃗ = x⃗ cannot go from being a cause of ϕ to not
being a cause back to being a cause again according to the original and updated HP definition;
if we have three models M , M ′, and M ′′, where M ′ is a conservative extension of M , M ′′

is a conservative extension of M ′, and X⃗ = x⃗ is a cause of ϕ in (M, u⃗) and (M ′′, u⃗), then
X⃗ = x⃗ must also be a cause of ϕ in (M ′, u⃗).

Theorem 4.4.5 According to the original and updated HP definition, if (a) M ′ is a conser-
vative extension of M , (b) M ′′ is a conservative extension of M ′, (c) X⃗ = x⃗ is a cause of ϕ in
(M, u⃗) and (M ′′, u⃗), (d) the normality ordering in M ′ respects the equations for all endoge-
nous variables in M ′ not in M relative to u⃗, and (e) the normality ordering in M ′′ respects
the equations for all endogenous variables in M ′′ not in M ′ relative to u⃗, then X⃗ = x⃗ is also
a cause of ϕ in (M ′, u⃗).

Although these results show that we get stability of causality, it comes at a price, at least in
the case of the original and updated HP definition: the assumption that the normality ordering
respects the equations for a variable relative to a context u⃗ is clearly quite strong. For one
thing, for the modified HP definition, it says that there are no “new” causes of ϕ in (M ′, u⃗)
that involve variables that were added in going from M to M ′. Very roughly speaking, the
reason is the following: Because the normality ordering respects the equations in u⃗, not only
are all the new variables that are added determined by the original variables, under normal
conditions, in context u⃗, the new variables have no impact on the original variables beyond
that already determined in (M, u⃗).
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122 Chapter 4. The Art of Causal Modeling

Although it may seem reasonable to require that it be abnormal for the new variables not to
respect the equations in u⃗, recall the discussion after Example 3.2.6: the normality ordering is
placed on worlds, which are complete assignments to the endogenous variables, not on com-
plete assignments to both endogenous and exogenous variables. Put another way, in general,
the normality ordering does not take the context into account. So saying that the normality
ordering respects the equations for a variable V relative to u⃗ is really saying that, as far as
V is concerned, what happens in u⃗ is really the normal situation. Obviously, how reasonable
this assumption is depends on the example.

To see that it is not completely unreasonable, consider the assassin example used to prove
Theorem 4.4.1. It might be better to think of the variable An in this example as being three-
valued: An = 0 if assassin #n is present and puts in poison, An = 1 if assassin #n is
present and does not put in poison, and An = 2 if assassin #n is not present. Clearly the
normal value is An = 2. Take u to be the context where, in model M2n+1, An = 2. While
the potential presence a number of assassins makes bodyguard putting in antidote (part of)
a cause in (M2n+1, u), it is no longer part of a cause once we take normality into account.
Moreover, here it does seem reasonable to say that violating the equations for An relative to
u is abnormal.

These observations suggest why, in general, although the assumption that the normality
ordering respects the equations for the variables in V ′ − V relative to the context u⃗ is a strong
one, it may not be so unreasonable in practice. Typically, the variables that we do not mention
take on their expected values, and thus are not even noticed.

Theorem 4.4.4 is the best we can do. In Section 4.8.3, I give an example showing that it is
possible for X⃗ = x⃗ to go from being a non-cause of ϕ to being a cause to being a non-cause
again according to the original and updated definition, even taking normality into account.
(By Theorem 4.4.5, it must then stay a non-cause.)

There is one other issue to consider: can X = x alternate from being part of a cause of
ϕ infinitely often, even if we take normality considerations into account? In the case of the
modified HP definition, it follows easily from Theorem 4.4.4 that the answer is no.

Theorem 4.4.6 Suppose that M and M ′ are extended causal models such that M ′ is a
conservative extension of M , and the normality ordering in M ′ respects the equations for all
variables in V ′ − V relative to u⃗, where V and V ′ are the sets of endogenous variables in
M and M ′, respectively. Then X = x is part of a cause of ϕ in (M, u⃗) according to the
modified HP definition iff X = x is part of a cause of ϕ in (M ′, u⃗) according to the modified
HP definition.

Proof: If X = x is part of a cause X⃗ = x⃗ of ϕ in (M,u) according to the modified HP
definition, then by Theorem 4.4.4(b), X⃗ = x⃗ is a cause of ϕ in (M ′, u), and hence X = x is
part of a cause in (M ′, u). Conversely, if X = x is part of a cause X⃗ = x⃗ in (M ′, u), then by
Theorem 4.4.4(b) again, all the variables in X⃗ are in V , and X⃗ = x⃗ is a cause of ϕ in (M,u),
so X = x is part of a cause in (M,u).

I conjecture that, under the assumptions of Theorem 4.4.6, if X = x is not part of a cause
in (M,u) according to the updated HP definition, then it is not part of a cause according to
the original or updated HP definition in (M ′, u) either, but I have not been able to prove this.
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One final point is worth making. Recall that the model M∗
RT is not a conservative extension

of MRT and M ′
RT . The addition of the variables SA, BA, SF , and BF makes the contexts

in the two models fundamentally different. Yet, in the context u∗ in M∗
RT where the same

assumptions are made as in M ′
RT and MRT , namely, that Suzy and Billy both throw, are both

accurate, and Suzy hits first, we have the same causality ascriptions. This is not a fluke. In
Definition 4.2.1, conservative extension is defined as a relation between two models. We can
also define what it means for one causal setting (M ′, u′) to be a conservative extension of
another causal setting (M,u). The set of endogenous variables in M is still required to be
a subset of that in M ′, but now we can drop the requirement that M and M ′ use the same
exogenous variables.

Definition 4.4.7 Given causal models M ′ = ((U ′,V ′,R′),F ′) and M = ((U ,V,R),F),
the setting (M ′, u⃗′) is a conservative extension of (M, u⃗) if V ⊂ V ′, and for all contexts
u⃗, all variables X ∈ V , and all settings w⃗ of the variables in W⃗ = V − {X}, we have
(M, u⃗′) |= [W⃗ ← w⃗](X = x) iff (M ′, u⃗′) |= [W⃗ ← w⃗](X = x).

It is easy to see that, although M∗
RT is not a conservative extension of MRT or M ′

RT ,
(M∗

RT , u∗) is a conservative extension of both (MRT , u) and (M ′
RT , u).

We can further extend this definition to extended causal models by requiring that the con-
dition CE holds when restricted to the two relevant settings. That is, if W⃗ ⊆ V , we require
that sW⃗=w⃗,u⃗ ≽ su⃗ iff sW⃗=w⃗,u⃗′ ≽′ su⃗′ . For the alternative definition, we can no longer require
that the normality ordering on contexts be identical; the set of contexts is different in the two
models. Rather, I require that the normality ordering works the same way on sets definable
by formulas involving only variables in V . Formally, I require that for all Boolean combina-
tions ϕ and ϕ′ of primitive events that involve only the endogenous variables in V , we have
[[ϕ]] ≽e [[ϕ′]] iff [[ϕ]] (≽e)′ [[ϕ′]].

All the results proved in this section on conservative extensions hold without change if we
consider conservative extensions of causal settings, with just minimal changes to the proof.
(I considered conservative extensions of causal models here only because the results are a
little easier to state.) This helps explain why (M ′

RT , u) and (M∗
RT , u∗) are the same as far as

causality ascriptions go.

4.5 The Range of Variables
As I said earlier, the set of possible values of a variable must also be chosen carefully. The
appropriate set of values of a variable will depend on the other variables in the picture and
the relationship between them. Suppose, for example, that a hapless homeowner comes home
from a trip to find that his front door is stuck. If he pushes on the door with normal force,
then it will not open. However, if he leans his shoulder against it and gives a solid push, then
the door will open. To model this, it suffices to have a variable O with values either 0 or
1, depending on whether the door opens, and a variable P , with values 0 or 1 depending on
whether the homeowner gives a solid push.

In contrast, suppose that the homeowner also forgot to disarm the security system and the
system is very sensitive, so it will be tripped by any push on the door, regardless of whether
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124 Chapter 4. The Art of Causal Modeling

the door opens. Let A = 1 if the alarm goes off, A = 0 otherwise. Now if we try to model the
situation with the same variable P , we will not be able to express the dependence of the alarm
on the homeowner’s push. To deal with both O and A, we need to extend P to a 3-valued
variable P ′, with values 0 if the homeowner does not push the door, 1 if he pushes it with
normal force, and 2 if he gives it a solid push.

Although in most cases, a reasonable choice for the range of the variables in a model is
not hard to come by, there are some important independence principles that apply. That is the
topic of the next section.

4.6 Dependence and Independence

The whole notion of intervention requires that we be able to set variables independently. This
means that values of different variables should not correspond to logically related events. For
suppose that we had a model with variable H1 and H2, where H1 represents “Martha says
‘hello’ ” (i.e., H1 = 1 if Martha says “hello” and H1 = 0 otherwise), and H2 represents
“Martha says ‘hello’ loudly”. The intervention H1 = 0 ∧ H2 = 1 is meaningless; it is
logically impossible for Martha not to say “hello” and to say “hello” loudly.

For this reason, I was careful to say in the examples in Section 4.1 that the variables added
to help in structuring the scenarios were independent variables, not ones defined in terms of
the original variables. Thus, for example, the variable D that was added in Example 4.1.1,
whose equation is given as D = ¬S ∧ A, can be thought of as a switch that turns on if S
makes the route from A to C active and A is on; in particular, it can be set to 1 even if, say, A
is off.

It is unlikely that a careful modeler would choose variables that have logically related
values. However, the converse of this principle, that the different values of any particular
variable should be logically related (in particular, mutually exclusive), is less obvious and
equally important. Consider Example 2.3.3. Although, in the actual context, Billy’s rock will
hit the bottle if Suzy’s doesn’t, this is not a necessary relationship. Suppose that, instead of
using two variables SH and BH , we try to model the scenario with a variable H that takes the
value 1 if Suzy’s rock hits and 0 if Billy’s rock hits. If BS = 1 no matter who hits the bottle
(i.e., no matter what the value of H), then it is not hard to verify that in this model, there is
no contingency such that the bottle’s shattering depends on Suzy’s throw. The problem is that
H = 0 and H = 1 are not mutually exclusive; there are possible situations in which both
rocks hit or neither rock hits the bottle. Using the language from earlier in this chapter, this
model is insufficiently expressive; there are situations significant to the analysis that cannot
be represented. In particular, in this model, we cannot consider independent interventions on
the rocks hitting the bottle. As the discussion in Example 2.3.3 shows, it is precisely such an
intervention that is needed to establish that Suzy’s throw (and not Billy’s) is the actual cause
of the bottle shattering.

Although these rules are simple in principle, their application is not always transparent.
For example, they will have particular consequences for how we should represent events that
might occur at different times. Consider the following example.
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Example 4.6.1 Suppose that the Careless Camper (CC for short) has plans to go camping
on the first weekend in June. He will go camping unless there is a fire in the forest in May. If
he goes camping, he will leave a campfire unattended, and there will be a forest fire. Let the
variable C take the value 1 if CC goes camping and 0 otherwise. How should the state of the
forest be represented?

There appear to be at least three alternatives. The simplest proposal would be to use a
variable F that takes the value 1 if there is a forest fire at some time and 0 otherwise. But in
that case, how should the dependency relations between F and C be represented? Since CC
will go camping only if there is no fire (in May), we would want to have an equation such as
C = ¬F . However, since there will be a fire (in June) iff CC goes camping, we would also
need F = C. This representation is clearly not expressive enough, since it does not let us
make the clearly relevant distinction between whether the forest fire occurs in May or June.
As a consequence, the model is not recursive, and the equations have no consistent solution.
A second alternative would be to use a variable F ′ that takes the value 0 if there is no fire, 1
if there is a fire in May, and 2 if there is a fire in June. But now how should the equations be
written? Since CC will go camping unless there is a fire in May, the equation for C should
say that C = 0 iff F ′ = 1. And since there will be a fire in June if CC goes camping, the
equation for F ′ should say that F ′ = 2 if C = 1. These equations are highly misleading in
what they predict about the effects of interventions. For example, the first equation tells us
that intervening to create a forest fire in June would cause CC to go camping in the beginning
of June. But this seems to get the causal order backward!

The third way to model the scenario is to use two separate variables, F1 and F2, to represent
the state of the forest at separate times. F1 = 1 will represent a fire in May, and F1 = 0
represents no fire in May; F2 = 1 represents a fire in June and F2 = 0 represents no fire in
June. Now we can write our equations as C = 1 − F1 and F2 = C × (1 − F1). This
representation is free from the defects that plague the other two representations. We have no
cycles, and hence there will be a consistent solution for any value of the exogenous variables.
Moreover, this model correctly tells us that only an intervention on the state of the forest in
May will affect CC’s camping plans.

The problem illustrated in this example could also arise in Example 2.4.1. Recall that in
that example, there was a variable BMC that represented Billy’s medical condition, with pos-
sible values 0 (Billy feels fine on both Tuesday and Wednesday), 1 (Billy feels sick Tuesday
morning and fine Wednesday), 2 (Billy feels sick both Tuesday and Wednesday), and 3 (Billy
feels fine Tuesday and is dead on Wednesday). Now suppose that we change the story so that
the second dose has no impact, but if Billy feels fine on Tuesday, he will do a dangerous stunt
dive on Wednesday and die. If we add a variable SD that captures whether Billy does a stunt
dive, then SD = 1 if BMC is either 0 or 3 and BMC = 3 if SD = 1; again we get circularity.
What this shows is that the problem is due to the combination of having a causal model with a
variable X whose values correspond to different times together with another variable causally
“sandwiched” between the different values of X .

Similarly, the first representation suggested in Example 4.6.1 is inappropriate only because
it is important for the example when the fire occurs. The model would be insufficiently ex-
pressive unless it could capture that. However, if the only effect of the forest fire that we are
considering is the level of tourism in August, then the first representation may be perfectly
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126 Chapter 4. The Art of Causal Modeling

adequate. Since a fire in May or June will have the same impact on August tourism, we need
not distinguish between the two possibilities in our model.

All this shows that causal modeling can be subtle, especially with variables whose values
are time dependent. The following example emphasizes this point.

Example 4.6.2 It seems that being born can be viewed as a cause of one’s death. After all, if
one hadn’t been born, then one wouldn’t have died. But this sounds a little odd. If Jones dies
suddenly one night, shortly before his 80th birthday, then the coroner’s inquest is unlikely
to list “birth” as among the causes of his death. Typically, when we investigate the causes
of death, we are interested in what makes the difference between a person’s dying and his
surviving. So a model might include a variable D such that D = 1 holds if Jones dies shortly
before his 80th birthday, and D = 0 holds if he continues to live. If the model also includes a
variable B, taking the value 1 if Jones is born, 0 otherwise, then there simply is no value that
D would take if B = 0. Both D = 0 and D = 1 implicitly presuppose that Jones was born
(i.e., B = 1). Thus, if the model includes a variable such as D, then it should not also include
B, and so we will not be able to conclude that Jones’s birth is a cause of his death! More
generally, including the variable D in our model amounts to building in the presupposition
that Jones exists and lives to be 79. Only variables whose values are compatible with that
presupposition can be included in the model.

4.7 Dealing With Normality and Typicality
As we have seen, adding a normality theory to the model gives the HP definition greater
flexibility to deal with many cases. This raises the worry, however, that this gives the modeler
too much flexibility. After all, the modeler can now render any claim that A is an actual cause
of B false by simply choosing a normality order that makes the actual world su⃗ more normal
than any world s needed to satisfy AC2. Thus, the introduction of normality exacerbates the
problem of motivating and defending a particular choice of model.

There was a discussion in Chapter 3 about various interpretations of normality: statistical
norms, prescriptive norms, moral norms, societal norms, norms that are dictated by policies
(as in the Knobe-Fraser experiment), and norms of proper functioning. The law also suggests
a variety of principles for determining the norms that are used in the evaluation of actual
causation. In criminal law, norms are determined by direct legislation. For example, if there
are legal standards for the strength of seat belts in an automobile, a seat belt that did not meet
this standard could be judged a cause of a traffic fatality. By contrast, if a seat belt complied
with the legal standard, but nonetheless broke because of the extreme forces it was subjected to
during a particular accident, the fatality would be blamed on the circumstances of the accident,
rather than the seat belt. In such a case, the manufacturers of the seat belt would not be guilty
of criminal negligence. In contract law, compliance with the terms of a contract has the force
of a norm. In tort law, actions are often judged against the standard of “the reasonable person”.
For instance, if a bystander was harmed when a pedestrian who was legally crossing the street
suddenly jumped out of the way of an oncoming car, the pedestrian would not be held liable
for damages to the bystander, since he acted as the hypothetical “reasonable person” would
have done in similar circumstances. There are also a number of circumstances in which
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deliberate malicious acts of third parties are considered to be “abnormal” interventions and
affect the assessment of causation.

As with the choice of variables, I do not expect that these considerations will always suffice
to pick out a uniquely correct theory of normality for a causal model. They do, however,
provide resources for a rational critique of models.

4.8 Proofs
4.8.1 Proof of Lemma 4.2.2

Lemma 4.2.2: Suppose that M ′ is a conservative extension of M = ((U ,V,R),F). Then for
all causal formulas ϕ that mention only variables in V and all contexts u⃗, we have (M, u⃗) |= ϕ
iff (M ′, u⃗) |= ϕ.

Proof: Fix a context u⃗. Since M is a recursive model, there is some partial order ≼u⃗ on
the endogenous variables such that unless X ≼u⃗ Y , Y is not affected by X in context u⃗;
that is, unless X ≼u⃗ Y , if the exogenous variables are set to u⃗, then changing the value of
X has no impact on the value of Y according to the structural equations in M , no matter
what the setting of the other endogenous variables. Say that X is independent of a set W⃗ of
endogenous variables in (M, u⃗) if X is independent of Y in (M, u⃗) for all Y ∈ W⃗ .

Suppose that V = {X1, . . . , Xn}. Since M is a recursive model, we can assume without
loss of generality that these variables are ordered so that Xi is independent of {Xi+1, . . . , Xn}
in (M, u⃗) for 1 ≤ i ≤ n−1. (Every set V ′ of endogenous variables in a recursive model must
contain a “minimal” element X such that it is not the case that X ′ ≼u⃗ X for X ′ ∈ V ′− {X}.
If such an element did not exist, we could create a cycle. Thus, X is independent of V − {X}
in (M, u⃗). We construct the ordering by induction, finding Xi+1 by applying this observation
to V − {X1, . . . , Xi}.) I now prove by induction on j that, for all W⃗ ⊆ V , all settings w⃗
of the variables in W⃗ , and all xj ∈ R(Xj), we have (M, u⃗) |= [W⃗ ← w⃗](Xj = xj) iff
(M ′, u⃗) |= [W⃗ ← w⃗](Xj = xj): all interventions that make sense in both models produce
the same results.

For the base case of the induction, given W⃗ , let W⃗ ′ = V − (W⃗ ∪ {X1}). Choose w⃗′ such
that (M ′, u⃗) |= [W⃗ ← w⃗](W⃗ = w⃗′). Then we have

(M, u⃗) |= [W⃗ ← w⃗](X1 = x1)
iff (M, u⃗) |= [W⃗ ← w⃗, W⃗ ′ ← w⃗′](X1 = x1) [since X1 is independent of W⃗ ′ in (M, u⃗)]
iff (M ′, u⃗) |= [W⃗ ← w⃗, W⃗ ′ ← w⃗′](X1 = x1) [since M ′ is a conservative extension of M ]
iff (M ′, u⃗) |= [W⃗ ← w⃗](X1 = x1) [by Lemma 2.10.2].

This completes the proof of the base case. Suppose that 1 < j ≤ n and the result
holds for 1, . . . , j − 1; I prove it for j. Given W⃗ , now let W⃗ ′ = V − (W⃗ ∪ {Xj}), let
W⃗ ′

1 = W⃗ ′ ∩ {X1, . . . , Xj−1}, and let W⃗ ′
2 = W⃗ ′ − W⃗ ′

1. Thus, W⃗ ′
1 consists of those vari-

ables that might affect Xj that are not already being intervened on (because they are in W⃗ ),
whereas W⃗ ′

2 consists of those variables that do not affect Xj and are not already being inter-
vened on. Since W⃗ ′

2 is contained in {Xj+1, . . . , Xn}, Xj is independent of W⃗ ′
2 in (M, u⃗).
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Choose w⃗′
1 such that (M, u⃗) |= [W⃗ ← w⃗](W⃗ ′

1 = w⃗′
1). Since W⃗ ′

1 ⊆ {X1, . . . , Xj−1}, by
the induction hypothesis, (M ′, u⃗) |= [W⃗ ← w⃗](W⃗ ′

1 = w⃗′
1). By Lemma 2.10.2, we have

(M, u⃗) |= [W⃗ ← w⃗](Xj = xj) iff (M, u⃗) |= [W⃗ ← w⃗, W⃗ ′
1 ← w⃗′

1](Xj = xj), and similarly
for M ′. Choose w⃗′

2 such that (M ′, u⃗) |= [W⃗ ← w⃗, W⃗ ′
1 ← w⃗′

1](W⃗2 = w⃗′
2). Thus,

(M, u⃗) |= [W⃗ ← w⃗](Xj = xj)
iff (M, u⃗) |= [W⃗ ← w⃗, W⃗ ′

1 ← w⃗′
1](Xj = xj) [as observed above]

iff (M, u⃗) |= [W⃗ ← w⃗, W⃗ ′
1 ← w⃗′

1, W⃗
′
2 ← w⃗′

2](Xj = xj)
[since Xj is independent of W⃗ ′

2 in (M, u⃗)]
iff (M ′, u⃗) |= [W⃗ ← w⃗, W⃗ ′

1 ← w⃗′
1, W⃗

′
2 ← w⃗′

2](Xj = xj)
[since M ′ is a conservative extension of M ]

iff (M ′, u⃗) |= [W⃗ ← w⃗, W⃗ ′
1 ← w⃗′

1](Xj = xj) [by Lemma 2.10.2]
iff (M ′, u⃗) |= [W⃗ ← w⃗](Xj = xj) [as observed above].

This completes the proof of the inductive step.
It follows easily from the definition of |= that (M, u⃗) |= [W⃗ ← w⃗](ψ1 ∧ ψ2) iff (M, u⃗) |=

[W⃗ ← w⃗]ψ1 ∧ [W⃗ ← w⃗]ψ2 and (M, u⃗) |= [W⃗ ← w⃗]¬ψ1 iff (M, u⃗) |= ¬[W⃗ ← w⃗]ψ1,
and similarly for M ′. An easy induction shows that (M, u⃗) |= [W⃗ ← w⃗]ψ iff (M ′, u⃗) |=
[W⃗ ← w⃗]ψ for an arbitrary Boolean combination ψ of primitive events that mentions only
variables in V . Since causal formulas are Boolean combinations of formulas of the form
[W⃗ ← w⃗]ψ, another easy induction shows that (M, u⃗) |= ψ′ iff (M ′, u⃗) |= ψ′ for all causal
formulas ψ′.

4.8.2 Proof of Theorem 4.3.1

Theorem 4.3.1: If X = x is not a cause of Y = y in (M, u⃗) according to the updated HP
definition but is a cause according to the original HP definition, then there is a model M ′

that is a conservative extension of M such that X = x is not a cause of Y = y in (M ′, u⃗)
according to either the original or updated HP definitions.

Proof: Suppose that (W⃗ , w⃗, x′) is a witness to X = x being a cause of Y = y in (M, u⃗)
according to the original HP definition. Let (M, u⃗) |= W⃗ = w⃗∗. We must have w⃗ ̸= w⃗∗, for
otherwise it is easy to see that X = x would be a cause of Y = y in (M, u⃗) according to the
updated HP definition, with witness (W⃗ , w⃗, x′).

If M ′ is a conservative extension of M with additional variables V ′, say that (W⃗ ′, w⃗′, x′)
extends (W⃗ , w⃗, x′) if W⃗ ⊆ W⃗ ′ ⊆ W⃗ ∪ V ′ and w⃗′ agrees with w⃗ on the variables in W⃗ . I
now construct a conservative extension M ′ of M such that X = x is not a cause of Y = y
in (M ′, u⃗) according to the original HP definition with a witness extending (W⃗ ′, w⃗, x′). Of
course, this just kills the witnesses in M ′ that extend (W⃗ ′, w⃗, x′). I then show that we can
construct further conservative extensions of M to kill all other extensions of witnesses to
X = x being a cause of Y = y in (M, u⃗) according to the original HP definition.

Let M ′ be obtained from M by adding one new variable NW . All the variables have the
same equations in M and M ′ except for Y and (of course) NW . The equations for NW are
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easy to explain: if X = x and W⃗ = w⃗, then NW = 1; otherwise, NW = 0. The equations
for Y are the same in M and M ′ (and do not depend on the value of NW ) except for two
special cases. To define these cases, for each variable Z ∈ V − W⃗ , if x′′ ∈ {x, x′} define
zx′′,w⃗ as the value such that (M, u⃗) |= [X ← x′′, W⃗ ← w⃗](Z = zx′′,w⃗). That is, zx′′,w⃗′ is the
value taken by Z if X is set to x′′ and W⃗ is set to w⃗. Let V⃗ ′ consist of all variables in V other
than Y , let v⃗′ be a setting of the variables in V⃗ ′, and let Z⃗ ′ consist of all variables in V⃗ ′ − W⃗
other than X . Then we want the equations for Y in M ′ to be such that for all j ∈ {0, 1}, we
have

(M, u⃗) |= [V⃗ ′ ← v⃗′](Y = y′′) iff (M ′, u⃗) |= [V⃗ ′ ← v⃗′,NW ← j](Y = y′′)

unless the assignment V⃗ ′ ← v⃗′ results in either (a) X = x, W⃗ = w⃗, Z = zx,w⃗ for all Z ∈ Z⃗ ′,
and NW = 0 or (b) X = x′, W⃗ = w⃗, Z = zx′,w⃗ for all Z ∈ Z⃗ ′, and NW = 1. That
is, the structural equations for Y are the same in M and M ′ except for two special cases,
characterized by (a) and (b). If (a) holds, Y = y′ in M ′; if (b) holds, Y = y. Note that in
both of these cases, the value of NW is “abnormal”. If X = x, W⃗ = w⃗, and Z = zx,w⃗ for
all z ∈ Z⃗ ′, then NW should be 1; if we set X to x′ and change the values of the variables in
Z⃗ ′ accordingly, then NW should be 0.

I now show that M ′ has the desired properties and, in addition, does not make X = x a
cause in new ways.

Lemma 4.8.1

(a) It is not the case that X = x is a cause of Y = y in (M ′, u⃗) according to the updated
HP definition with a witness that extends (W⃗ , w⃗, x′).

(b) M ′ is a conservative extension of M .

(c) If X = x is a cause of Y = y in (M ′, u⃗) according to the updated (resp., origi-
nal) HP definition with a witness extending (W⃗ ′, w⃗′, x′′) then X = x is a cause of
Y = y in (M, u⃗) according to the updated (resp., original) HP definition with witness
(W⃗ ′, w⃗′, x′′).

Proof: For part (a), suppose, by way of contradiction, that X = x is a cause of Y = y
in (M ′, u⃗) according to the updated HP definition with a witness (W⃗ ′, w⃗′, x′) that extends
(W⃗ , w⃗, x′). If NW /∈ W⃗ ′, then W⃗ ′ = W⃗ . But then, since (M ′, u⃗) |= NW = 0
and (M ′, u⃗) |= [X ← x; W⃗ ← w⃗,NW = 0](Y = y′), it follows that (M ′, u⃗) |=
[X ← x, W⃗ ← w⃗](Y = y′), so AC2(bo) fails, contradicting the assumption that X = x is
a cause of Y = y in (M ′, u⃗) according to the original HP definition. Now suppose that
NW ∈ W⃗ ′. There are two cases, depending on how the value of NW is set in w⃗′. If
NW = 0, since (M ′, u⃗) |= [X ← x, W⃗ ← w,NW ← 0](Y = y′), AC2(bo) fails; and if
NW = 1, since (M ′, u⃗) |= [X ← x′, W⃗ ← w⃗,NW ← 1](Y = y), AC2(a) fails. So, in all
cases, we get a contradiction to the assumption that X = x is a cause of Y = y in (M ′, u⃗)
according to the original HP definition with a witness (W⃗ ′, w⃗′, x′) that extends (W⃗ , w⃗, x′).

For part (b), note that the only variable in V for which the equations in M and M ′ are
different is Y . Consider any setting of the variables in V other than Y . Except for the two
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special cases noted above, the value of Y is clearly the same in M and M ′. But for these
two special cases, as was noted above, the value of NW is “abnormal”, that is, it is not the
same as its value according to the equations given the setting of the other variables. It follows
that for all settings v⃗ of the variables V⃗ ′ in V other than Y and all values y′′ of Y , we have
(M, u⃗) |= [V⃗ ′ ← v⃗](Y = y′′) iff (M ′, u⃗) |= [V⃗ ′ ← v⃗](Y = y′′). Thus, M ′ is a conservative
extension of M .

For part (c), suppose that X = x is a cause of Y = y in (M ′, u⃗) according to the updated
(resp., original) HP definition with witness (W⃗ ′′, w⃗′′, x′′). Let W⃗ ′ and w⃗′ be the restrictions
of W⃗ ′′ and w⃗′′, respectively, to the variables in V . If NW /∈ W⃗ ′′ (so that W⃗ ′′ = W⃗ ′), then,
since M ′ is a conservative extension of M , it easily follows that (W⃗ ′, w⃗′, x′′) is a witness
to X = x being a cause of Y = y in (M, u⃗) according to the updated (resp. original) HP
definition. If NW ∈ W⃗ ′′, then it suffices to show that (W⃗ ′, w⃗′, x′′) is also a witness to X = x
being a cause of Y = y in (M ′, u⃗); that is, NW does not play an essential role in the witness.
I now do this.

If NW = 0 is a conjunct of W⃗ ′′ = w⃗′′, since the equations for Y are the same in M and
M ′ except for two cases, then the only way that NW = 0 can play an essential role in the
witness is if setting W⃗ ′ = w⃗′ and X = x results in W⃗ = w⃗ and Z = zx,w⃗ for all Z ∈ Z⃗ ′

(i.e., we are in the first of the two cases where the value of Y does not agree in (M, u⃗) and
(M ′, u⃗)). But then Y = y′, so if this were the case, AC2(bo) (and hence AC2(bu)) would not
hold. Similarly, if NW = 1 is a conjunct of W⃗ ′′ = w⃗′′, NW plays a role only if x′′ = x′

and setting W⃗ ′ = w⃗′ and X = x′ results in results in W⃗ = w⃗ and Z = zx′,w⃗ for all Z ∈ Z⃗ ′

(i.e., we are in the second of the two cases where the value of Y does not agree in (M, u⃗)
and (M ′, u⃗)). But then Y = y, so if this were the case, AC2(a) would not hold, and again
we would have a contradiction to X = x being a cause of Y = y in (M ′, u⃗) with witness
(W⃗ ′′, w⃗′′, x′′). Thus, (W⃗ ′, w⃗′, x′′) must be a witness to X = x being a cause of Y = y in
(M ′, u⃗), and hence also in (M, u⃗). This completes the proof of part (c).

Lemma 4.8.1 is not quite enough to complete the proof of Theorem 4.3.1. There may be
several witnesses to X = x being a cause of Y = y in (M, u⃗) according to the original HP
definition. Although we have removed one of the witnesses, some others may remain, so that
X = x may still be a cause of Y = y in (M ′, u⃗). But by Lemma 4.8.1(c), if there is a
witness to X = x being a cause of Y = y in (M ′, u⃗), it must extend a witness to X = x
being a cause of Y = y in (M, u⃗). We can repeat the construction of Lemma 4.8.1 to kill
this witness as well. Since there are only finitely many witnesses to X = x being a cause of
Y = y in (M, u⃗), after finitely many extensions, we can kill them all. After this is done, we
have a causal model M∗ extending M such that X = x is not a cause of Y = y in (M∗, u⃗)
according to the original HP definition.

It is interesting to apply the construction of Theorem 4.3.1 to Example 2.8.1 (the loaded-
gun example). The variable NW added by the construction is almost identical to the extra
variable B′ (where B′ = A∧B—B shoots a loaded gun) added in Example 2.8.1 to show that
this example could be dealt with using the original HP definition. Indeed, the only difference
is that NW = 0 if A = B = C = 1, while B′ = 1 in this case. But since D = 1 if
A = B = C = 1 and NW = 0, the equations for D are the same in both causal models if
A = B = C = 1. Although it seems strange, given our understanding of the meaning of the
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variables, to have NW = 0 if A = B = C = 1, it is easy to see that this definition works
equally well in showing that A = 1 is not a cause of D = 1 in the context where A = 1,
B = 0, and C = 1 according to the original HP definition.

4.8.3 Proofs and example for Section 4.4
I start with the proof of Theorem 4.4.1.
Theorem 4.4.1: For all n ≥ 0, Mn+1 is a conservative extension of Mn. Moreover, B = 1
is not part of a cause of VS = 1 in (M2n, u1), and B = 1 is part of a cause of VS = 1 in
(M2n+1, u1), for n = 0, 1, 2, . . . (according to all variants of the HP definition).

Proof: Fix n ≥ 0. To see that M2n+1 is a conservative extension of M2n, note that, aside
from VS , the equations for all endogenous variables that appear in both M2n and M2n+1

(namely, B, VS , A1, . . . , An, PN 1, . . . ,PN n) are the same in both models. Thus, it clearly
suffices to show that, for every setting of the variables U , B, A1, . . . , An,PN 1, . . . ,PN n,
the value of VS is the same in both M2n and M2n+1. Clearly, in the context u0, VS = 0 in
both models. In the context u1, note that if both Aj and PN j are 0 for some j ∈ {1, . . . , n},
then VS = 0 in both M2n and M2n+1. (Again, recall that Aj = 0 means that assassin #j
puts poison in the coffee.) If one of Aj and PN j is 1 for all j ∈ {1, . . . , n}, then VS = 1 in
both M2n and M2n+1 (in the latter case because An+1 = 1 in (M2n+1, u1)).

The argument to show that M2n+2 is a conservative extension of M2n+1 is similar in
spirit. Now the equations for all variables but VS and PN n+1 are the same in M2n+1

and M2n+2. It clearly suffices to show that, for every setting of the variables U , B,
A1, . . . , An, An+1,PN 1, . . . ,PN n, the value of VS is the same in both M2n+1 and M2n+2.
Clearly in context u0, VS = 0 in both models. In u1, note that if both Aj and PN j are 0
for some j ∈ {1, . . . , n}, then VS = 0 in both M2n+1 and M2n+2. So suppose that one
of Aj and PN j is 1 for all j ∈ {1, . . . , n}. If An+1 = 1, then VS = 1 in both M2n+1

and M2n+2; and if An+1 = 0, then VS = B in both M2n+1 and M2n+2 (in the latter case,
because VS = PN n+1, and PN n+1 = B if An+1 = 0).

To see that B = 1 is part of a cause of VS = 1 in (M2n+1, u1) according to all variants of
the HP definition, observe that

(M2n+1, u1) |= [B ← 0, An+1 ← 0](VS = 0).

Clearly just setting B to 0 or An+1 to 0 is not enough to make VS = 0, no matter which other
variables are held at their actual values. Thus, B = 1 ∧ An+1 = 1 is a cause of VS = 1
in (M2n+1, u1) according to the modified HP definition. It follows from Theorem 2.2.3 that
B = 1 is a cause of VS = 1 in (M2n+1, u1) according to the original and updated definition
as well.

