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1 Abstract

Humans have a remarkable capacity for flexible decision making, deliberating among

actions by modeling their likely outcomes. This capacity allows us to adapt to the

specific features of diverse circumstances. In real-world decision making, however,

people face an important challenge: There are often an enormous number of

possibilities to choose among, far too many for exhaustive consideration. There is a

crucial, understudied “pre-choice” step in which, among myriad possibilities, a few good

candidates come quickly to mind. How do people accomplish this? We show across nine

experiments (N = 3972, U.S. residents) that people use computationally-frugal

“cached” value estimates to propose a few candidate actions based on their success in

past contexts (even when irrelevant for the current context). Deliberative planning is

then deployed just within this set, computing more accurate values based on

context-specific criteria. This hybrid architecture illuminates how typically-valuable

thoughts come quickly to mind during decision making.

Keywords: Consideration sets | Value | Planning | Reinforcement Learning |

Decision making
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2 Statement of Relevance

A core challenge in decision science is understanding what happens before choice:

how, from an enormous space of initial possibilities, the mind proposes a few candidate

actions to deliberate among. How do good candidates come quickly to mind for

subsequent appraisal? We bridge the literature on “consideration sets”, which has

distinguished between these two parts of the decision process, with work on the

neurocognitive architecture of value-guided decision making, which has distinguished

between two forms of value estimation. We show that people differentially apply these

two forms of value estimation – one that “caches” value representations by generalizing

from past experience, and one that applies context-specific knowledge at decision time –

to the two aspects of the decision process, generating candidate actions via cached value

and then selecting among them via context-specific evaluation. This architecture offers

a simple and cognitively-plausible approach to how humans make deliberation tractable

in decision making.

3 Introduction

We often study decision making by giving people a choice between just two things,

such as eating fruit or cake. In the real world, however, the number of possibilities is

often much larger; there are thousands of different things, for instance, that we could

eat any evening. We cannot deliberate about every possible action because estimating

and comparing their values takes time (Krajbich, Armel, & Rangel, 2010; Simon, 1955).

Rather, from this sea of possibilities, just a few surface into consciousness. Constructing

a “consideration set” (Howard & Sheth, 1969) requires generating a few good

candidates with minimal effort. How does the mind do this?

Our proposal begins with a distinction, central to the contemporary cognitive

neuroscience of decision making, between two ways of estimating an action’s value

(Dolan & Dayan, 2013). When planning, people estimate action values from a causal

model of their potential outcomes. Planning can thus incorporate knowledge unique to

the current context (“tonight’s guest is vegetarian, so steak would be bad”; Daw,

Gershman, Seymour, Dayan, and Dolan (2011)). However, people also pre-compute (or
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“cache”) estimates of an action’s value by averaging over past experiences across

variable contexts (resulting in a representation like “steak = good”). This approach is

unresponsive to unique features of the current context (Daw, Niv, & Dayan, 2005).

Cached value representations – computed in dopaminergic circuits of the basal ganglia –

are imprecise but efficient, and capture key features of “habitual” as opposed to planned

behavior (Dickinson & Balleine, 1994; Dolan & Dayan, 2013).

In traditional formulations of this distinction, the two value types are competitors,

vying for behavioral control (Daw et al., 2005). However, combining them reveals an

appealing approach to the consideration set problem. Cached values can identify

typically-good actions from among many alternatives with minimal computation,

making them an attractive basis on which to construct a consideration set. Online

planning can precisely evaluate context-specific values with greater effort, making it

ideal for choosing from among the limited set of generated options. We propose that the

mind employs this hybrid architecture, using cached values to generate candidate

actions (a kind of “habit of thought”), and online planning to select from among those

candidates. Like other “bounded rationality” approaches to decision-making (Simon,

1955), restricting consideration to candidates with high cached values will sometimes

miss optimal choices in unusual contexts, but offers a large gain in efficiency.

This hybrid value-guided architecture complements several classic psychological

models of consideration set construction, which, while demonstrating that people

generate high-quality options, focus mostly on the contribution of memory search and

retrieval processes (Johnson & Raab, 2003; Kaiser et al., 2013; Klein, 1993) rather than

the role of value representations. Other research highlighting rule-based strategies that

people use to narrow down their consideration set (like eliminating options that are

missing a desired feature; Hauser (2014); Tversky (1972)), or research characterizing

which thoughts are more “accessible” in other cognitive contexts (Gigerenzer & Todd,

1999; Kahneman, 2003; Tversky & Kahneman, 1973), also tend to not spotlight the role

of different types of value estimation.

Past treatments of value-based consideration set construction do, however, echo
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the broad contours of our approach. Peters, Fellows, and Sheldon (2017) found that

patients with damage to a brain region crucial for storing value representations showed

deficits in generating candidate options, and suggested that value is important for

option generation. Hauser and Wernerfelt (1990) theorized that consumers’

consideration sets could be econometrically predicted by expected utilities analogous to

the context-free cached values we propose. Kalis, Kaiser, and Mojzisch (2013)

highlighted the potential and understudied role of value, hypothesizing a distinction

between “intrinsic” and “extrinsic” value which maps closely onto the distinction we

employ here.

We build on this work by drawing on a precise distinction between two types of

value (Daw et al., 2005), specifying the different roles they play in option generation

versus choice, simulating the architecture to illustrate why it is beneficial, and showing

that people spontaneously employ it during decision-making.

4 Simulations

4.1 Methods

We first illustrate the advantages of this architecture by defining it formally and

simulating its performance in the contextual bandit setting (Sutton & Barto, 1998).

(All code and data throughout this manuscript are available for download at

https://github.com/adammmorris/consideration-sets.) As shown in Figure 1A and

elaborated in Supporting Information (SI), an agent must choose between many

possible actions. Each action is associated with a value that varies by context. The

agent can use online computation to derive these precise “context-specific” values (e.g.

by model-based reinforcement learning; Sutton and Barto (1998)). The agent also stores

cached value estimates for each action that are insensitive to the current context, and

instead generalize across past contexts (e.g. like those computed in model-free

reinforcement learning; Sutton and Barto (1998)). Naturally, in any given context,

these cached estimates are correlated to some degree with the context-specific action

values. In our hybrid architecture, cached value estimates guide consideration set

construction while context-specific value estimates guide choice. (Note that, while our

https://github.com/adammmorris/consideration-sets
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model focuses on how value guides consideration set construction and choice, we do not

mean to imply that value is the only factor involved; we highlight other such factors in

the General Discussion.)

Specifically, an agent can choose one from a set of possible actions

A = {A1, A2 . . . AN} in a context Cj ∈ {C1, C2 . . . CJ}. She constructs her consideration

set, CS ⊆ A, by calling to mind K actions with probability proportional to their

context-free cached value(s) V̂ (Ai). Then, from this consideration set, she chooses a

single action with probability proportional to its context-specific value V (Ai, Cj). The

correlation between cached and context-specific values is parameterized by ρ, and is set

to either 0.25, 0.5, 0.75, or 1.

To illustrate the benefits of this architecture, we contrast it with alternative

architectures which use only one type of value, either cached or context-specific. The

“cached-only” architecture chooses a single option with probability proportional to the

option’s cached value. (This architecture is formally equivalent to our hybrid model

with a consideration set size of 1, since, with only one generated candidate,

context-specific values are not used; hence, in Figure 1B, we visualize its performance at

the point K = 1.) This approach, akin to choosing based purely on habit, will of course

be less accurate than the hybrid model, but could make up for this loss of accuracy with

a gain in efficiency. The “context-specific-only” architecture chooses a single option

with probability proportional to the option’s context-specific value. (This architecture

is formally equivalent to our hybrid model with a consideration set size of N , i.e. one

which evaluates all the options; hence, in Figure 1B, we visualize its performance at the

point K = N .) This approach, akin to performing exhaustive deliberative planning, will

be maximally accurate but inefficient. Finally, we also simulate an architecture that

generates consideration sets randomly and then chooses among the generated

candidates with context-specific value.

When making any given choice, each architecture will vary in two key dimensions:

accuracy and efficiency. To identify which architecture is favored overall in different

settings, it is helpful to put these two dimensions on a common “scale”. To accomplish
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Figure 1 . A. Proposed architecture. B. Simulation results: The effect of consideration
set size K (X axis) on accumulated reward (Y axis), normalized where 1 is the
maximum possible value for that parameter set. Color indicates the correlation between
cached and context-sensitive value. Solid lines show consideration sets determined by
cached value; dotted lines show randomly constructed sets. When cached and
context-sensitive value are imperfectly correlated, our hybrid architecture is preferred to
pure a “cached-only” (K = 1) or “context-sensitive-only” (K = N) model.

this, we follow the method of Vul, Goodman, Griffiths, and Tenenbaum (2014): We

simulate agents making multiple choices within a given “time budget”, and assume a

temporal cost of planning and action. Devoting time to computing context-specific

values improves the average value of each choice, but permits fewer total choices (and

thus less overall accumulation of reward). Thus, in this framework, an architecture is

favored if it balances accuracy and efficiency – i.e. if it produces a high average value

for each individual choice without spending too much computation time doing so.
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Figure 1B illustrates the case where there are 1000 possible actions (N = 1000),

queries of cached values are instantaneous, computing context-specific values costs 1

time unit per candidate action, performing an action costs 25 units (AC = 25), and the

time budget is B = N + AC = 1025. The “context-specific-only” architecture (K = N)

can choose the best option exactly once: the budget allows it to evaluate all 1000

actions at a cost of 1 unit each, and then to perform the reward-maximizing action at a

cost of 25 units. The “cached-only” architecture (K = 1) can choose sub-optimal actions

41 times by never computing any context-specific values at all. Crucially, by varying the

consideration set size, agents can interpolate between these extremes and integrate both

cached and context-sensitive values into our proposed hybrid architecture.

4.2 Results

The signature of our proposed hybrid architecture being favored is when reward is

maximized by considering more than one action (which would be equivalent to the

cached-only model), but fewer than all actions (which would be equivalent to the

context-specific-only model). Naturally, when cached and context-specific values are

perfectly correlated—i.e. the context never changes—reward is maximized by the

cached-only model, i.e. by acting purely habitually. The agent can instantaneously

retrieve the action with the best cached value, and it is always optimal. Crucially,

however, for the correlations less than 1 illustrated in Fig. 1B, the optimal

consideration set sizes range from 2 to 12, indicating that a hybrid architecture is

favored. In no case is the context-specific-only model, i.e. exhaustive planning, favored.

And, in all cases, value-based consideration set construction is highly preferred to

random consideration set construction.