Finally, to see that, according to all the variants of the HP definition, B = 1 is not part
of a cause of VS = 1 in (M2n+2, u1), first suppose, by way of contradiction, that it is a
cause according to the original HP definition, with witness (W⃗ , w⃗, 0). By AC2(a), we must
have (M2n+2, u1) |= [B ← 0, W⃗ ← w⃗](VS = 0). Thus, it must be the case that either
(1) there is some j ≤ n + 1 such that Aj ,PN j ∈ W⃗ and in w⃗, both Aj and PN j are
set to 0; or (2) for some j ≤ n + 1, Aj ∈ W⃗ , PN j ∈ Z⃗, and Aj is set to 0 in w⃗. In
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132 Chapter 4. The Art of Causal Modeling

case (1), we must have (M2n+2, u1) |= [B ← 1, W⃗ ← w⃗](VS = 0), so AC2(bo) does
not hold. In case (2), since PN j ∈ Z⃗, PN j = 0 in the actual world, and (M2n+2, u1) |=
[B ← 1, W⃗ ← w⃗,PN j ← 0](VS = 0) (since Aj is set to 0 when W⃗ is set to w⃗), AC2(bo)
again does not hold. Thus, B = 1 is not a cause of VS = 1 in (M2n+2, u1) according to the
original HP definition. (Not surprisingly, this is just a generalization of the argument used in
Section 3.4.1.) By Theorem 2.2.3, it follows that B = 1 is not part of a cause of VS = 1 in
(M2n+2, u1) according to the updated or modified HP definition either.

I next prove Theorem 4.4.4.
Theorem 4.4.4: Suppose that M and M ′ are extended causal models such that M ′ is a
conservative extension of M , the normality ordering in M ′ respects the equations for all
variables in V ′ − V relative to u⃗, where V and V ′ are the sets of endogenous variables in M
and M ′, respectively, and all the variables in ϕ are in V . Then the following holds:

(a) According to the original and updated HP definition, if X⃗ = x⃗ is not a cause of ϕ in
(M, u⃗), then either X⃗ = x⃗ is not a cause of ϕ in (M ′, u⃗) or there is a strict subset X⃗1

of X⃗ such that X⃗1 = x⃗1 is a cause of ϕ in (M, u⃗), where x⃗1 is the restriction of x⃗ to
the variables in X⃗1.

(b) According to the modified HP definition, X⃗ = x⃗ is a cause of ϕ in (M, u⃗) iff X⃗ = x⃗
is a cause of ϕ in (M ′, u⃗) (so, in particular, a cause of ϕ in (M ′, u⃗) cannot involve a
variable in V ′ − V).

Proof: I first prove part (a) for the updated definition. Suppose that X⃗ = x⃗ is not a cause
of ϕ in (M, u⃗) according to the updated HP definition, but is a cause of ϕ in (M ′, u⃗), with
witness (W⃗ , w⃗, x⃗′). Let W⃗1 be the intersection of W⃗ with V , the set of endogenous variables
in M , let Z⃗1 = V−W⃗ , and let w⃗1 be the restriction of w⃗ to the variables in W⃗1. Since X⃗ = x⃗
is not a cause of ϕ in (M, u⃗), it is certainly not a cause with witness (W⃗1, w⃗1, x⃗′), so either
(i) (M, u⃗) |= X⃗ ̸= x⃗ ∨ ¬ϕ (i.e., AC1 is violated); (ii) (M, u⃗) |= [X⃗ ← x⃗′, W⃗1 ← w⃗1]ϕ or
sX⃗=x⃗′,W⃗1=w⃗1,u⃗

̸≽ su⃗ (i.e., AC2+(a) is violated); (iii) there exist subsets W⃗ ′
1 of W⃗1 and Z⃗ ′

1

of Z⃗1 such that if (M, u⃗) |= Z⃗ ′
1 = z⃗1 (i.e., z⃗1 gives the actual values of the variables in Z⃗ ′

1),
then (M, u⃗) ̸|= [X⃗ ← x⃗, W⃗ ′

1 ← w⃗1, Z⃗ ′
1 ← z⃗1]ϕ (i.e., AC2(bu) is violated); or (iv) there is a

strict subset X⃗1 of X⃗ such that X⃗1 = x⃗1 is a cause of ϕ in (M, u⃗), where x⃗1 is the restriction
of x⃗ to the variables in X⃗1 (i.e., AC3 is violated). Since M ′ is a conservative extension of M ,
by Lemma 4.2.2, if (i) or (iii) holds, then the same statement holds with M replaced by M ′,
showing that X⃗ = x⃗ is not a cause of ϕ in (M ′, u⃗) with witness (W⃗ , w⃗, x⃗′).

Now suppose that (ii) holds. For each variable V ∈ W⃗ − W⃗1, let v be the value of V in w⃗.
Further assume that for all V ∈ W⃗ − W⃗1, we have (M ′, u⃗) |= [X⃗ ← x⃗′, W⃗1 ← w⃗](V = v). I
show that this additional assumption leads to a contradiction. With this additional assumption,
if (M, u⃗) |= [X⃗ ← x⃗′, W⃗1 ← w⃗1]ϕ, then (M,′ u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗]ϕ, so if the reason
that X⃗ = x⃗ is not a cause of ϕ in (M, u⃗) is that AC2(a) is violated, then AC2(a) is also
violated in (M ′, u⃗), and X⃗ = x⃗ is not a cause of ϕ in (M ′, u⃗) with witness (W⃗ , w⃗, x⃗′),
a contradiction. Moreover, it follows that sX⃗=x⃗′,W⃗1=w⃗1,u⃗

= sX⃗=x⃗′,W⃗=w⃗,u⃗. By CE in the
definition of conservative extension, if sX⃗=x⃗′,W⃗1=w⃗1,u⃗

̸≽ su⃗ then sX⃗=x⃗′,W⃗1=w⃗1,u⃗
̸≽′ su⃗, and
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4.8 Proofs 133

hence sX⃗=x⃗′,W⃗=w⃗,u⃗ ̸≽′ su⃗. So if the reason that X⃗ = x⃗ is not a cause of ϕ in (M, u⃗) is that
the normality condition in AC2+(a) is violated, it is also violated in (M ′, u⃗), and again we
get a contradiction.

Thus, we must have (M ′, u⃗) |= [X⃗ ← x⃗′, W⃗1 ← w⃗1](V ̸= v) for some variable
V ∈ W⃗ − W⃗1. That means that the variable V takes on a value other than that specified
by the equations in (M ′, u⃗). Since, by assumption, M ′ respects the equations for V relative
to u⃗, we have sX⃗=x⃗′,W⃗←w⃗,u⃗ ̸≽′ su⃗, contradicting the assumption that X⃗ = x⃗ is a cause of
ϕ in (M ′, u⃗) with witness (W⃗ , w⃗, x⃗′). Either way, if (ii) holds, we get a contradiction. I
leave it to the reader to check that the same contradiction can be obtained using the alternative
version of AC2+(a) where normality is defined on contexts (and similarly for the remaining
arguments in the proof of this result).

Thus, either X⃗ = x⃗ is not a cause of ϕ in (M ′, u⃗) or X⃗1 = x⃗1 is a cause of ϕ in (M, u⃗)
for some strict subset X⃗1 of X⃗ .

I leave it to the reader to check that the same argument goes through with essentially no
change in the case of the original HP definition. For future reference, note that it also goes
through with minimal change for the modified HP definition; we simply use AC2(am) rather
than AC2(a) and drop case (iii).

For part (b), first suppose by way of contradiction that, according to the modified HP
definition, X⃗ = x⃗ is not a cause of ϕ in (M ′, u⃗) but is a cause of ϕ in (M, u⃗) with witness
(W⃗ , w⃗, x⃗′). Since M ′ is a conservative extension of M , AC2+(am) must hold for X⃗ = x⃗
with witness (W⃗ , w⃗, x⃗′). (Here again, I am using condition CE to argue that sW⃗=w⃗,X⃗=x⃗′ is
more normal than su⃗ in M ′ because this is the case in M .) Thus, if X⃗ = x⃗ is not a cause of
ϕ in M ′, AC3 must fail, and there must be a strict subset X⃗1 of X⃗ such that X⃗1 = x⃗1 is a
cause of ϕ in (M ′, u⃗), where x⃗1 is the restriction of x⃗ to X⃗1. Clearly X⃗1 = x⃗1 is not a cause
of ϕ in (M, u⃗), for otherwise X⃗ = x⃗ would not be a cause of ϕ in (M, u⃗). Thus, as observed
in the proof of part (a), since X⃗1 = x⃗1 is a cause of ϕ in (M ′, u⃗) according to the modified
HP definition, there must be a strict subset X⃗2 of X⃗1 such that X⃗2 = x⃗2 is a cause of ϕ in
(M, u⃗) according to the modified HP definition, where x⃗2 is the restriction of x⃗ to X⃗2. But
this contradicts the assumption that X⃗ = x⃗ is a cause of ϕ in (M, u⃗), since then AC3 does not
hold.

For the converse, suppose that X⃗ = x⃗ is a cause of ϕ in (M ′, u⃗) with witness (W⃗ , w⃗, x⃗′).
Thus (M ′, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗]¬ϕ. Let X⃗1 = X⃗∩V , let W⃗1 = W⃗∩V , let X⃗2 = X⃗−X⃗1,
let W⃗2 = W⃗ − W⃗1, and let x⃗′

i and w⃗i be the restrictions of x⃗′ and w⃗ to the variables in X⃗i

and W⃗i, respectively, for i = 1, 2. Since the normality ordering in M ′ respects the equa-
tions for all the variables in V ′ − V relative to u⃗, it is not hard to show that (M ′, u⃗) |=
[X⃗1 ← x⃗′

1, W⃗1 ← w⃗1](X⃗2 = x⃗′
2 ∧ W⃗2 = w⃗2). For otherwise, sX⃗←x⃗′,W⃗←W⃗ ,u⃗ ̸≽ su⃗, and

AC2+(am) would not hold, contradicting the assumption that X⃗ ′ = x⃗′ is a cause of ϕ in
(M ′, u⃗) with witness (W⃗ , w⃗, x⃗′). Since (M ′, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗]¬ϕ, it follows by
Lemma 2.10.2 that (M ′, u⃗) |= [X⃗1 ← x⃗′

1, W⃗1 ← w⃗1]¬ϕ. Since we are dealing with the
modified HP definition, (M ′, u⃗) |= (W⃗ = w⃗) ∧ ϕ, so X⃗1 must be nonempty. We must have
X⃗1 = X⃗ , otherwise X⃗ = x⃗ cannot be a cause of ϕ in (M ′, u⃗); we would have a violation
of AC3. I claim that X⃗ = x⃗ is a cause of ϕ in (M, u⃗), as desired. For if not, we can apply
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134 Chapter 4. The Art of Causal Modeling

the same argument as in part (a) (which, as I observed above, also holds for the modified HP
definition) to show that there must be a strict subset X⃗1 of X⃗ such that X⃗1 = x⃗1 is a cause of
ϕ in (M ′, u⃗), where x⃗1 is the restriction of x⃗ to X⃗1. But this contradicts the assumption that
X⃗ = x⃗ is a cause of ϕ in (M ′, u⃗).

Theorem 4.4.5: According to the original and updated HP definition, if (a) M ′ is a conser-
vative extension of M , (b) M ′′ is a conservative extension of M ′, (c) X⃗ = x⃗ is a cause of ϕ in
(M, u⃗) and (M ′′, u⃗), (d) the normality ordering in M ′ respects the equations for all endoge-
nous variables in M ′ not in M relative to u⃗, and (e) the normality ordering in M ′′ respects
the equations for all endogenous variables in M ′′ not in M ′ relative to u⃗, then X⃗ = x⃗ is also
a cause of ϕ in (M ′, u⃗).

Proof: The same argument work for both the original and updated HP definition. Suppose
by way of contradiction that X⃗ = x⃗ is not a cause of ϕ in (M ′, u⃗). By Theorem 4.4.1(a),
there must be a strict subset X⃗1 of X⃗ such that X⃗1 = x⃗1 is a cause of ϕ in (M ′, u⃗), where x⃗1

is the restriction of x⃗ to the variables in X⃗1. But X⃗1 = x⃗1 cannot be a cause of ϕ in (M, u⃗),
for then, by AC3, X⃗ = x⃗ would not be a cause of ϕ in (M, u⃗). By Theorem 4.4.1(a) again,
there must be a strict subset X⃗2 of X⃗1 such that X⃗2 = x⃗2 is a cause of ϕ in (M, u⃗), where
x⃗2 is the restriction of x⃗ to X⃗2. But then, by AC3, X⃗ = x⃗ cannot be a cause of ϕ in (M, u⃗),
giving us the desired contradiction.

I next give an example showing that it is possible for X⃗ = x⃗ to go from being a non-cause
of ϕ to being a cause to being a non-cause again according to the updated HP definition, even
taking normality into account, showing that Theorem 4.4.5 is the best we can do. Because
this type of behavior can happen only if causes are not single conjuncts, it is perhaps not so
surprising that the example is a variant of Example 2.8.2, which shows that according to the
updated HP definition, a cause may involve more than one conjunct.

Example 4.8.2 I start with a simplified version of the model in Example 2.8.2, where there
is no variable D′. Again, A votes for a candidate. A’s vote is recorded in two optical scanners
B and C. D collects the output of the scanners. The candidate wins (i.e., WIN = 1) if any
of A, B, or D is 1. The value of A is determined by the exogenous variable. The following
structural equations characterize the remaining variables:

B = A,

C = A,

D = B ∧ C,

WIN = A ∨B ∨D.

Call the resulting causal model M . In the actual context u, A = 1, so B = C = D =
WIN = 1. Assume that all worlds in M are equally normal.

I claim that B = 1 is a cause of WIN = 1 in (M,u) according to the updated HP
definition. To see this, take W⃗ = {A}. Consider the contingency where A = 0. Clearly if
B = 0, then WIN = 0, and if B = 1, then WIN = 1. It is easy to check that AC2 holds.
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Moreover, since B = 1 is a cause of WIN = 1 in (M,u), by AC3, B = 1 ∧ C = 1 cannot
be a cause of WIN = 1 in (M,u).

Now consider the model M ′ from Example 2.8.2. Recall that it is just like M , except that
there is one more exogenous variable D′, where D′ = B ∧ ¬A. The equation for WIN now
becomes WIN = A ∨ D′ ∨ D. All the other equations in M ′ are the same as those in M .
Define the normality ordering in M ′ so that it respects the equations for D′ relative to u: all
worlds where D′ = B ∧ ¬A are equally normal; all worlds where D′ ̸= B ∧ ¬A are also
equally normal, but less normal than worlds where D′ = B ∧ ¬A.

It is easy to see that M ′ is a conservative extension of M . Since D′ does not affect any
variable but WIN , and all the equations except that for WIN are unchanged, it suffices to
show that for all settings of the variables other than D′ and WIN , WIN has the same value
in context u in both M and M ′. Clearly if A = 1 or D = 1, then WIN = 1 in both M and
M ′. So suppose that we set A = D = 0. Now if B = 1, then D′ = 1 (since A = 0), so again
WIN = 1 in both M and M ′. In contrast, if B = 0, then D′ = 0, so WIN = 0 in both M
and M ′. Condition CE clearly holds as well. As shown in Example 2.8.2, B = 1 ∧ C = 1 is
a cause of WIN = 1 in (M ′, u).

Finally, consider the model M ′′ that is just like M ′ except that it has one additional variable
D′′, where D′′ = D ∧ ¬A and the equation for WIN becomes WIN = A ∨D′ ∨D′′. All
the other equations in M ′′ are the same as those in M ′. Define the normality ordering in M ′

so that it respects the equations for both D′ and D′′ relative to u.
It is easy to check that M ′′ is a conservative extension of M ′. Since D′′ does not affect

any variable but WIN , and all the equations except that for WIN are unchanged, it suffices to
show that for all settings of the variables other than D′′ and WIN , WIN has the same value
in context u in both M and M ′. Clearly if A = 1 or D′ = 1, then WIN = 1 in both M ′ and
M ′′. And if A = D = 0, then D′ = 1 iff D = 1, so again the value of WIN is the same in
M ′ and M ′′. Condition CE clearly holds as well.

Finally, I claim that B = 1 ∧ C = 1 is no longer a cause of WIN = 1 in (M ′′, u)
according to the updated HP definition. Suppose, by way of contradiction, that it is, with
witness (W⃗ , w⃗, x⃗′). A = 0 must be a conjunct of W⃗ = w⃗. It is easy to see that either D′ = 0
is a conjunct of W⃗ = w⃗ or D′ /∈ W⃗ , and similarly for D′′. Since D′ = D′′ = 0 in the context
u and (M ′′, u) |= [A ← 0, D′ ← 0, D′′ ← 0](WIN = 0), it easily follows that AC2(bu)
does not hold, regardless of whether D′ and D′′ are in W⃗ .

Thus, B = 1∧C = 1 goes from not being a cause of WIN = 1 in (M,u) to being a cause
of WIN = 1 in (M ′, u) to not being a cause of of WIN = 1 in (M ′′, u).

Notes
Paul and Hall [2013], among many others, seem to take it for granted that causality should be
objective, but they do express sympathy for what they call a “mixed approach” that “would be
sensitive to the need to give a suitably objective account of the causal structure of the world,
yet recognize that any account that can do justice to our causal intuitions will have to have
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136 Chapter 4. The Art of Causal Modeling

some pragmatic features . . . ” [Paul and Hall 2013, p. 254]. Arguably, the HP approach is
such a mixed approach.

Most of the discussion in Sections 4.1–4.4 is taken from [Halpern 2014a]. The example
regarding different causes of a traffic accident is a variant of an example originally due to
Hanson [1958].

Issues of stability have been considered before. Strevens [2008] provides an example
where what Strevens calls a cause can become a non-cause if extra variables are added ac-
cording to Woodward’s [2003] definition of causality (actually, Strevens considered what
Woodward called a contributing cause); Eberhardt [2014] shows that this can also happen
for type causality using Woodward’s definition. However, [Halpern 2014a] seems to have
been the first systematic investigation of stability. Huber [2013] defines causality using a
ranking function on worlds and proposes a condition similar in spirit to that of a normality
ordering respecting the equations (although he does not apply it in the context of stability).

Example 4.1.1 is due to Spohn [personal communication, 2012]. Example 4.1.2 is due to
Weslake [2015]. Example 4.1.3 is a slight simplification of an example due to Hall [2007].
(Hall [2007] also has variables C and F such that C = B and F = E; adding them does
not affect any of the discussion here (or in Hall’s paper).) Of the conclusion that D = 1
is a cause of E = 1 in (M ′, u), Hall [2007] says, “This result is plainly silly, and doesn’t
look any less silly if you insist that causal claims must always be relativized to a model.” I
disagree. To be more precise, I would argue that Hall has in mind a particular picture of the
world: that captured by model M . Of course, if that is the “right” picture of the world, then
the conclusion that D = 1 is a cause of B = 1 is indeed plainly silly. But for the story with
Xavier, it does not seem (to me) at all unreasonable that D = 1 should be a cause of B = 1.

Example 4.1.4 is due to Glymour et al. [2010]; Example 4.1.5 is taken from [Halpern
2015a]. Example 4.6.1 is a simplification of an example introduced by Bennett [1987]. Hitch-
cock [2012] has an extended discussion of Example 4.6.1.

Most of the discussion in Sections 4.5–4.7 is taken from [Halpern and Hitchcock 2010].
In particular, the question of how the variables and the ranges of variables in a causal model
should be chosen is discussed there. Woodward [2016] picks up on the theme of variable
choice and provides some candidate criteria, such as choosing variables that are well-defined
targets for interventions and choosing variables that can be manipulated to any of their possi-
ble values independently of the values taken by other variables.

The issue of the set of possible values of a variable is related to discussions about the
metaphysics of “events”. (Note that usage of the word “event” in the philosophy literature
is different from the typical usage of the word in computer science and probability, where
an event is just a subset of the state space. See the notes at the end of Chapter 2 for more
discussion.) Suppose that the homeowner in Section 4.5 pushed on the door with enough
force to open it. Some philosophers, such as Davidson [1967], have argued that this should
be viewed as just one event, the push, that can be described at various levels of detail, such
as a “push” or a “hard push”. Others, such as Kim [1973] and Lewis [1986c], have argued
that there are many different events corresponding to these different descriptions. If we take
the latter view, which of the many events that occur should be counted as causes of the door’s
opening? In the HP definition, these questions must all be dealt with at the time that the
variables describing a model and their ranges are chosen. The question then becomes “what
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choice of variables describes the effects of interventions in a way that is not misleading or
ambiguous”. Of course, whether a particular description does so is a matter that can be argued
(by lawyers, among others).

The fact that someone is not held liable for damages if he acts as the hypothetical “rea-
sonable person” would have done in similar circumstances is discussed by Hart and Honoré
[1985, pp. 142ff.]. They also discuss circumstances under which malicious acts of third par-
ties are considered to be “abnormal” interventions and affect the assessment of causation (see
[Hart and Honoré 1985, pp. 68]).
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Chapter 5

Complexity and Axiomatization

The complexities of cause and effect defy analysis.

Douglas Adams, Dirk Gently’s Holistic Detective Agency

Is it plausible that people actually work with structural equations and (extended) causal mod-
els to evaluate actual causation? People are cognitively limited. If we represent the structural
equations and the normality ordering in what is perhaps the most obvious way, the models
quickly become large and complicated, even with a small number of variables.

To understand the problem, consider a doctor trying to deal with a patient who has just
come in reporting bad headaches. Let’s keep things simple. Suppose that the doctor considers
only a small number of variables that might be relevant: stress, constriction of blood vessels
in the brain, aspirin consumption, and trauma to the head. Again, keeping things simple,
assume that each of these variables (including headaches) is binary; that is, has only two
possible values. So, for example, the patient either has a headache or not. Each variable may
depend on the value of the other four. To represent the structural equation for the variable
“headaches”, a causal model will need to assign a value to “headaches” for each of the sixteen
possible values of the other four variables. That means that there are 216—over 60,000!—
possible equations for “headaches”. Considering all five variables, there are 280 (over 1024)
possible sets of equations. Now consider the normality ordering. With five binary variables,
there are 25 = 32 possible assignments of values to these variables. Think of each of these
assignments as a “possible world”. There are 32! (roughly 2.6 × 1035) strict orders of these
32 worlds, and many more if we allow for ties or incomparable worlds. Altogether, the doctor
would need to store close to two hundred bits of information just to represent this simple
extended causal model.

Now suppose we consider a more realistic model with 50 random variables. Then the
same arguments show that we would need as many as 250×249 possible sets of equations, 250

possible worlds, and over 250×250 normality orderings (in general, with n binary variables,
there are 2n2

n−1

sets of equations, 2n possible worlds, and (2n)! ∼ 2n2
n

strict orders). Thus,
with 50 variables, roughly 50×250 bits would be needed to representing a causal model. This
is clearly cognitively unrealistic.
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140 Chapter 5. Complexity and Axiomatization

If the account of actual causation given in the preceding chapters is to be at all realistic
as a model of human causal judgment, some form of compact representation will be needed.
Fortunately, as I show in this chapter, in practice, things are likely to be much better; it is
quite reasonable to expect that most “natural” models can be represented compactly. At a
minimum, we cannot use these concerns about compact representations to argue that people
cannot be using (something like) causal models to reason about causality.

But even given a compact representation, how hard is it to actually compute whether X =
x is a cause of Y = y? It is not hard to exhaustively check all the possibilities if there are
relatively few variables involved or in structures with a great deal of symmetry. This has been
the case for all the examples I have considered thus far. But, as we shall see in Chapter 8,
actual causality can also be of great use in, for example, reasoning about the correctness
of programs and in answering database queries. Large programs and databases may well
have many variables, so now the question of the complexity of determining actual causality
becomes a significant issue. Computer science provides tools to formally characterize the
complexity of determining actual causation; I discuss these in Section 5.3.

In many cases, we do not have a completely specified causal model. Rather, what we know
are certain facts about the model: for example, we might know that, although X is actually
1, if X were 0, then Y would be 0. The question is what conclusions about causality we can
draw from such information. In Section 5.4, I discuss axioms for causal reasoning.

Note to the reader: the four sections in this chapter can be read independently. The material
in this chapter is more technical than that of the other chapters in this book; I have deferred
the most technical to Section 5.5. The rest of the material should be accessible even to readers
with relatively little mathematical background.

5.1 Compact Representations of Structural Equations

The calculations above on the complexity of representing structural equations just gave naive
upper bounds. Suppose that whether the patient has a headache is represented by the variable
H , and the patient has a headache iff any of the conditions X1, . . . , Xk holds. Rather than
painfully writing out the 2k possible settings of the variables X1, . . . , Xk and the correspond-
ing setting of H , we can simply write one line: H = X1 ∨ . . . ∨ Xk. Indeed, as long as all
variables are binary, we can always describe the effect of X1, . . . , Xk on H by a single propo-
sitional formula. However, in general, this formula will have a length that is exponential in k;
we cannot count on it having a short description as in this example. So, in the worst case, we
have either 2k short equations or one long equation. Can anything be done to mitigate this?

The first step toward the goal of getting a compact representation comes from the obser-
vation that similar representational difficulties arise when it comes to reasoning about proba-
bility. For example, if a doctor would like to reason probabilistically about a situation where
there are 50 binary variables describing symptoms and potential diseases that a patient might
have, just describing a probability distribution on the 250 possible worlds would also require
250 (more precisely, 250 − 1) numbers. Bayesian networks have been used to provide com-
pact representations of probability distributions; they exploit (conditional) independencies
between variables. As I mentioned in the notes to Chapter 2, the causal networks that we have
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5.1 Compact Representations of Structural Equations 141

been using to describe causal models are similar in spirit to Bayesian networks. This sim-
ilarity is quite suggestive; the same ideas that allow Bayesian networks to provide compact
representations of probability distributions can be applied in the setting of causal models.

Although a thorough discussion of Bayesian networks is well beyond the scope of this
book, it is easy to see where independence comes in, both in the probabilistic setting and in
the setting of causality. If X1, . . . , Xn are independent binary variables, then we can represent
a probability distribution on the 2n possible worlds generated by these variables using only
n numbers rather than 2n numbers. Specifically, the values Pr(Xi = 0), i = 1, . . . , n,
completely determine the distribution. From them, we can compute Pr(Xi = 1) for i =
1, . . . , n. The probability Pr(X1 = i1 ∧ . . . Xn = in) for ij ∈ {0, 1}, j = 1, . . . , n, is then
determined, thanks to the assumption that X1, . . . , Xn are independent.

Of course, it is rarely the case that we are considering a situation described by n variables
that are all independent of each other. Most situations of interest involve variables that are
somehow related to each other. However, it is still the case that there are often some variables
that are (conditionally) independent of others. It turns out that if no variable depends on
too many other variables, then we can get a significantly more compact representation of
the distribution. Similarly, if the structural equations are such that each variable depends
on the values of only a few other variables, then we can again get a significantly simpler
representation of the equations.

Consider the model M ′
RT for the rock-throwing example again. The variable BS is affected

by BT ; if ST = 0 (Suzy doesn’t throw), then BS = BT . However, the effect of BT on BS
is mediated by BH . Once we know the value of BH , the value of BS is irrelevant. We can
think of BS as being independent of BT , conditional on BH . Similarly, BS is independent
of ST given SH . So, although BS is affected by all of ST , BT , BH , and SH , its value is
completely determined by SH and BH . This is made clear by the equation that we used for
BS : BS = SH ∨ BH .

A causal network describes these conditional independencies. The key point is that the
value of a variable in the graph is completely determined by the values of its parents in the
graph. As long as each variable has at most k parents in the graph, we can describe the struc-
tural equations using 2kn equations in the worst case, rather than 2n−1n equations. (Needless
to say, the connection to Bayesian networks is not purely coincidental!) Again, if all variables
are binary, we can effectively combine the 2kn or 2n−1n into one formula, but in the worst
case, the length of the formula will be comparable to the total length of the short equations
corresponding to each setting.

In practice, it often seems to be the case that the value of each variable in a causal network
is determined by the values of at most k other variables, where k is relatively small. And
when some variable does depend on quite a few other variables, we can sometimes get away
with ignoring many of these variables because their impact is relatively small. Alternatively,
we can hope that, if the value of a variable depends on that of many variables, the dependence
is a simple one, as in the case of the headache example above, so that it can be described by
a short equation, perhaps with a few special cases. To take just one example, consider voting.
The outcome of a vote may well depend on how each voter votes, and there can be many
voters. But voting rules can typically be described by relatively simple equations (majority
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142 Chapter 5. Complexity and Axiomatization

rules; if there are more than two candidates, someone must get more than 50% of the vote or
there is a runoff; no more than 20% can abstain; . . . ).

The bottom line here is that it seems likely that, just as with the probability distributions
that arise in practice, the structural equations that arise in practice are likely to have compact
representations. Of course, this is a statement that needs to be experimentally verified. But it is
worth pointing out that in all the examples given in this book, the equations can be represented
compactly.

These compact representations have an added benefit. Recall that in Section 2.5, where I
discussed adding probability to structural equations, I pointed out that it was useful to have
a natural way to represent certain probabilistic facts. Bayesian networks go a long way to
helping in this regard. However, they are not a complete solution. For example, there is no
natural way to represent in a Bayesian network the fact that counterfactual outcomes such
as “the bottle would have toppled over had only Suzy’s rock hit it” and “the bottle would
have toppled over had only Billy’s rock hit it” are independent (see Example 2.5.4), using
only the variables we have used for the rock-throwing example so far. However, if we add
variables SO and BO to the model that characterize whether the bottle would have toppled
over if Suzy (resp., Billy) had hit it, and take these variables to be determined by the context,
then we can easily say that these two outcomes are independent. Even with the variables
used in Example 2.5.4, we can say, for example, that Billy throwing and Suzy throwing are
independent events. Of course, it is not at all clear that these variables are independent; it is
easy to imagine that Suzy throwing can influence Billy throwing, and vice versa, so it is more
likely that both throw than that only one of them throws. The point is that using a Bayesian
network, we can represent these probabilistic independencies. Not surprisingly, here too the
choice of variables used to describe the model can make a big difference.

5.2 Compact Representations of the Normality Ordering
I now turn to the problem of representing a normality ordering compactly. There are two main
ideas. We have already seen the first: taking advantage of independencies. Although we used
a partial preorder ≽ to represent the normality ordering, not probability, it turns out that the
“technology” of Bayesian networks can be applied far more broadly than just probability; we
just need a structure that has a number of minimal properties and an analogue of (conditional)
independence. Somewhat surprisingly perhaps, it turns out that partial preorders fit the bill.

The second idea can be applied if the normality ordering largely reflects the causal structure
in the sense that what is normal is what agrees with the equations. An example should make
this point clearer: Suppose that the causal structure is such that if the patient suffers a head
trauma, then he would also suffer from headaches. Then we would expect a world where the
patient has a headache and a trauma to be more normal, all else being equal, than a world in
which the patient has a trauma and does not have a headache. In this way, a representation of
causal structure can do “double duty” by representing much of the normality order as well.

In the remainder of this section, I discuss these ideas in more detail. I remark that although
I talk about a partial preorder on worlds in this section, these ideas apply equally well to
the alternate representation of normality that involves a partial preorder on contexts. Since a
context u⃗ can be identified with the world su⃗, a partial preorder on worlds induces a partial
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5.2 Compact Representations of the Normality Ordering 143

preorder on contexts and vice versa (although not all worlds may be of the form su⃗ for some
context u⃗).

5.2.1 Algebraic plausibility measures: the big picture
Probability measures are just one way of representing uncertainty; many other representations
of uncertainty have been discussed in the literature. In particular, many of the representations
of typicality and normality mentioned in the bibliographic notes for Chapter 3 can be viewed
as representations of uncertainty. This includes partial preorders; one way of interpreting
s ≽ s′ is that the world s is more likely than the world s′. Plausibility measures are gen-
eralized representations of uncertainty; probability and all the representations of uncertainty
mentioned in the notes of Chapter 3 are instances of plausibility measures.

The basic idea behind plausibility measures is straightforward. A probability measure on
a finite set W of worlds maps subsets of W to [0, 1]. A plausibility measure is more general;
it maps subsets of W to some arbitrary set D partially ordered by ≤. If Pl is a plausibility
measure, then Pl(U) denotes the plausibility of U . If Pl(U) ≤ Pl(V ), then V is at least as
plausible as U . Because the order is partial, it could be that the plausibility of two different
sets is incomparable. An agent may not be prepared to order two sets in terms of plausibility.
D is assumed to contain two special elements, ⊥ and ⊤, such that ⊥ ≤ d ≤ ⊤ for all d ∈ D.
We require that Pl(∅) = ⊥ and Pl(W ) = ⊤. Thus, ⊥ and ⊤ are the analogues of 0 and 1 for
probability. We further require that if U ⊆ V , then Pl(U) ≤ Pl(V ). This seems reasonable;
a superset of U should be at least as plausible as U . Since we want to talk about conditional
independence here, we will need to deal with what have been called conditional plausibility
measures (cpms), not just plausibility measures. A conditional plausibility measure maps
pairs of subsets of W to some partially ordered set D. I write Pl(U | V ) rather than Pl(U, V ),
in keeping with standard notation for conditioning. I typically write just Pl(U) rather than
Pl(U | W ) (so unconditional plausibility is identified with conditioning on the whole space).

In the case of a probability measure Pr, it is standard to take Pr(U | V ) to be undefined
if Pr(V ) = 0. In general, we must make precise what the allowable second arguments of a
cpm are. For simplicity here, I assume that Pl(U | V ) is defined as long as V ̸= ∅. For each
fixed V ̸= ∅, Pl(· | V ) is required to be a plausibility measure on W . More generally, the
following properties are required:

CPl1. Pl(∅ | V ) = ⊥.

CPl2. Pl(W | V ) = ⊤.

CPl3. If U ⊆ U ′, then Pl(U | V ) ≤ Pl(U ′ | V ).

CPl4. Pl(U | V ) = Pl(U ∩ V | V ).

CPl1 and CPl2 just say that the empty set has plausibility ⊥ and the whole space has plausi-
bility ⊤, conditional on any set V . These are the obvious analogues of the requirements for
conditional probability that the empty set has probability 0 and the whole space probability
1, conditional on any set. CPl3 just says that the plausibility of a superset cannot be less than
the plausibility of a subset. (Note that this means that these plausibilities are comparable; in
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144 Chapter 5. Complexity and Axiomatization

general, the plausibilities of two sets may be incomparable.) Finally, CPl4 just says that the
plausibility U conditional on V depends only on the part of U in V .

There are some other obvious properties we might want to require, such as generalizations
of CPl1 and CPl2 that say that Pl(U | V ) = ⊥ if U ∩ V = ∅ and Pl(U | V ) = ⊤ if V ⊆ U .
In the case of conditional probability, the analogues of these properties follow from the fact
that Pr(V1 ∪ V2 | V ) = Pr(V1 | V ) + Pr(V2 | V ) if V1 and V2 are disjoint sets. Another
important property of conditional probability is that Pr(U | V ′) = Pr(U | V )× Pr(V | V ′)
if U ⊆ V ⊆ V ′. These properties turn out to play a critical role in guaranteeing compact
representations of probability distributions, so we will need plausibilistic analogues of them.
This means that we need to have plausibilistic analogues of addition and multiplication so that
we can take

Pl(V1 ∪ V2 | V3) = Pl(V1 | V3)⊕ Pl(V2 | V3) if V1 and V2 are disjoint,
and Pl(V1 | V3) = Pl(V1 | V2)⊗ Pl(V2 | V3) if V1 ⊆ V2 ⊆ V3.

(5.1)

A cpm that satisfies these properties is said to be an algebraic cpm. (I give a more formal
definition in Section 5.5.1.) Of course, for probability, (5.1) holds if we take ⊕ and ⊗ to be
+ and ×, respectively. I mentioned in the notes to Chapter 3 that another approach to giving
semantics to normality and typicality uses what are called ranking functions; (5.1) holds for
ranking functions if we take ⊕ and ⊗ to be min and +, respectively.