In the SI, we present simulation results varying the other parameters: the number

of total possible actions (N), and the time cost of performing an action relative to

performing a context-specific evaluation (AC). The primary effect of action time cost is

that, when actions take very little time (and the correlation between cached and

context-specific values is high), the cached-only model becomes preferred, because it

becomes advantageous to rapidly perform many sub-optimal actions rather than
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deliberate to find a better action. The primary effect of N is that, when there are very

few possible actions (e.g. N = 20), the context-specific-only model, i.e. exhaustively

deliberating about every possible action, becomes more tenable (although still not

preferred to the hybrid model). This is especially true when the time cost of performing

an action is high; in other words, for weighty decisions with relatively few options,

exhaustive deliberation can become an effective strategy. (The exact results are shown

in Figure S1.) Nonetheless, over a broad range of plausible parameters, our hybrid

architecture is preferred.

5 Experiments

5.1 Studies 1-3: Deconfounded cached and context-specific values in food

choice

We next test whether people employ this architecture in decision-making.

Study 1: Methods Our experimental methods involve two key elements. First,

it is necessary to dissociate cached from context-specific value estimates. We therefore

adapted the classic “devaluation” procedure (Dickinson & Balleine, 1994) in which the

experimenter induces a sudden change in the current value of actions. Context-specific

evaluation can immediately incorporate this change, but cached values cannot. We can

then test whether the candidates that come to mind are principally guided by cached

values, while choice from within this consideration set is principally guided by

context-specific value. (Note that, by using devaluation tasks which dissociate cached

and context-specific values, we create situations where using cached values for candidate

generation is unhelpful and seemingly irrational. These situations are ideal for testing

whether people are employing cached values; they are not, however, meant to typify

situations where employing cached values would be useful. In most real-world decisions,

cached and context-specific values would be correlated, and hence—as demonstrated in

the simulations above—our architecture would be on balance beneficial.)

Second, it is necessary to measure people’s consideration sets. To accomplish this,

after presenting people with a decision problem (e.g., choose a food to eat for dinner),

we asked them to retrospectively report every candidate they had considered before
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settling on their final answer, even if the candidate was quickly rejected. This

retrospective method has some disadvantages compared to real-time methods like online

thought listing protocols, namely that people’s memory of their decision process may be

imperfect. However, it has the advantage of not interfering at all with people’s decision

process while they are making it, and we wanted to err on the side of non-interference.

In the SI we detail several “sanity checks” of this retrospective self-report method. We

found that people typically reported considering between 2 and 4 items, which is

consistent with prior research (Hauser & Wernerfelt, 1990). We also found that, on

average, people reported considering more items when given more time for

consideration, and fewer items when given less time.

In Study 1, we exploit a familiar, everyday context: choosing what to eat for

dinner. Yet, we create an unfamiliar version of this everyday decision in order to

dissociate cached and context-specific values. We told people:

Imagine that you just got dental surgery, and your doctor gives you food

restrictions for the night. You’re supposed to avoid food with seeds, foods

that require too much chewing, and foods that are moist. What would you

cook yourself for dinner tonight?

Participants had 30 seconds to choose a food. Here, participants’ cached, general

food preferences likely diverge from the best context-specific choice that they would

compute online (i.e., taking into account the peculiar dental demands). Immediately

after participants reported their choice, we asked them to retrospectively record all the

options that came to mind, allowing them to list up to 8. Importantly, we emphasized

that they should list any options that came to mind, even if those options were quickly

rejected (Klein, Wolf, Militello, & Zsambok, 1995).

We then asked people to rate each food item in that set on two dimensions

(presented in a random order). First, on their context-specific values: “In this situation,

how good it would be to make this food (given the current doctor restrictions)?”,

reported on a scale ranging from 1 (labeled as “this food is among the worst dishes I

could make in this situation”) to 7 (“this food is among the best dishes I could make in
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this situation”), with 4 labeled as “this food would be average among the dishes I could

make in this situation”. Second, on their general cached values: “In general, how much

do you like eating this food (ignoring the current doctor restrictions)?”, reported on a

similar scale (where 1 was labeled as “this food is among my least favorite dishes”, 4

as “this food is average for me”, and 7 as “this food is among my favorite dishes”).

202 participants were recruited on Amazon Mechanical Turk. We excluded

participants who failed to answer a rating question, or who gave the same rating for all

foods in their consideration set. This left 185 participants for analysis. All experiments

were approved by Harvard’s Committee on the Use of Human Subjects; all participants

gave informed consent. For all of our experiments, all sample sizes were chosen in

advance of data collection based on preliminary effect sizes from pilot data, and we did

not compute the effects of interest before terminating data collection. All exclusion

criteria were also chosen in advance based on pilot studies.

In these experiments, we cannot calculate the exact probability of a food making

it into a participant’s consideration set, because we do not know each participant’s set

of unconsidered (but possible) foods. Instead, employing assumptions described in SI,

we can compute a number that is proportional to this probability (the “inferred

probability” of a food coming to mind). To test the influence of each value estimate on

candidate generation, we estimated a linear mixed-effects model, regressing the inferred

probability that a food came to mind on its general and context-specific value ratings.

To test the influence of each value estimate on choice from among the considered

candidates, we estimated a mixed multinomial logistic model, regressing choice from

among the consideration set on cached and context-specific value ratings. Mixed-effect

models included maximal random intercept and slopes (unless they prevented

convergence); see SI for further details.

Throughout all our analyses, numbers in brackets represent 95% confidence

intervals, b represents unstandardized regression coefficients, and β represents

standardized regression coefficients. (For the logistic regressions, coefficients are

standardized only with respect to the predictor variable.)
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Study 1: Results People’s ratings of general and context-specific values for the

generated food items were correlated at r = .072 ([.0087, .13], t(957) = 2.2, p = .026).

Though this correlation is significant, it is low, indicating that our method successfully

dissociated general from context-specific values and that the ratings could be entered as

simultaneous predictors on our outcomes of interest.

As predicted, people tended to generate options that were high in general value:

66% ([63%, 69%]) of generated options were above the scale midpoint in general value,

with only 13% ([11%, 15%]) below. In contrast, they showed a much smaller tendency

to generate options high in context-specific value: 49% ([46%, 52%]) of generated

options were above the midpoint in context-specific value, with 33% ([30%, 35%]) below.

(The full distributions of each rating are presented in Fig. S3.)

This pattern was borne out in our inferred probability analysis. Figure 2A shows

the inferred probability of considering a candidate as a function of its specific and

general value. When entered as simultaneous predictors, general value strongly

predicted the probability of consideration

(b = .26 [.23, .29], β = .47 [.41, .54], t(737) = 15, p < .001), while context-specific value

did to a smaller extent (b = .085 [.052, .12], β = .16 [.093, .22], t(737) = 4.9, p < .001).

These slopes differ significantly; see SI. (Though our analysis focuses on demonstrating

the role of cached value representations in guiding consideration set construction,

people are likely also relying on other mechanisms such as semantic or contextual

memory (Johnson & Raab, 2003; Kaiser et al., 2013; Klein, 1993; Smaldino &

Richerson, 2012). For example, when selecting a dinner that was not too chewy or

moist, participants’ option generation process presumably involved not only cached

value, but also retrieving foods from memory with features such as “crispy” and “dry”.

This may explain the modest effect of context-specific value on candidate generation; we

return to this point in the General Discussion.)

In contrast, the final choice of a candidate from within the consideration set was

strongly guided by context-specific value. Of the options that were ultimately chosen,

85% ([80%, 90%]) of those options were above the scale midpoint in context-specific
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value, compared to 3.2% ([.70%, 5.8%]) below. (Restricting to chosen options did not

affect the distribution of general value ratings, suggesting that general value does not

influence final choice.) This pattern was borne out in our analysis, with context-specific

value strongly predicting choice (Figure 2A;

b = 3.3 [1.5, 5.1], β = 5.1 [2.4, 7.8], z = 3.7, p < .001) but not general value (which instead

trended in the opposite direction,

b = −.20 [−.42, .016], β = −.32 [−.65, .013], z = −1.9, p = .059).

Study 2: Methods In Study 2, we replicated these results in a similar task

with a modified cover story. In Study 1, the context-specific values (what you’d like to

eat, given the dental restrictions) were still likely related to the cached general values of

food options (what you like to eat in general). In Study 2, by using a social context

(cooking for a friend), we could further distance the context-specific values from the

cached ones. Specifically, we told people:

Imagine that, as a gift, you’re going to cook dinner for a friend who is

currently on crutches and can’t cook for themselves. You know that your

friend is allergic to anything with seeds, prefers foods that don’t require too

much chewing, and dislikes foods that are moist. What would you cook

them? (The food is only for your friend; you won’t eat any of it.)

100 participants were recruited on Amazon Mechanical Turk. We used the same

exclusion criteria as in Study 1, leaving 90 for analysis.

Study 2: Results People’s ratings of general and context-specific values for the

generated food items had a correlation of .24 ([.16, .32], t(485) = 5.5, p < .001). Again,

this correlation is low enough to reasonably enter the ratings as simultaneous predictors

on our outcomes of interest. (See Fig. S3 for full distributions of each rating.)

As in Study 1, people’s option generation was strongly influenced by generalized,

cached value (Fig. 2B). General value strongly predicted the probability of

consideration (b = .31 [.27, .35], β = .57 [.48, .65], t(357) = 13, p < .001), while

context-specific value did to a smaller extent

(b = .091 [.046, .14], β = .17 [.084, .25], t(357) = 3.9, p < .001). These slopes differ
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significantly; see SI. In contrast, choice from among the considered candidates was again

guided by context-specific value (b = 3.5 [.76, 6.2], β = 5.3 [.99, 9.6], z = 2.5, p = .014),

not general value (b = .065 [−.39, .52], β = .10 [−.61, .81], z = .29, p = .77; although a

Bayes factor analysis provided ambiguous evidence against the null hypothesis,

BFalt = 4.7). (All Bayes factors were computed with the BIC approximation;

Wagenmakers (2007).) These results again suggest that people are calling foods to mind

based on their general cached value, and then choosing among the generated foods

according to their value in the current context.

Study 3: Methods In Study 3, we explored the relative influence of two factors

intimately associated with habit-like behaviors: historical cached value (Dolan &

Dayan, 2013) and historical choice frequency (Miller, Shenhav, & Ludvig, 2019; Tversky

& Kahneman, 1973). We propose that people use value as a guide to consideration set

construction, but a plausible alternative explanation of our results is that people are

using historical choice frequency instead. Naturally, these are often correlated because

we tend to choose the things we value most. Because this correlation is imperfect,

however, we can adjudicate between these alternatives by asking whether the options

that come to mind in our “food choice” paradigm are most closely associated with

participants’ reports of how much they generally value those foods, or instead with their

reports of how often they eat those foods.

To test this question, we replicated Study 1 with an additional follow-up question.