Both the original and alternative approach to incorporating normality are based on a partial
preorder. In the original approach, it is a partial preorder on worlds, whereas in the alternative
approach, it is a partial preorder on contexts, which is lifted to a partial preorder on sets of
contexts. We would like to be able to view these partial preorders as algebraic cpms. There
is a problem though. A plausibility measure attaches a plausibility to sets of worlds, not
single worlds. This is compatible with the alternative approach, for which an ordering on
events was critical. Indeed, when defining the alternative approach, I showed how a partial
preorder ≽ on contexts can be extended to a partial preorder on ≽e sets of contexts. This
order on sets essentially defines a plausibility measure. But I need even more here. I want not
just an arbitrary plausibility measure but an algebraic cpm. Getting an appropriate algebraic
cpm involves some technical details, so I defer the construction to Appendix 5.5.1. For the
purposes of this section, it suffices to just accept that this can be done; specifically, assume
that a partial preorder on worlds (or contexts) can be extended to an algebraic cpm defined
on sets of worlds (or contexts). The key point is that, once we do this, we can talk about
the independence and conditional independence of endogenous variables, just as in the case
of probability. Moreover, it means that the normality ordering can be represented using the
analogue of a causal network, where again a node labeled by X is conditionally independent
of all its ancestors in the graph given its parents (just as BS is independent of BT given
BH ). This will allow us to apply the “technology” of Bayesian networks to the normality
ordering almost without change. Although the graph will, in general, be different from the
graph representing the (structural equations of) the causal model, in many cases, there will
be substantial overlap between the two. As discussed in Section 5.2.2, this allows for even
greater representational economy.

Although this is helpful, in a sense, it is the “wrong” result. This result says that if we have
a partial preorder on worlds, it can be represented compactly. But the real question is how do
agents come up with a normality ordering in the first place? To understand the point, consider
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5.2 Compact Representations of the Normality Ordering 145

a lawyer arguing that a defendant should be convicted of arson. The lawyer will attempt to
establish a claim of actual causation: that the defendant’s action of lighting a match was an
actual cause of the forest fire. To do this, she will need to convince the jury that a certain
extended causal model is correct and that certain initial conditions obtained (for example, that
the defendant did indeed light a match). To justify the causal model, she will need to defend
the equations. This might involve convincing the jury that the defendant’s match was the sort
of thing that could cause a forest fire (the wood was dry), and that there would have been no
fire in the absence of some triggering event, such as a lightning strike or an act of arson.

The lawyer will also have to defend a normality ordering. To do this, she might argue that
a lightning strike could not have been reasonably foreseen, that lighting a fire in the forest
at that time of year was in violation of a statute, and that it was to be expected that a forest
fire would result from such an act. It will usually be easier to justify a normality ordering in a
piecemeal fashion. Instead of arguing for a particular normality ordering on entire worlds, she
argues that individual variables typically take certain values in certain situations. By defining
the normality ordering for a variable (or for a variable conditional on other variables taking on
certain values) and making some independence assumptions, we can completely characterize
the normality ordering.

The idea is that if a situation is characterized by the random variables X1, . . . , Xn, so that
a world has the form (x1, . . . , xn), then we assume that each world has a plausibility value of
the form a1 ⊗ · · ·⊗ an. For example, if n = 3, X1 and X2 are independent, and X3 depends
on both X1 and X2, then a world (1, 0, 1) would be assigned a plausibility of a1 ⊗ a2 ⊗ a3,
where a1 is the unconditional plausibility of X1 = 1, a2 is the unconditional plausibility of
X2 = 0, and a3 is the plausibility of X3 = 1 conditional on X1 = 1 ∩ X2 = 0. We do
not need to actually define the operation ⊗; we just leave a1 ⊗ a2 ⊗ a3 as an uninterpreted
expression. However, if we have some constraints on the relative order of elements (as we do
in our example and typically will in practice), then we can lift this to an order on expressions
of the form a1 ⊗ a2 ⊗ a3 by taking a1 ⊗ a2 ⊗ a3 ≤ a′1 ⊗ a′2 ⊗ a′3 if and only if, for all ai,
there is a distinct a′j such that ai ≤ a′j . The “only if” builds in a minimality assumption:
two elements a1 ⊗ a2 ⊗ a3 and a′1 ⊗ a′2 ⊗ a′3 are incomparable unless they are forced to be
comparable by the ordering relations among the ais and the a′js. One advantage of using a
partial preorder, rather than a total preorder, is that we can do this.

Although this may all seem rather mysterious, the application of these ideas to specific
cases is often quite intuitive. The following two examples show how this construction works
in our running example.

Example 5.2.1 Consider the forest-fire example again. We can represent the independencies
in the forest-fire example using the causal network given in Figure 5.1 (where the exogenous
variable is omitted): L and MD are independent, and FF depends on both of them. Thus,
we do indeed have a compact network describing the relevant (in)dependencies. Note that the
same network represents the (in)dependencies in both the conjunctive and disjunctive models.

For the remainder of this example, for definiteness, consider the disjunctive model, where
either a lightning strike or an arsonist’s match suffices for fire. It would be natural to say
that lightning strikes and arson attacks are atypical, and that a forest fire typically occurs if
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Figure 5.1: The forest-fire example.

either of these events occurs. Suppose that we use d+L to represent the plausibility of L = 0
(lightning not occurring) and d−L to represent the plausibility of L = 1; similarly, we use d+MD
to represent the plausibility of MD = 0 and d−MD to represent the plausibility of MD = 1.
Now the question is what we should take the conditional plausibility of FF = 0 and FF = 1
to be, given each of the four possible settings of L and MD . For simplicity, take all the four
values compatible with the equations to be equally plausible, with plausibility d+FF . Then
using Pl to represent the plausibility measure, we have:

Pl(L = 0) = d+L > d−L = Pl(L = 1)
Pl(MD = 0) = d+M > d−M = Pl(MD = 1)
Pl(FF = 0 | L = 0 ∧MD = 0) = d+FF > d−FF = Pl(FF = 1 | L = 0 ∧MD = 0)
Pl(FF = 1 | L = 1 ∧MD = 0) = d+FF > d−FF = Pl(FF = 0 | L = 1 ∧MD = 0)
Pl(FF = 1 | L = 0 ∧MD = 1) = d+FF > d−FF = Pl(FF = 0 | L = 0 ∧MD = 1)
Pl(FF = 1 | L = 1 ∧MD = 1) = d+FF > d−FF = Pl(FF = 0 | L = 1 ∧MD = 1).

(5.2)

Suppose that we further assume that d+L , d+M , and d+FF are all incomparable, as are d−L , d−M ,
and d−FF . Thus, for example, we cannot compare the degree of typicality of no lightning with
that of no arson attacks or the degree of atypicality of lightning with that of an arson attack.
Using the construction discussed gives us the ordering on worlds given in Figure 5.2, where
an arrow from w to w′ indicates that w′ ≻ w.

In this normality ordering, (0, 1, 1) is more normal than (1, 1, 1) and (0, 0, 1) but incom-
parable with (1, 0, 0) and (0, 0, 1). That is because, according to our construction, (0, 1, 1),
(1, 1, 1), (0, 1, 0), (1, 0, 0), and (0, 0, 1) have plausibility d+L ⊗ d−M ⊗ d+FF , d−L ⊗ d−M ⊗ d+FF ,
d+L ⊗ d−M ⊗ d−FF , d−L ⊗ d+M ⊗ d−FF , and d+L ⊗ d+M ⊗ d−FF , respectively. The fact that
d+L ⊗ d−M ⊗ d+FF ≥ d−L ⊗ d−M ⊗ d+FF follows because d+L ≥ d−L . The fact that we have
>, not just ≥, follows from the fact that we do not have d−L ⊗ d−M ⊗ d+FF ≥ d+L ⊗ d−M ⊗ d+FF ;
it does not follow from our condition from comparability. The other comparisons follow from
similar arguments. For example, the fact that (0, 1, 1) is incomparable with (1, 0, 0) follows
because neither d+L ⊗ d−M ⊗ d+FF ≤ d+L ⊗ d+M ⊗ d−FF nor d+L ⊗ d+M ⊗ d−FF ≤ d+L ⊗ d−M ⊗ d+FF
follows from our conditions.

Example 5.2.1 shows how the “Bayesian network technology” can be used to compute
all the relevant plausibilities (and thus the normality ordering). To go from the qualitative
representation of (in)dependencies in terms of a causal network to a more quantitative rep-
resentation, we need the conditional plausibility of the value of each variable given each
possible setting of its parents. For variables that have no parents, this amounts to giving the
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Figure 5.2: A normality order on worlds.

unconditional plausibility of each of the values of the variable. This is exactly what is done
on the first two lines of Table (5.2) for the variables L and MD , which have no parents in the
causal network (other than the exogenous variable). The next four lines of Table (5.2) give the
plausibility of the two values of FF , conditional on the four possible settings of its parents in
the network, L and MD . As is shown in the rest of the discussion in the example, these values
suffice to compute all the relevant plausibilities.

Although the savings in this case is not so great, the savings can be quite significant if we
have larger models. If there are n binary variables, and each one has at most k parents, rather
than describing the plausibility of the 2n worlds, we need to give, for each variable, at most
2k+1 plausibilities (the plausibility of each value of the variable conditional on each of the 2k
possible settings of values for its parents). Thus, we need at most n2k+1 plausibilities. Of
course, this is not much of a savings if k is close to n, but if k is relatively small and n is
large, then n2k+1 is much smaller than 2n. For example, if k = 5 and n = 100 (quite realistic
numbers for a medical example; indeed, n may be even larger), then n2k+1 = 6, 400, while
2n = 2100 > 1033. In general, we have to consider all the ways of ordering these 6, 400 (or
2100!) plausibility values, but as the discussion in the example shows, the additional assump-
tions on the ordering of expressions of the form a1⊗ · · ·⊗an makes this straightforward (and
easy to represent) as well.

Example 5.2.2 The preorder on worlds induced by the Bayesian network in the previous
example treats the lightning and the arsonist’s actions as incomparable. For example, the
world (1, 0, 1), where lightning strikes, the arsonist doesn’t, and there is a fire, is incomparable
with the world where lightning doesn’t strike, the arsonist lights his match, and the fire occurs.
But this is not the only possibility. Suppose we judge that it would be more atypical for the
arsonist to light a fire than for lightning to strike and also more typical for the arsonist not to
light a fire than for lightning not to strike. (Unlike the case of probability, the latter does not
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follow from the former.) Recall that this order might reflect the fact that arson is illegal and
immoral, rather than the frequency of occurrence of arson as opposed to lightning. Although
Table (5.2) still describes the conditional plausibility relations, we now have d+L > d+M and
d−M > d−L . This gives us the ordering on worlds described in Figure 5.3.
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Figure 5.3: A different normality ordering on worlds.

Now, for example, the world (0, 1, 1) is strictly more normal than the world (1, 0, 1);
again, the former has plausibility d+L ⊗ d−M ⊗ d+FF , whereas the latter has plausibility
d−L ⊗ d+M ⊗ d+FF . But since d−M > d−L and d+L > d+M , by assumption, it follows that
d+L ⊗ d−M ⊗ d+FF > d−L ⊗ d+M ⊗ d+FF .

5.2.2 Piggy-backing on the causal model

As I noted earlier, the graph representing the normality ordering can, in general, be different
from that representing the causal model. Nonetheless, in many cases there will be substan-
tial agreement between them. When this happens, it will be possible to make parts of the
causal model do “double duty”: representing both the causal structure and the structure of the
normality ordering. In Examples 5.2.1 and 5.2.2, the graph describing the causal structure
is the same as that representing the normality ordering. We assumed that L and MD were
independent with regard to both the structural equations and normality, but that FF depended
on both L and MD . In the case of the structural equations, the independence of L and MD
means that, once we set all other variables, a change in the value of L cannot affect the value
of MD , and vice versa. In the case of normality, it means that the degree of normality of a
world where lightning occurred (resp., did not occur) does not affect the degree of normality
of a world where the arsonist dropped a match (resp., did not drop a match), and vice versa.

But we can say something more “quantitative”, beyond just the qualitative statement of
independence. Consider the entries for the conditional plausibility of variable FF from Table
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5.2 Compact Representations of the Normality Ordering 149

(5.2), which can be summarized as follows:

Pl(FF = ff | L = l ∧MD = m) =

{
d+FF if ff = max(l,m)
d−FF otherwise.

Recall that FF = max(L,MD) is the structural equation for FF in the causal model. So
the conditional plausibility table says, in effect, that it is typical for FF to obey the structural
equations and atypical to violate it.

Variables typically obey the structural equations. Thus, it is often far more efficient to
assume that this holds by default, and explicitly enumerate cases where this is not so, rather
than writing out all the equations. Consider the following default rule.

Default Rule 1 (Normal Causality): Let X be a variable in a causal model with
no exogenous parents, and let Y⃗PA(X) be the vector of parents of X . Let the
structural equation for X be X = FX(Y⃗PA(X)). Then, unless explicitly given
otherwise, there are two plausibility values d+X and d−X with d+X > d−X such that

Pl(X = x | YPA(X) = y⃗) =

{
d+X if x = FX(y⃗)
d−X otherwise.

Default Rule 1 says that it is typical for variables to satisfy the equations unless we explicitly
stipulate otherwise. Moreover, it says that, by default, all values of variables that satisfy the
equations are equally typical, whereas all those that do not satisfy the equations are equally
atypical. In Examples 5.2.1 and 5.2.2, FF satisfies Default Rule 1. Of course, we could
allow some deviations from the equations to be more atypical than others; this would be a
violation of the default rule. As the name suggests, the default rule is to be assumed unless
explicitly stated otherwise. The hope is that there will be relatively few violations, so there is
still substantial representational economy in assuming the rule. That is, the hope is that, once
a causal model is given, the normality ordering can be represented efficiently by providing
the conditional plausibility tables for only those variables that violate the default rule, or
whose plausibility values are not determined by the default rule (because they have exogenous
parents). It may, of course, be possible to formulate more complex versions of Default Rule 1
that accommodate exogenous parents and allow for more than two default values. The rule as
stated seems like a reasonable compromise between simplicity and general applicability.

The Normal Causality rule, by itself, does not tell us how the plausibility values for one
variable compare to the plausibility values for another variable. Default Rule 1 can be supple-
mented with a second rule:

Default Rule 2 (Minimality): If dx and dy are plausibility values for distinct
variables X and Y , and no information is given explicitly regarding the relative
orders of dx and dy , then dx and dy are incomparable.

Again, this default rule is assumed to hold only if there is no explicit stipulation to the con-
trary. Default Rule 2 says that the normality ordering among possible worlds should not
include any comparisons that do not follow from the equations (via Default Rule 1) together
with the information that is explicitly given. Interestingly, in the context of probability, a
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distribution that maximizes entropy subject to some constraints is the one that (very roughly)
makes things “as equal as possible” subject to the constraints. If there are no constraints, it
reduces to the classic principle of indifference, which assigns equal probability to different
possibilities in the absence of any reason to think some are more probable. In the context
of plausibility, where only a partial order is assigned, it is possible to push this idea a step
further by making the possibilities incomparable. In Example 5.2.1, all three variables satisfy
Minimality. In Example 5.2.2, FF satisfies Minimality with respect to the other two variables,
but the variables L and MD do not satisfy it with respect to one another (since their values
are stipulated to be comparable).

With these two default rules, the extended causal model for the disjunctive model of the
forest fire can be represented succinctly as follows:

FF = max(L,MD)

Pl(L = 0) > Pl(L = 1)

Pl(MD = 0) > Pl(MD = 1).

The rest of the structure of the normality ordering follows from the default rules.
The extended causal model in Example 5.2.2 can be represented just using the following

equations and inequalities:

FF = max(L,MD)

Pl(MD = 0) > Pl(L = 0) > Pl(L = 1) > Pl(MD = 1).

Again, the rest of the structure follows from the default rules. In each case, the normality
ordering among the eight possible worlds can be represented with the addition of just a few
plausibility values to the causal model. Thus, moving from a causal model to an extended
causal model need not impose enormous cognitive demands.

Exceptions to the default rules can come in many forms. There could be values of the
variables for which violations of the equations are more typical than agreements with the
equations. As was suggested after Default Rule 1, there could be multiple values of typicality,
rather than just two for each variable. Or the conditional plausibility values of one variable
could be comparable with those of another variable. These default rules are useful to the
extent that there are relatively few violations of them. For some settings, other default rules
may also be useful; the two rules above are certainly not the only possible useful defaults.

Given these examples, the reader may wonder whether the causal structure is always iden-
tical to the normality ordering. It is easy to see that there are counterexamples to this. Recall
the Knobe and Fraser experiment from Section 3.1, in which Professor Smith and the admin-
istrative assistant took the two remaining pens. Suppose that we modify the example slightly
by assuming that the department chair has the option of instituting a policy forbidding faculty
members from taking pens. Further suppose that Professor Smith will ignore the policy even
if it is instituted and take a pen if he needs. it. We can model this story using the binary
variables CP (which is 1 if the chairman institutes the policy and 0 otherwise), PS (which is
1 if Professor Smith takes the pen and 0 otherwise), and PO (which is 1 if a problem occurs
and 0 otherwise). Now, by assumption, as far as the causal structures goes, PS is independent
of CP : Professor Smith takes the pen regardless of whether there is a policy. However, as far
as the normality ordering goes, PS does depend on CP .
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5.3 The Complexity of Determining Causality 151

5.3 The Complexity of Determining Causality
In this section I discuss the computational complexity of determining causality. It seems
clear that the modified definition is conceptually simpler than the original and updated HP
definition. This conceptual simplicity has a technical analogue: in a precise sense, it is simpler
to determine whether X⃗ is a cause of ϕ according to the modified definition than it is for either
the original or updated HP definitions.

To make this precise, I need to review some basic notions of complexity theory. Formally,
we are interested in describing the difficulty of determining whether a given x is an element
of a set L (sometimes called a language). The language of interest here is

Lcause = {((M, u⃗,ϕ, X⃗, x⃗) : X⃗ = x⃗ is a cause of ϕ in (M, u⃗)}.

We will be interested in the difficulty of determining whether a particular tuple is in Lcause.
How do we characterize the difficulty of determining whether a particular tuple is in

Lcause? We expect the problem of determining whether a tuple (M, u⃗,ϕ, X⃗, x⃗) is in Lcause

to be harder if the tuple is larger; intuitively, the problem should be harder for larger causal
models M than for smaller models. The question is how much harder. The complexity class
P (polynomial time) consists of all languages L such that determining if x is in L can be done
in time that is a polynomial function of the size of x (where the size of x is just the length of
x, viewed as a string of symbols). Typically, languages for which membership can be deter-
mined in polynomial time are considered tractable. Similarly, PSPACE (polynomial space)
consists of all languages for which membership can be determined in space polynomial in the
input size, and EXPTIME consists of all languages for which membership can be determined
in time exponential in the input size.

The class NP consists of those languages for which membership can be determined in
non-deterministic polynomial time. A language L is in NP if a program that makes some
guesses can determine membership in L in polynomial time. The classic language in NP is the
language consisting of all satisfiable propositional formulas (i.e., formulas satisfied by some
truth assignment). We can determine whether a formula is satisfiable by guessing a satisfying
truth assignment; after guessing a truth assignment, it is easy to check in polynomial time that
the formula is indeed satisfied by that truth assignment.

The class co-NP consists of all languages whose complement is in NP. For example, the
language consisting of all unsatisfiable propositional formulas is in co-NP because its com-
plement, the set of satisfiable propositional formulas, is in NP. Similarly, the set of valid
propositional formulas is in co-NP.

It can be shown that the following is an equivalent definition of NP: a language L is in
NP iff there is a polynomial-time algorithm A that takes two arguments, x and y, such that
x ∈ L iff there exists a y such that A(x, y) = 1. We can think of y as representing the
“guess”. For example, if L is the language of satisfiable propositional formulas, x represents
a propositional formula, y is a truth assignment, and A(x, y) = 1 if the truth assignment y
satisfies x. It is easy to see that x is satisfiable iff there is some y such that A(x, y) = 1.
Moreover, A is certainly polynomial time. Similarly, a language L is in co-NP iff there is a
polynomial-time algorithm A that takes two arguments, x and y, such that x ∈ L iff, for all
y, we have A(x, y) = 1. For validity, we can again take x to be a formula and y to be a truth
assignment. Now x is valid iff A(x, y) = 1 for all truth assignments y.
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152 Chapter 5. Complexity and Axiomatization

The polynomial hierarchy is a hierarchy of complexity classes that generalize NP and co-
NP. We take ΣP

1 to be NP. ΣP
2 consists of all languages L for which there exists a polynomial-

time algorithm A that takes three arguments such that x ∈ L iff there exists y1 such that for
all y2 we have (x, y1, y2) = 1. To get ΣP

3 , we consider algorithms that take four arguments
and use one more alternation of quantifiers (there exists y1 such that for all y2 there exists y3).
We can continue alternating quantifiers in this way to define ΣP

k for all k. We can similarly
define ΠP

k , this time starting the alternation with a universal quantifier (for all y1, there exists
y2, such that for all y3 . . . ). Finally, the set DP

k is defined as follows:

DP
k = {L : ∃L1,L2 : L1 ∈ ΣP

k ,L2 ∈ ΠP
k ,L = L1 ∩ L2}.

That is, DP
k consists of all languages (sets) that can be written as the intersection of a language

in ΣP
k and a language in ΠP

k .
We can think of NP as consisting of all languages L such that if x ∈ L, then there is a

short proof demonstrating this fact (although the proof may be hard to find). Similarly, co-NP
consists of those languages L such that if x /∈ L, then there is a short proof demonstrating
this fact. Thus, DP

1 consists of all languages L such that for all x, there is a short proof of
whichever of x ∈ L and x /∈ L is true. DP

k generalizes these ideas to higher levels of the
polynomial hierarchy. Classifying a language L in terms of which complexity class it lies in
helps us get an idea of how difficult it is to determine membership in L. It is remarkable how
many naturally defined languages can be characterized in terms of these complexity classes.

Note that if a complexity class C1 is a subset of complexity class C2, then every language
in C1 is in C2; hence, C2 represents problems that are at least as hard as C1. It is not hard to
show that

P ⊆ NP (= ΣP
1 ) ⊆ . . . ⊆ ΣP

k ⊆ . . . ⊆ PSPACE ⊆ EXPTIME .

It is known that P ̸= EXPTIME (so that, in general, the problem determining set membership
for a language in EXPTIME is strictly harder than the corresponding problem for a language
in P , but it is not known whether any of the other inclusions is strict (although it is conjectured
that they all are).

We can get a similar chain of inequalities by replacing NP and ΣP
k by co-NP and ΠP

2 .
Finally, it is not hard to show that

ΣP
k ∪ΠP

k ⊆ DP
k ⊆ ΣP

k+1 ∩ΠP
k+1.

For example, to see that ΣP
k ⊆ DP

k , take L2 in the definition of DP
k to be the universal set,

so that L1 ∩ L2 = L1. (The argument that ΠP
k ⊆ DP

k is essentially the same.) Thus, DP
k

represents problems that are at least as hard as each of ΣP
k and ΠP

k but no harder than either
of ΣP

k+1 and ΠP
k+1. It is perhaps worth noting that although, by definition, a language is in

DP
k if it can be written as the intersection of languages in ΣP

k and ΠP
k , this is very different

from saying that DP
k = ΣP

k ∩ΠP
k .

We need one more set of definitions: a language L is said to be hard with respect to a com-
plexity class C (e.g., NP -hard, PSPACE -hard, etc.) if every language in C can be efficiently
reduced to L; that is, for every language L′ in C, an algorithm deciding membership in L′

can be easily obtained from an algorithm for deciding membership in L. More precisely, this
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5.3 The Complexity of Determining Causality 153

means that there is a polynomial-time computable function f such that x ∈ L′ iff f(x) ∈ L.
Thus, given an algorithm FL for deciding membership in L, we can decide whether x ∈ L′

by running FL on input f(x). Finally, a language is said to be complete with respect to a
complexity class C, or C-complete, if it is both in C and C-hard. It is well known that Sat, the
language consisting of all satisfiable propositional formulas, is NP-complete. It easily follows
that its complement Satc, which consists of all propositional formulas that are not satisfiable
(i.e., negations of formulas that are valid), is co-NP-complete.

Although the complexity classes in the polynomial hierarchy are somewhat exotic, they
are exactly what we need to characterize the complexity of determining causality. The exact
complexity depends on the definition used. The problem is easiest with the modified defi-
nition; roughly speaking, this is because we do not have to deal with AC2(bo) or AC2(bu).
Since, with the original definition, causes are always single conjuncts, the original definition
is easier to deal with than the updated definition. Again, this shouldn’t be too surprising, since
there is less to check.

Before making these claims precise, there is another issue that must be discussed. Recall
that when we talk about the complexity of determining whether X⃗ = x⃗ is a cause of ϕ in
(M, u⃗), formally, we consider how hard it is to decide whether the tuple (M, u⃗,ϕ, X⃗, x⃗) is in
the language Lcause. In light of the discussion in Sections 5.1, we need to be careful about
how M is represented. If we represent M naively, then its description can be exponential in
the signature S (in particular, exponential in the length of ϕ, the number of endogenous vari-
ables in S , and the cardinality of the range of these variables). It is not hard to see that all the
relevant calculations are no worse than exponential in the length of ϕ, the number of endoge-
nous variables, and the cardinality of their ranges, so the calculation becomes polynomial in
the size of the input. This makes the problem polynomial for what are arguably the wrong
reasons. The size of the input is masking the true complexity of the problem. Here, I assume
that the causal model can be described succinctly. In particular, I assume that succinct expres-
sions for equations are allowed in describing the model, as I have been doing all along. Thus,
for example, the equation for BS in the “sophisticated” model M ′

RT for the rock-throwing
example is given as BS = BH ∨ SH , rather than explicitly giving the value of BS for each
of the sixteen settings of BT , ST , BH , and SH . This is just a long-winded way of saying
that I allow (but do not require) models to be described succinctly. Moreover, the description
is such that it is easy to determine (i.e., in time polynomial in the description of the model),
for each context u⃗, the unique solution to the equations. Listing the equations in the “affects”
order determined by ≼u⃗ can help in this task; the value of each endogenous variable can then
be determined in sequence.

With this background, I can state the relevant complexity results.

Theorem 5.3.1

(a) The complexity of determining whether X⃗ = x⃗ is a cause of ϕ in (M, u⃗) under the
original HP definition is ΣP

2 -complete.

(b) The complexity of determining whether X⃗ = x⃗ is a cause of ϕ in (M, u⃗) under the
updated HP definition is DP

2 -complete.
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(c) The complexity of determining whether X⃗ = x⃗ is a cause of ϕ in (M, u⃗) under the
modified HP definition is DP

1 -complete.

The proofs of parts (a) and (b) of Theorem 5.3.1 are beyond the scope of this book (see
the notes at the end of the chapter for references); the proof of part (c) can be found in
Section 5.5.2.

These results seem somewhat disconcerting. Even DP
1 -complete is considered intractable,

which suggests that it may be hard to determine whether X⃗ = x⃗ is a cause of ϕ in general.
There are some reasons to believe that the situation is not quite so bad. First, in practice, there
may be quite a bit of structure in causal models that may make the computation much simpler.
The kinds of models that we use to get the hardness results are not typical. Second, there are
two important special cases that are not so complicated, as the following result shows.

Theorem 5.3.2

(a) The complexity of determining whether X = x is a cause of ϕ in (M, u⃗) under the
original HP definition is NP-complete in binary models (i.e., models where all variables
are binary).

(b) The complexity of determining whether X = x is a cause of ϕ in (M, u⃗) under the
modified HP definition is NP-complete.

As we have observed, the restriction to singleton causes is made without loss of generality
for the original HP definition. Although the restriction to binary models does entail some loss
of generality, binary models do arise frequently in practice; indeed, almost all the examples
in this book have involved binary models. The restriction to singleton causes does entail
a nontrivial loss of generality for the modified HP definition. As we have seen, in voting
scenarios and in the disjunctive case of the forest-fire example, causes are not singletons.
Nevertheless, many examples of interest do involve singleton causes.

This may not seem like major progress. Historically, even NP-complete problems were
considered intractable. However, recently, major advances have been made in finding algo-
rithms that deal well with many NP-complete problems; there seems to be some hope on this
front.

5.4 Axiomatizing Causal Reasoning
The goal of this section is to understand the properties of causality in greater detail. The
technique that I use for doing so is to characterize causal reasoning axiomatically. Before
doing this, I first review some standard definitions from logic.

An axiom system AX consists of a collection of axioms and inference rules. An axiom
is a formula (in some predetermined language L), and an inference rule has the form “from
ϕ1, . . . ,ϕk infer ψ,” where ϕ1, . . . ,ϕk,ψ are formulas in L. A proof in AX consists of a
sequence of formulas in L, each of which is either an axiom in AX or follows by an application
of an inference rule. A proof is said to be a proof of the formula ϕ if the last formula in the
proof is ϕ. The formula ϕ is said to be provable in AX, written AX ⊢ ϕ, if there is a proof
of ϕ in AX; similarly, ϕ is said to be consistent with AX if ¬ϕ is not provable in AX.
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A formula ϕ is valid in causal structure M , written M |= ϕ, if (M, u⃗) |= ϕ in all contexts
u⃗. The formula ϕ is valid in a set T of causal structures if M |= ϕ for all M ∈ T ; ϕ is
satisfiable in T if there is a causal structure M ∈ T and a context u⃗ such that (M, u⃗) |= ϕ.
Note that ϕ is valid in T iff ¬ϕ is not satisfiable in T .

The notions of soundness and completeness connect provability and validity. An axiom
system AX is said to be sound for a language L with respect to a set T of causal models if
every formula in L provable in AX is valid with respect to T . AX is complete for L with
respect to T if every formula in L that is valid with respect to T is provable in AX.

The causal models and language that I consider here are parameterized by a signature
S = (U ,V,R). (Recall that U is the set of exogenous variables, V is the set of endogenous
variables, and for each variable Y , R(Y ) is the range of Y .) I restrict S here to signatures
where V is finite and the range of each endogenous variable is finite. This restriction cer-
tainly holds in all the examples that I consider in this book. For each signature S , I consider
Mrec(S), the set of all recursive causal models with signature S . The language that I consider
is L(S), the language of causal formulas defined in Section 2.2.1, where the variables are re-
stricted to those in V , and the range of these variables is given by R. L(S) is rich enough
to express actual causality in models in Mrec(S). More precisely, given X⃗ , u⃗, ϕ, and S , for
each variant of the HP definition, it is straightforward to construct a formula ψ in this language
such that (M, u⃗) |= ψ for a causal model M ∈ Mrec(S) if and only if X⃗ = x⃗ is a cause of
ϕ in (M, u⃗). (The existential quantification implicit in the statement of AC2(a) and AC2(am)
can be expressed using a disjunction because the set V of endogenous variables is assumed
to be finite; similarly, the universal quantification implicit in the statement of AC2(bo) and
AC2(bu) can be expressed using a conjunction.) Moreover, the language can express features
of models, such as the effect of interventions. Thus, we will be able to see what inferences
can be made if we understand the effect of various interventions. For example, results like
Propositions 2.4.3 and 2.4.4 that provide sufficient conditions for causality to be transitive
follow from the axioms.

To help characterize causal reasoning in Mrec(S), where S = (U ,V,R), it is helpful to
define a formula Y ❀ Z for Y, Z ∈ V , read “Y affects Z”. Intuitively, this formula is true
in a model M and context u⃗ if there is a setting of the variables other than Y and Z such that
changing the value of Y changes the value of Z. Formally, taking X⃗ = V−{Y, Z} (so that X⃗
consists of the endogenous variables other than Y and Z), and taking R(X⃗) to be the range
of the variables in X⃗ (so R(X⃗) = ×X∈X⃗R(X)), Y ❀ Z is an abbreviation of

∨
x⃗∈R(X⃗),y∈R(Y ),z∈R(Z),y ̸=y′,z ̸=z′

(
[X⃗ ← x⃗, Y ← y](Z = z)∧[X⃗ ← x⃗, Y ← y′](Z = z′)

)
,

which is a formula in L(S). (In statisticians’ notation, this says that Y ❀ Z is true in a
context u⃗ if there exists y, y′, z, and z′ with z ̸= z′ such that Zxy(u⃗) = z ∧ Zxy′(u⃗) = z′.)
The disjunction is really acting as an existential quantifier here; this is one place I am using
the fact that the range of each endogenous variable is finite. (With existential quantification
in the language, I would not need this assumption.)

Consider the following axioms C0–5 and rule of inference MP. (I translate the first four
axioms into statisticians’ notation, omitting the context u⃗ since they are intended to hold for all
contexts u⃗. The representation in this case is quite compact. However, standard statisticians’
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notation is not so well suited for translating axiom C6, although of course it could be extended
to capture it.)

C0. All substitution instances of propositional tautologies (see below).

C1. [Y⃗ ← y⃗](X = x) ⇒ [Y⃗ ← y⃗](X ̸= x′) if x, x′ ∈ R(X), x ̸= x′ (equality)
(i.e., Xy⃗ = x ⇒ Xy⃗ ̸= x′ if x ̸= x′)

C2. ∨x∈R(X)[Y⃗ ← y⃗](X = x) (definiteness)
(i.e., ∨x∈R(X)(Xy⃗ = x))

C3. ([X⃗ ← x⃗](W = w) ∧ [X⃗ ← x⃗](Y = y)) ⇒ [X⃗ ← x⃗,W ← w](Y = y) (composition)
(i.e., (Wx⃗ = w ∧ Yx⃗ = y) ⇒ (Yx⃗w = y))

C4. [X ← x, W⃗ ← w⃗](X = x) (effectiveness)
(i.e., Xxw⃗ = x)

C5. (X0 ❀ X1 ∧ . . . ∧Xk−1 ❀ Xk) ⇒ ¬(Xk ❀ X0) if Xk ̸= X0 (recursiveness)

C6. (a) [X⃗ ← x⃗]¬ϕ ⇔ ¬[X⃗ ← x⃗]ϕ
(b) [X⃗ ← x⃗](ϕ ∧ ψ) ⇔ ([X⃗ ← x⃗]ϕ ∧ [X⃗ ← x⃗]ψ) (determinism)
(c) [X⃗ ← x⃗](ϕ ∨ ψ) ⇔ ([X⃗ ← x⃗]ϕ ∨ [X⃗ ← x⃗]ψ)

MP. From ϕ and ϕ ⇒ ψ, infer ψ (modus ponens)

To explain the notion of substitution instance in C0, note that, for example, p ∨ ¬p is a
propositional tautology; [Y⃗ ← y⃗](X = x) ∨ ¬[Y⃗ ← y⃗](X = x) (i.e., Xy⃗ = x ∨ Xy⃗ ̸= x)
is a substitution instance of it, obtained by substituting [Y⃗ ← y⃗](X = x) for p. More gener-
ally, by a substitution instance of a propositional tautology ϕ, I mean the result of uniformly
replacing all primitive propositions in ϕ by arbitrary formulas of L(S). C1 just states an ob-
vious property of equality: if X = x in the unique solution of the equations in context u⃗ of
model MY⃗←y⃗ , then we cannot have X = x′ if x′ ̸= x. C2 states that there is some value
x ∈ R(X) that is the value of X in all solutions to the equations in context u⃗ in MY⃗←y⃗ . Note
that the statement of C2 makes use of the fact that R(X) is finite (for otherwise C2 would
involve an infinite disjunction). C3 says that if, after setting X⃗ to x⃗, Y = y and W = w,
then W = w if we both set X⃗ to x⃗ and Y to y; this was proved in Lemma 2.10.2. C4 sim-
ply says that in all solutions obtained after setting X to x, the value of X is x. It is easy to
see that C5 holds in recursive models. For if (M, u⃗) |= Y ❀ Z, then Y ≼u⃗ Z. Thus, if
(M, u⃗) |= X0 ❀ X1 ∧ . . . ∧Xk−1 ❀ Xk, then X0 ≼u⃗ Xk, so we cannot have Xk ≼u⃗ X0

if X0 ̸= Xk. Thus, (M, u⃗) |= ¬(Xk ❀ X0). Finally, the validity of C6 is almost immediate
from the semantics of the relevant formulas.

C5 can be viewed as a collection of axioms (actually, axiom schemes), one for each k. The
case k = 1 already gives us ¬(Y ❀ Z) ∨¬(Z ❀ Y ) for all distinct variables Y and Z. That
is, it tells us that, for any pair of variables, at most one affects the other. However, it can be
shown that just restricting C5 to the case of k = 1 does not suffice to characterize Mrec(S).