In addition to the general and context-specific value questions, for each food people had

generated, we asked them: “How often do you eat each of these foods, compared to all

the types of food you eat?”, reported again on a scale from 1-7, where 1 was “this food

is among the least common dishes I eat”, 4 was “I eat this food an average amount”,

and 7 was “this food is among the most common dishes I eat”.

To test the relative influence of value and choice frequency on candidate

generation, we estimated a linear mixed-effects model, regressing the inferred

probability that a food came to mind on its general cached value, its context-specific

value, and its historical choice frequency.
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114 participants were recruited on Amazon Mechanical Turk. We used the same

exclusion criteria as in Studies 1-2, leaving 105 for analysis.

Study 3: Results People’s ratings of historical choice frequency of the

generated food items was significantly correlated with the general value ratings

(r = .58 [.52, .63], t(564) = 17, p < .001) and not with context-specific value

(r = .061 [−.022, .14], t(564) = 1.4, p = .15). These results makes sense; how often

someone eats a food is related to how much they like it in general but less related to

how appropriate it is given strange dental restrictions.

When all three ratings were entered as simultaneous predictors, as in Studies 1

and 2, the general value of a food strongly predicted the probability of its consideration

(b = .13 [.11, .15], β = .34 [.28, .41], t(836) = 11, p < .001) while the context-specific value

did to a smaller extent, (b = .039 [.015, .063], β = .10 [.039, .16], t(836) = 3.2, p = .0015).

Historical choice frequency also predicted a food’s probability of consideration to a

smaller extent, with a similar magnitude as context-specific value

(b = .047 [.023, .071], β = .12 [.060, .19], t(836) = 3.8, p < .001). The slope for general

value was significantly larger than the slopes for either context-specific value or

historical frequency, and the latter two slopes did not differ from each other. This result

again suggests that people disproportionately rely on cached values to generate

candidate options.

When choosing an option out of the consideration set, people again seemed to rely

primarily on context-specific value, although in this study the effect was marginal

(b = 5.1 [−.25, 10], β = 7.7 [−.34, 16], z = 1.9, p = .061). When choosing among the

options they considered, people did not show a significant effect of general value

(b = .071 [−.52, .66], β = .11 [−.79, 1.0], z = .24, p = .81) or frequency

(b = −.10 [−.73, .53], β = −.16 [−1.1, .80], z = −.32, p = .75), although the Bayes factors

favored keeping them in the regression (BFalt = 207 and 486, respectively).
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Figure 2 . Results of Studies 1-3. General value strongly determines consideration and
weakly determines selection (given consideration), while context-specific value strongly
determines selection and weakly determines consideration. Choice frequency has a weak
effect on both. Error bars are SEM.

5.2 Studies 4-6: Uncorrelated cached and context-specific values in a novel

task

We next demonstrate the same pattern in a setting with more experimental

control, where cached and context-specific values are orthogonal.
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Methods This new experimental paradigm had two stages. In Stage I, we

trained participants to associate twelve words—the months of the year—with monetary

rewards. These words became the candidate “actions” used throughout the experiment.

Each word was paired with an amount of points between 1 and 12 (e.g. FEBRUARY =

7), randomized across participants. On each Stage I trial, participants were given a

choice between two months (e.g. FEBRUARY versus AUGUST), and received points

according to their choice. (Participants received a final bonus according to how many

points they earned.) Each month was paired with each other month twice, for a total of

132 trials; trial order was randomized across participants. All months were presented an

equal number of times, and both month values were revealed after each trial (no matter

what the participant chose).

Then, in Stage II, people were asked to make a new decision involving those

twelve words: to choose a month whose third letter came late in the alphabet, with

better answers earning more money. This method recruits participants’ pre-existing

knowledge of language as a “model” used for context-specific evaluation. There was no

systematic relationship between Stage I and Stage II value, and we emphasized this to

participants. Participants had 25 seconds to make their choice.

Finally, we asked participants to report which months had come to mind as

candidates for the decision in Stage II. If people use cached values to generate

candidates, then they would be more likely to have considered words that were good in

Stage I, despite the known irrelevance of Stage I value in the present context.

Study 4 was the initial test of this prediction; Study 5 was a pre-registered

replication of Study 4 (http://aspredicted.org/blind.php?x=3aa3vq).

Study 6 was a follow-up experiment with two purposes. It allowed yet another

test of the main prediction (that Stage I value would influence which months came to

mind in Stage II), and also tested for an additional effect: whether how frequently a

word was chosen in Stage I would influence whether it came to mind in Stage II. Study

6 was identical to Studies 4 and 5, except with a modified Stage I training regime that

produced some words which varied only in choice frequency (but not in value), and

http://aspredicted.org/blind.php?x=3aa3vq
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some words which, like those in Studies 4-5, varied in both choice frequency and value.

(For details about this training regime, see SI.) The latter words were used as a

replication test of our main prediction, and the former words were used to test for an

additional effect of choice frequency on consideration.

For Studies 4-6, 502, 605, and 500 participants were recruited on Amazon

Mechanical Turk respectively. We excluded participants who didn’t complete the study,

who chose the better alternative in Stage 1 training on fewer than 70 percent of trials,

who failed to enter a month within the time limit in Stage 2, who failed a Stage 2

comprehension check, or who wrote things down physically during the experiment (as

measured by self-report). All exclusion criteria were chosen before analyzing any of the

data reported here. After exclusion, in Studies 4-6, we had 324, 373, and 326

participants for analysis respectively.

In Studies 4-6, we do know the total set of possible actions, so the analysis is

simpler. To test the influence of value on candidate generation, we estimated a logistic

mixed-effects model, regressing whether each month came to mind on its cached (Stage

I) and context-specific (Stage II) values. To test the influence of value on selection

(given consideration), we again estimated a mixed-effects multinomial logistic

regression, regressing Stage I and Stage II values on whether a word was chosen out of

the consideration set. We again used maximal random effects, unless they prevented

convergence; see SI for details of the statistical models.

Results Indeed, people were more likely to think of words in Stage II that were

good in Stage I (Study 4, Figure 3A;

b = .032 [.0085, .056], β = .23 [.052, .41], z = 2.5, p = .011). Study 5, the pre-registered

replication of Study 4, showed the same effect (Figure 3B;

b = .021 [−.0056, .043], β = .15 [.0027, .30], z = 2.0, pone-tailed = .023). In Study 6, there

was no discernible effect of choice frequency on candidate generation

(b = .12 [−.096, .34], β = .12 [−.10, .35], z = 1.1, p = .29, BFnull = 25.8), but there was

again an effect of Stage I value (Figure 3C;

b = .031 [.00096, .062], β = .28 [.0083, .54], z = 2.0, p = .043).
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Figure 3D aggregates the data to visualize the effect of Stage 1 value at a more

granular level. This visualization reveals that, in addition to our effect, people were also

somewhat more likely to think of the very worst words. Statistically, inclusion in

people’s consideration sets was predicted by an additional quadratic term: Stage I value

squared (b = .038 [.019, .057], β = .20 [.10, .29], z = 4.0, p < .001). This pattern suggests

an effect of “relative extremity” on what comes to mind in our experiment; the options

that were either the best or worst among those presented saw a boost in consideration.

(This can be interpreted as a kind of salience effect; Kahneman (2003); Lieder, Griffiths,

and Hsu (2018).) We return to consider this effect further in the discussion. Note that

this relative extremity effect is in addition to (rather than being an alternate

explanation for) our primary result, that options with higher Stage I values are more

likely to come to mind; when including the quadratic term, the main effect of value was

still significant (b = .051 [.026, .076], β = .18 [.092, .28], z = 3.9, p < .001).

Stage I values did not, in contrast, significantly influence the final item chosen

from within the consideration set (Fig. 3E; Study 4,

b = −.00081 [−.18, .18], β = −.0012 [−.28, .27], z = −.0088, p = .99, BFnull = 312; Study

5, b = .10 [.090, .29], β = .15 [−.14, .44], z = 1.0, p = .30, BFnull = 57; Study 6,

b = .13 [−.086, .35], β = .18 [−.13, .49], z = 1.1, p = .25, BFnull = 85; combined,

b = .054 [−.050, .16], β = .08 [−.075, 2.3], z = 1.0, p = .31, BFnull = 313). Rather, once a

candidate came to mind, its probability of being chosen was uniquely influenced by its

Stage II value (Fig. 3F; Study 4, b = 2.2 [1.4, 3.0], β = 3.4 [2.2, 4.6], z = 5.6, p < .001;

Study 5, b = 2.6 [1.8, 3.4], β = 3.9 [2.7, 5.1], z = 6.3, p < .001; Study 6,

b = 2.3 [1.6, 3.0], β = 3.5 [2.4, 4.6], z = 6.3, p < .001; combined,

b = 2.3 [1.9, 2.7], β = 3.5 [2.9, 4.1], z = 10.5, p < .001). In sum, these results support our

proposed architecture: Cached values influence candidate generation, and then selection

from among the generated candidates relies on context-sensitive evaluation.

5.3 Study 7: Salience or value?

There is a potential confound in Studies 4-6: The options with high cached values

were also the furthest from zero—i.e., had the most extreme absolute magnitudes.
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Figure 3 . Effects of value on consideration and choice in Studies 4-7. (A-C) Months
with (irrelevant) high Stage I values more often came to mind as candidate solutions in
the Stage II decision. (D) Aggregating the data reveals a “checkmark” shape: Increases
in Stage I value increase the probability of a candidate month coming to mind, except
for an increased probability for the very worst candidates. (E) Once a word was
generated, its Stage I value had little influence on whether it was chosen. (F) Instead,
final choices were determined mostly by Stage II value. (G) Predictions of “high value”
versus “absolute extremity” hypotheses when Stage I values are gains versus losses in
Study 7. (H) People exhibit a main effect of Stage I value, consistent with the “high
value” hypothesis.

Perhaps people generate options with more extreme cached values (whether good or

bad), rather than more positive cached values. This is a plausible alternative, given the

connection between extremity and salience (Kahneman, 2003; Lieder et al., 2018).1 If

1 Note that this “absolute extremity” alternative differs from the “relative extremity” effect
documented above.
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absolute extremity explains the entire effect of value on consideration set construction,

then we should observe an equally sized negative relationship between value and

consideration when months of the year are associated with variable monetary losses.

Study 7: Methods To test this, we reran the design in Studies 4-5 with an

additional condition: For half the participants, the options in Stage I all gained money,

and for the other half of participants, the options all lost money (with participants

choosing options that would lose them the least money). The gains condition was an

exact replication of Studies 4 and 5. In the losses condition, the methods were identical

except that, in Stage I, the twelve months were randomly assigned point values of -1 to

-12. (Participants were instructed of this in advance, given an initial point endowment

of 2000 points, and told to choose the option on each trial that lost them the least

amount of points.)