Let AXrec(S) consist of C0–C6 and MP. AXrec(S) characterizes causal reasoning in re-
cursive models, as the following theorem shows.
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5.4 Axiomatizing Causal Reasoning 157

Theorem 5.4.1 AXrec(S) is a sound and complete axiomatization for the language L(S) in
Mrec(S).

Proof: See Section 5.5.3.

We can also consider the complexity of determining whether a formula ϕ is valid in
Mrec(S) (or, equivalently, is provable in AXrec(S)). This depends in part on how we for-
mulate the problem.

One version of the problem is to consider a fixed signature S and ask how hard it is to
decide whether a formula ϕ ∈ L(S) is valid. This turns out to be quite easy, for trivial
reasons.

Theorem 5.4.2 If S is a fixed finite signature, the problem of deciding if a formula ϕ ∈ L(S)
is valid in Mrec(S) can be solved in time linear in |ϕ| (the length of ϕ viewed as a string of
symbols).

Proof: If S is finite, there are only finitely many causal models in Mrec(S), independent
of ϕ. Given ϕ, we can explicitly check whether ϕ is valid in any (or all) of them. This can
be done in time linear in |ϕ|. Since S is not a parameter to the problem, the huge number of
possible causal models that we have to check affects only the constant.

We can do even better than Theorem 5.4.2 suggests. Suppose that V consists of 100 vari-
ables and ϕ mentions only 3 of them. A causal model must specify the equations for all 100
variables. Is it really necessary to consider what happens to the 97 variables not mentioned
in ϕ to decide whether ϕ is satisfiable or valid? As the following result shows, we need to
check only the variables that appear in ϕ. Given a signature S = (U ,V,R) and a context
u⃗ ∈ U , let Sϕ,u⃗ = (U∗,Vϕ,Rϕ,u⃗), where Vϕ consists of the variables in V that appear in ϕ,
Rϕ,u⃗(U∗) = u⃗, and Rϕ,u⃗(Y ) = R(Y ) for all variables Y ∈ Vϕ.

Theorem 5.4.3 A formula ϕ ∈ L(S) is satisfiable in Mrec(S) iff there exists u⃗ such that ϕ
is satisfiable in Mrec(Sϕ,u⃗).

Proof: See Section 5.5.3.

Theorem 5.4.2 is the analogue of the observation that for propositional logic, the satisfia-
bility problem is in linear time if we restrict to a fixed set of primitive propositions. The proof
that the satisfiability problem for propositional logic is NP-complete implicitly assumes that
we have an unbounded number of primitive propositions at our disposal. There are two ways
to get an analogous result here. The first is to allow the signature S to be infinite; the second
is to make the signature part of the input to the problem. The results in both cases are similar,
so I just consider the case where the signature is part of the input here.

Theorem 5.4.4 Given as input a pair (ϕ,S), where ϕ ∈ L(S) and S is a finite signature,
the problem of deciding if ϕ is satisfiable in Mrec(S) is NP-complete.

Proof: See Section 5.5.3.
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158 Chapter 5. Complexity and Axiomatization

Thus, the satisfiability problem for the language of causality is no harder than it is for
propositional logic. Since satisfiability is the dual of validity, the same is true for the validity
problem (which is co-NP-complete). This can be viewed as good news. The techniques
developed to test for satisfiability of propositional formulas can perhaps be applied to testing
the satisfiability of causal formulas as well.

5.5 Technical Details and Proofs
In this section, I go through some of the technical details that I deferred earlier.

5.5.1 Algebraic plausibility measures: the details
In this section, I fill in the technical details of the construction of algebraic plausibility mea-
sures. I start with the formal definition.

Definition 5.5.1 An algebraic conditional plausibility measure (algebraic cpm) Pl on W
maps pairs of subsets of W to a domain D that is endowed with operations ⊕ and ⊗, defined
on domains Dom(⊕) and Dom(⊗), respectively, such that the following properties hold:

Alg1. If U1 and U2 are disjoint subsets of W and V ̸= ∅, then

Pl(U1 ∪ U2 | V ) = Pl(U1 | V )⊕ Pl(U2 | V ).

Alg2. If U ⊆ V ⊆ V ′ and V ̸= ∅, then Pl(U | V ′) = Pl(U | V )⊗ Pl(V | V ′).

Alg3. ⊗ distributes over ⊕; more precisely, a⊗ (b1⊕ · · ·⊕ bn) = (a⊗ b1)⊕ · · ·⊕ (a⊗ bn) if
(a, b1), . . . , (a, bn), (a, b1⊕· · ·⊕bn) ∈ Dom(⊗) and (b1, . . . , bn), (a⊗b1, . . . , a⊗bn) ∈
Dom(⊕), where Dom(⊕) = {(Pl(U1 | V ), . . . ,Pl(Un | V )) : U1, . . . , Un are pairwise
disjoint and V ̸= ∅} and Dom(⊗) = {(Pl(U | V ),Pl(V | V ′)) : U ⊆ V ⊆ V ′, V ̸= ∅}.
(The reason that this property is required only for tuples in Dom(⊕) and Dom(⊗) is dis-
cussed shortly. Note that parentheses are not required in the expression b1 ⊕ · · · ⊕ bn
although, in general, ⊕ need not be associative. This is because it follows immediately
from Alg1 that ⊕ is associative and commutative on tuples in Dom(⊕).)

Alg4. If (a, c), (b, c) ∈ Dom(⊗), a⊗ c ≤ b⊗ c, and c ̸= ⊥, then a ≤ b.

The restrictions in Alg3 and Alg4 to tuples in Dom(⊕) and Dom(⊗) make these conditions a
little more awkward to state. It may seem more natural to consider a stronger version of, say,
Alg4 that applies to all pairs in D × D. Requiring Alg3 and Alg4 to hold only for limited
domains allows the notion of an algebraic plausibility measure to apply to a (usefully) larger
set of plausibility measures.

Roughly speaking, Dom(⊕) and Dom(⊗) are the only sets where we really care how ⊕
and ⊗ work. We use ⊕ to determine the (conditional) plausibility of the union of two disjoint
sets. Thus, we care about a ⊕ b only if a and b have the form Pl(U1 | V ) and Pl(U2 |
V ), respectively, where U1 and U2 are disjoint sets, in which case we want a ⊕ b to be
Pl(U1 ∪ U2 | V ). More generally, we care about a1⊕ · · ·⊕an only if ai has the form Pl(Ui |
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V ), where U1, . . . , Un are pairwise disjoint. Dom(⊕) consists of precisely these tuples of
plausibility values. Similarly, we care about a ⊗ b only if a and b have the form Pl(U | V )
and Pl(V | V ′), respectively, where U ⊆ V ⊆ V ′, in which case we want a ⊗ b to be
Pl(U | V ). Dom(⊗) consists of precisely these pairs (a, b). Restricting ⊕ and ⊗ to Dom(⊕)
and Dom(⊗) will make it easier for us to view a partial preorder as an algebraic plausibility
measure. Since ⊕ and ⊗ are significant mainly to the extent that Alg1 and Alg2 hold, and Alg1
and Alg2 apply to tuples in Dom(⊕) and Dom(⊗), respectively, it does not seem unreasonable
that properties like Alg3 and Alg4 be required to hold only for these tuples.

In an algebraic cpm, we can define a set U to be plausibilistically independent of V con-
ditional on V ′ if V ∩ V ′ ̸= ∅ implies that Pl(U | V ∩ V ′) = Pl(U | V ′). The intuition here
is that learning V does not affect the conditional plausibility of U given V ′. Note that con-
ditional independence is, in general, asymmetric. U can be conditionally independent of V
without V being conditionally independent of U . Although this may not look like the standard
definition of probabilistic conditional independence, it is not hard to show that this definition
agrees with the standard definition (that Pr(U ∩ V | V ′) = Pr(U | V ′) × Pr(V | V ′)) in
the special case that the plausibility measure is actually a probability measure, provided that
Pr(V ∩ V ′) ̸= 0. Of course, in this case, the definition is symmetric.

The next step is to show how to represent a partial preorder on worlds as an algebraic
plausibility measure. Given an extended causal model M = (S,F ,≽), define a preorder
≽e on subsets of W just as in Section 3.5: U ≽e V if, for all w ∈ V , there exists some
w′ ∈ U such that w′ ≽ w. Recall that ≽e extends the partial preorder ≽ on worlds. We might
consider getting an unconditional plausibility measure Pl≽ that extends the partial preorder
on worlds by taking the range of Pl≽ to be subsets of W , defining Pl≽ as the identity (i.e.,
taking Pl≽(U) = U ), and taking U ≥ V iff U ≽e V .

This almosts works. There is a subtle problem though. The relation ≥ used in plausibility
measures must be a partial order, not a partial preorder. Recall that for ≥ to be a partial order
on a set X , if x ≥ x′ and x′ ≥ x, we must have x′ = x; this is not required for a partial
preorder. Thus, for example, if w ≽ w′ and w′ ≽ w, then we want Pl≽({w}) = Pl≽({w′}).
This is easily arranged.

Define U ≡ V if U ≽e V and V ≽e U . Let [U ] = {U ′ ⊆ W : U ′ ≡ U}; that is, [U ]
consists of all sets equivalent to U according to ≽e. We call U the equivalence class of U .
Now define Pl≽(U) = [U ], and define an order ≥ on equivalence classes by taking [U ] ≥ [V ]
iff U ′ ≽e V ′ for some U ′ ∈ [U ] and V ′ ∈ [V ]. It is easy to check that ≥ is well defined on
equivalence classes (since if U ′ ≽e V ′ for some U ′ ∈ [U ] and V ′ ∈ [V ], then U ′ ≽e V ′ for
all U ′ ∈ [U ] and V ′ ∈ [V ]—for all w ∈ V ′, there must be some w′ ∈ U ′ such that w′ ≽ w)
and is a partial order.

Although this gives us an unconditional plausibility measure extending ≽, we are not quite
there yet. We need a conditional plausibility measure and a definition of ⊕ and ⊗. Note that
if U1, U2 ∈ [U ], then U1 ∪ U2 ∈ [U ]. Since W is finite, it follows that each set [U ] has a
largest element, namely, the union of the sets in [U ].

Let D be the domain consisting of ⊥, ⊤, and all elements of the form d[U ]|[V ] for all [U ]
and [V ] such that the largest element in [U ] is a strict subset of the largest element in [V ].
Intuitively, d[U ]|[V ] represents the plausibility of U conditional on V ; the definition given
below enforces this intuition. Place an ordering ≥ on D by taking ⊥ < d[U ]|[V ] < ⊤ and
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160 Chapter 5. Complexity and Axiomatization

d[U ]|[V ] ≥ d[U ′]|[V ′] if [V ] = [V ′] and U ′ ≽e U . D can be viewed as the range of an algebraic
plausibility measure, defined by taking

Pl≽(U | V ) =

⎧
⎨

⎩

⊥ if U ∩ V = ∅
⊤ if U ∩ V = V
d[U∩V ]|[V ] otherwise.

It remains to define ⊕ and ⊗ on D so that Alg1 and Alg2 hold. This is easy to do, in large part
because ⊕ and ⊗ must be defined only on Dom(⊕) and Dom(⊗), where the definitions are
immediate because of the need to satisfy Alg1 and Alg2. It is easy to see that these conditions
and the definition of Pl guarantee that Pl1–4 hold. With a little more work, it can be shown
that these conditions imply Alg3 and Alg4 as well. (Here the fact that Alg3 and Alg4 are
restricted to Dom(⊕) and Dom(⊗) turns out to be critical; it is also important that U ≡ V
implies that U ≡ U ∪ V .) I leave details to the interested reader.

This construction gives an algebraic cpm, as desired.

5.5.2 Proof of Theorems 5.3.1(c) and 5.3.2(b)
In this section, I prove that the complexity of determining of X⃗ = x⃗ is a cause of ϕ in
(M, u⃗) is DP

1 complete under the modified HP definition. Formally, we want to show that the
language

L = {(M, u⃗,ϕ, X⃗, x⃗) : X⃗ = x⃗ satisfies AC1, AC2(am), and AC3 for ϕ in (M, u⃗)}

is DP
1 -complete. Let

LAC2 = {(M, u⃗,ϕ, X⃗, x⃗) : X⃗ = x⃗ satisfies AC1 and AC2(am) for ϕ in (M, u⃗)},
LAC3 = {(M, u⃗,ϕ, X⃗, x⃗) : X⃗ = x⃗ satisfies AC1 and AC3 for ϕ in (M, u⃗)}.

Clearly L = LAC2 ∩ LAC3.
It is easy to see that LAC2 is in NP and LAC3 is in co-NP. Checking that AC1 holds can

be done in polynomial time. To check whether AC2(am) holds, we can guess W⃗ and x⃗′, and
check in polynomial time that (M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗∗]¬ϕ (where w⃗∗ is such that
(M, u⃗) |= W⃗ = w⃗∗). Finally, checking whether AC3 is not satisfied can be done by guessing
a counterexample and verifying. Since L = LAC2 ∩ LAC3, it follows by definition that L is
in DP

1 .
To see that L is DP

1 -complete, first observe that the language Sat × Satc, that is, the lan-
guage consisting of pairs (ψ,ψ′) of formulas such that ψ is satisfiable and ψ′ is not satis-
fiable, is DP

1 -complete. For if L(Prop) is the set of formulas of propositional logic, then
Sat × Satc is the intersection of a language in NP (Sat × L(Prop)) and a language in co-NP
(L(Prop) × Satc), so it is in DP

1 . To show that Sat × Satc is DP
1 -hard, suppose that L′ is an

arbitrary language in DP
1 . There must exist languages L1 and L2 in NP and co-NP, respec-

tively, such that L′ = L1 ∩ L2. Since Sat is NP-complete, there must exist a polynomial-
time computable function f reducing L1 to Sat; that is, x ∈ L1 iff f(x) ∈ Sat. Similarly,
there must be a polynomial-time function g reducing L2 to Satc. The function (f, g) map-
ping x to (f(x), g(x)) gives a polynomial-time reduction from L′ to Sat × Satc: x ∈ L′ iff
(f(x), g(x)) ∈ Sat × Satc.
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Thus, to show that L is DP
1 -complete, it suffices to reduce Sat×Satc to L. I now map a pair

(ψ,ψ′) of formulas to a tuple (M, u⃗, Z = 0, (X0, X1), (0, 0)) such that (ψ,ψ′) ∈ Sat × Satc

iff X0 = 0 ∧X1 = 0 is a cause of Z = 0 in (M, u⃗) according to the modified HP definition.
We can assume without loss of generality that ψ and ψ′ involve disjoint sets of variables

(if not, rename all the variables in ψ′ so that they do not appear in ψ; this can clearly be
done without affecting whether ψ′ is satisfiable). Suppose that the variables that appear in ψ
and ψ′ are included in Y1, . . . , Yn. Consider the causal model M with endogenous variables
X0, X1, Y1, . . . , Yn, Z, one exogenous variable U , and the following equations:

X0 = U ,

X1 = U ,

Yi = X0 for i = 1, . . . , n, and

Z = (X0 = 1) ∧ ψ ∧ (X1 = 1 ∨ ψ′).

I claim that (a) if ψ is not satisfiable, then there is no cause of Z = 0 in (M, 0) according
to the modified HP definition; (b) if both ψ and ψ′ are satisfiable, then X0 = 0 is a cause of
Z = 0 in (M, 0); and (c) if ψ is satisfiable and ψ′ is unsatisfiable, then X0 = 0 ∧ X1 = 0
is a cause of Z = 0 in (M, 0). Clearly, (a) holds; if ψ is unsatisfiable, then no setting of
the variables will make Z = 1. For (b), suppose that ψ and ψ′ are both satisfiable. Since
ψ and ψ′ involve disjoint sets of variables, there is a truth assignment a to the variables
Y1, . . . , Yn that makes ψ ∧ ψ′ true. Let W⃗ be the subset of variables in {Y1, . . . , Yn} that
are set to 0 (i.e., false) in a. It follows that (M, 0) |= [X0 ← 1, W⃗ ← 0⃗](ψ ∧ ψ′), so
(M, 0) |= [X0 ← 1, W⃗ ← 0⃗](Z = 1) and AC2(am) holds. AC3 is immediate. Thus,
X0 = 0 is indeed a cause of Z = 0, as desired. Finally, for (c), if ψ′ is unsatisfiable, then
it is clear that neither X0 = 0 nor X1 = 0 individually is a cause of Z = 0 in (M, 0); to
have Z = 1, we must set both X0 = 1 and X1 = 1. Moreover, the same argument as in
part (b) shows that, since ψ is satisfiable, we can find a subset W⃗ of {Y1, . . . , Yn} such that
(M, 0) |= [X0 ← 1, W⃗ ← 0⃗]ψ, so (M, 0) |= [X0 ← 1, X1 ← 1, W⃗ ← 0⃗](Z = 1). This
shows that X0 = 1 ∧X1 = 1 is a cause of Z = 0 iff (ψ,ψ′) ∈ Sat × Satc. This completes
the proof of Theorem 5.3.1(c).

The proof of Theorem 5.3.2(b) is almost immediate. Now we want to show that the lan-
guage

L′ = {(M, u⃗,ϕ, X⃗, x⃗) : X = x satisfies AC1, AC2(am), and AC3 for ϕ in (M, u⃗)}

is NP-complete. AC3 trivially holds and, as we have observed, checking that AC1 and
AC2(am) holds is in NP. Moreover, the argument above shows that AC2(am) is NP-hard
even if we consider only singleton causes.

5.5.3 Proof of Theorems 5.4.1, 5.4.2, and 5.4.4
In this section, I prove Theorems 5.4.1, 5.4.2, and 5.4.4. I repeat the statements for the reader’s
convenience.
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Theorem 5.4.1: AXrec(S) is a sound and complete axiomatization for the language L(S) in
Mrec(S)).

Proof: The fact that C1, C2, C4, and C6 are valid is almost immediate; the soundness of C3
was proved in Lemma 2.10.2; and the soundness of C5 is discussed in Section 5.4 before the
statement of the theorem.

For completeness, it suffices to prove that if a formula ϕ in L(S) is consistent with
AXrec(S) (i.e., its negation is not provable), then ϕ is satisfiable in Mrec(S). For suppose
that every consistent formula is satisfiable and that ϕ is valid. If ϕ is not provable, then ¬ϕ
is consistent. By assumption, this means that ¬ϕ is satisfiable, contradicting the assumption
that ϕ is valid.

So suppose that a formula ϕ ∈ L(S), with S = (U ,V,R), is consistent with AXrec(S).
Consider a maximal consistent set C of formulas that includes ϕ. (A maximal consistent set
is a set of formulas whose conjunction is consistent such that any larger set of formulas would
be inconsistent.) It follows easily from standard propositional reasoning (i.e., using C0 and
MP only) that such a maximal consistent set exists. Moreover, it is well known that a maximal
AXrec(S)-consistent set C has the following properties:

for each formula ψ ∈ L(S), either ψ ∈ C or ¬ψ ∈ C;

ψ ∧ ψ′ ∈ C iff ψ ∈ C and ψ′ ∈ C;

ψ ∨ ψ′ ∈ C iff ψ ∈ C or ψ′ ∈ C;

each instance of an axiom in AXrec(S) is in C.

(See the notes for references for this standard result.) Moreover, from C1 and C2, it follows
that for each variable X ∈ V and vector y⃗ of values for Y⃗ , there exists exactly one element
x ∈ R(X) such that [Y⃗ ← y⃗](X = x) (i.e., in statisticians’ notation, Xy⃗ = x ∈ C). I now
construct a causal model M = (S,F) ∈ Mrec(S) and context u⃗ such that (M, u⃗) |= ψ for
every formula ψ ∈ C (and, in particular, ϕ).

The idea is straightforward: the formulas in C determine F . For each variable X ∈ V , let
Y⃗X = V − {X}. By C1 and C2, for all y⃗ ∈ R(Y⃗X), there is a unique x ∈ R(X) such that
[Y⃗X ← y⃗](X = x) ∈ C. For all contexts u⃗ ∈ R(U), define FX(y⃗, u⃗) = x. (Note that FX is
independent of the context u⃗.) This defines FX for all endogenous variables X , and hence F .
Let M = (S,F).

I claim that for all formulas ψ ∈ L(S), we have ψ ∈ C iff (M, u⃗) |= ψ for all contexts
u⃗. Before proving this, I need to deal with a subtle issue. The definition of |= was given in
Section 2.2.1 under the assumption that M is recursive (i.e., M ∈ Mrec). Although I will
show this, I have not done so yet. Thus, for now, I take (M, u⃗) |= [Y⃗ ← y⃗]ψ to hold if there
is a unique solution to the equations in the model MY⃗←y⃗ in context u⃗, and ψ holds in that
solution. This definition is consistent with the definition given in Section 2.2.1 and makes
sense even if M /∈ Mrec(S). (Recall that, in Section 2.7, I gave a definition of |= that works
even in nonrecursive models. I could have worked with that definition here; it is slightly easier
to prove the result using the approach that I have taken.)

I first prove that ψ ∈ C iff (M, u⃗) |= ψ for formulas ψ of the form [Y⃗ ← y⃗](X = x).
The proof is by induction on |V| − |Y⃗ |. First consider the case where |V| − |Y⃗ | = 0.
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In that case, X ∈ Y⃗ . If [Y⃗ ← y⃗](X = x) ∈ C, then the value of each endoge-
nous variable is determined by its setting in y⃗, so there is clearly a unique solution to
the equations in MY⃗←y⃗ for every context u⃗ and X = x in that solution. Conversely, if
MY⃗←y⃗ |= [Y⃗ ← y⃗](X = x), then [Y⃗ ← y⃗](X = x) is an instance of C4, so must be in C.

If |V| − |Y⃗ | = 1 and [Y⃗ ← y⃗](X = x) ∈ C, then again there is a unique solution to
the equations in MY⃗←y⃗ for each context; the value of each variable Y ∈ Y⃗ is determined by
y⃗, and the value of the one endogenous variable W not in Y⃗ is determined by the equation
FW . If [Y⃗ ← Y⃗ ](X = x) ∈ C and X ∈ Y⃗ , then the fact that X = x in the unique solution
follows from C4, while if X /∈ Y⃗ , the result follows from the definition of FX . Conversely, if
MY⃗←y⃗ |= [Y⃗ ← y⃗](X = x) and X ∈ Y⃗ then again [Y⃗ ← y⃗](X = x) must be an instance of
C4, so must be in C, while if X /∈ Y⃗ , then we must have [Y⃗ ← y⃗](X = x) ∈ C, given how
FX is defined.

For the general case, suppose that |V| − |Y⃗ | = k > 1 and [Y⃗ ← y⃗](X = x) ∈ C. I want
to show that there is a unique solution to the equations in MY⃗←y⃗ in every context u⃗ and that
in this solution, X has value x. To show that there is a solution, I define a vector v⃗ and show
that it is in fact a solution. If W ∈ Y⃗ and W ← w is a conjunct of Y⃗ ← y⃗, then set the W
component of v⃗ to w. If W is not in Y⃗ , then set the W component of v⃗ to the unique value
w such that [Y⃗ ← y⃗](W = w) ∈ C. (By C1 and C2 there is such a unique value w.) I claim
that v⃗ is a solution to the equations in MY⃗←y⃗ for all contexts u⃗.

To see this, let V1 be a variable in V − Y⃗ , let V2 be an arbitrary variable in V , and let
v1 and v2 be the values of these variables in v⃗. By assumption, [Y⃗ ← y⃗](V1 = v1) ∈ C,
[Y⃗ ← y⃗](V2 = v2) ∈ C, and C contains every instance of C3, so it follows that
[Y⃗ ← y⃗, V1 ← v1](V2 = v2) ∈ C. Since V2 was arbitrary, it follows from the induction hy-
pothesis that v⃗ is the unique solution to the equations in MY⃗←y⃗,V1←v1

for all contexts u⃗. For
every endogenous variable Z other than V1, the equation FZ for Z is the same in MY⃗←y⃗ and
in MY⃗←y⃗,V⃗1←v1

. Thus, every equation except possibly that for V1 is satisfied by v⃗ in MY⃗←y⃗

for all contexts u⃗. Since |V − Y⃗ | ≥ 2, we can repeat this argument starting with a variable in
V − Y⃗ other than V1 to conclude that, in fact, every equation in MY⃗←y⃗ is satisfied by v⃗ for all
contexts u⃗. That is, v⃗ is a solution to the equations in MY⃗←y⃗ for all contexts u⃗.

It remains to show that v⃗ is the unique solution to the equations in MY⃗←y⃗ for all contexts
u⃗. Suppose there were another solution, say v⃗′, to the equations in MY⃗←y⃗ for some context
u⃗. There must be some variable V1 whose value in v⃗ is different from its value in v⃗′. Suppose
that the value of V1 in v⃗ is v1 and its value in v⃗′ is v′1, with v1 ̸= v′1. By construction,
[Y⃗ ← y⃗](V1 = v1) ∈ C. By C1, [Y⃗ ← y⃗](V1 ̸= v′1) ∈ C. Since v⃗′ is a solution to the
equations in MY⃗←y⃗ in context u⃗, it is easy to check that v⃗′ is also a solution to the equations
in MY⃗←y⃗,V1←v′

1
in context u⃗. By the induction hypothesis, v⃗′ is the unique solution to the

equations in MY⃗←y⃗,V1←v′
1

in every context. Let V2 be a variable other than V1 in V−Y⃗ , and let
v′2 be the value of V2 in v⃗′. As above, v⃗′ is the unique solution to the equations in MY⃗←y⃗,V2←v′

2

in all contexts. It follows from the induction hypothesis that [Y⃗ ← y⃗, V1 ← v′1](V2 = v′2) and
[Y⃗ ← y⃗, V2 ← v′2](V1 = v′1) are both in C. I now claim that [Y⃗ ← y⃗](V1 = v′1) ∈ C. This,
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164 Chapter 5. Complexity and Axiomatization

together with the fact that [Y⃗ ← y⃗](V1 ̸= v′1) ∈ C (and hence ¬[Y⃗ ← y⃗](V1 = v′1) ∈ C by
C6(a)), contradicts the consistency of C.

To prove that [Y⃗ ← y⃗](V1 = v′1) ∈ C, note that by C5, at most one of V1 ❀ V2 and
V2 ❀ V1 is in C. If V2 ❀ V1 /∈ C, then ¬(V2 ❀ V1) ∈ C, so V2 does not affect V1. Since
[Y⃗ ← y⃗, V2 ← v′2](V1 = v′1) ∈ C, it follows that [Y⃗ ← y⃗](V1 = v′1) ∈ C, proving the claim.

Now suppose that V1 ❀ V2 /∈ C. Then an argument analogous to that above shows that
[Y⃗ ← y⃗](V2 = v′2) ∈ C. If [Y⃗ ← y⃗](V1 = v′1) /∈ C, by C2, [Y⃗ ← y⃗](V1 = v′′1 ) ∈ C for
some v′′1 ̸= v′1. Now applying C3, it follows that [Y⃗ ← y⃗, V2 ← v′2](V1 = v′′1 ) ∈ C. But
this, together with the fact that [Y⃗ ← y⃗, V2 ← v′2](V1 = v′1) ∈ C and C1, contradicts the
consistency of C. This completes the uniqueness proof.

For the converse, suppose that (M, u⃗) |= [Y⃗ ← y⃗](X = x). Suppose, by way of contra-
diction, that [Y⃗ ← y⃗](X = x) /∈ C. Then, by C2, [Y⃗ ← y⃗](X = x′) ∈ C for some x′ ̸= x.
By the argument above, (M, u⃗) |= [Y⃗ ← y⃗](X = x′), a contradiction.

The rest of this proof is straightforward. I next show that for all formulas ψ of form
[Y⃗ ← y⃗]ψ′, ψ ∈ C iff (M, u⃗) |= ψ for all contexts u⃗. The proof is by induction on the
structure of ψ′. Since ψ′ is a Boolean combination of formulas of the form X = x, for the
base case, ψ′ has the form X = x. This was handled above. If ψ′ has the form ¬ψ′′, then

ψ ∈ C
iff ¬[Y⃗ ← y⃗]ψ′′ ∈ C [by C6(a)]
iff [Y⃗ ← y⃗]ψ′′ /∈ C
iff (M, u⃗) ̸|= [Y⃗ ← y⃗]ψ′′ for all contexts u⃗ [by the induction hypothesis]
iff (M, u⃗) |= ¬[Y⃗ ← y⃗]ψ′′ for all contexts u⃗
iff (M, u⃗) |= [Y⃗ ← y⃗]¬ψ′′ for all contexts u⃗.

If ψ′ has the form ψ1 ∧ ψ2, then

ψ ∈ C
iff [Y⃗ ← y⃗]ψ1 ∧ [Y⃗ ← y⃗]ψ2 ∈ C [by C6(b)]
iff [Y⃗ ← y⃗]ψ1 ∈ C and [Y⃗ ← y⃗]ψ2 ∈ C
iff (M, u⃗) |= [Y⃗ ← y⃗]ψ1 ∧ [Y⃗ ← y⃗]ψ2 for all contexts u⃗ [by the induction hypothesis]
iff (M, u⃗) |= [Y⃗ ← y⃗](ψ1 ∧ ψ2) for all contexts u⃗.

The argument if ψ′ has the form ψ1 ∨ψ2 is similar to that for ψ1 ∧ψ2, using axiom C6(c),
and is left to the reader.

Finally, we need to consider the case that ψ is a Boolean combination of formulas of the
form [Y⃗ ← y⃗]ψ′. We again proceed by induction on structure. The argument is similar to that
above and is left to the reader.

There is one more thing that needs to be checked: that M ∈ Mrec(S). Since every instance
of C5 is in C, every instance of C5 is true in (M, u⃗) for all contexts u⃗. We just need to observe
that this guarantees that M is recursive. Define a relation ≼′ on the endogenous variables by
taking X ≼′ Y if (M, u⃗) |= X ❀ Y . It is easy to see that ≼′ is reflexive; we must have
(M, u⃗) |= X ❀ X . Let ≼ be the transitive closure of ≼′: that is, ≼ is the smallest transitive
relation (“smallest” in the sense of relating the fewest pairs of elements) that includes ≼′. It
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5.5 Technical Details and Proofs 165

is well known (and easy to check) that X ≼ Y iff there exists X0, . . . , Xn such that X = X0,
Y = Xn, X0 ≼′ X1, X1 ≼′ X2, . . . , Xn−1 ≼′ Xn. (The relation ≼′ defined this way
extends ≼ and is easily seen to be transitive; moreover, any transitive relation that extends ≼
must also extend ≼′.)

By construction, ≼ is reflexive and transitive. Axiom C5 guarantees that it is anti-
symmetric. For suppose, by way of contradiction, that X ≼ Y and Y ≼ X for dis-
tinct variables X and Y . Then there exist variables X0, . . . , Xn and Y0, . . . , Ym such that
X = X0 = Ym, Y = Xn = Y0, X0 ≼′ X1, . . . , Xn−1 ≼′ Xn, Y0 ≼′ Y1, . . . , Ym−1 ≼′ Ym.
But then

(M, u⃗) |= X0 ❀ X1 ∧ . . . ∧Xn−1 ❀ Xn ∧Xn ❀ Y1 ∧ . . . ∧ Ym−1 ❀ Ym.

Finally, the definition of ❀ guarantees that X affects Y iff (M, u⃗) |= X ❀ Y in some
context u⃗. Thus, M ∈ Mrec(S), as desired (and, in fact, the same “affects” ordering ≼ on
endogenous variables can be used in all contexts).

Theorem 5.4.3: A formula ϕ ∈ L(S) is satisfiable in Mrec(S) iff there exists u⃗ such that ϕ
is satisfiable in Mrec(Sϕ,u⃗).

Proof: Clearly, if a formula is satisfiable in Mrec(Sϕ,u⃗), then it is satisfiable in Mrec(S).
We can easily convert a causal model M = (Sϕ,u⃗,F) ∈ Mrec(Sϕ,u⃗) satisfying ϕ to a causal
model M ′ = (S,F ′) ∈ Mrec(S) satisfying ϕ by simply defining F ′

X to be a constant,
independent of its arguments, for X ∈ V − Vϕ; if X ∈ Vϕ, define F ′

X(u⃗′, x⃗, y⃗) = FX(u⃗, x⃗),
where x⃗ ∈ ×Y ∈(Vϕ−{X})R(Y ) and y⃗ ∈ ×Y ∈(V−Vϕ)R(Y ).

For the converse, suppose that ϕ is satisfiable in a causal model M = (S,F) ∈ Mrec(S).
Thus, (M, u⃗) |= ϕ for some context u⃗, and there is a partial ordering ≼u⃗ on the variables in
V such that unless Y ≼u⃗ X , FX is independent of the value of Y in context u⃗.

This means that we can view FX as a function of u⃗ and the variables Y ∈ V such that
Y ≺u⃗ X . Let Pre(X) = {Y ∈ V : Y ≺u⃗ X}. For convenience, I allow FX to take as
arguments only u⃗ and the values of the variables in Pre(X), rather than requiring its arguments
to include the values of all the variables in U ∪ V − {X}. Now define functions F ′

X : {u⃗}×
(×Y ∈(Vϕ−{X})R(Y )) → R(X) for all X ∈ V by induction on ≺u⃗; that is, start by defining
F ′
X for the ≺u⃗-minimal elements X , whose value is independent of that of all the other

variables, and then work up the ≺u⃗ chains. Suppose X ∈ Vϕ and y⃗ is a vector of values for
the variables in Vϕ − {X}. If X is ≺u⃗-minimal, then define F ′

X(u⃗, y⃗) = FX(u⃗). In general,
define F ′

X(u⃗, y⃗) = FX(u⃗, z⃗), where z⃗ is a vector of values for the variables in Pre(X) defined
as follows. If Y ∈ Pre(X) ∩ Vϕ, then the value of the Y component in z⃗ is the value of the
Y component in y⃗; if Y ∈ Pre(X)− Vϕ, then the value of the Y component in z⃗ is F ′

Y (u⃗, y⃗).
(By the induction hypothesis, F ′

Y (u⃗, y⃗) has already been defined.) Let M ′ = (Sϕ,u⃗,F ′). It is
easy to check that M ′ ∈ Mrec(Sϕ) (the ordering of the variables is just ≼u⃗ restricted to Vϕ).
Moreover, the construction guarantees that if X⃗ ⊆ Vϕ, then in context u⃗, the solutions to the
equations M ′

X⃗←x⃗
and MX⃗←x⃗ are the same when restricted to the variables in Vϕ. It follows

that (M ′, u⃗) |= ϕ.

Theorem 5.4.4: Given as input a pair (ϕ,S), where ϕ ∈ L(S) and S is a finite signature,
the problem of deciding if ϕ is satisfiable in Mrec(S) is NP-complete.
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166 Chapter 5. Complexity and Axiomatization

Proof: The NP lower bound is easy; there is an obvious way to encode the satisfiability
problem for propositional logic into the satisfiability problem for L(S). Given a proposi-
tional formula ϕ with primitive propositions p1, . . . , pk, let S = (∅, {X1, . . . , Xk},R), where
R(Xi) = {0, 1} for i = 1, . . . , k. Replace each occurrence of the primitive proposition pi in
ϕ with the formula Xi = 1. This gives us a formula ϕ′ in L(S). It is easy to see that ϕ′ is
satisfiable in a causal model M ∈ Mrec(S) iff ϕ is a satisfiable propositional formula.

For the NP upper bound, suppose that we are given (ϕ,S) with ϕ ∈ L(S). We want to
check whether ϕ is satisfiable in Mrec(S). The basic idea is to guess a causal model M
and verify that it indeed satisfies ϕ. There is a problem with this though. To completely
describe a model M , we need to describe the functions FX . However, there may be many
variables X in S , and they can have many possible inputs. As we have seen, just describing
these functions may take time much longer than polynomial in ϕ. Part of the solution to this
problem is provided by Theorem 5.4.3, which tells us that it suffices to check whether ϕ is
satisfiable in Mrec(Sϕ). In light of this, for the remainder of this part of the proof, I assume
without loss of generality that S = Sϕ. Moreover, the proof of Theorem 5.4.1 shows that if a
formula is satisfiable at all, it is satisfiable in a model where the equations are independent of
the exogenous variables.

This limits the number of variables that we must consider to at most |ϕ| (the length of the
formula ϕ, viewed a string of symbols). But even this does not solve the problem completely.
Since we are not given any bounds on |R(Y )| for variables Y in Sϕ, even describing the
functions FY for the variables Y that appear in ϕ on all their possible input vectors could take
time much more than polynomial in ϕ. The solution is to give only a short partial description
of a model M and show that this suffices.

Let R be the set of all assignments Y⃗ ← y⃗ that appear in ϕ. Say that two causal models M
and M ′ in Mrec(Sϕ) agree on R if, for each assignment Y⃗ ← y⃗ ∈ R, the (unique) solutions
to the equations in MY⃗←y⃗ and M ′

Y⃗←y⃗
in context u⃗ are the same. It is easy to see that if M and

M ′ agree on R, then either both M and M ′ satisfy ϕ in context u⃗ or neither do. That is, all
we need to know about a causal model is how it deals with the relevant assignments—those
in R.

For each assignment Y⃗ ← y⃗ ∈ R, guess a vector v⃗(Y⃗ ← y⃗) of values for the endogenous
variables; intuitively, this is the unique solution to the equations in MY⃗←y⃗ in context u⃗. Given
this guess, it is easy to check whether ϕ is satisfied in a model where these guesses are the
solutions to the equations. It remains to show that there exists a causal model in Mrec(S)
where the relevant equations have these solutions.

To do this, we first guess an ordering ≺ on the variables. We can then verify whether the
solution vectors v⃗(Y⃗ ← y⃗) guessed for the relevant equations are compatible with ≺, in the
sense that it is not the case that there are two solutions v⃗ and v⃗′ such that some variable X
takes on different values in v⃗ and v⃗′, but all variables Y such that Y ≺ X take on the same
values in v⃗ and v⃗′. It is easy to see that if the solutions are compatible with ≺, then we can
define the functions FX for X ∈ V such that all the equations hold and FX is independent of
the values of Y if X ≺ Y for all X,Y ∈ V . (Note that we never actually have to write out the
functions FX , which may take too long; we just have to know that they exist.) To summarize,
as long as we can guess some solutions to the relevant equations such that a causal model
that has these solutions satisfies ϕ, and an ordering ≺ such that these solutions are compatible
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with ≺, then ϕ is satisfiable in Mrec(Sϕ). Conversely, if ϕ is satisfiable in M ∈ Mrec(Sϕ),
then there clearly are solutions to the relevant equations that satisfy ϕ and an ordering ≺ such
that these solutions are compatible with ≺. (We just take the solutions and the ordering ≺
from M .) This shows that the satisfiability problem for Mrec(Sϕ) is in NP, as desired.

Notes
The material in Section 5.1 is largely taken from [Halpern and Hitchcock 2013]. References to
the literature on Bayesian networks are given in the notes to Chapter 2. Plausibility measures
and conditional plausibility measures were defined by Friedman and Halpern [1995]. The
notion of algebraic cpm was introduced in [Halpern 2001], where its application to Bayesian
networks is also discussed. Specifically, it is shown there how the “technology” of Bayesian
networks applies to representations of uncertainty other probability measures, as long as the
representation can be viewed as an algebraic cpm.

Glymour et al. [2010] suggest that trying to understand causality through examples is hope-
less because the number of models grows exponentially large as the number of variables
increases, which means that the examples considered in the literature represent an “infinites-
imal fraction” of the possible examples. (They use much the same combinatorial arguments
as those outlined at the beginning of the chapter.) They consider and dismiss a number of ap-
proaches to restricting the number of models. Interestingly, although they consider Bayesian
networks (and advocate their use), they do not point out that by restricting the number of par-
ents of a node, we get only polynomial growth rather than exponential growth in the number
of models. That said, I agree with their point that it does not suffice to just look at examples.
See Chapter 8 for more discussion of this point.

Pearl [2000] first discusses causality using causal networks and only then considers defini-
tions of causality using structural equations. As I mentioned in the text, the causal network just
gives information regarding the (in)dependencies between variables; the equations in a causal
model give more information. However, we can augment a (qualitative) Bayesian network
with what are called conditional probability tables. These are just the probabilistic analogue
of what was done in Table (5.2) in Example 5.2.1: we give the conditional probability of
the value of each variable in the Bayesian network given each possible setting of its parents.
(Thus, for variables that have no parents, we give the unconditional probability of each value.)
In the deterministic case, these probabilities are always either 0 or 1. In this special case, the
conditional probability tables can be viewed as defining structural equations; for each variable
X , they determine the equation FX characterizing how the value of X depends on the value
of each of the other variables. (Of course, since the value of X is independent of variables
that are not its parents, we need to define only how the value of X depends on the values
of its parents.) Thus, a qualitative Bayesian network augmented with conditional probability
tables (which is called a quantitative Bayesian network in [Halpern 2003]) can be viewed as
defining a causal model.

Sipser [2012] gives an excellent introduction to complexity theory, including the fact that
Sat is NP-complete (which was originally proved by Cook [1971]). The polynomial hierarchy
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was defined by Stockmeyer [1977]; the complexity class DP
1 was defined by Papadimitriou

and Yannakakis [1982]; this was generalized to DP
k by Aleksandrowicz et al. [2014]. Theo-

rem 5.3.1(a) and Theorem 5.3.2(a) were proved by Eiter and Lukasiewicz [2002], using the
fact (which they also proved) that causes in the original HP definition are always singletons;
Theorem 5.3.1(b) was proved by Aleksandrowicz et al. [2014]; Theorem 5.3.1(c) and Theo-
rem 5.3.2(b) were proved in [Halpern 2015a]. The fact that many large NP-complete problems
can now be solved quite efficiently is discussed in detail by Gomes et al. [2008].

The discussion of axiomatizations is mainly taken from [Halpern 2000]. The axioms con-
sidered here were introduced by Galles and Pearl [1998]. The technical results in Section 5.4
were originally proved in [Halpern 2000], although there are some slight modifications here.
An example is also given there showing that just restricting C5 to the case of k = 1 does not
suffice to characterize Mrec(S). The technique of using maximal consistent sets used in the
proof of Theorem 5.4.1 is a standard technique in modal logic. A proof of the properties of
maximal consistent sets used in the proof of Theorem 5.4.1, as well as more discussion of this
technique, can be found in [Fagin, Halpern, Moses, and Vardi 1995, Chapter 3].

Briggs [2012] has extended the language L to allow disjunctions to appear inside the [ ] (so
that we can write, for example, [X ← 1∨Y ← 1](Z = 1)) and to allow nested counterfactuals
(so that we can write [X ← 1]([Y ← 1](Z = 1)). She gives semantics to this language in a
way that generalizes that given here and provides a sound and complete axiomatization.
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Chapter 6

Responsibility and Blame

Responsibility is a unique concept . . . You may share it with others, but your por-
tion is not diminished.

Hyman G. Rickover

I enjoyed the position I was in as a tennis player. I was to blame when I lost. I
was to blame when I won. And I really like that, because I played soccer a lot
too, and I couldn’t stand it when I had to blame it on the goalkeeper.

Roger Federer

Up to now I have mainly viewed causality as an all-or-nothing concept. Although that position
is mitigated somewhat by the notion of graded causality discussed in Chapter 3, and by the
probabilistic notion of causality discussed in Section 2.5, it is still the case that either A is a
cause of B or it is not (in a causal setting (M, u⃗)). Graded causality does allow us to think of
some causes as being better than others; with probability, we can take a better cause to be one
that has a higher probability of being the cause. But we may want to go further.

Recall the voting scenario from Example 2.3.2, where there are 11 voters. If Suzy wins the
vote 6–5, then all the definitions agree that each voter is a cause of Suzy’s victory. Using the
notation from the beginning of Section 2.1, in the causal setting (M,u) where V1 = · · · =
V6 = 1 and V7 = · · · = V11 = 0, so each of the first six voters voted for Suzy, and the rest
voted for Billy, each of Vi = 1, i = 1, . . . , 6 is a cause of W = 1 (Suzy’s victory).

Now consider a context where all 11 voters vote for Suzy. Then according to the original
and updated HP definition, it is now the case that Vi = 1 is a cause of W = 1 for i =
1, . . . , 11. But intuitively, we would like to say that each voter in this case is “less” of a
cause than in the case of the 6–5 victory. Graded causality doesn’t help here, since it does
not allow us to compare degrees of causality across different causal settings; we cannot use
graded causality to say that a voter in the case of a 6–5 win is a “better” cause than a voter in
the case of an 11–0 win.

To some extent, this problem is dealt with by the modified HP definition. In the case of
the 6–5 victory, each voter is still a cause. In the case of the 11–0 victory, each voter is only
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170 Chapter 6. Responsibility and Blame

part of a cause. As observed in Example 2.3.2, each subset J of six voters is a cause; that is,
∧i∈JVi = 1 is a cause of W = 1. Intuitively, being part of a “large” cause should make a
voter feel less responsible than being part of a “small” cause. In the next section, I formalize
this intuition (for all the variants of the HP definition). This leads to a naive definition of
responsibility, which nevertheless captures intuitions reasonably well.

Like the definition of causality, this definition of responsibility assumes that everything
relevant about the facts of the world and how the world works is known. Formally, this
means that the definition is relative to a causal setting (M, u⃗). But this misses out on an
important component of determining what I will call here blame: the epistemic state. Consider
a doctor who treats a patient with a particular drug, resulting in the patient’s death. The
doctor’s treatment is a cause of the patient’s death; indeed, the doctor may well bear degree of
responsibility 1 for the death. However, if the doctor had no idea that the treatment had adverse
side effects for people with high blood pressure, then he should perhaps not be blamed for the
death. Actually, in legal arguments, it may not be so relevant what the doctor actually did
or did not know, but what he should have known. Thus, rather than considering the doctor’s
actual epistemic state, it may be more important to consider what his epistemic state should
have been. But, in any case, if we are trying to determine whether the doctor is to blame for
the patient’s death, we must take into account the doctor’s epistemic state.

Building on the definition of responsibility, in Section 6.2, I present a definition of blame
that considers whether agent a performing action b is to blame for an outcome ϕ. The def-
inition is relative to an epistemic state for a, which is a set of causal settings, together with
a probability on them. The degree of blame is then essentially the expected degree of re-
sponsibility of action b for ϕ. To understand the difference between responsibility and blame,
suppose that there is a firing squad consisting of ten excellent marksmen. Only one of them
has live bullets in his rifle; the rest have blanks. The marksmen do not know which of them
has the live bullets. The marksmen shoot at the prisoner and he dies. The only marksman who
is the cause of the prisoner’s death is the one with the live bullets. That marksman has degree
of responsibility 1 for the death; all the rest have degree of responsibility 0. However, each of
the marksmen has degree of blame 1/10.

The definition of responsibility that I give in Section 6.1 is quite naive, although it does
surprisingly well at predicting how people ascribe causal responsibility. However, people
depart from this definition in some systematic ways. For one thing, people seem to take
normality into account. Thus, to some extent, graded causality is getting at similar intuitions
as the notion of responsibility. To make matters worse, people seem to confound blame and
responsibility when ascribing responsibility; in particular, they take into account the prior
probabilities of the outcome, before the action was performed. All this suggests that there
may not be a clean, elegant definition of responsibility that completely matches how people
ascribe responsibility. I discuss this in more detail in Section 6.3.

Before going on, a few words on the choice of words. Although I believe that the defi-
nitions of “responsibility” and “blame” presented here are reasonable, they certainly do not
capture all the connotations of these words as used in the literature or in natural language. In
the philosophy literature, papers on responsibility typically are concerned with moral respon-
sibility. The definitions given here, by design, do not take into account intentions or what the
alternatives were, both of which seem necessary in dealing with moral issues. (The model
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6.1 A Naive Definition of Responsibility 171

implicitly encodes the existence of alternative actions in the range of variables representing
actions, but the definition of causality does not take this into account beyond requiring the
existence of at least a second alternative before saying that a particular action is a cause of an
outcome.)

For example, there is no question that Truman was in part responsible and to blame for
the deaths resulting from dropping the atom bombs on Hiroshima and Nagasaki. However,
to decide whether this is a morally reprehensible act, it is also necessary to consider the
alternative actions he could have performed and their possible outcomes. The definitions
given do not address these moral issues, but I believe that they may be helpful in elucidating
them.

Although “responsibility” and “blame” as I will define them are distinct notions, these
words are often used interchangeably in natural language. Phrases and terms like “degree
of causality”, “degree of culpability”, and “accountability” are also used to describe similar
notions. I think it is important to tease out the distinctions between notions. However, the
reader should be careful not to read too much into my usage of words like “responsibility”
and “blame”.

6.1 A Naive Definition of Responsibility
I start by giving a naive definition of responsibility for the original HP definition. I give the
definition in causal models without a normality ordering. I briefly remark after the definition
how responsibility can be defined in extended causal models.

Definition 6.1.1 The degree of responsibility of X = x for ϕ in (M, u⃗) according to the
original HP definition, denoted dro((M, u⃗), (X = x),ϕ), is 0 if X = x is not a cause of ϕ in
(M, u⃗) according to the original HP definition; it is 1/(k+ 1) if there is a witness (W⃗ , w⃗, x′)
to X = x being a cause of ϕ in (M, u⃗), |W⃗ | = k according to the original HP definition, and
k is minimal, in that there is no witness (W⃗ ′, w⃗′, x′′) to X = x being a cause of ϕ in (M, u⃗)
according to the original HP definition such that |W⃗ ′| < k.

Of course, if we consider extended causal models, we should restrict to witnesses (W⃗ ′, w⃗, x⃗′′)
such that sW⃗ ′=w⃗,X⃗=x⃗′,u⃗ ≽ su⃗. (Recall this condition says that the witness world is at least as
normal as the actual world.) Doing this does not change any of the essential features of the
definition, so I do not consider the normality ordering further in this section. I consider its
impact more carefully in Section 6.3.

Roughly speaking, dro((M, u⃗), (X = x),ϕ) measures the minimal number of changes
that have to be made to the world su⃗ in order to make ϕ counterfactually depend on X . If
X = x is not a cause of ϕ, then no partition of V to (Z⃗, W⃗ ) makes ϕ counterfactually depend
on X = x, and the minimal number of changes in Definition 6.1.1 is taken to have cardinality
∞; thus, the degree of responsibility of X = x is 0. If ϕ counterfactually depends on X = x,
that is, X = x is a but-for cause of ϕ in (M, u⃗), then the degree of responsibility of X = x in
ϕ is 1. In other cases, the degree of responsibility is strictly between 0 and 1. Thus, X = x is a
cause of ϕ in (M, u⃗) according to the original HP definition iff dro((M, u⃗), (X = x),ϕ) > 0.
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Example 6.1.2 Going back to the voting example, it is immediate that each voter who votes
for Suzy has degree of responsibility 1 in the case of a 6–5 victory. Each voter for Suzy is a
but-for cause of the outcome; changing any of their votes is enough to change the outcome.
However, in the case of an 11–0 victory, each voter has degree of responsibility 1/6. To see
that the degree of responsibility of, say, V1 = 1 for W = 1 is 1/6 in the latter case, we could,
for example, take W⃗ = {V2, . . . , V6} and w⃗ = 0⃗. Clearly, (W⃗ , 0⃗, 0) is a witness to V1 = 1
being a cause of W = 1. There are many other witnesses, but none has a set W⃗ of smaller
cardinality.

As this example illustrates, the sum of the degrees of responsibility can be more than 1.
The degree of responsibility is not a probability!

Example 6.1.3 Consider the forest-fire example yet again. In the conjunctive model, both
the lightning and the arsonist have degree of responsibility 1 for the fire; changing either one
results in there being no fire. In the disjunctive model, they both have degree of responsibility
1/2. Thus, degree of responsibility lets us distinguish the two scenarios even though, accord-
ing to the original HP definitions, the lightning and the arsonist are causes of the fire in both
scenarios.

The intuition that W⃗ is the minimal number of changes that has to be made in order to make
ϕ counterfactually depend on X is not completely right, as the following example shows.

Example 6.1.4 Consider a model with three endogenous variables, A, B, and C. The value
of A is determined by the context, B takes the same value as A, and C is 0 if A and B agree,
and 1 otherwise. The context u is such that A = 0, so B = 0 and C = 0. A = 0 is a cause
of C = 0 according to the original HP definition, with witness ({B}, 0, 1): if we fix B at 0,
then if A = 1, C = 1. It is easy to check that (∅, ∅, 1) is not a witness. Thus, the degree of
responsibility of A = 0 is 1/2. However, the value of B did not have to change in order to
make C depend counterfactually on A; rather, B had to be held at its actual value.

Example 6.1.5 In the naive model of the rock-throwing example, Suzy and Billy each have
degree of responsibility 1/2 for the bottle shattering. In the sophisticated model, Suzy has
degree of responsibility 1/2 for the outcome, since the the minimal witness for ST = 1 being
a cause of BS = 1 consists of BH (or BT ). In contrast, Billy has degree of responsibility 0
for the bottle shattering, since his throw was not a cause of the outcome.

These examples also suggest how to define degree of responsibility of X = x for ϕ in
(M, u⃗) for the modified and updated HP definitions. Now a cause can involve a set of vari-
ables, not just a single variable. Both the size of the cause and the size of the witness matter
for computing the degree of responsibility.

Definition 6.1.6 The degree of responsibility of X = x for ϕ in (M, u⃗) according to
the updated (resp., modified) HP definition, denoted dru((M, u⃗), (X = x),ϕ) (resp.,
drm((M, u⃗), (X = x),ϕ)), is 0 if X = x is not part of a cause of ϕ in (M, u⃗) according
to the updated (resp., modified) HP definition; it is 1/k if there exists a cause X⃗ = x⃗ of ϕ
and a witness (W⃗ , w⃗, x⃗′) to X⃗ = x⃗ being a cause of ϕ in (M, u⃗) such that (a) X = x is
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a conjunct of X⃗ = x⃗, (b) |W⃗ | + |X⃗| = k, and (c) k is minimal, in that there is no cause
X⃗1 = x⃗1 for ϕ in (M, u⃗) and witness (W⃗ ′, w⃗′, x⃗′

1) to X⃗1 = x⃗1 being a cause of ϕ in (M, u⃗)
according to the updated (resp., modified) HP definition that includes X = x as a conjunct
with |W⃗ ′|+ |X⃗1| < k.

It is easy to see that all the definitions of degree of responsibility agree that the degree of
responsibility is 1/6 for each voter in the case of the 11–0 vote; that A = 0 has degree of
responsibility 1/2 for C = 0 in the causal settings described in Example 6.1.4; that Suzy
has degree of responsibility 1/2 for the bottle shattering in both the naive and sophisticated
rock-throwing examples; that the lightning and arsonist both have degree of responsibility 1/2
in the disjunctive forest-fire model; and that they both have degree of responsibility 1 in the
conjunctive forest-fire model. If the distinction between the various HP definitions of causality
is not relevant for the degree of responsibility, I just write dr , omitting the superscript.

These examples already suggest that this definition of responsibility does capture some of
the way people use the word. But this definition is admittedly somewhat naive. I look at it
more carefully, and consider refinements of it, in Section 6.3. But first I consider blame.

6.2 Blame
The definitions of both causality and responsibility assume that the context and the structural
equations are given; there is no uncertainty. We are often interested in assigning a degree of
blame to an action. This assignment depends on the epistemic state of the agent before the
action was performed. Intuitively, if the agent had no reason to believe, before he performed
the action, that his action would result in a particular outcome, then he should not be held to
blame for the outcome (even if in fact his action caused the outcome).

There are two significant sources of uncertainty for an agent who is contemplating per-
forming an action:

what value various variables have—for example, a doctor may be uncertain about
whether a patient has high blood pressure;

how the world works—for example, the doctor may be uncertain about the side effects
of a given medication.

In a causal model, the values of variables is determined by the context; “how the world
works” is determined by the structural equations. Thus, I model an agent’s uncertainty by a
pair (K,Pr), where K is a set of causal settings, that is, pairs of the form (M, u⃗), and Pr is a
probability distribution over K. If we are trying to assign a degree of blame to X = x, then
we assume that X = x holds in all causal settings in K; that is, (M, u⃗) |= X = x for all
(M, u⃗) ∈ K. The assumption is that X = x is known; K describes the uncertainty regarding
other features of the world. We typically think of K as describing an agent’s uncertainty before
he has actually performed X = x, so I do not take ϕ to be known (although in many cases of
interest, it will be); K could also be taken to describe the agent’s uncertainty after performing
X = x and making observations regarding the effect of this action (which will typically
include ϕ). I return to this point below (see Example 6.2.4). In any case, the degree of blame
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of X = x for ϕ is just the expected degree of responsibility of X = x for ϕ, where the
expectation is taken with respect to Pr. Just as there is a definition of degree of responsibility
corresponding to each variant of the HP definition, there are definitions of degree of blame
corresponding to each variant. Here I ignore these distinctions and just write dr for degree
of responsibility (omitting the superscript) and db for the notion of degree of blame (again,
omitting the corresponding superscript).

Definition 6.2.1 The degree of blame of X = x for ϕ relative to epistemic state (K,Pr),
denoted db(K,Pr, X = x,ϕ), is

∑

(M,u⃗)∈K

dr((M, u⃗), X = x,ϕ) Pr((M, u⃗)).

Example 6.2.2 Suppose that we are trying to compute the degree of blame of Suzy’s throw-
ing the rock for the bottle shattering. Suppose that the only causal model that Suzy considers
possible is essentially like that of Figure 2.3, with some minor modifications: BT can now
take on three values, say 0, 1, 2. As before, if BT = 0, then Billy doesn’t throw, and if
BT = 1, then Billy does throw; if BT = 2, then Billy throws extra hard. Assume that the
causal model is such that if BT = 1, then Suzy’s rock will hit the bottle first, but if BT = 2,
then they will hit simultaneously. Thus, SH = 1 if ST = 1, and BH = 1 if BT = 1 and
SH = 0 or if BT = 2. Call this structural model M .

At time 0, Suzy considers the following four causal settings equally likely:

(M, u⃗1), where u⃗1 is such that Billy already threw at time 0 (and hence the bottle is
shattered);

(M, u⃗2), where the bottle was whole before Suzy’s throw, and Billy throws extra hard,
so Billy’s throw and Suzy’s throw hit the bottle simultaneously (this essentially gives
the model in Figure 2.2);

(M, u⃗3), where the bottle was whole before Suzy’s throw, and Suzy’s throw hit before
Billy’s throw (this essentially gives the model in Figure 2.3); and

(M, u⃗4), where the bottle was whole before Suzy’s throw, and Billy did not throw.

The bottle is already shattered in (M, u⃗1) before Suzy’s action, so Suzy’s throw is not a cause
of the bottle shattering, and her degree of responsibility for the shattered bottle is 0. As
discussed earlier, the degree of responsibility of Suzy’s throw for the bottle shattering is 1/2
in both (M, u⃗2) and (M, u⃗3) and 1 in (M, u⃗4). Thus, the degree of blame of ST = 1 for
BS = 1 is 1

4 · 1
2 + 1

4 · 1
2 + 1

4 · 1 = 1
2 .

Example 6.2.3 Consider again the example of the firing squad with ten excellent marksmen.
Suppose that marksman 1 knows that exactly one marksman has a live bullet in his rifle and
that all the marksmen will shoot. Thus, he considers 10 contexts possible, depending on who
has the bullet. Let pi be his prior probability that marksman i has the live bullet. Then the
degree of blame (according to marksman 1) of the ith marksman’s shot for the death is pi.
The degree of responsibility is either 1 or 0, depending on whether marksman i actually had
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the live bullet. Thus, it is possible for the degree of responsibility to be 1 and the degree of
blame to be 0 (if marksman 1 mistakenly ascribes probability 0 to his having the live bullet,
when in fact he does), and it is possible for the degree of responsibility to be 0 and the degree
of blame to be 1 (if he mistakenly ascribes probability 1 to his having the bullet when in fact
he does not).

As I said earlier, typically the probability Pr on the set K of causal settings can be thought
of as being the agent’s prior probability, before observing the consequences of having X = x.
But it makes perfect sense to take other choices for Pr. For example, it could be the agent’s
posterior probability, after making observations. In legal settings, it might be important to
consider not the agent’s actual prior (or posterior) probability—that is, the agent’s actual epis-
temic state—but what the agent’s probability should have been. The definition of degree of
blame does not change, however Pr is interpreted; it just takes the probability Pr as an in-
put. But the choice can clearly affect the degree of blame computed. The following example
illustrates some of the key differences.

Example 6.2.4 Consider a patient who dies as a result of being treated by a doctor with a
particular drug. Assume that the patient died due to the drug’s adverse side effects on people
with high blood pressure and, for simplicity, that this was the only cause of death. Suppose
that the doctor was not aware of the drug’s adverse side effects. (Formally, this means that he
does not consider possible a causal model where taking the drug causes death.) Then, relative
to the doctor’s actual epistemic state, the doctor’s degree of blame will be 0. The key point
here is that the doctor will ascribe high probability to causal setting in K where he treats the
patient and the patient does not die. However, a lawyer might argue in court that the doctor
should have known that this treatment had adverse side effects for patients with high blood
pressure (because this fact is well documented in the literature) and thus should have checked
the patient’s blood pressure. If the doctor had performed this test, then he would of course
have known that the patient had high blood pressure. With respect to the resulting epistemic
state, the doctor’s degree of blame for the death is quite high. Of course, the lawyer’s job is
to convince the court that the latter epistemic state is the appropriate one to consider when
assigning degree of blame.

In any case, the doctor’s actual epistemic state and the epistemic state he arguably should
have had before observing the effects of the drug might both be different from his epistemic
state after treating the patient with the drug and observing that he dies. Not knowing the
literature, the doctor may still consider it possible that the patient died for reasons other than
the treatment, but will consider causal models where the treatment was a cause of death more
likely. Thus, the doctor will likely have a higher degree of blame relative to his epistemic state
after the treatment.

Interestingly, all three epistemic states (the epistemic state that an agent actually has before
performing an action, the epistemic state that the agent should have had before performing
the action, and the epistemic state after performing the action) have been considered relevant
to determining responsibility according to different legal theories. Thinking in terms of the
relevant epistemic state also helps clarify some earlier examples that seemed problematic.
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Example 6.2.5 Recall Example 2.3.8, where company A dumps 100 kilograms of pollutant,
company B dumps 60 kilograms, and biologists determine that k kilograms of pollutant suf-
fice for the fish to die. The “problematic” case was when k = 80. In this case, only A is a
cause of the fish dying according to the modified HP definition. A is also a cause according
to the original and updated HP definition; whether B is a cause depends on whether A’s only
choices are to dump either 0 or 100 kilograms of pollutant (in which case B is not a cause) or
whether A can dump some intermediate amount between 20 and 79 kilograms (in which case
B is a cause).

Although it may not be clear what the “right” answer is here, it does seem disconcerting
that B escapes responsibility if we use the modified HP definition, and that B’s degree of
responsibility should depend so heavily on the amount of pollutant that A could have dumped
in the case of the original and updated definition. Thinking in terms of blame gives what seem
to be more reasonable answers here. When trying to decide how blameworthy B’s action is,
we typically do not think that B will know exactly how much pollutant A will dump, nor that
B will know how much pollutant is needed to kill fish. A causal model for B can thus be
characterized by two parameters: the amount a of pollutant that A dumps and the amount k
of pollutant that is needed to kill the fish. We can now consider B’s degree of responsibility
in a causal model as a function of a and k:

If a < k ≤ a + 60, B’s dumping 60 kilograms of pollutant is a cause and thus has
degree of responsibility 1 according to all variants of the HP definition.

If k > a+60, then B’s action is not a cause and has degree of responsibility 0 according
to all variants of the HP definition.

If k ≤ a and k ≤ 60, then B has degree of responsibility 1/2 according to all variants
of the HP definition.

If k ≤ a, k > 60, then B has degree of responsibility 0 according to all variants of
the HP definition if A can dump only 0 or 100 kilograms of pollutant; if A can dump
between k−60 and k kilograms, then B still has degree of responsibility 0 according to
the modified HP definition but has degree of responsibility 1/2 according to the original
and updated definition.

The point here is that with reasonable assumptions about what B’s state of mind should have
been, no matter which variant of the HP definition we use, B gets a positive degree of blame.
The degree of blame is likely to depend on factors like how close k is to 60 and the difference
between a and k; that is, how close B was to making a difference. This indeed seems to track
how juries might assign blame. Moreover, if company B could convince the jury that, before
dumping pollutant, it had hard evidence that company A had already dumped more than k
kilograms of pollutant (so that B was certain that its act would make no difference), then
there is a good chance that the jury would ascribe less blame to B. (Of course, a jury may still
want to punish B for the deterrent value of the punishment, but that is a matter orthogonal to
the notion of blame that is being captured here.)

Similar considerations show that, under minimal assumptions, if the amount of pollutant
dumped by A and B is known, but there is uncertainty about k, then A’s degree of blame will
be higher than that of B. This again seems to accord with intuition.
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Example 6.2.6 Voting has often been viewed as irrational. After all, the probability that one
individual’s vote can affect the outcome is typically extremely small. Indeed, the probability
that an individual’s vote can affect the outcome of the U.S. presidential election has been
calculated to be roughly 10−8. (Of course, if almost everyone decides not to vote on the
grounds that their vote is extremely unlikely to affect the outcome, then the few people who
actually vote will have a major impact on the outcome.)

In any case, people clearly do vote. There has been a great deal of work trying to explain
why people vote and defining reasonable utilities that people might have that would make
voting rational. One approach that I find compelling is that people feel a certain degree of
responsibility for the outcome. Indeed, in a 2-candidate race where A gets a votes and B gets
b votes, with a > b, assuming that it requires a majority to win, all the approaches agree that a
voter for A has degree of responsibility 1

⌈(a−b)/2⌉ for the outcome (where ⌈x⌉ is the smallest
integer greater than or equal to x, so that, for example, ⌈5/2⌉ = 3 and ⌈3⌉ = 3). Thus, in
an 11-0 victory, each voter has degree of responsibility 1/6, since ⌈11/2⌉ = 6, and in a 6–5
victory, each voter has degree of responsibility 1. Each voter can then carry out an analysis
in the spirit of Example 6.2.5 to compute his degree of blame for the outcome. The argument
goes that he should then vote because he bears some degree of responsibility/blame for the
outcome.

Of course, it then seems reasonable to ask how that degree of responsibility and blame
change depending on whether he votes. There is an intuition that someone who abstains
should be less responsible for an outcome than someone who votes for it. Although certainly
someone who abstains can never be more responsible for an outcome than someone who votes
for it, they may be equally responsible. For example, if we take ties to be undecided and Suzy
wins a 6–5 vote against Billy where there is one abstention, then the abstainer and each of the
six voters for Suzy are but-for causes of the outcome and thus have degree of responsibility
1. If the vote is 7–5 for Suzy with one abstention, then again each of the voters for Suzy has
degree of responsibility 1 for all variants of the HP definition, since they are but-for cause
of the outcome. However, the abstainer has degree of responsibility 1/2: if a voter for Suzy
abstains, then the abstainer’s vote becomes critical, since he can make the outcome a draw by
voting for Billy.

More generally, if a voters vote for Suzy, b voters vote for Billy, c voters abstain, and a > b,
then, as we have seen, the degree of responsibility of one of Suzy’s voters for the outcome is

1
⌈(a−b)/2⌉ . If a − b is odd, this is also the degree of responsibility of an abstainer. However,
if a − b is even and c ≥ 2, then the degree of responsibility of an abstainer is slightly lower:

1
⌈(a−b)/2⌉+1 . Finally, if a−b is even and c = 1, then the abstainer has degree of responsibility
0 for all variants of the HP definition. To understand why this should be so, suppose that the
vote is 9–5 with 2 abstentions. Then if we switch one of the voters for Suzy to voting for Billy
and switch one abstainer to voting for Billy, then the vote becomes 8–7; now if the second
abstainer votes for Billy, Suzy is no longer the winner. Thus, the second abstainer has degree
of responsibility 1/3 for Suzy’s victory. However, if there is only one abstention, there are no
vote flips that would make the abstainer critical; the abstainer is not a cause of the outcome.
This argument applies to all the variants of the HP definition.
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We can “smooth away” this dependence on the parity of a − b and on whether c = 1 or
c > 1 by considering the degree of blame. Under minimal assumptions, the degree of blame
of an abstainer will be (slightly) less than that of a voter for the victor.

Is the increase in degree of blame for the outcome (here perhaps “responsibility” is a better
word) enough to get someone to vote? Perhaps people don’t consider the increase in degree
of blame/responsibility when deciding whether to vote; rather, they say (correctly) that they
feel responsible for the outcome if they vote and believe that that’s a good thing. The impact
of responsibility on voting behavior deserves further investigation.

! ! ! ! !
! ! ! !

✲ ✲ ✲ ✲❄ ❄ ❄ ❄
M RI SD LL ES

R F LI EU

Figure 6.1: Attenuation in a causal chain.

Example 6.2.7 Recall the causal chain example from Section 3.4.4. The causal network for
this example is reproduced in Figure 6.1. Although both M = 1 and LL = 1 are causes of
ES = 1 according to all the variants of the HP definition (indeed, they are but-for causes),
taking graded causality into account, the original and updated HP definition captured the
attenuation of causality along the chain. A cause close to the outcome, like LL = 1, is viewed
as being a better cause than one further away, like M = 1. The modified HP definition was
not able to obtain this result.

However, once we take blame into account and make reasonable assumptions about an
agent’s probability distribution on causal models, all the definitions again agree that LL = 1
is more to blame for the outcome than M = 1. Recall that in the actual context in this
example, M = R = F = LI = EU = 1, so all the variables are 1. However, the equations
are such that if any of these variables is 0, then ES = 0. Now suppose that an agent is
uncertain as to the values of these variables. That is, although the agent knows the causal
model, he is uncertain about the context. For all variants of the HP definition, LL = 1 is a
cause (and hence has degree of responsibility 1) in all causal settings where EU = 1, and
otherwise is not a cause. Similarly, M = 1 is a cause and has degree of responsibility 1 in the
causal setting where R = F = LI = EU = 1, and otherwise is not a cause. Again, under
minimal assumptions, the degree of blame of M = 1 for ES = 1 is strictly less than that of
LL = 1 (and, more generally, attenuates as we go along the chain).

Example 6.2.8 Consider the classic bystander effect: A victim is attacked and is in need of
help. The probability that someone helps is inversely related to the number of bystanders:
the greater the number of bystanders, the less likely one of them is to help. The bystander
effect has often been explained in terms of “diffusion of responsibility” and the degree of
responsibility that a bystander feels.

Suppose for simplicity that as long as one bystander gets involved, the victim will be
saved; otherwise the victim will die. That means that if no one gets involved, each bystander
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is a cause of the victim’s death and has degree of responsibility 1. This seems inconsistent
with the intuition that the more bystanders there are, the less responsibility a bystander feels.
It actually seems that the notion of blame as I have defined it is capturing the intuition here,
rather than the notion of responsibility. (Recall my earlier comment that English tends to use
these words interchangeably.)

For suppose that we assume that a bystander sees n other bystanders and is deciding
whether to get involved. Further suppose (as seems quite plausible) that there is a signifi-
cant cost to being involved in terms of time, so, all things being equal, the bystander would
prefer not to be involved. However, the bystander does not want to get blamed for the out-
come. Of course, if he gets involved, then he will not be blamed. If he does not get involved,
then his degree of blame will depend on what others do. The lower his perceived blame, the
less likely the bystander is to get involved. Thus, the bystander must compute his degree of
blame if he does not get involved. Assume that which other bystanders will get involved is de-
termined by the context. Note that a bystander who gets involved has degree of responsibility
1/(k + 1) for the victim surviving in a causal setting where k other bystanders get involved;
a bystander who does not get involved has degree of responsibility 0 for the victim surviving.
Getting an accurate model of how many other bystanders will get involved is, of course, rather
complicated (especially since other bystanders might be thinking along similar lines). But for
our purposes, it suffices that bystanders assume that the more bystanders there are, for each
k > 0, the more likely it is that at least k bystanders will get involved. With this assumption,
the bystander’s degree of blame decreases the more bystanders there are. If he uses the rule
of getting involved only if his degree of blame (i.e., expected degree of responsibility) for
the victim’s survival is greater than some threshold, and uses this naive analysis to compute
degree of blame (which does not seem so unreasonable in the heat of the moment), then the
more bystanders there are, the less likely he is to get involved.