In this design, each hypothesis – “high value” and “absolute extremity” – predicts

a unique pattern of results. If consideration sets tend towards options with high cached

values, people will show an overall main effect of value in which words come to mind. If

they tend towards options whose cached values deviate furthest from zero, people will

show a crossover interaction between cached value and gain-versus-loss condition: They

will tend to generate words with more positive cached values in the gains condition but

words with more negative cached values in the loss condition. And if both hypotheses

are correct, then people will exhibit both a main effect of cached value and an

interaction between value and condition. We visualize these predictions in Fig. 3G

(these predictions are schematic; the directional effects are what is predicted, not the

magnitude of each effect).

To test these predictions, we estimated a logistic mixed effect regression model,

regressing whether each month came to mind on its Stage I value, participant condition

(gains versus losses), and their interaction. All aspects of this experiment were

preregistered (https://aspredicted.org/blind.php?x=xk43pf). Following our

pre-registered analysis plan, we calculate one-tailed p values for the predicted effect of

each hypothesis (the main effect of Stage I value and the interaction between Stage I

https://aspredicted.org/blind.php?x=xk43pf
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value and condition).

2745 participants were recruited on Amazon Mechanical Turk. We employed the

same exclusion criteria as in Studies 4-6, leaving us with 1787 for analysis.

Study 7: Results As predicted by our proposed “high value” mechanism,

people were on average more likely to think of words with high cached values; there was

a main effect of Stage I value

(b = .013 [.0036, .022], β = .090 [.022, .16], z = 2.6, pone-tailed = .0045; Fig. 3H). There was

a significant simple effect of Stage I value in the gains condition

(b = .021 [.0065, .036], β = .15 [.048, .25], z = 2.9, p = .0040), and no significant simple

effect in the losses condition

(b = .0038 [−.012, .019], β = .027 [−.083, .14], z = .48, p = .63). The results also provided

weak evidence for an additional “absolute extremity” effect; there was a marginal

interaction between Stage I value and condition, where the effect of value was

attenuated in the loss condition

(b = .017 [−.0085, .042], β = .060 [−.028, .15], z = 1.3, pone-tailed = .09).

Importantly, participants were not simply more confused in the losses condition:

They chose the better month with roughly equal frequency in Stage I (87% [86.5%,

87%] of trials in the gains condition, 88% [87.5%, 88.5%] of trials in the losses

condition), and they chose the best month from among those considered with roughly

equal frequency in Stage II (82% [79%, 85%] of trials in the gains condition, 81% [78%,

84%] of trials in the losses condition).

Study 7: Discussion These results suggest that our primary effect—people

tend to generate options with high cached values, even when uncorrelated with their

value in the present context—is not primarily due to the options’ more extreme

absolute magnitude.

Why do we observe no simple effect of cached value in the loss condition? Perhaps

option generation is biased towards both high-value options and options with higher

absolute value magnitude. In the loss condition, these two tendencies would cancel out.

Or, perhaps only cached values derived from gains influence consideration set
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construction. The cognitive-neural mechanisms underlying cached value learning do

indeed involve different pathways for appetitive and aversive learning (Liu et al., 2007;

Yacubian et al., 2006). Future research should explore these possibilities.

5.4 Studies 8 & 9: Anti-correlated cached and context-specific values

We conclude with an especially strong test of our model. We construct a task in

which cached and context-specific values are anti-correlated by asking people to choose

the option that, historically, had the lowest value. In other words, in this task,

context-specific value is the mirror image of cached value. Our model predicts that

cached value will “intrude” on consideration set construction—i.e. people will

habitually call to mind historically good candidates even though they are the worst

candidates for the present context.

Study 8: Methods We begin by implementing this design in the “food choice”

paradigm used in Studies 1-3. In Study 8, we divided participants into two conditions.

In the “think of best” condition, we asked participants:

Imagine that someone has offered to cook you dinner tonight. What meal

would you most want for the dinner? (Please limit your answer to normal

meals that someone would reasonably cook.)

And in the “think of worst” condition, we asked:

Imagine that someone has offered to cook you dinner tonight. What meal

would you least want for the dinner? (Please limit your answer to normal

meals that someone would reasonably cook.)

We then administered our consideration set measure from Studies 1-3, and asked

people to rate how much they generally liked each food that had come to mind (using

the same scale as before). (Note that, here, since cached and context-specific values are

being dissociated by the “think of worst” condition, we don’t need to use the unusual

circumstances of, e.g., dental restrictions that we employed in Studies 1-3.)

To test whether general cached values persisted in influencing candidate

generation in this setting, we examined how often people generated foods that were the
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“opposite” valence from the current decision. Specifically, we examined how often

people thought of above-average foods (greater than 4 on the 1-7 scale) when they were

supposed to be thinking of bad ones, compared to how often people thought of

below-average foods when they were supposed to be thinking of good ones. We

estimated a mixed-effects logistic regression model, regressing whether each generated

food was the opposite valence from the current decision on the participant’s condition.

Just as in Studies 1-3, this analysis depends on several assumptions. For instance,

it assumes that there are not simply a greater number of above-average foods than

below-average foods; if there were, people would be more likely to experience intrusions

of above-average foods even without an effect of cached value on option generation. See

SI for further details and discussion. This potential confound is addressed in Study 9.

500 participants were recruited on Amazon Mechanical Turk, and we excluded 113

(using the same exclusion criteria as in Studies 1-3), leaving 387 for analysis.