6.3 Responsibility, Normality, and Blame
The definition of responsibility given in Section 6.1 is rather naive. Nevertheless, experiments
have shown that it does give qualitatively reasonable results in many cases. For example, when
asked to judge the degree of responsibility of a voter for a victory, they give each voter lower
and lower responsibility as the outcome goes from 1–0 to 4–0 (although it is certainly not the
case that they ascribe degree of responsibility 1 in the case of a 2–0 and 1/2 in the case of a
3–0 victory, as the naive definition would suggest). However, this definition does not capture
all aspects of how people attribute responsibility. In this section, I discuss some systematic
ways in which people’s responsibility attributions deviate from this definition and suggest
some improvements to the definition that takes them into account.

One problem with the naive definition of responsibility is that it is clearly language depen-
dent, as the following example shows.

Example 6.3.1 Consider a vote where there are two large blocs: bloc A controls 25 votes
and bloc B controls 25 votes. As the name suggests, all the voters in a bloc vote together,
although in principle, they could vote differently. There is also one independent voter; call her
C. A measure passes unanimously, by a vote of 51–0. What is the degree of responsibility of
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180 Chapter 6. Responsibility and Blame

C for the outcome? If the only variables in the model are A, B, C, and O (for outcome), then
it is 1/2; we need to change either A or B’s vote to make C’s vote critical. But this misses
out on the fact that A and B each made a more significant contribution to the outcome than
C. If instead we use variables A1, . . . , A25, B1, . . . , B25, where Ai = 1 if the ith voter in
bloc A votes in favor, and similarly for Bi, then C’s degree of responsibility drops to 1/26.
Intuitively, changing bloc A from voting for the outcome to voting against is a much “bigger”
change than changing C from voting for the outcome to voting against. The current definition
does not reflect that (although I suspect people’s responsibility judgments do).

Example 3.5.1 captures a related phenomenon.

Example 6.3.2 Consider Example 3.5.1 again. Recall that, in this example, there is a team
consisting of Alice, Bob, Chuck, and Dan. In order to compete in the International Salsa
Tournament, the team must have at least one male and one female member. All four of the
team members are supposed to show up for the competition, but in fact none of them does.
To what extent is each of the team members responsible for the fact that the team could not
compete?

The naive definition of responsibility says that all team members have degree of respon-
sibility 1/2. For example, if Alice shows up, then each of Bob, Chuck, and Dan becomes
critical. However, there is an intuition that Alice is more responsible for the outcome than any
of Bob, Chuck, or Dan. Intuitively, there are three ways for Alice to be critical: if any of Bob,
Chuck, or Dan show up. But there is only one way for Dan to be critical: if Alice shows up.
Similarly for Bob and Chuck.

Recall that in Chapter 3, the alternative definition of normality took into account the fact
that there were more witnesses for Alice being a cause of the team not being able to participate
than for each of Bob, Chuck, or Dan, and ended up grading Alice a “better” cause. It is not
hard to modify Definitions 6.1.1 and 6.1.6 to also take this into account. For example, in
Definition 6.1.1, we could count not just the size of the minimal witness set but the number of
witness sets of that size. Indeed, we could take into account how many witness sets there are
of each size. (See the notes at the end of the chapter for an explicit approach to doing this.)

This example also suggests a connection between responsibility and normality. Thinking
in terms of normality could help explain why changing the votes of an entire bloc of voters in
Example 6.3.1 is viewed as having a bigger impact than just changing the vote of one voter:
we can think of changing the votes of an entire bloc of voters as being a more abnormal change
than just changing the vote of a single voter.

The connection between normality and responsibility seems to run deep. The next example
provides another illustration of the phenomenon.

Example 6.3.3 Suppose that there are five people on a congressional committee. Three votes
are required for a measure to pass the committee. A, B, and C vote against the procedure,
while D and E vote for it, so the measure fails. Each of A, B, and C is a cause of the measure
failing, and thus have degree of responsibility 1. But now suppose that A is a Democrat,
whereas B and C are Republicans. Moreover, the Democratic party favors the measure and
the Republican party is opposed to it. Does that change things? For most people, it does.
Going back to graded causality, A would be viewed as a “better” cause of the outcome than
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6.3 Responsibility, Normality, and Blame 181

B because the witness world where A votes for the measure is more normal than the world
where B votes for the measure. Sure enough, people do assign A more responsibility for
the outcome than either B or C. This suggests that people do seem to be taking normality
considerations into account when ascribing degree of responsibility.

Gerstenberg, Halpern, and Tenenbaum did an extensive series of experiments on voting
behavior of the type discussed in Example 6.3.3. The number of committee members was
always either 3 or 5. They varied the number of votes required for the measure to pass, the
party affiliations of the committee members, and whether the parties supported the measure
or opposed it. As expected, pivotality considerations, that is, how far a voter was from being
critical to the outcome, in the sense captured by Definitions 6.1.1 and 6.1.6, were highly cor-
related with the outcome. Normality considerations also affected the outcome. The normality
considerations came in two flavors. First, voting against your party was considered abnormal,
as suggested in Example 6.3.3. But this does not completely explain the observations. In the
causal setting discussed in Example 6.3.3, when all voters should have responsibility 1 ac-
cording to the definition, in fact, the average degree of responsibility ascribed (averaged over
subjects in the experiment) was about .75 to voter A and .5 to voter B.

We can get some insight into this phenomenon if we consider votes where party consid-
erations do not apply. For example, suppose that there are three committee members, all in
the same party, all three vote for a measure, and unanimity is needed for the measure to pass.
This means that all three voters are but-for causes of the outcome and should have degree of
responsibility 1 according to the naive definition. But again, subjects only assign them an
average degree of responsibility of .75. Interestingly, if only one vote is needed for the mea-
sure to pass and only one committee member votes for it, then that committee member gets
an average degree of responsibility very close 1. So somehow responsibility is being diffused
even when everyone who voted for the measure is a but-for cause.

One way of understanding this is by considering a different normality criterion. Note that
if only one vote is needed for the measure to pass, there are three voters, and the vote is 2–1
against, then the voter who voted in favor is “bucking the trend” and acting more abnormally
than in the case where all three voters voted for the measure and three votes are needed to
pass it. Thus, the difference between the two assignments of responsibility can be understood
in terms of normality considerations if we identify degree of normality with “degree of going
along with the crowd”.

Taking normality into account also lets us account for another phenomenon that we see
with responsibility attributions: they typically attenuate over a long chain. Recall the example
from Section 3.4.4, where a lit match aboard a ship caused a cask of rum to ignite, causing
the ship to burn, which resulted in a large financial loss by Lloyd’s insurance, leading to the
suicide of a financially ruined insurance executive. Although each of the events along the
causal path from the lit match to the suicide is a (but-for) case of the suicide, as we saw
in Section 3.4.4, a reasonable normality ordering results in witnesses for causes further up
the chain being viewed as less normal than the witnesses for causes closer to the suicide,
so the graded notion of normality deals with this well, at least for the original and modified
and updated definition. By incorporating these normality considerations into the notion of
responsibility, responsibility will also attenuate along causal chains, at least with the original
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and updated definition. (I discuss another approach to dealing with this problem, based on the
observations in Example 6.2.7, shortly.)

I now sketch one way of incorporating normality considerations more formally into the
notion of degree of responsibility The idea is to consider the normality of the changes required
to move from the actual world to a witness world. Going back to the naive definition of
responsibility, suppose that we start in a context u⃗. Changing the value of a variable from its
value in u⃗ or holding a variable fixed at a value inconsistent with other changes is, all else
being equal, abnormal, but not all changes or clampings of variables are equally abnormal.
Changing the votes of a large bloc of voters is more abnormal, in general, than changing the
vote of one voter; changing a vote so that it is more aligned with the majority is less abnormal
than changing it to be less aligned with the majority; changing the vote of a voter so that
it is more aligned with his party’s views is more normal than changing it so that it is less
aligned with his party’s view; and so on. We would expect the degree of responsibility to be
inversely related to the “difficulty” of getting from the actual world to the witness, where the
difficulty depends on both the “distance” (i.e., how many changes have to be made to convert
the actual world to the witness world—that is what is being measured by the naive definition
of responsibility) and how normal these changes are—the larger the increase in normality
(or the smaller the decrease in normality), the shorter the distance, and hence the greater the
responsibility.

An important point here is that when we judge the abnormality of a change, we do so from
the perspective of the event whose responsibility we are judging. The following example
should help clarify this.

Example 6.3.4 Recall that in Example 3.5.2, A flips a switch, followed by B (who knows
A’s choice). If they both flip the switch in the same direction, C gets a shock. In the actual
context, B wants to shock C, so when A flips the switch to the right, so does B, and C gets a
shock. We now want to consider the extent to which A and B are responsible for C’s shock.
In the witness showing that A is responsible, A’s flip has to change from left to right and B’s
flip has to be held constant. Given that B wants to shock C, holding B’s flip constant is quite
abnormal. Now it is true that wanting to shock someone is abnormal from the point of view of
societal norms, but since A doesn’t want to shock C, this norm is not relevant when judging
A’s responsibility. By way of contrast, society’s norms are quite relevant when it comes to
judging B’s responsibility. For B to be responsible, the witness world is one where B’s flip
changes (and A’s flip stays the same as it is in the actual context). Although it is abnormal to
change B’s flip in the sense that doing so goes against B’s intent, it makes for a more normal
outcome according to society’s norms. The net effect is to make B’s change not so large. The
move from the actual world to the witness world for A being a cause results in a significant
decrease in normality; the move from the actual world to the witness world for B being a
cause results in a much smaller decrease in normality (or perhaps even an increase). Thus,
we judge B to be more responsible. Similar considerations apply when considering Billy’s
medical condition (see the discussion in Example 3.5.2).

Note that these considerations are similar to those used when applying ideas of normality
to judge causality, provided that we do not just look at the normality of the witness worlds
involved but rather consider the normality of the changes involved in moving from the actual
world to the witness world, relative to the event we are interested in.
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One final confounding factor when it comes to responsibility judgments is that, as I said
earlier, people seem to conflate responsibility and blame, as I have defined them. Recall the
discussion of the bystander effect in Example 6.2.8. Suppose people are asked to what degree
a bystander is responsible for the victim’s death if there are n bystanders, none of whom
acted. We would expect that the larger n is, the lower the degree of responsibility assigned to
each bystander. Part of this can be explained by the normality effect just discussed. The more
bystanders there are doing nothing, the more abnormal it is for someone to act (in some sense
of the word “abnormal”), so the lower the degree of responsibility for each one. But it may
also be that when asked about the degree of responsibility of a bystander, people are actually
responding with something like the degree of blame. As we have already seen, under some
reasonable assumptions, the degree of blame goes down as n increases.

Thinking in terms of blame also provides an approach to dealing with the apparent atten-
uation of responsibility along causal chains, namely, the claim is that what is attenuating is
really blame (in the technical sense that I have defined it in Section 6.2), not responsibility.
As I pointed out in the discussion in Example 6.2.7, for all variants of the HP definition, the
degree of blame attenuates as we go along the chain.

This discussion suggests that we may want to combine considerations of normality and
blame. The alternative approach to incorporating normality given in Section 3.5 gives us a
useful framework for doing so, especially when combined with some of the ideas in Chapter 5.
In the alternative approach to normality, I assume a partial preorder on contexts that is viewed
as a normality ordering. For blame, I assumed a probability on contexts in this section, but
that was mainly so that we could compute blame as the expected degree of responsibility.
I discussed in Sections 5.2.1 and 5.5.1 how a partial preorder on worlds can be viewed as
algebraic conditional plausibility measure. Recall that an algebraic plausibility measure is just
a generalization of probability: it is a function that associates with each event (set of worlds)
a plausibility, and it has operations ⊕ and ⊗ that are analogues of addition and multiplication,
so that plausibilities can be added and multiplied. If we also take the degree of responsibility
to be an element of the domain of the plausibility measure, we can still take blame to be
the expected degree of responsibility, but now it can be a more qualitative plausibility, rather
than necessarily being a number. This is perhaps more consistent with the more qualitative
way people use and assign blame. In any case, this viewpoint lets us work with blame and
normality in one framework; instead of using probability or an partial preorder on worlds, we
use a plausibility measure (or perhaps two plausibility measures: one representing likelihood
and the other representing normality in the sense of norms). Doing this also lets us incorporate
normality considerations into blame in a natural way and lets us work with likelihood without
necessarily requiring a probabilistic representation of it. It is not yet clear how much is gained
by this added generalization, although it seems worth exploring.

Notes
The definitions of responsibility and blame given in Sections 6.1 and 6.2 are largely taken
from [Chockler and Halpern 2004], as is much of the discussion in these sections. However,
there is a subtle difference between the definition of responsibility given here for the original
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and updated definition and the one given by Chockler and Halpern. In computing the degree
of responsibility of X = x for ϕ, the Chockler-Halpern definition counted the number of
changes needed to make X = x critical. Thus, for example, in Example 6.1.4, it would
have taken the degree of responsibility of A = 0 for C = 1 to be 1, since the value of B
did not have to change to make A = 0 critical. Similarly, it would take Suzy’s throw in the
sophisticated rock-throwing model to be 1. The current definition seems to be a more accurate
representation of people’s responsibility ascriptions.

The definition of blame given here is also slightly modified from the original Chockler-
Halpern definition. Here I assume that all the contexts u⃗ in the set K used to assign a degree
of blame to X⃗ = x⃗ also satisfy X⃗ = x⃗. In [Chockler and Halpern 2004], it was assumed
that the contexts in K represented the agent’s epistemic state prior to observing X⃗ = x⃗, and
the degree of responsibility of X⃗ = x⃗ for ϕ was computed with respect to (MX⃗←x⃗, u⃗), not
(M, u⃗). The choice here is arguably more reasonable, given that my focus has been on
assigning degree of blame and responsibility to X⃗ = x⃗ in circumstances where X⃗ = x⃗ holds.
Note that the agent might well assign different probabilities to settings if X⃗ = x⃗ is observed
than if X⃗ = x⃗ is the result of an intervention setting X⃗ to x⃗.

There is an analysis of the complexity of computing the degree of responsibility and blame
for the original HP definition by Chockler and Halpern [2004], for the updated definition
by Aleksandrowicz et al. [2014], and for the modified definition by Alechina, Halpern, and
Logan [2016].

Tim Williamson [private communication, 2002] suggested the marksmen example to dis-
tinguish responsibility from blame. The law apparently would hold the marksmen who fired
the live bullet more accountable than the ones who fired blanks. To me, this just says that the
law is taking into account both blame and responsibility when it comes to punishment. I think
there are advantages to carefully distinguishing what I have called “blame” and “responsibil-
ity” here, so that we can then have a sensible discussion of how punishment should depend on
each.

Zimmerman [1988] gives a good introduction to the literature on moral responsibility.
Somewhat surprisingly, most of the discussion of moral responsibility in the literature does
not directly relate moral responsibility to causality. Shafer [2001] does discuss a notion of
responsibility that seems somewhat in the spirit of the notion of blame as defined here, espe-
cially in that he views responsibility as being based (in part) on causality. However, he does
not give a formal definition of responsibility, so it is hard to compare his notion to the one
used here. Moreover, there are some significant technical differences between his notion of
causality and the HP definition, so a formalization of Shafer’s notion would undoubtedly be
different from the notions used here.

Hart and Honoré [1985, p. 482] discuss how different epistemic states are relevant for
determining responsibility.

Goldman [1999] seems to have been the first to explain voting in terms of (causal) respon-
sibility. His analysis was carried out in terms of Mackie’s INUS condition (see the notes to
Chapter 1), but essentially the same analysis applies here. He also raised the point that some-
one who abstains should have a smaller degree of responsibility for an outcome than someone
who votes for it, but did not show formally that this was the case in his model. Riker and
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Ordeshook [1968] estimated the probability of a voter being decisive in a U.S. presidential
election as 10−8.

Gerstenberg and Lagnado [2010] showed that the notion of responsibility defined here
does a reasonable job in characterizing people’s causality ascriptions. Zultan, Gerstenberg,
and Lagnado [2012] discuss the effect of multiple witnesses on responsibility ascriptions and
give Example 3.5.1 as an instance of this phenomenon. They also provide a formal definition
of responsibility that takes this into account. Given X = x, ϕ, and a causal setting (M,u), let

N =
1

∑k
i=1

1
ni

,

where k is the number of witnesses for X = x being a cause of ϕ, and for each witness
(W⃗i, w⃗i, xi), ni = |W⃗i|, for i = 1, . . . , k. Then the degree of responsibility is taken to be
1/(N +1). In the special case where there is only one witness, this definition reduces to Defi-
nition 6.1.1. Zultan, Gerstenberg, and Lagnado show this more refined notion of responsibility
is a better predictor of people’s ratings than the one given by Definition 6.1.1.

The voting experiments discussed in Section 6.3 are described in [Gerstenberg, Halpern,
and Tenenbaum 2015]. There it is pointed out that, in addition to pivotality and normality,
what is called criticality is significant. The notion of criticality used is discussed in more
detail by Lagnado, Gerstenberg, and Zultan [2013]. Criticality is meant to take people’s
prior beliefs into account. Taking Pr to be the prior probability on causal settings, Lagnado,
Gerstenberg, and Zultan characterize the criticality of X = x for ϕ by the formula

Crit(ϕ, X = x) = 1− Pr(ϕ | X ̸= x)

Pr(ϕ | X = x)
.

X = x is assumed to have a positive impact on ϕ, so Pr(ϕ | X = x) > Pr(ϕ | X ̸= x). If
X = x is irrelevant to ϕ, then Pr(ϕ | X = x) = Pr(ϕ | X ̸= x) so Crit(ϕ, X = x) = 0.
However, if X = x is necessary for ϕ, then Pr(ϕ | X ̸= x) = 1 so Crit(ϕ, X = x) = 1.
Lagnado, Gerstenberg, and Zultan then suggest that the ascription of responsibility is some
function of criticality and pivotality.

I have not discussed criticality here because I view it as playing essentially the same role
as blame. Note that if X = x is irrelevant to ϕ, then the degree of blame of X = x for ϕ is
0; if X = x is necessary for ϕ in the sense of being a but-for cause of ϕ whenever ϕ occurs,
and ϕ is known to have occurred (i.e., ϕ holds in all causal setting in K), then the degree of
blame of X = x for ϕ is 1. Although the degree of blame and degree of criticality are related,
and both take prior probabilities into account, they are not the same. For example, if X = x
and ϕ are perfectly correlated, but X = x is not a cause of ϕ (which would be the case if
X = x and ϕ have a common cause), then the degree of blame of X = x for ϕ would be 0,
whereas Crit(ϕ, X = x) would still be 1. It seems to me that degree of blame comes closer
to describing the impact of the prior probability on responsibility ascriptions than criticality
in cases like this. But there is no question that, because people seem to conflate blame and
responsibility, the prior probability will have an impact.
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186 Chapter 6. Responsibility and Blame

Further support for the role of normality in responsibility judgments is provided by the
work of Kominsky et al. [2014] (although they present a somewhat different account of their
experimental results than that given here).

See Chu and Halpern [2008] for details on applying plausibility measures in the context of
expectation.
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Chapter 7

Explanation

Good explanations are like bathing suits, darling; they are meant to reveal
everything by covering only what is necessary.

E. L. Konigsburg

There has to be a mathematical explanation for how bad that tie is.

Russell Crowe

Perhaps the main reason that people are interested in causality is that they want explanations.
Consider the three questions I asked in the first paragraph of this book: Why is my friend
depressed? Why won’t that file display properly on my computer? Why are the bees suddenly
dying? The questions are asking for causes; the answers would provide an explanation.

Perhaps not surprisingly, just as with causality, getting a good definition of explanation
is notoriously difficult. And, just as with causality, issues concerning explanation have been
the focus of philosophical investigation for millennia. In this chapter, I show how the ideas
behind the HP definition of causality can be used to give a definition of (causal) explanation
that deals well with many of the problematic examples discussed in the literature. The basic
idea is that an explanation is a fact that, if found to be true, would constitute an actual cause
of the explanandum (the fact to be explained), regardless of the agent’s initial uncertainty.

As this gloss suggests, the definition of explanation involves both causality and knowledge.
What counts as an explanation for one agent may not count as an explanation for another
agent, since the two agents may have different epistemic states. For example, an agent seeking
an explanation of why Mr. Johansson has been taken ill with lung cancer will not consider the
fact that he worked for years in asbestos manufacturing a part of an explanation if he already
knew this fact. For such an agent, an explanation of Mr. Johansson’s illness may include a
causal model describing the connection between asbestos fibers and lung cancer. However, for
someone who already knows the causal model but does not know that Mr. Johansson worked
in asbestos manufacturing, the explanation would involve Mr. Johansson’s employment but
would not mention the causal model. This example illustrates another important point: an
explanation may include (fragments of) a causal model.

187
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188 Chapter 7. Explanation

Salmon distinguishes between epistemic and ontic explanations. Roughly speaking, an
epistemic explanation is one that depends on an agent’s epistemic state, telling him something
that he doesn’t already know, whereas an ontic explanation is agent-independent. An ontic
explanation would involve the causal model and all the relevant facts. When an agent asks for
an explanation, he is typically looking for an epistemic explanation relative to his epistemic
state; that is, those aspects of the ontic explanation that he does not already know. Both
notions of explanation seem to me to be interesting. Moreover, having a good definition of
one should take us a long way toward getting a good definition of the other. The definitions I
give here are more in the spirit of the epistemic notion.

7.1 Explanation: The Basic Definition
The “classical” approaches to defining explanation in the philosophy literature, such as
Hempel’s deductive-nomological model and Salmon’s statistical relevance model, fail to ex-
hibit the directionality inherent in common explanations. Despite all the examples in the
philosophy literature on the need for taking causality and counterfactuals into account, and
the extensive work on causality defined in terms of counterfactuals in the philosophy litera-
ture, philosophers have been reluctant to build a theory of explanation on top of a theory of
causality built on counterfactuals. (See the notes at the end of the chapter.)

As I suggested above, the definition of explanation is relative to an epistemic state, just
like that of blame. An epistemic state K, as defined in Section 6.2, is a set of causal settings,
with a probability distribution over them. I assume for simplicity in the basic definition that
the causal model is known, so that we can view an epistemic state as a set of contexts. The
probability distribution plays no role in the basic definition, although it will play a role in the
next section, when I talk about the “quality” or “goodness” of an explanation. Thus, for the
purposes of the following definition, I take an epistemic state to simply be a set K of contexts.
I think of K as the set of contexts that the agent considers possible before observing ϕ, the
explanandum. Given a formula ψ, let Kψ = {(M, u⃗) ∈ K : (M, u⃗) |= ψ}. Recall that in
Section 3.5, I defined [[ψ]] = {u⃗ : (M, u⃗) |= ψ}. Using this notation (which will be useful
later in this chapter), Kψ = K ∩ [[ψ]].

The definition of explanation is built on the definition of sufficient causality, as defined
in Section 2.6. Just as there are three variants of the definition of causality, there are three
variants of the definition of explanation.

Definition 7.1.1 X⃗ = x⃗ is an explanation of ϕ relative to a set K of contexts in a causal
model M if the following conditions hold:

EX1. X⃗ = x⃗ is a sufficient cause of ϕ in all contexts in K satisfying X⃗ = x⃗ ∧ ϕ. More
precisely,

If u⃗ ∈ K and (M, u⃗) |= X⃗ = x⃗∧ϕ, then there exists a conjunct X = x of X⃗ = x⃗
and a (possibly empty) conjunction Y⃗ = y⃗ such that X = x ∧ Y⃗ = y⃗ is a cause
of ϕ in (M, u⃗). (This is essentially condition SC2 from the definition of sufficient
cause, applied to all contexts u⃗ ∈ KX⃗=x⃗∧ϕ. Note that SC1 is guaranteed to hold
in all contexts in KX⃗=x⃗∧ϕ.)
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7.1 Explanation: The Basic Definition 189

(M, u⃗′) |= [X⃗ ← x⃗]ϕ for all contexts u⃗′ ∈ K. (This is just the sufficiency
condition SC3, restricted to the contexts in K.)

EX2. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such that X⃗ ′ = x⃗′ satisfies EX1, where
x⃗′ is the restriction of x⃗ to the variables in X⃗ . (This is just SC4.)

EX3. KX⃗=x⃗∧ϕ ̸= ∅. (This just says that the agent considers possible a context where the
explanation holds.)

The explanation is nontrivial if it satisfies in addition

EX4. (M, u⃗′) |= ¬(X⃗ = x⃗) for some u⃗′ ∈ Kϕ. (The explanation is not already known given
the observation of ϕ.)

Most of the conditions here depend only on Kϕ, the set of contexts that the agent considers
possible after discovering ϕ. The set K plays a role only in the second clause of EX1 (the
analogue of SC3); it determines the set of contexts for which the condition [X⃗ ← x⃗]ϕ must
hold.

The minimality requirement EX2 essentially throws out parts of the explanation that are
already known. Thus, we do not get an ontic explanation. The nontriviality requirement
EX4 (which I view as optional) says that explanations that are known do not count as “real”
explanations—the minimality requirement as written does not suffice to get rid of trivial ex-
planations. This seems reasonable for epistemic explanations.

EX4 may seem incompatible with linguistic usage. For example, say that someone ob-
serves ϕ, then discovers some fact A and says, “Aha! That explains why ϕ happened.” That
seems like a perfectly reasonable utterance, yet A is known to the agent when he says it. A
is a trivial explanation of ϕ (one not satisfying EX4) relative to the epistemic state after A
has been discovered. I think of Kϕ as the agent’s epistemic state just after ϕ is discovered
but before A is discovered (although nothing in the formal definition requires this). A may
well be a nontrivial explanation of ϕ relative to the epistemic state before A was discovered.
Moreover, even after an agent discovers A, she may still be uncertain about how A caused
ϕ; that is, she may be uncertain about the causal model. This means that A is not, in fact, a
trivial explanation once we take all of the agent’s uncertainty into account, as the more general
definition of explanation will do.

Example 7.1.2 Consider again the forest-fire example (Example 2.3.1). In the notation in-
troduced in Section 2.1, consider the following four contexts: in u0 = (0, 0), there is no
lightning and no arsonist; in u1 = (1, 0), there is only lightning; in u2 = (0, 1), the arsonist
drops a match but there is no lightning; and in u3 = (1, 1), there is lightning and the arsonist
drops a match. In the disjunctive model Md, if K1 = {u0, u1, u2, u3}, then both L = 1
and MD = 1 are explanations of FF = 1 relative to K1, according to all variants of the HP
definition.

Going on with the example, L = 1 and MD = 1 are also both explanations of FF = 1
relative to K2 = {u0, u1, u2} and K3 = {u0, u1, u3}. However, in the case of K3, L = 1 is a
trivial explanation; it is known once the forest fire is discovered.
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190 Chapter 7. Explanation

By way of contrast, in the conjunctive forest-fire model M c, relative to K1, the only ex-
planation of the fire is L = 1 ∧ MD = 1. Due to the sufficiency requirement, with u0, u1,
and u2 in K1, neither L = 1 nor MD = 1 is by itself an explanation of the fire. However,
L = 1 ∧MD = 1 is a trivial explanation. If the agent is convinced that the only way that the
forest fire could start is through a combination of lightning and a dropped match (it could not,
for example, have been due to unattended campfires), then once the forest fire is observed, he
knows why it happened; he does not really need an explanation.

However, with respect to K4 = {u1, u3}, MD = 1 is an explanation of the forest fire,
although a trivial one. Since L = 1 is already known, MD = 1 is all the agent needs to
know to explain the fire, but since both MD = 1 and L = 1 are required for there to be a
fire, the agent knows that MD = 1 when he see the fire. Note that MD = 1 ∧ L = 1 is not
an explanation; it violates the minimality condition EX2. L = 1 is not an explanation either,
since (M c, u1) |= ¬[L ← 1](FF = 1), so sufficient causality does not hold.

This example already suggests why we want to consider sufficient causality in the context
of explanation. We would not typically accept lightning as an explanation of the forest fire
relative to either K1 or K4..

Example 7.1.3 Now consider the voting scenario with 11 voters discussed in Section 2.1.
Let K1 consist of all the 211 contexts describing the possible voting patterns. If we want an
explanation of why Suzy won relative to K1, then any subset of six voters voting for Suzy
is one. Thus, in this case, the explanations look like the causes according to the modified
HP definition. But this is not the case in general, as shown by the discussion above for the
disjunctive model of the forest fire. If K2 consists of all the 26 contexts where voters 1 to
5 vote for Suzy, then each of Vi = 1 is an explanation of Suzy’s victory, for i = 6, . . . , 11.
Intuitively, if we already know that the first five voters voted for Suzy, then a good explanation
tells us who gave her the sixth vote.

Although I have used the word “explanation”, the explanations here should be thought
of as potential or possible explanations. For example, when considering the explanation for
Suzy’s victory relative to K2, where it is known that voters 1 to 5 voted for Suzy, calling voter
6 an explanation doesn’t mean that, in fact, voter 6 voted for Suzy. Rather, it means that it is
possible that voter 6 voted for Suzy and, if she did, then her vote was sufficient to give Suzy
the victory.

As with causes, Definition 7.1.1 disallows disjunctive explanations. However, disjunctive
explanations seem to make perfect sense here, particularly since we are thinking in terms of
possible explanations. It seems quite reasonable to say that Suzy’s victory is explained by the
fact that either voter 6 or voter 7 or . . . voter 11 voted for her; we need further investigation
to determine which voter it actually was. In this case, we can give a reasonable definition
of disjunctive explanations; say that X⃗1 = x⃗1 ∨ . . . X⃗k = x⃗k is an explanation of ϕ if each
of X⃗i = x⃗1 is an explanation of ϕ, according to Definition 7.1.1. Disjunctive explanations
defined in this way play a role when it comes to talking about the quality of an explanation, a
point I return to in the next section. I conclude this section with one more example.

Example 7.1.4 Suppose that there was a heavy rain in April and electrical storms in the
following two months; and in June there was a forest fire. If it hadn’t been for the heavy rain
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in April, given the electrical storm in May, the forest would have caught fire in May (and not in
June). However, given the storm, if there had been an electrical storm only in May, the forest
would not have caught fire at all; if there had been an electrical storm only in June, it would
have caught fire in June. The situation can be captured using a model with five endogenous
binary variables:

AS for “April showers”, where AS = 0 if it did not rain heavily in April and 1 if it did;

ESM for “electric storms in May” and ESJ for “electrical storm in June” (with value
0 if there is no storm in the appropriate month, and 1 if there is);

and FFM for “fire in May” and FF J for fire in June (with value 0 if there is no fire in
the appropriate month, and 1 if there is).

The equations are straightforward: the value of AS , ESJ , and ESM is determined by the
context; FFM = 1 exactly if ESM = 1 and AS = 0; FF J = 1 exactly if ESJ = 1 and
either AS = 1 or ESM = 0 (or both).

Identifying a context with a triple (i, j, k) consisting of the values of AS , ESM , and ESJ ,
respectively, let K0 consist of all eight possible contexts. What are the explanations of the
forest fire (FFM = 1∨FF J = 1) relative to K0? It is easy to see that the only sufficient causes
of fire are ESJ = 1 and ESM = 1∧AS = 0, and these are in fact the only explanations of the
fire relative to K0. If we are instead interested in an explanation of a fire in June (FF J = 1),
then the only explanations are AS = 1∧ESJ = 1 and ESM = 0∧ESJ = 1. All the variants
of the HP definition agree in these cases.

This seems to me quite reasonable. The fact that there was a storm in June does not
explain the fire in June, but the storm in June combined with either the fact that there
was no storm in May or the fact that there were April showers does provide an explana-
tion. It also seems reasonable to consider the disjunctive explanation (ESJ = 1 ∧ AS = 1)∨
(ESJ = 1 ∧ ESM = 0).

Now suppose that the agent already knows that there was a forest fire, so is seeking an ex-
planation of the fire with respect to K1, the set consisting of the five contexts compatible with
a fire, namely, (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), and (1, 1, 1). In this case, the situation is
a bit more complicated. The sufficient causality clause holds almost trivially, since there is a
forest fire in all contexts under consideration. Here is a summary of the situation:

AS = 1 is not an explanation of the fire according to any variant of the HP definition,
since it is not part of a cause in contexts (1, 0, 1) or (1, 1, 1).

AS = 0 is not an explanation of the fire according to the updated and modified HP
definitions, since it is not a cause of fire (FFM = 1∨FF J = 1) in the context (0, 0, 1).
However, it is a cause of the fire in this context according to the original HP definition
(consider the contingency ESM = 1∧ESJ = 0). (Arguably, the original HP definition
is giving an inappropriate answer in this case.) It easily follows that AS = 0 is an
explanation of FFM = 1 ∨ FF J = 1 relative to K1 according to the original HP
definition.

ESJ = 1 is an explanation of the forest fire relative to K1 according to all the
variants of the HP definition. It is not hard to check that ESJ = 1 is a cause of
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FFM = 1 ∨ FF J = 1 in (M,u) for all contexts u ∈ K1 such that (M,u) |= ESJ = 1
according to the original and updated HP definition, and is part of a cause in all these
contexts according to the modified HP definition.

ESM = 1 is not an explanation of FFM = 1∨FF J = 1 in M relative to K according to
the updated and modified HP definitions but is an explanation according to the original
HP definition. Consider the context (1, 1, 1). I leave it to the reader to check that
taking W⃗ = (AS,ESJ) and setting W⃗ = 0⃗ shows that the May storm is a cause of
the fire according to the original HP definition, but this is not a witness in the case
of the updated HP definition. (Again, the original HP definition is arguably giving an
inappropriate answer in this case.)

ESM = 1 ∧ AS = 0 is an explanation of FFM = 1 ∨ FF J = 1 in M relative to K1

according to the updated and modified HP definition; a conjunct of ESM = 1∧AS = 0,
namely ESM = 1, is part of a cause of FFM = 1∨FF J = 1 in every context satisfying
ESM = 1 ∧ AS = 0. Moreover, the minimality condition EX2 is easily seen to hold
(since neither ESM = 1 nor AS = 0 is an explanation, as we have seen).

Now suppose that we are looking for an explanation of the June fire relative to K1.

As before, it is easy to check that ESJ = 1 is not an explanation of FF J = 1 because
it is not a sufficient cause of FF J = 1: it violates the second clause of EX1, since in
the context (0, 1, 0), [ESJ ← 1](FF J = 1) does not hold.

AS = 1 is not an explanation because it is not a sufficient cause (again, the second
clause of EX1 is violated in the context (0, 1, 0)).

ESM = 1 is not an explanation because it is not a sufficient cause (yet again, the second
clause of EX1 is violated in the context (0, 1, 0)).

ESM = 0 is not an explanation because it is not a sufficient cause (yet again, consider
the context (0, 1, 0)).

ESM = 0 ∧ ESJ = 1 and AS = 1 ∧ ESJ = 1 are both explanations, according to all
variants of the HP definition.

Thus, although we have different explanations of fire relative to K0 and K1, the explanations
of the June fire are the same.

7.2 Partial Explanations and Explanatory Power
Not all explanations are considered equally good. There are different dimensions of “good-
ness”, such as simplicity, generality, and informativeness. I focus on one aspect of “goodness”
here: likelihood (without meaning to suggest that the other aspects are unimportant!). To cap-
ture the likelihood of an explanation, it is useful to bring probability into the picture. Suppose
that the agent has a probability Pr on the set K of possible contexts. Recall that I think of K
as the set of contexts that the agent considers possible before observing the explanandum ϕ;
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Pr can be thought of as the agent’s prior probability on K. One obvious way of defining the
goodness of X⃗ = x⃗ as an explanation of ϕ relative to K is to consider the probability of the
set of contexts where X⃗ = x⃗ is true or, as has been more commonly done, to consider this
probability conditional on ϕ.

This is certainly a useful notion of goodness. For example, going back to the forest-fire ex-
ample and taking the set of contexts to be K2 = {u0, u1, u2}, the agent may consider lightning
more likely than an arsonist dropping a match. In this case, intuitively, we should consider
L = 1 a better explanation of the fire than MD = 1; it has a higher probability of being
the actual explanation than MD = 1. (What I have been calling an explanation of ϕ should
really be viewed as a possible explanation of ϕ; this definition of goodness provides one way
of evaluating the relative merits of a number of possible explanations of ϕ.) Of course, if we
allow disjunctive explanations, then L = 1 ∨ MD = 1 is an even better explanation from
this viewpoint; it has probability 1 conditional on observing the fire. But this already points
to an issue. Intuitively, L = 1 ∨ MD = 1 is a less informative explanation. I would like to
capture this intuition of “informativeness”, but before doing so, it is useful to take a detour
and consider partial explanations. For most of the discussion that follows, I do not consider
disjunctive explanations; I return to them at the end of the section.

Example 7.2.1 Suppose that I see that Victoria is tanned and I seek an explanation. The
causal model includes the three variables “Victoria took a vacation in the Canary Islands”,
“sunny in the Canary Islands”, and “went to a tanning salon”; a context assigns values to
just these three variables. That means that there are eight contexts, depending on the values
assigned to these three variables. Before seeing Victoria, I consider all eight of them possible.
Victoria going to the Canaries is not an explanation of Victoria’s tan, for two reasons. First,
Victoria going to the Canaries is not a sufficient cause of Victoria getting a tan. There are con-
texts where it is not sunny in the Canaries and Victoria does not go to the tanning salon; going
to the Canaries in those contexts would not result in her being tanned. And even among con-
texts where Victoria is tanned and goes to the Canaries, going to the Canaries is not the cause
of her getting the tan in the context where it is not sunny and she goes to the tanning salon,
at least according to the modified and updated HP definitions. (According to the original HP
definition, it is a cause; this example has the same structure as Example 2.8.1, where A does
not load B’s gun, although B shoots. And just as with that example, the original HP seems to
be giving an inappropriate causality ascription here. The problem can be resolved in the same
way as Example 2.8.1, by adding an extra variable for “Victoria vacationed in a place that was
sunny and warm”; then going to the Canaries is not a cause of Victoria’s tan even according to
the original HP definition.) Nevertheless, most people would accept “Victoria took a vacation
in the Canary Islands” as a satisfactory explanation of Victoria being tanned. Although EX1
is not satisfied, intuitively, it is “almost” satisfied, especially if we assume that the Canaries
are likely to be sunny. The problematic contexts are exactly the ones where it is not sunny in
the Canaries, and these have low probability. The only complete (ontic) explanations accord-
ing to Definition 7.1.1 are “Victoria went to the Canary Islands and it was sunny”, “Victoria
went to the Canary Islands and did not go to a tanning salon”, and “Victoria went to a tanning
salon”. “Victoria went to the Canary Islands” is a partial explanation (a notion more general
than just being part of an explanation).

This content downloaded from 145.109.19.147 on Tue, 13 Feb 2018 22:15:47 UTC
All use subject to http://about.jstor.org/terms



194 Chapter 7. Explanation

In Example 7.2.1, the partial explanation can be extended to a complete explanation by
adding a conjunct. But not every partial explanation as I am about to define it can be extended
to a complete explanation. Roughly speaking, this is because the complete explanation may
involve exogenous factors, which are not permitted in explanations. Suppose, for example,
that we used a different causal model for Victoria, one where the only endogenous variable is
the one representing Victoria’s vacation; there is no variable corresponding to the weather in
the Canaries, nor one corresponding to whether Victoria goes to a tanning salon. Instead, the
model simply has exogenous variables that can make Victoria suntanned even in the absence
of a trip to the Canaries and leave her not suntanned even if she goes to the Canaries. Arguably
this model is insufficiently expressive, since it does not capture important features of the story.
But even in this model, Victoria’s vacation would still be a partial explanation of her suntan:
the contexts where it fails to be a (sufficient) cause (ones corresponding to no sun in the
Canary Islands) are fairly unlikely. But note that, in this model, we cannot add conjuncts to
the event of Victoria going to the Canaries that exclude the “bad” contexts from consideration.
Indeed, in this model, there is no (complete) explanation for Victoria’s tan. Given the choice
of exogenous variables, it is inexplicable!

Intuitively, if we do not have a “name” for a potential cause, then there may not be an
explanation for an observation. This type of situation arises often, as the following example
shows.

Example 7.2.2 Suppose that the sound on a television works but there is no picture. Fur-
thermore, the only cause of there being no picture that the agent is aware of is the picture
tube being faulty. (Older non-digital televisions had picture tubes.) However, the agent is
also aware that there are times when there is no picture even though the picture tube works
perfectly well—intuitively, there is no picture “for inexplicable reasons”. This is captured
by the causal network described in Figure 7.1, where T describes whether the picture tube is
working (1 if it is and 0 if it is not) and P describes whether there is a picture (1 if there is
and 0 if there is not). The exogenous variable U0 determines the status of the picture tube:

!

! !

!
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❙
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❙
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Figure 7.1: The television with no picture.

T = U0. The exogenous variable U1 is meant to represent the mysterious “other possible
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causes”. If U1 = 0, then whether there is a picture depends solely on the status of the picture
tube—that is, P = T . However, if U1 = 1, then there is no picture (P = 0) no matter what
the status of the picture tube. Thus, in contexts where U1 = 1, T = 0 is not a cause of P = 0.
Now suppose that K includes the contexts u⃗00, where U0 = U1 = 0, and u⃗10, where U0 = 1
and U1 = 0. The only cause of P = 0 in both u⃗00 and u⃗10 is P = 0 itself (assuming that
we do not exclude self-causation). (Note that T = 0 is not a cause of P = 0 in u⃗00, since
P = 0 even if T is set to 1.) Indeed, there is no nontrivial explanation of P = 0 relative to
any epistemic state K that includes u⃗00 and u⃗10. However, T = 0 is a cause of P = 0 in
all contexts in K satisfying T = 0 other than u⃗00 and is a sufficient cause of P = 0 in all
contexts. If the probability of u⃗00 is low (capturing the intuition that it is unlikely that more
than one thing goes wrong with a television at once), then we are entitled to view T = 0 as a
quite good partial explanation of P = 0 with respect to K.

Note that if we modify the causal model by adding an endogenous variable, say I , corre-
sponding to the “inexplicable” cause U1 (with equation I = U1), then T = 0 and I = 0 both
become explanations of P = 0, according to all variants of the HP definition.

Example 7.2.2 and the discussion after Example 7.2.1 emphasize the point I made above:
if there is no name for a cause, then there may be no explanation. Adding an endogenous
variable that provides such a name can result in there being an explanation when there was
none before. This phenomenon of adding “names” to create explanations is quite common.
For example, “gods” are introduced to explain otherwise inexplicable phenomena; clusters of
symptoms are given names in medicine so as to serve as explanations.

I now define partial explanation formally. The definition is now relative to a pair (K,Pr),
just like the definition of blame. Once we have a probability distribution in the picture, it
makes sense to modify conditions EX3 and EX4 so that they use the distribution. That is,
EX3 would now say that Pr(KX⃗=x⃗∧ϕ) ̸= 0, rather than just KX⃗=x⃗∧ϕ ̸= ∅; similarly, EX4
becomes Pr([[X⃗ = x⃗]] | Kϕ) ̸= 1. I assume that the modified definition is applied whenever
there is a probability in the picture.

Definition 7.2.3 Given a set K of contexts in a causal model M and a probability Pr on K,
let K(X⃗ = x⃗,ϕ, SC2) consist of all contexts u⃗ ∈ KX⃗=x⃗∧ϕ that satisfy SC2 with respect to K
(i.e., the first condition in EX1). More precisely,

K(X⃗ = x⃗,ϕ, SC2) = {u⃗ ∈ KX⃗=x⃗∧ϕ : there exists a conjunct X = x of X⃗ = x⃗

and a (possibly empty) conjunction Y⃗ = y⃗ such that
X = x ∧ Y⃗ = y⃗ is a cause of ϕ in (M, u⃗)}.

Let K(X⃗ = x⃗,ϕ, SC3) consist of all contexts u⃗ ∈ K that satisfy SC3; that is,

K(X⃗ = x⃗,ϕ, SC3) = {u⃗ ∈ K : (M, u⃗) |= [X⃗ ← x⃗]ϕ}.

X⃗ = x⃗ is a partial explanation of ϕ with goodness (α,β) relative to (K,Pr) if X⃗ = x⃗
is an explanation of ϕ relative to K(X⃗ = x⃗,ϕ, SC3) − (KX⃗=x⃗∧ϕ − K(X⃗ = x⃗,ϕ, SC2)),
α = Pr(K(X⃗ = x⃗,ϕ, SC2 | KX⃗=x⃗∧ϕ)), and β = Pr(K(X⃗ = x⃗,ϕ, SC3)).
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The goodness of a partial explanation measures the extent to which it provides an explanation
of ϕ. As I mentioned above, there are two ways that X⃗ = x⃗ can fail to provide an explanation:
there may be some contexts u⃗ that satisfy X⃗ = x⃗ ∧ ϕ but X⃗ = x⃗ is not a cause of ϕ in
(M, u⃗) (these are the contexts in KX⃗=x⃗∧ϕ − K(X⃗ = x⃗,ϕ, SC2)), and there may be contexts
where the sufficient causality condition [X⃗ ← x⃗]ϕ does not hold (these are the contexts in
K − K(X⃗ = x⃗,ϕ, SC3)). The parameter α in the definition of partial explanation measures
the fraction of the contexts in KX⃗=x⃗∧ϕ that are “good” in the first sense; the parameter β
measures the fraction of contexts in K that are good in the second sense. For the first sense
of goodness, we care only about which contexts in KX⃗=x⃗∧ϕ are good, so it makes sense to
condition on KX⃗=x⃗∧ϕ. If X⃗ = x⃗ is an explanation of ϕ relative to K, then for all probability
distributions Pr on K, X⃗ = x⃗ is a partial explanation of ϕ relative to (K,Pr) with goodness
(1, 1).

In Example 7.2.1, if the agent believes that it is sunny in the Canary Islands with probability
.9, independent of whether Victoria actually goes to the Canaries or the tanning salon, then
Victoria going to the Canaries is a partial explanation of her being tanned with goodness
(α,β), where α ≥ .9 and β ≥ .9 (according to the updated and modified HP definition;
recall that the original HP definition gives arguably inappropriate causality ascriptions in this
example). To see that α ≥ .9, note the probability of Victoria going to the Canaries being
a cause of her being tanned is already .9 conditional on her going to Canaries; it is at least
as high conditional on her going to the Canaries and being tanned. Similarly, β ≥ .9, since
the set of contexts that satisfy SC3 consists of all contexts where it is sunny in the Canary
Islands together with contexts where Victoria goes to the tanning salon and it is not sunny
in the Canaries. Similarly, in Example 7.2.2, if the agent believes that the probability of the
other mysterious causes being operative is .1 conditional on the picture tube being faulty (i.e.,
Pr(u⃗00 | [[T = 0]]) = .1), then T = 0 is a partial explanation of P = 0 with goodness (.9, 1).

In the literature, there have been many attempts to define probabilistic notions of explana-
tion, in the spirit of the probabilistic definition of causality discussed in Section 2.5. These
definitions typically say that the explanation raises the probability of the explanandum. Just is
the case of causality, rather than dealing with probabilistic explanations, we can use notions
like partial causality, in the spirit of the following example.

Example 7.2.4 Suppose a Geiger counter is placed near a rock and the Geiger counter clicks.
What’s an explanation? Assume that the agent does not know that the rock has uranium, and
thus is somewhat radioactive, but considers it possible, and understands that being near a
radioactive object causes a Geiger counter to click with some probability less than 1. Clearly
being near the radioactive object raises the probability of the Geiger counter clicking, so it
becomes an explanation according to the probabilistic accounts of explanation. If the Geiger
counter necessarily clicks whenever it is placed near a radioactive object, then Definition 7.1.1
would declare being near a radioactive object the explanation without difficulty. But since the
clicking happens only with some probability β < 1, there must be some context that the
agent considers possible where the Geiger counter would not click, despite being placed near
the rock. Thus, the second half of EX1 does not hold, so being put close to the rock is not
an explanation of the Geiger counter clicking according to Definition 7.1.1. However, it is
a partial explanation, with goodness (1,β): moving the Geiger counter close to the rock is
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an explanation of it ticking relative to the set of contexts where it actually does tick, and the
probability of such a context, by assumption, is β.

My sense is that most explanations are partial, although if α and β are close to 1, we call
them “explanations” rather than “partial explanations”. The partiality may help explain why
explanations attenuate over longer chains: even though, for each link, the parameters α and
β may be close to 1, over the whole chain, α and β can get close to 0. For example, while
Sylvia’s depression might be viewed as a reasonably good explanation of her depression, and
Sylvia’s genetic makeup might be viewed as a reasonably good explanation of her depression,
Sylvia’s genetic makeup might not be viewed as a particularly good explanation of her suicide.

Although the parameters α and β in the notion of partial explanation do give a good sense
of the quality of an explanation, they do not tell the whole story, even if our notion of “good-
ness” is concerned only with likelihood. For one thing, as I mentioned earlier, we are inter-
ested in the probability of the explanation or, even better, the probability of the explanation
conditional on the explanandum (i.e., Pr(X⃗ = x⃗ | [[ϕ]])). But there may be a tension between
these measures. For example, suppose that, in the disjunctive forest-fire model, we add an-
other context u4 where there is no lightning, the arsonist drops a match, but there is no forest
fire (suppose that, in u4, someone is able to stamp out the forest fire before it gets going). For
definiteness, suppose that Pr(u1) = .1, Pr(u2) = .8, and Pr(u4) = .1, so the probability of
having only lightning is .1, the probability of the arsonist dropping the match and starting the
forest fire is .8, and the probability of the arsonist dropping a match and there being no fire is
.1. In this case, the lightning is an explanation of the fire, and thus is a partial explanation with
goodness (1, 1), but it has probability only 1/9 conditional on there being a fire. Although
the arsonist is not an explanation of the fire, his dropping a match is a partial explanation of
the fire with goodness (1, .9), and the arsonist has probability 8/9 conditional on there being
a fire.

As if that wasn’t enough, there is yet another measure of goodness that people are quite
sensitive to. Suppose that we are scientists wondering why there is a fire in the chemistry lab.
We suspect an arsonist. But suppose that we include in the model an endogenous variable O
representing the presence of oxygen. Ignoring normality considerations, O = 1 is certainly a
cause of the fire in all contexts, and it holds with probability 1. It is a trivial explanation (i.e.,
it does not satisfy EX4), so that perhaps might be a reason to exclude it. But now suppose
that we add an extremely unlikely context where O = 0 and yet there is a fire (perhaps it is
possible to evacuate the oxygen from the lab, yet still create a fire using some other oxidizing
substance). In that case, O = 1 is still an explanation of the fire, and it has high probability
conditional on there being a fire. Nevertheless, it is an explanation with, intuitively, very little
explanatory power. We would typically prefer the explanation that an arsonist started the fire,
even though this might not have such high probability. How can we make this precise?

Here it is useful that we started with a set K of contexts that can be viewed as the contexts
that the agent considers possible before making the observation (in this case, before observing
the fire), and that we view Pr as intuitively representing the agent’s “pre-observation” prior
probability. Roughly speaking, I would like to define the explanatory power of a (partial)
explanation X⃗ = x⃗ as Pr([[ϕ]] | [[X⃗ = x⃗]]). This describes how likely ϕ becomes on learning
X⃗ = x⃗. Taking LF to stand for lab fire, if lab fires are not common, Pr([[LF = 1]] | [[O = 1]])
is essentially equal to Pr([[LF = 1]]) and is not so high. Thus, oxygen has low explanatory
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198 Chapter 7. Explanation

power for the fire in the lab. In contrast, Pr([[LF = 1]] | [[MD = 1]]) is likely to be quite high;
learning that there is an arsonist who dropped a match makes the lab fire much more likely.

Although this definition captures some important intuitions, it is not quite what we want.
The problem is that it confounds correlation with causation. For example, according to this
definition, the barometer falling would have high explanatory power for rain (although it is
not a cause of rain). The following definition replaces the [[ϕ]] in Pr([[ϕ]] | X⃗ = x⃗) by
K(X⃗ = x⃗,ϕ, SC2), the set of contexts where a conjunct of X⃗ = x⃗ is part of a cause of ϕ.

Definition 7.2.5 The explanatory power of the partial explanation X⃗ = x⃗ for ϕ relative to
(K,Pr) is Pr(K(X⃗ = x⃗,ϕ, SC2) | [[X⃗ = x⃗]]).

If X⃗ = x⃗ is an explanation of ϕ (rather than just being a partial explanation of ϕ), then
K(X⃗ = x⃗,ϕ, SC2) = [[X⃗ = x⃗ ∧ ϕ]], and Definition 7.2.5 agrees with the original informal
definition. The difference between the two definitions arises if there are contexts where ϕ and
X⃗ = x⃗ both happen to be true, but X⃗ = x⃗ is not a cause of ϕ. In Example 7.2.1, the context
where Victoria went to the Canary Islands, it was not sunny, but Victoria also went to the
tanning salon, and so got tanned is one such example. Because of this difference, according
to Definition 7.2.5, a falling barometer has 0 explanatory power for explaining the rain. Even
though the barometer falls in almost all contexts where it rains (there may be some contexts
where the barometer is defective, so it does not fall even if it rains), the barometer falling is
not a cause of the rain in any context. Making the barometer rise would not result in the rain
stopping!

There is a tension between the explanatory power, the goodness, and the probability of
a partial explanation. As we have seen, O = 1 has low explanatory power for LF = 1,
although it has high probability conditional on the fire and has goodness (1, 1) (or close to
it, if there is a context where there is a fire despite the lack of oxygen). For another ex-
ample, in Example 7.1.4, as we observed, ESJ = 1 is not an explanation of the forest fire
in June (FF J = 1) relative to K0. The problem is the context (0, 1, 1), which does not
satisfy [ESJ ← 1](FF J = 1), so the second half of EX1 (i.e., SC3) does not hold. If
Pr((0, 1, 1)) = p and Pr([[ESJ = 1]]) = q, then the explanatory power of ESJ = 1 is q−p

q ,
the probability of ESJ = 1 conditional on there being a fire in June is 1, and ESJ = 1
is a partial explanation of the fire in June with goodness (1, 1 − p). By way of contrast,
AS = 1 ∧ ESJ = 1 has goodness (1, 1) and explanatory power 1, but may have much lower
probability than ESJ = 1 conditional on there being a fire in June.

There is no obvious way to resolve the tension between these various measures of the
goodness of an explanation. A modeler must just decide what is most important. Things get
even worse if we allow disjunctive explanations. The probability of a disjunctive explanation
will be higher than that of its disjuncts, so according to that metric, disjunctive explanations
are better. What about the goodness of a disjunctive partial explanation? It is not quite clear
how to define this. Perhaps the most natural way of defining goodness would be to take its
goodness to be the maximum goodness of each of its disjuncts, but if there are two disjuncts,
one of which has goodness (.8, .9), while the other has goodness (.9, .8), which one has
maximum goodness?

There is an intuition that a disjunctive explanation has less explanatory power than its
disjuncts. This intuition can be captured in a natural way by taking the explanatory power of
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7.3 The General Definition of Explanation 199

the disjunction X⃗1 = x⃗1 ∨ . . . ∨ X⃗k = x⃗k for ϕ relative to (K,Pr) to be

max
i=1,...,k

Pr(K(X⃗i = x⃗i,ϕ, SC2) | [[X⃗1 = x⃗1 ∨ . . . ∨ X⃗k = x⃗k]]). (7.1)

Thus, rather than taking the explanatory power of the disjunction X⃗1 = x⃗1 ∨ . . . ∨ X⃗k = x⃗k

to be Pr(K(X⃗1 = x⃗1 ∨ . . . X⃗k = x⃗k),ϕ, SC2) | [[X⃗1 = x⃗1 ∨ . . . ∨ X⃗k = x⃗k]]), which would
be the obvious generalization of Definition 7.2.5, what (7.1) says is that, for each disjunct
X⃗i = x⃗i, we consider how likely it is that X⃗i = x⃗i is a cause of ϕ conditional on learning
the disjunction, and identify the explanatory power of the disjunction with the maximum
likelihood, taken over all disjuncts.

The notion of explanatory power helps explain why we are less interested in trivial expla-
nations, even though they have high probability conditional on the explanandum (probability
1, in fact). They typically have worse explanatory power than nontrivial explanations.

These notions of goodness could be refined further by bringing normality into the picture.
However, I have not yet explored how to best do this.

7.3 The General Definition of Explanation
In general, an agent may be uncertain about the causal model, so an explanation will have
to include information about it. It is relatively straightforward to extend Definition 7.1.1 to
accommodate this provision. Now an epistemic state K consists not only of contexts, but
of causal settings, that is, pairs (M, u⃗) consisting of a causal model M and a context u⃗.
Intuitively, now an explanation should consist of some causal information (such as “prayers
do not cause fires”) and some facts that are true.

I assume that the causal information in an explanation is described by a formula ψ in the
causal language. For example, ψ could say things like “prayers do not cause fires”, which
corresponds to the formula (F = 0) ⇒ [P ← 1](F = 1), where P is a variable describing
whether prayer takes place and F = 0 says that there is no fire; that is, if there is no fire, then
praying won’t result in a fire. I take a (general) explanation to have the form (ψ, X⃗ = x⃗),
where ψ is an arbitrary formula in the causal language and, as before, X⃗ = x⃗ is a conjunction
of primitive events. The first component in a general explanation restricts the set of causal
models. Recall from Section 5.4 that ψ is valid in causal model M , written M |= ψ, if
(M, u⃗) |= ψ for all contexts u⃗.

I now extend the Definition 7.1.1 to the more general setting where K consists of arbitrary
causal settings, dropping the assumption that the causal model is known. Conditions EX3
and EX4 remain unchanged; the differences arise only in EX1 and EX2. Let M(K) = {M :
(M, u⃗) ∈ K for some u⃗}.

Definition 7.3.1 (ψ, X⃗ = x⃗) is an explanation of ϕ relative to a set K of causal settings if
the following conditions hold:

EX1. X⃗ = x⃗ is a sufficient cause of ϕ in all causal settings (M, u⃗) ∈ K satisfying X⃗ = x⃗∧ϕ
such that M |= ψ. More precisely,
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200 Chapter 7. Explanation

If (M, u⃗) ∈ K, (M, u⃗) |= X⃗ = x⃗ ∧ ϕ, and M |= ψ, then there exists a con-
junct X = x of X⃗ = x⃗ and a (possibly empty) conjunction Y⃗ = y⃗ such that
X = x ∧ Y⃗ = y⃗ is a cause of ϕ in (M, u⃗).

(M, u⃗′) |= [X⃗ ← x⃗]ϕ for all causal settings (M, u⃗′) ∈ K such that M |= ψ.

EX2. (ψ, X⃗ = x⃗) is minimal; there is no pair (ψ′, X⃗ ′ = x⃗′) satisfying EX1 such that
either {M ′′ ∈ M(K) : M ′′ |= ψ′} ⊃ {M ′′ ∈ M(K) : M ′′ |= ψ} (where
“⊃” denotes strict superset), X⃗ ′ ⊆ X⃗ , and x⃗′ is the restriction of x⃗ to X⃗ ′, or
{M ′′ ∈ M(K) : M ′′ |= ψ′} = {M ′′ ∈ M(K) : M ′′ |= ψ}, X⃗ ′ ⊆ X⃗ , X⃗ ′ ⊂ X⃗ ,
and x⃗′ is the restriction of x⃗ to X⃗ ′. Roughly speaking, this says that no subset of X⃗
provides a sufficient cause of ϕ in more contexts than X⃗ does, and no strict subset of
X⃗ provides a sufficient cause of ϕ in the same set of contexts as X⃗ does.

EX3. KX⃗=x⃗∧ϕ ̸= ∅.

The explanation is nontrivial if it satisfies in addition

EX4. (M, u⃗) |= ¬(X⃗ = x⃗) for some (M, u⃗) ∈ K or M ̸|= ψ for some M ∈ M(K).

Note that in EX1, the sufficient causality requirement is restricted to causal settings (M, u⃗) ∈
K such that both M |= ψ and (M, u⃗) |= X⃗ = x⃗. Although both components of an explanation
are formulas in the causal language, they play different roles. The first component serves to
restrict the set of causal models considered to those with the appropriate structure; the second
describes a cause of ϕ in the resulting set of situations.

Clearly Definition 7.1.1 is the special case of Definition 7.3.1 where there is no uncertainty
about the causal structure (i.e., there is some M such that if (M ′, u⃗) ∈ K, then M = M ′). In
this case, it is clear that we can take ψ in the explanation to be true.

Example 7.3.2 Paresis develops only in patients who have been syphilitic for a long time,
but only a small number of patients who are syphilitic in fact develop paresis. For simplicity,
suppose that no other factor is known to be relevant in the development of paresis. This
description is captured by a simple causal model MP . There are two endogenous variables,
S (for syphilis) and P (for paresis), and two exogenous variables, U1, the background factors
that determine S, and U2, which intuitively represents “disposition to paresis”, that is, the
factors that determine, in conjunction with syphilis, whether paresis actually develops. An
agent who knows this causal model and that a patient has paresis does not need an explanation
of why: he knows without being told that the patient must have syphilis and that U2 = 1. In
contrast, for an agent who does not know the causal model (i.e., considers a number of causal
models of paresis possible), (ψP , S = 1) is an explanation of paresis, where ψP is a formula
that characterizes MP .
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Notes
Although issues concerning scientific explanation have been discussed by philosophers
for millennia, the mainstays of recent discussion have been Hempel’s [1965] deductive-
nomological model and Salmon’s [1970] statistical relevance model. Woodward [2014] pro-
vides a good recent overview of work in philosophy on explanation. Although many have
noted the connection between explanation and causation, there are not too many formal defi-
nitions of explanation in terms of causality in the literature. In particular, the definitions given
by Hempel and Salmon do not really involve causality. In later work, Salmon [1984] did try
to bring causality into his definitions, using the so-called process theories of causation [Dowe
2000], although he tried to do so without using counterfactuals. Gärdenfors [1980, 1988] and
Van Fraassen [1980], among others, give definitions of probabilistic explanation that involves
the explanation raising the probability of the explanandum. As I said in the main text, Salmon
[1984] introduced the notions of ontic and epistemic explanation.

Lewis [1986a] does relate causality and explanation; he defends the thesis that “to explain
an event is to provide some information about its causal history”. Although this view is
compatible with the definition given here, there is no formal definition given to allow for a
careful comparison between the approaches. Woodward [2003] clearly views explanation as
causal explanation and uses a theory of causality based on structural equations. But he does
not provide different definitions of causality and explanation, and he does not have a notion
of explanation that depends on epistemic state. As a consequence, he has no analogues to the
various notions of goodness of explanation considered here.

The definition of explanation given here, as well as much of the material in this chapter,
is based on material in [Halpern and Pearl 2005b]. However, there are some significant dif-
ferences between the definition given here and that in [Halpern and Pearl 2005b]; perhaps
the most significant is the requirement of sufficient causality here (essentially, SC3). As I
argued in Section 7.1, requiring sufficient causality seems to give a notion of explanation that
corresponds more closely to natural language usage.

The idea that an explanation should be relative to an agent’s epistemic state is discussed
at length by Gärdenfors [1988]. The idea appears in Gärdenfors’ earlier work [Gärdenfors
1980] as well; it is also explicit in Salmon’s [1984] notion of epistemic explanation. The
observation that explanations may include (fragments of) a causal model is due to Gärdenfors
[1980, 1988], as is the example of Mr. Johanssen. Hempel [1965] also observed that an
explanation will have to be relative to uncertainty involving not just the context but also the
causal model. However, neither Gärdenfors nor Hempel explicitly incorporated causality into
their definitions, focusing instead on statistical and nomological information (i.e., information
about basic physical laws).

Example 7.1.4 is due to Bennett (see [Sosa and Tooley 1993, pp. 222–223]). The analysis
follows along the lines of the analysis in [Halpern and Pearl 2005b]. Example 7.2.1 is due to
Gärdenfors [1988]. He pointed out that we normally accept “Victoria took a vacation in the
Canary Islands” as a satisfactory explanation of Victoria being tanned; indeed, according to
his definition, it is an explanation.

The notion of partial explanation defined here is related to, but different from, that of
Chajewska and Halpern [1997]. Gärdenfors identifies the explanatory power of the (par-
tial) explanation X⃗ = x⃗ of ϕ with Pr(ϕ | X⃗ = x⃗) (see [Chajewska and Halpern 1997;
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202 Chapter 7. Explanation

Gärdenfors 1988]). More precisely, Gärdenfors take the explanatory power of X⃗ = x⃗
to be Pr([[ϕ]] | [[X⃗ = x⃗]])− Pr([[ϕ]]). As far as comparing the explanatory power of two
explanations for ϕ, it suffices to consider just Pr([[ϕ]] | [[X⃗ = x⃗]]), since the Pr([[ϕ]])
term appears in both expressions. Chajewska and Halpern [1997] argued that the quotient
Pr([[ϕ]] | [[X⃗ = x⃗]])/Pr([[ϕ]]) gives a better measure of explanatory power than the difference,
but the issues raised by Chajewska and Halpern are somewhat orthogonal to the concerns of
this chapter.

The dominant approach to explanation in the Artificial Intelligence literature is the max-
imum a posteriori (MAP) approach; see, for example, [Henrion and Druzdzel 1990; Pearl
1988; Shimony 1991] for a discussion. The MAP approach focuses on the probability of the
explanation, that is, Pr([[X⃗ = x⃗]] | [[ϕ]]). It is based on the intuition that the best explanation
for an observation is the state of the world (in the language of this book, the context) that is
most probable given the evidence. Although this intuition is quite reasonable, it completely
ignores the issue of explanatory power, an issue that people are quite sensitive to. The formula
O = 1 has high probability in the lab fire example, even though most people would not con-
sider the presence of oxygen a satisfactory explanation of the fire. To remedy this problem,
more intricate combinations of the quantities Pr([[X⃗ = x⃗]] | [[ϕ]]), Pr([[ϕ]] | [[X⃗ = x⃗]]), and
Pr([[ϕ]]) have been suggested to quantify the causal relevance of X⃗ = x⃗ to ϕ, but, as Pearl
[2000, p. 221] argues, without taking causality into account, it seems that we cannot capture
explanation in a reasonable way.

Fitelson and Hitchcock [2011] discuss a number of probabilistic measures of causal
strength and the connections between them. Almost all of these can be translated to prob-
abilistic measures of “goodness” of an explanation as well. The notions of partial explanation
and explanatory power that I have discussed here certainly do not exhaust the possibilities.
Schupbach [2011] also considers various approaches to characterizing explanatory power in
probabilistic terms.

Example 7.3.2 is due to Scriven [1959]. Apparently there are now other known factors, but
this does not change the import of the example.

This content downloaded from 145.109.19.147 on Tue, 13 Feb 2018 22:15:47 UTC
All use subject to http://about.jstor.org/terms



Chapter 8

Applying the Definitions

Throughout history, people have studied pure science from a desire to understand
the universe rather than practical applications for commercial gain. But their
discoveries later turned out to have great practical benefits.

Stephen Hawking

In Chapter 1, I said that my goal was to get definitions of notions like causality, responsibility,
and blame that matched our natural language usage of these words and were also useful. Now
that we are rapidly approaching the end of the book, it seems reasonable to ask where we
stand in this project.

First some good news: I hope that I have convinced most of you that the basic approach
of using structural equations and defining causality in terms of counterfactuals can deal with
many examples, especially once we bring normality into the picture. Moreover, the frame-
work also allows us to define natural notions of responsibility, blame, and explanation. These
notions do seem to capture many of the intuitions that people have in a natural way.

Next, some not-so-good news: One thing that has become clear to me in the course of
writing this book is that things haven’t stabilized as much as I had hoped they would. Just
in the process of writing the book, I developed a new definition of causality (the modified
HP definition) and a new approach to dealing with normality (discussed in Section 3.5), and
modified the definitions of responsibility, blame, and explanation (see the notes at the end of
Chapters 6 and 7). Although I think that the latest definitions hold up quite well, particularly
the modified HP definition combined with the alternative notion of normality, given that the
modified HP definition is my third attempt at defining causality, and that other researchers
continue to introduce new definitions, I certainly cannot be too confident that this is really the
last word. Indeed, as I have indicated at various points in the book, there are some subtleties
that the current definition does not seem to be capturing quite so well. To my mind, what
is most needed is a good definition of agent-relative normality, which takes into account the
issues discussed in Example 6.3.4 (where A and B can flip switches to determine whether C
is shocked) and meshes well with the definition of causality, but doubtless others will have
different concerns.
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204 Chapter 8. Applying the Definitions

Moreover, when we try to verify experimentally the extent to which the definitions that we
give actually measure how people ascribe causality and responsibility, the data become messy.
Although the considerations discussed in Chapter 6 (pivotality, normality, and blame assign-
ments) seem to do quite a good job of predicting how people will ascribe causal responsibility
at a qualitative level, because all these factors (and perhaps others) affect people’s causality
and responsibility judgments, it seems that it will be hard to design a clean theory that com-
pletely characterizes exactly how people acribe causality, responsibility, and blame at a more
quantitative level.

So where does this leave us? I do not believe that there is one “true” definition of causality.
We use the word in many different, but related, ways. It is unreasonable to expect one defini-
tion to capture them all. Moreover, there are a number of closely related notions—causality,
blame, responsibility, intention—that clearly are often confounded. Although we can try to
disentangle them at a theoretical level, people clearly do not always do so.

That said, I believe that it is important and useful to have precise formal definitions. To
take an obvious example, legal judgments depend on causal judgments. A jury will award
a large settlement to a patient if it believes that the patient’s doctor was responsible for an
inappropriate outcome. Although we might disagree on whether and the extent to which
the doctor was responsible, the disagreement should be due to the relevant facts in the case,
not a disagreement about what causality and responsibility mean. Even if people confound
notions like causality and responsibility, it is useful to get definitions that distinguish them
(and perhaps other notions as well), so we can be clear about what we are discussing.

Although the definition(s) may not be able to handle all the subtleties, that is not necessary
for them to be useful. I have discussed a number of different approaches here, and the jury
is still out on which is best. The fact that the approaches all give the same answers in quite a
few cases makes me even more optimistic about the general project.

I conclude the book with a brief discussion of three applications of causality related to
computer science. These have the advantage that we have a relatively clear idea of what
counts as a “good” definition. The modeling problem is also somewhat simpler; it is relatively
clear exactly what the exogenous and endogenous variables should be, and what their ranges
are, so some of the modeling issues encountered in Chapter 4 no longer arise.

8.1 Accountability
The dominant approach to dealing with information security has been preventative: we try to
prevent someone from accessing confidential data or connecting to a private network. More
recently, there has been a focus on accountability: when a problem occurs, it should be pos-
sible after the fact to determine the cause of the problem (and then punish the perpetrators
appropriately). Of course, dealing with accountability requires that we have good notions of
causality and responsibility.

The typical assumption in the accountability setting, at least for computer science applica-
tions, is that we have logs that completely describe exactly what happened; there is no uncer-
tainty about what happened. Moreover, in the background, there is a programming language.
An adversary writes a program in some pre-specified programming language that interacts
with the system. We typically understand the effect of changing various lines of code. The
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8.2 Causality in Databases 205

variables in the program can be taken to be the endogenous variables in the causal model.
The programs used and the initial values of program variables are determined by the context.
Changing some lines of code becomes an intervention. The semantics of the program in the
language determines the causal model and the effect of interventions.

The HP definitions of causality and responsibility fit this application quite well. Of course,
if some logs are missing, we can then move to a setting where there is an epistemic state, with
a probability on contexts; the contexts of interest are the ones that would generate the portion
of the log that is seen. If we are interested in a setting where there are several agents working
together to produce some outcome, blame becomes even more relevant. Agents may have
(possibly incorrect) beliefs about the programs that other agents are using. Issues of which
epistemic state to use (the one that the agent actually had or the one that the agent should have
had) become relevant. But the general framework of structural equations and the definitions
provided here should work well.

8.2 Causality in Databases

A database is viewed as consisting of a large collection of tuples. A typical tuple may, for
example, give an employee’s name, manager, gender, address, social security number, salary,
and job title. A standard query in a database may have the form: tell me all employees who
are programmer analysts, earn a salary of less than $100,000, and work for a manager earning
a salary greater than $150,000. Causality in databases aims to answer the question: Given
a query and a particular output of the query, which tuples in the database caused that out-
put? This is of interest because we may be, for example, interested in explaining unexpected
answers to a query. Tim Burton is a director well known for fantasy movies involving dark
Gothic schemes, such as “Edward Scissorhands” and “Beetlejuice”. A user wishing to learn
more about his work might query the IMDB movie database (www.imdb.com) about the gen-
res of movies that someone named Burton directed. He might be surprised (and perhaps a little
suspicious of the answer) when he learns that one genre is “Music and Musical”. He would
then want to know which tuple (i.e., essentially, which movie) caused that output. He could
then check whether there is an error in the database, or perhaps other directors named Burton
who directed musicals. It turns out that Tim Burton did direct a musical (“Sweeney Todd”);
there are also two other directors named Burton (David Burton and Humphrey Burton) who
directed other musicals.

Another application of the causality definition is for diagnosing network failures. Consider
a computer consisting of a number of servers, with physical links between them. Suppose that
the database contains tuples of the form (Link(x , y),Active(x ),Active(y)). Given a server
x, Active(x) is either 0 or 1, depending on whether x is active; similarly Link(x, y) is either
0 or 1 depending on whether the link between x and y is up. Servers x and y are connected
if there is a path of links between them, all of which are up, such that all servers on the path
are active. Suppose that at some point the network administrator observes that servers x0

and y0 are no longer connected. This means that the query Connected(x0, y0) will return
“false”. The causality query “Why did Connected(x0, y0) return ‘false’?” will return all
the tuples (Link(x , y),Active(x ),Active(y)) that are on some path from x0 to y0 such that
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206 Chapter 8. Applying the Definitions

either server x is not active, server y is not active, or the link between them is down. These
are the potential causes of Connected(x0, y0) returning “false”.

I now briefly sketch how this is captured formally. As I said, a database D is taken to be
a collection of tuples. For each tuple t, there is a binary variable Xt, which is 0 if the tuple
t is not in the database of interest and 1 if it is. We are interested in causal models where
the context determines the database. That is, the context determines which variables Xt are 1
and which are 0; there are no interesting structural equations. There is assumed to be a query
language LQ that is richer than the language L(S) introduced in Section 2.2.1. Each formula
ϕ ∈ LQ has a free variable x that ranges over tuples. There is a relation |= such that, for each
tuple t and formula ϕ ∈ LQ, either D |= ϕ(t) or D |= ¬ϕ(t) (but not both). If D |= ϕ(t),
then t is said to satisfy the query ϕ in database D. In response to a query ϕ, a database D
returns all the tuples t such that D |= ϕ(t).

We can easily build a causal language based on LQ in the spirit of L(S). That is, instead of
starting with Boolean combinations of formulas of the form X = x, we start with formulas of
the form ϕ(t), where ϕ ∈ LQ and t is a tuple in addition to formulas of the form Xt = i for
i ∈ {0, 1}. If M is a causal model for databases, since each causal setting (M, u⃗) determines
a database, (M, u⃗) |= ϕ(t) exactly if D |= ϕ(t), where D is the database determined by
(M, u⃗) and (M, u⃗) |= Xt = 1 exactly if t ∈ D. We can then define [X⃗ ← x⃗]ϕ just as in
Section 2.2.1.

Of course, for causality queries to be truly useful, it must be possible to compute them
efficiently. To do this, a slight variant of the updated HP definition has been considered. Say
that tuple t is a cause of the answer t′ for ϕ if

D1. (M, u⃗) |= (Xt = 1) ∧ ϕ(t′) (so t ∈ D and D |= ϕ(t′), where D is the database
determined by (M, u⃗)); and

D2. there exists a (possibly empty) set T of tuples contained in D such that t /∈ T ,
D − T |= ϕ(t′), and D − (T ∪ {t}) |= ¬ϕ(t′).

If the tuple t is a cause of the answer t′ for ϕ in (M, u⃗), then Xt = 1 is a cause of ϕ(t′)
in (M, u⃗). D1 is just AC1. Translating to the kinds of formulas that we have been using all
along, and taking X⃗T to consist of all the variables Xt′′ such that t′′ ∈ T , the second clause
says: (M, u⃗) |= [X⃗T ← 0⃗]ϕ(t′) and (M, u⃗) |= [X⃗T ← 0⃗, Xt ← 0]¬ϕ(t′). Thus, it is saying
that (X⃗T , 0⃗, 0) is a witness to the fact that Xt = 1 is a cause of ϕ(t′) according to the original
HP definition; AC2(bo) holds. Note that AC3 is satisfied vacuously.

This does not necessarily make Xt = 0 a cause of ϕ(t′) according to the updated HP def-
inition. There may be a subset T ′ of T such that (M, u⃗) |= [X⃗T ′ ← 0]¬ϕ(t′), in which case
AC2(bu) would fail. Things are better if we restrict to monotone queries, that is, queries ψ
such that for all t′, if D |= ψ(t′) and D ⊆ D′, then D′ |= ψ(t′) (in words, if ψ(t′) holds for
a small database, then it is guaranteed to hold for larger databases, with more tuples). Mono-
tone queries arise often in practice, so proving results for monotone queries is of practical
interest. If ϕ is a monotone query, then AC2(bu) holds as well: if (M, u⃗) |= [X⃗T ← 0]ϕ(t′),
then for all subsets T ′ of T , we must have (M, u⃗) |= [X⃗T ′ ← 0]ϕ(t′) (because (M, u⃗) |=
[X⃗T ′ ← 0]ϕ(t′) iff D − T ′ |= ϕ(t′), and if T ′ ⊆ T , then D − T ⊆ D − T ′, so we can
appeal to monotonicity). It is also easy to see that for a monotone query, this definition also
guarantees that Xt = 1 is part of a cause of ϕ(t′) according to the modified HP definition.
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The second clause has some of the flavor of responsibility; we are finding a set such that
removing this set from D results in t being critical for ϕ(t′). Indeed, we can define a notion
of responsibility in databases by saying that tuple t has degree of responsibility 1/(k + 1) for
the answer t′ for ϕ if k is the size of the smallest set T for which the definition above holds.

Notice that I said “if t is a cause of the answer t′ for ϕ in (M, u⃗), then Xt = 1 is a
cause of ϕ(t′) in (M, u⃗)”; I did not say “if and only if”. The converse is not necessarily
true. The only witnesses (W⃗ , w⃗, 0) that this definition allows are ones where w⃗ = 0⃗. That
is, in determining whether the counterfactual clause holds, we can consider only witnesses
that involve removing tuples from the database, not witnesses that might add tuples to the
database. This can be captured in terms of a normality ordering that makes it abnormal to add
tuples to the database but not to remove them. However, the motivation for this restriction
is not normality as discussed in Chapter 3, but computational. For causality queries to be of
interest, it must be possible to compute the answers quickly, even in huge databases, with
millions of tuples. This restriction makes the computation problem much simpler. Indeed,
it is known that for conjunctive queries (i.e., queries that can be written as conjunctions of
basic queries about components of tuples in databases—I omit the formal definitions here),
computing whether t is an actual cause of ϕ can be done in time polynomial in the size
of the database, which makes it quite feasible. Importantly, conjunctive queries (which are
guaranteed to be monotone) arise frequently in practice.

8.3 Program Verification
In model checking, the goal is to check whether a program satisfies a certain specification.
When a model checker says that a program does not satisfy its specification, it typically pro-
vides in addition a counterexample that demonstrates the failure of the specification. Such a
counterexample can be quite useful in helping the programmer understand what went wrong
and in correcting the program. In many cases, however, understanding the counterexample
can be quite challenging.

The problem is that counterexamples can be rather complicated objects. Specifications typ-
ically talk about program behavior over time, saying things like “eventually ϕ will happen”,
“ψ will never happen’, and “property ϕ′ will hold at least until ψ′ does”. A counterexam-
ple is a path of the program; that is, roughly speaking, a possibly infinite sequence of tuples
(x1, . . . , xn), where each tuple describes the values of the variables X1, . . . , Xn. Trying to
understand from the path why the program did not satisfy its specification may not be so
simple. As I now show, having a formal notion of causality can help in this regard.

Formally, we associate with each program a Kripke structure, a graph with nodes and
directed edges. Each node is labeled with a possible state of the program. If X1, . . . , Xn are
the variables in the program, then a program state just describes the values of these variables.
For simplicity in this discussion, I assume that X1, . . . , Xn are all binary variables, although
it is straightforward to extend the approach to non-binary variables (as long as they have finite
range). The edges in the Kripke structure describe possible transitions of the program. That
is, there is an edge from node v1 to node v2 if the program can make a transition from the
program state labeling v1 to that labeling v2. The programs we are interested in are typically
concurrent programs, which are best thought of as a collection of possibly communicating
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programs, each of which is run by a different agent in the system. (We can think of the order
of moves as being determined exogenously.) This means that there may be several possible
transitions from a given node. For example, at a node where X and Y both have value 0, one
agent’s program may flip the value of X and another agent’s program may flip the value of Y .
If these are the only variables, then there would be a transition from the node labeled (0, 0) to
nodes labeled (1, 0) and (0, 1).

A path π = (s0, s1, s2, . . .) in M is a sequence of states such that each state sj is associated
with a node in M and for all i, there is a directed edge from the node associated with si to the
node associated with si+1. Although the use of the word “state” here is deliberately intended
to suggest “program state”, technically they are different. Although two distinct states si and
sj on a path might be associated with the same node (and thus the same program state), it is
useful to think of them as being different so that we can talk about different occurrences of
the same program state on a path. That said, I often blur the distinction between state and
program state.

Kripke structures have frequently been used as models of modal logics, logics that extend
propositional or first-order logic by including modal operators such as operators for belief or
knowledge. For example, in a modal logic of knowledge, we can make statements like “Alice
knows that Bob knows that p is true”. Temporal logic, which includes operators like “even-
tually”, “always”, and “until”, has been found to be a useful tool for specifying properties
of programs. For example, the temporal logic formula ✷X says that X is always true (i.e.,
✷X is true of a path π if X = 1 at every state in π). All the specifications mentioned above
(“eventually ϕ will happen”, “ψ will never happen’, and “property ϕ′ will hold at least until
ψ′ does”) can be described in temporal logic and evaluated on the paths of a Kripke structure.
That is, there is a relation |= such that, given a Kripke structure M , a path π, and a temporal
logic formula ϕ, either (M,π) |= ϕ or (M,π) |= ¬ϕ, but not both. The details of temporal
logic and the |= relation are not necessary for the following discussion. All that we need is
that (M, (s0, s1, s2, . . .)) |= ✷ϕ, where ϕ is a propositional formula, if ϕ is true at each state
si.

A model checker may show that a program characterized by a Kripke structure M fails to
satisfy a particular specification ϕ by returning (a compact description of) a possibly infinite
path π in M that satisfies ¬ϕ. The path π provides a counterexample to M satisfying ϕ. As
I said, although having such a counterexample is helpful, a programmer may want a deeper
understanding of why the program failed to satisfy the specification. This is where causality
comes in.

Beer, Ben-David, Chocker, Orni, and Trefler give a definition of causality in Kripke struc-
tures in the spirit of the HP definition. Specifically, they define what it means for the fact that
X = x in the state si on a path π to be a cause of the temporal logic formula ϕ not holding
in path π. (As an aside, rather than considering the value of the variable X in state s, for each
state s and variable X in the program, we could have a variable Xs, and just ask whether
Xs = x is a cause of ϕ. Conceptually, it seems more useful to think of the same variable as
having different values in different states, rather than having many different variables Xs.) As
with the notion of causality in databases, the language for describing what can be caused is
richer than the language L(S), but the basic intuitions behind the definition of causality are
unchanged.
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To formalize things, I need a few more definitions. Since we are dealing with binary
variables, in a temporal logic formula, I write X rather than X = 1 and ¬X rather than
X = 0. For example, I write X ∧ ¬Y rather than X = 1 ∧ Y = 0. Define the polarity
of an occurrence of a variable X in a formula ϕ to be positive if X occurs in the scope
of an even number of negations and negative if X occurs in the scope of an odd number
of negations. Thus, for example, the first occurrence of X in a temporal formula such as
¬✷(¬X ∧ Y )∨¬X has positive polarity, the only occurrence of Y has negative polarity, and
the second occurrence of X has negative polarity. (The temporal operators are ignored when
computing the polarity of a variable.)

A pair (s,X) consisting of a state s and a variable X is potentially helpful for ϕ if either
there exists at least one occurrence of X in ϕ that has positive polarity and X = 0 in s or
there exists at least one occurrence of X in ϕ that has negative polarity and X = 1 in s. It
is not hard to show that if (s,X) is not potentially helpful for ϕ, then changing the value of
X in s cannot change the truth value of ϕ from false to true in π. (This claim is stated more
formally below.)

Given distinct pairs (s1, X1), . . . , (sk, Xk) and a path π, let π[(s1, X1), . . . , (sk, Xk)] be
the path that is just like π except that the value of Xi in state si is flipped, for i = 1, . . . , k.
(We can think of π[(s1, X1), . . . , (sk, Xk)] as the result of intervening on π so as to flip the
values of the variable Xi in state i, for i = 1, . . . , k.) Thus, the previous observation says that
if (s,X) is not potentially helpful for ϕ and (M,π) |= ¬ϕ, then (M,π[(s,X)]) |= ¬ϕ.

Suppose that π is a counterexample to ϕ. A finite prefix ρ of π is said to be a counterexam-
ple to ϕ if (M,π′) |= ¬ϕ for all paths π′ that extend ρ. Note that even if π is a counterexample
to ϕ, there may not be any finite prefix of π that is a counterexample to ϕ. For example, if
ϕ is the formula ¬✷(X = 0), which says that X is not always 0, so eventually X = 1, a
counterexample π is a path such that X = 0 at every state on the path. However, for every
finite prefix ρ of π, there is an extension π′ of ρ that includes a state where X = 1, so ρ is not
a counterexample.

A prefix ρ of π is said to be a minimal counterexample to ϕ if it is a counterexample to
ϕ and there is no shorter prefix that is a counterexample to ϕ. If no finite prefix of π is a
counterexample to ϕ, then π itself is a minimal counterexample to ϕ.

We are finally ready for the definition of causality.

Definition 8.3.1 If π is a counterexample to ϕ, then (s,X) (intuitively, the value of X in
state s) is a cause of the first failure of ϕ on π if

Co1. there is a prefix ρ of π (which could be π itself) such that ρ is a minimal counterexample
to ϕ and s is a state on ρ; and

Co2. there exist distinct pairs (s1, X1), . . . , (sk, Xk) potentially helpful for ϕ such that
(M, ρ[(s1, X1), . . . , (sk, Xk)]) |= ¬ϕ and (M, ρ[(s,X), (s1, X1), . . . , (sk, Xk)])

|= ϕ.

Condition Co2 in Definition 8.3.1 is essentially a combination of AC2(a) and A2(bo), if
we assume that the value of all variables is determined exogenously. Clearly the analogue
of AC2(a) holds: changing the value of X in state s flips ϕ from true to false, under the
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contingency that the value of Xi is flipped in state si, for i = 1, . . . , k. Moreover, AC2(bo)
holds, since leaving X at its value in state s while flipping X1, . . . , Xk keeps ϕ false.

To get an analogue of AC2(bu), we need a further requirement:

Co3. (M, ρ[(s1, Xj1), . . . , (sk, Xjk′ )]) |= ¬ϕ if {Xj1 , . . . , Xjk′ } ⊆ {X1, . . . , Xk}.

Finally, to get an analogue of AC2(am), we need yet another condition:

Co4. (M, ρ[(s,X), (s1, Xj1), . . . , (sk, Xjk′ )]) |= ¬ϕ if {Xj1 , . . . , Xjk′ } ⊂ {X1, . . . , Xk}.

I use strict subset in Co4 since Co2 requires that (M, ρ[(s,X), (s1, X1), . . . , (sk, Xk)]) |= ϕ.
If Co2–4 hold, then the values of X,X1, . . . , Xk in state s together form a cause of ϕ accord-
ing to the modified HP definition, and the value of X is part of a cause of ϕ.

Condition Co1 in Definition 8.3.1 has no analogue in the HP definition of actual causality
(in part, because there is no notion of time in the basic HP framework). It was added here
because knowing about the first failure of ϕ seems to be of particular interest to programmers.
Also, focusing on one failure reduces the set of causes, which makes it easier for programmers
to understand an explanation. Of course, the definition would make perfect sense without this
clause.

Example 8.3.2 Suppose that (the program state labeling) node v satisfies X = 1 and node
v′ satisfies X = 0. Assume that v and v′ are completely connected in the Kripke structure:
there is an edge from v to itself, from v to v′, from v′ to itself, and from v′ to v. Consider the
path π = (s0, s1, s2, . . .), where all states on the path are associated with v except s2, which
is associated with v′. Clearly (M,π) |= ¬✷X . Indeed, if ρ = (s0, s1, s2), then ✷X already
fails in ρ. Note that (s2, X) is potentially helpful for ✷X (since X has positive polarity in
✷X and X = 0 in s2). It is easy to check that (s2, X) is a cause of the first failure of ✷X
in π.

Now consider the formula ¬✷X . The path π′ = (s′0, s
′
1, s

′
2, . . .) where each state s′j is

associated with v is a counterexample to ¬✷X , but no finite prefix of π′ is a counterexample;
it is always possible to extend a finite prefix so as to make ¬✷X true (by making X = 0 at
some state in the extension). The value of X in each of the states on π′ is a cause of ¬✷X
failing.

Beer, Ben-David, Chocker, Orni, and Trefler built a tool that implemented these ideas; they
report that programmers found it quite helpful.

Just as in the database case, the complexity of computing causality becomes significant in
this application. In general, the complexity of computing causality in counterexamples is NP-
complete. However, given a finite path ρ and a specification ϕ that fails in all paths extending
ρ, there is an algorithm that runs in time polynomial in the length of ρ and ϕ (viewed as a
string of symbols) that produces a superset of the causes of ϕ failing in ρ. Moreover, in many
cases of practical interest, the set produced by the algorithm is precisely the set of causes.
This algorithm is actually the one implemented in the tool.

Causality also turns out to be useful even if a program does satisfy its specification. In that
case, a model checker typically provides no further information. The implicit assumption was
that if the model checker says that a program satisfies its specification, then programmers are
happy to leave well enough alone; they feel no need to further analyze the program. However,
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there has been growing awareness that further analysis may be necessary even if a model
checker reports that a program satisfies its specification. The concern is that the reason that the
program satisfies its specification is due to an error in the specification itself (the specification
may not cover an important case). One way to minimize this concern is to try to understand
what causes the program to satisfy its specification. And one useful way of formalizing this
turns out to be to examine the degree of responsibility that the value of variable X in state
s (i.e., a pair (s,X), in the notation of the earlier discussion) has for the program satisfying
the specification. If there are states s such that (s,X) has a low degree of responsibility for
a specification ϕ for all variables X , this suggests that s is redundant. Similarly, if there is
a variable X such that (s,X) has a low degree of responsibility for ϕ for all states s, this
suggests that X is redundant. In either case, we have a hint that there may be a problem with
the specification: The programmer felt that state s (or variable X) was important, but it is not
carrying its weight in terms of satisfying the specification. Understanding why this is the case
may uncover a problem.

Again, while the general problem of computing degree of responsibility in this context is
hard, there are tractable special cases of interest. It is necessary to identify these tractable
cases and argue that they are relevant in practice for this approach to be considered worth-
while.

8.4 Last Words

These examples have a number of features that are worth stressing.

The language used is determined by the problem in a straightforward way, as is the
causal model. That means that many of the subtle modeling issues discussed in Chap-
ter 4 do not apply. Moreover, adding variables so as to convert a cause according to
the updated HP definition to a cause according to the original HP definition, as in Sec-
tion 4.3, seems less appropriate. There is also a clear notion of normality when it comes
to accountability (following the prescribed program) and model checking (satisfying
the specification). In the database context, normality plays a smaller role, although, as
I noted earlier, the restriction on the witnesses considered can be viewed as saying that
it is abnormal to add tuples to the database. More generally, it may make sense to view
removing one tuple from the database as less normal than removing a different tuple.

In Chapter 5, I raised computational concerns on the grounds that if causality is hard to
compute and structural-equations models are hard to represent, then it seems implausi-
ble that this is how people evaluate causality. The examples that people work with are
typically quite small. In the applications discussed in the chapter, the causal models
may have thousands of variables (or even millions, in the case of databases). Now com-
putational concerns are a major issue. Programs provide a compact way to represent
many structural equations, so they are useful not only conceptually, but to deal with
concerns regarding compact representations. And, as I have already observed, finding
special cases that are of interest and easy to compute becomes more important.
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It is certainly important in all these examples that responses to queries regarding causal-
ity agree with people’s intuitions. Fortunately, for all the examples considered in the
literature, they do. The philosophy literature on causality has focused on (arguably,
obsessed over) finding counterexamples to various proposed definitions; a definition is
judged on how well it handles various examples. The focus of the applications papers
is quite different. Finding some examples where the definitions do not give intuitive
answers in these applications is not necessarily a major problem; the definitions can
still be quite useful. In the database and program verification applications, utility is the
major criterion for judging the approach. Moreover, even if a database system provides
unintuitive answers, there is always the possibility of posing further queries to help
clarify what is going on. Of course, in the case of accountability, if legal judgments
are going to be based on what the system says, then we must be careful. But in many
cases, having a transparent, well-understood definition that gives predictable answers
that mainly match intuitions is far better than the current approach, where we use poorly
defined notions of causality and get inconsistent treatment in courts.

The applications in this chapter illustrate just how useful a good account of causality can
be. Although the HP definition needed to be tweaked somewhat in these applications (both be-
cause of the richer languages involved and to decrease the complexity of determining causal-
ity), these examples, as well as the many other examples in the book, make me confident
that the HP definition, augmented by a normality ordering if necessary, provides a powerful
basis for a useful account of causality. Clearly more work can and should be done on refin-
ing and extending the definitions of causality, responsibility, and explanation. But I suspect
that looking at the applications will suggest further research questions quite different from the
traditional questions that researchers have focused on thus far. I fully expect that the coming
years will give us further applications and a deeper understanding of the issues involved.

Notes
Lombrozo [2010] provides further evidence regarding the plethora of factors that affect
causality ascriptions.

Feigenbaum, Jaggard, and Wright [2011] point out the role of causality in accountabil-
ity ascriptions and suggest using the HP definition. Datta et al. [2015] explore the role of
causality in accountability in greater detail. Although their approach to causality involves
counterfactuals, there are some significant differences from the HP definition. Among other
things, they use sufficient causality rather than what I have been calling “actual causality”.

Much of the material on the use of causality in databases is taken from the work of Meliou,
Gatterbauer, Halpern, Koch, Moore, and Suciu [2010]. The complexity results for queries
mentioned in the discussion (as well as other related results) are proved by Meliou, Gatter-
bauer, Moore, and Suciu [2010].

As I said in Section 8.3, Beer et. al. [2012] examined the use of causality in explaining
counterexamples to the specification of programs. The causality computation was imple-
mented in a counterexample explanation tool for the IBM hardware model checker RuleBase
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[Beer et al. 2012]. Programmers found the tool tremendously helpful. In fact, when it was
temporarily disabled between releases, users called and complained about its absence [Chock-
ler 2015].

Chockler, Halpern, and Kupferman [2008] considered the use of causality and responsi-
bility to check whether specifications were appropriate, or if the programmer was trying to
satisfy a specification different from the one that the model checker was checking. They
provided a number of tractable cases of the problem.

Chockler, Grumberg, and Yadgar [2008] consider another application of responsibility (in
the spirit of the HP definition) to model checking: refinement. Because programs can be so
large and complicated, model checking can take a long time. One way to reduce the runtime
is to start with a coarse representation of the program, where one event represents a family of
events. Model checking a coarse representation is much faster than model checking a refined
representation, but it may not produce a definitive answer. The representation is then refined
until a definitive answer is obtained. Chockler, Grumberg, and Yadgar [2008] suggested that
the way that the refinement process works could be guided by responsibility considerations.
Roughly speaking, the idea is to refine events that are most likely to be responsible for the
outcome. Again, they implemented their ideas in a model-checking tool and showed that it
performed very well in practice.

Groce [2005] also used a notion of causality based on counterfactuals to explain errors in
programs, although his approach was not based on the HP definitions.
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Honoré, A. (2010). Causation in the law. In E. N. Zalta (Ed.), The Stan-
ford Encyclopedia of Philosophy (Winter 2010 Edition). Available at
http://plato.stanford.edu/archives/win2010/entries/causation-law.

Hoover, K. D. (2008). Causality in economics and econometrics. In L. Blume and
S. Durlauf (Eds.), The New Palgrave: A Dictionary of Economics. New York: Palgrave
Macmillan.

Hopkins, M. (2001). A proof of the conjunctive cause conjecture. Unpublished manuscript.

Hopkins, M. and J. Pearl (2003). Clarifying the usage of structural models for common-
sense causal reasoning. In Proc. AAAI Spring Symposium on Logical Formalizations of
Commonsense Reasoning.

Huber, F. (2013). Structural equations and beyond. Review of Symbolic Logic 6, 709–732.

Hume, D. (1748). An Enquiry Concerning Human Understanding. Reprinted by Open
Court Press, LaSalle, IL, 1958.

Illari, P. M., F. Russo, and J. Williamson (Eds.) (2011). Causality in the Sciences. Oxford,
U.K.: Oxford University Press.

Kahneman, D. and D. T. Miller (1986). Norm theory: comparing reality to its alternatives.
Psychological Review 94(2), 136–153.

Kahneman, D. and A. Tversky (1982). The simulation heuristic. In D. Kahneman, P. Slovic,
and A. Tversky (Eds.), Judgment Under Uncertainty: Heuristics and Biases, pp. 201–
210. Cambridge/New York: Cambridge University Press.

Katz, L. (1987). Bad Acts and Guilty Minds. Chicago: University of Chicago Press.

Kim, J. (1973). Causes, nomic subsumption, and the concept of event. Journal of Philoso-
phy LXX, 217–236.

Knobe, J. and B. Fraser (2008). Causal judgment and moral judgment: two experiments.
In W. Sinnott-Armstrong (Ed.), Moral Psychology, Volume 2: The Cognitive Science
of Morality, pp. 441–447. Cambridge, MA: MIT Press.

Kominsky, J., J. Phillips, T. Gerstenberg, D. Lagnado, and J. Knobe (2014). Causal sup-
pression. In Proc. 36th Annual Conference of the Cognitive Science Society (CogSci
2014), pp. 761–766.

Kraus, S., D. Lehmann, and M. Magidor (1990). Nonmonotonic reasoning, preferential
models and cumulative logics. Artificial Intelligence 44, 167–207.

Lagnado, D. A., T. Gerstenberg, and R. Zultan (2013). Causal responsibility and counter-
factuals. Cognitive Science 37, 1036–1073.

Lewis, D. (1973a). Causation. Journal of Philosophy 70, 556–567. Reprinted with added
“Postscripts” in D. Lewis, Philosophical Papers, Volume II, Oxford University Press,
1986, pp. 159–213.

This content downloaded from 145.109.19.147 on Tue, 13 Feb 2018 22:15:53 UTC
All use subject to http://about.jstor.org/terms



References 221

Lewis, D. (1973b). Counterfactuals. Cambridge, Mass.: Harvard University Press.

Lewis, D. (1986a). Causal explanation. In Philosophical Papers, Volume II, pp. 214–240.
New York: Oxford University Press.

Lewis, D. (1986b). Causation. In Philosophical Papers, Volume II, pp. 159–213. New
York: Oxford University Press. The original version of this paper, without numerous
postscripts, appeared in the Journal of Philosophy 70, 1973, pp. 113–126.

Lewis, D. (1986c). Events. In Philosophical Papers, Volume II, pp. 241–270. New York:
Oxford University Press.

Lewis, D. (2000). Causation as influence. Journal of Philosophy XCVII(4), 182–197.

Lewis, D. (2004). Void and object. In J. Collins, N. Hall, and L. A. Paul (Eds.), Causation
and Counterfactuals, pp. 277–290. Cambridge, MA: MIT Press.

Livengood, J. (2013). Actual causation in simple voting scenarios. Nous 47(2), 316–345.

Livengood, J. (2015). Four varieties of causal reasoning problem. Unpublished manuscript.

Livengood, J. and E. Machery (2007). The folk probably don’t think what you think they
think: experiments on causation by absence. Midwest Studies in Philosophy 31, 107–
127.

Lombrozo, T. (2010). Causal-explanatory pluralism: how intentions, functions, and mech-
anisms influence causal ascriptions. Cognitive Psychology 61, 303–332.

Mackie, J. L. (1965). Causes and conditions. American Philosophical Quarterly 2/4, 261–
264. Reprinted in E. Sosa and M. Tooley (Eds.), Causation, Oxford University Press,
1993.

Mackie, J. L. (1974). The Cement of the Universe. Oxford, U.K.: Oxford University Press.

Mandel, D. R. and D. R. Lehman (1996). Counterfactual thinking and ascriptions of cause
and preventability. Journal of Personality and Social Psychology 71(3), 450–463.

McDermott, M. (1995). Redundant causation. British Journal for the Philosophy of Sci-
ence 40, 523–544.

McGill, A. L. and A. E. Tenbrunsel (2000). Mutability and propensity in causal selection.
Journal of Personality and Social Psychology 79(5), 677–689.

McGrath, S. (2005). Causation by omission. Philosophical Studies 123, 125–148.

Meliou, A., W. Gatterbauer, J. Y. Halpern, C. Koch, K. F. Moore, and D. Suciu (2010).
Causality in databases. IEEE Data Engineering Bulletin 33(3), 59–67.

Meliou, A., W. Gatterbauer, K. F. Moore, and D. Suciu (2010). The complexity of causality
and responsibility for query answers and non-answers. Proc. VLDB Endowment 4(1),
33–45.

Mellor, D. H. (2004). For facts as causes and effects. In J. Collins, N. Hall, and L. A. Paul
(Eds.), Causation and Counterfactuals, pp. 309–323. Cambridge, MA: MIT Press.

Menzies, P. (2004). Causal models, token causation, and processes. Philosophy of Sci-
ence 71, 820–832.

This content downloaded from 145.109.19.147 on Tue, 13 Feb 2018 22:15:53 UTC
All use subject to http://about.jstor.org/terms



222 References

Menzies, P. (2007). Causation in context. In H. Price and R. Corry (Eds.), Causation,
Physics, and the Constitution of Reality, pp. 191–223. Oxford, U.K.: Oxford University
Press.

Menzies, P. (2014). Counterfactual theories of causation. In E. N. Zalta (Ed.),
The Stanford Encyclopedia of Philosophy (Spring 2014 Edition). Available at
http://plato.stanford.edu/archives/spr2014/entries/causation-counterfactual/.

Mill, J. S. (1856). A System of Logic, Ratiocinative and Inductive (fourth ed.). London:
John W. Parker and Son.

Moore, M. S. (2009). Causation and Responsibility. Oxford, U.K.: Oxford University
Press.

Northcott, R. (2010). Natural born determinists. Philosophical Studies 150, 1–20.

O’Connor, A. (2012). When surgeons leave objects behind. New York Times. Sept. 24,
2012.
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Honoré, T., 7, 75, 137, 184
Hoover, K. D., 7
Hopkins, M., 71, 75
Huber, F., 136
Hume, D., 2, 6

Illari, P. M., 7
independence (of variables), 15, 17, 18, 34, 124, 127,

128, 140–145, 150, 159, 165, 167
independent causes, 54, 75
inference rule, 154–156
insufficiently expressive (causal model), see causal

model, insufficiently expressive
intervention, 14, 15, 21, 32, 47, 81, 108, 124, 125,

127, 137, 155, 205
INUS condition, 6, 9, 184
Ivrii, A., 168, 184

Jaggard, A. D., 212
joint causes, 54, 75

Kahneman, D., 103
Katz, L., 72
Kautz, H., 168
Kaynar, D., 75, 212
Kim, J., 136
Knobe, J., 79, 86, 103, 104, 186
Kominsky, J., 186
Konigsburg, E. L., 187
Kraus, S., 103
Kripke structure, 207, 208, 210
Kupferman, O., 213

Lagnado, D., ix
Lagnado, D., 6, 75, 105, 185, 186
language, 9, 10, 15, 18, 20, 22, 25, 34, 151, 152, 154,

155, 157, 158, 160–162, 206
Lehman, D. R., 103
Lehmann, D., 103
Lewis, D., 7, 70–74, 103–105, 136, 201
Livengood, J., ix, 5, 104, 105
Logan, B., 184
Lombrozo, T., 212
Lorenz, E., 9
Lukasiewicz, T., 71, 168

Machery, E., 104
Mackie, J. L., 6, 72, 184
Magidor, M., 103
Mandel, D. R., 103
maximal consistent set, 162
maximum a posteriori (MAP) approach, 202
Maxton, R., ix
McDermott, M., 73, 105
McGill, A. L., 103

This content downloaded from 145.109.19.147 on Tue, 13 Feb 2018 22:15:57 UTC
All use subject to http://about.jstor.org/terms



228 Index

McGrath, S., 104
Meliou, A., 212
Mellor, D. H., 72
Menzies, P., 7, 102
Merovingian, 9
Michel, H., 5
Mill, J. S., 104
Miller, D. T., 103
minimal counterexample, 209
model, see causal model
model checking, see program verification
montone query, see query, monotone
Moore, K. F., 212
Moore, M. S., 7, 103, 105
moral responsibility, 170, 171, 184
Moses, Y., 168

nonrecursive causal model, see causal model, nonre-
cursive

nontrivial explanation, see explanation, nontrivial
norm, 78, 82, 87, 96, 182
normality, 4, 19, 32, 38, 39, 55, 63, 75, 77, 79–105,

107–109, 114, 119, 120, 122, 126, 127,
132–135, 139, 143, 144, 170, 171, 180–
183, 185, 186, 197, 203, 204, 211, 212

normality ordering, 80–85, 88, 93, 94, 96, 97, 99,
102–105, 107, 108, 119–122, 132, 134,
135, 139, 142–145, 148–150, 212

respects the equations, 120–122, 134, 135
Northcott, R., 74
NP, see computational complexity, NP
NP-complete, see computational complexity, NP-

complete

O’Connor, A., 72
omissions as causes, 37–38, 72, 82–83, 103, 104
Ordeshook, P. C., 185
Orni, A., 208, 210, 212
overdetermination, 29

P (polynomial time), see computational complexity,
P (polynomial time)
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For David, Sara, and Daniel (yet again). It’s hard to believe
that you’re all old enough now to read and understand what
I write (although I’m not sure you will want to!). The theory
of causality presented here allows there to be more than one
cause, and for blame to be shared. You’re all causes of my hap-
piness (and have, at various times, been causes of other states
of mind). I’m happy to share some blame with Mom for how
you turned out.

This content downloaded from 145.109.19.147 on Tue, 13 Feb 2018 22:14:30 UTC
All use subject to http://about.jstor.org/terms



This content downloaded from 145.109.19.147 on Tue, 13 Feb 2018 22:14:30 UTC
All use subject to http://about.jstor.org/terms