Study 8: Results As predicted, historically good candidates intruded on

people’s consideration sets in the “think of worst” condition. Specifically, people were

over six times more likely to report a liked food coming to mind when trying to choose

disliked foods than a disliked food coming to mind when trying to choose liked foods

(b = 3.1 [2.5, 3.7], β = 3.8 [3.1, 4.5], z = 11, p < .001; Figure 4A).

Study 9: Methods Study 9 adapted the “months” paradigm in a similar

manner. Using the paradigm from Study 4, in Stage I we trained people to assign value

to each of the twelve month names. In this version, however, each month generated

rewards stochastically. (Specifically, rewards were drawn from a normal distribution

with a constant, randomly assigned mean between 1-12 for each month and a standard

deviation of 1.75. Everything else in Stage I was identical to Study 4.) Then, in Stage

II, we asked half of participants, “What was the best month to choose in Part 1?”, and

we asked the other half, “What was the worst month to choose in Part 1?”. We then

administered the same consideration set measure as in Studies 4-7.

We incidentally collected data in this paradigm in two separate instances. Both

showed the same directional effect; one yielded a significant result and the other did
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not. We report the total, aggregated results here and the disaggregated results in the

SI, and note that the results of Study 9 should be viewed as suggestive but preliminary.

Study 9 had N = 457 total, and we excluded 62, leaving 395 for analysis. We used

the same exclusion criteria as in Studies 4-6, with two changes. First, since the Stage I

training was now stochastic, we dropped the criterion that people had to make the

correct Stage I choice in over 70% of trials. Second, we added a question asking whether

people had done an experiment very similar to this one before, and excluded anyone

who answered yes. These criteria were chosen before analyzing the data.

The analysis was identical to Study 8. We characterized a month as

“opposite-valence” if it was above-average in the “think of the worst month” condition

(i.e. had a Stage I mean value greater than 6) or below-average in the “think of the best

month” condition (i.e. had a mean value less than 7).

Study 9: Results The results are similar to Study 8 (Fig. 4B): Months that

were good in Stage I came to mind while deciding which month was worst, more than

bad months came to mind while deciding which month was best

(b = 0.50 [.23, .77], β = .57 [.25, .89], z = 3.5, p < .001).

Importantly, for both Studies 8-9, people were equally good at choosing

candidates from within their consideration set (see SI). This suggests that participants

understood the decisions equally well in both conditions. Moreover, it supports our

general finding that cached values intrude primarily at the point of consideration set

construction, not choice.

Studies 8 & 9: Discussion When asked to name the worst of a category,

people still habitually call to mind the best. This speaks against a reductive account

that cached value is simply one option feature used as a cue for memory retrieval

(Gigerenzer & Todd, 1999; Johnson & Raab, 2003) or screening (Tversky, 1972)—like a

car buyer narrowing their search to cars over $20,000. If this were true, then people

should be equally able to screen for high-value and low-value options (just as a buyer

can narrow their search to cars over or under $20,000). In contrast, we find that calling

to mind high-cached-value options cannot be easily reversed.
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Figure 4 . Percentage of intrusions in Studies 8-9. Historically good candidates more
often intruded into people’s minds, indicating a persistent influence of cached value on
candidate generation.

6 General Discussion

In decisions involving many potential actions, a few good candidates rapidly come

to mind. Our experiments show that this process is guided in part by cached values

generalized from past contexts. In contrast, choice among those candidates is strongly

influenced by values estimated from a model of the current context.

“Model-free” and “model-based” value estimation processes are typically

conceptualized as competitors (Daw et al., 2005; Kool, Gershman, & Cushman, 2017).

Our results contribute instead to a recent interest in their cooperation (Cushman &

Morris, 2015; Keramati, Smittenaar, Dolan, & Dayan, 2016; Kool, Cushman, &

Gershman, 2018). Model-free values may support tractable planning by directing

limited deliberation towards promising actions. An intriguing implication is that many

presumed instances of “habitual” action may in fact reflect its influence on candidate

generation: habits not of action, but of thought (Cushman & Morris, 2015; Graybiel,

2008; O’Reilly & Frank, 2006).

Although we model candidate generation and choice as two separable steps for

convenience, presumably people often generate some candidates, evaluate them, decide

whether to generate more, and continue until reaching a threshold (Smaldino &
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Richerson, 2012) – akin to a “satisficing” procedure (Simon, 1955). Our basic insight

may be applied to this dynamic process: Cached values guide ongoing candidate

generation while context-specific evaluation guides choice.

Consideration set construction certainly relies on more than cached values. Some

mechanisms allow people to generate options via criteria specific to the current decision

context; for instance, when generating options in Studies 1-2, people seemed partially

able to search their memory directly for foods that had relevant context-specific features

(e.g. “not chewy”, like soups). Indeed, consideration sets rely substantially on memory

retrieval processes (Johnson & Raab, 2003; Kaiser et al., 2013; Klein, 1993). Yet, people

cannot always directly query their memory for answers that match current contexts.

For instance, it is hard to query memory for months with third letters close to Z.

(When people can or can’t query memory in a “content-addressible” way (McElree,

2000) is a complex question ripe for future research (Barsalou, 1983).) Our experiments

show that cached values can help fill such gaps.

Salience effects, such as recency, frequency of consideration, or “extremity”, likely

also contribute to consideration (Kahneman, 2003; Tversky & Kahneman, 1973). Our

results supported at least one salience effect: In Studies 4-6, in addition to our primary

effect of high cached value, options with more extreme cached values relative to the

mean also tended to come to mind (the “checkmark” shape in Figure 3D). Salience

effects like this may have a functional basis, such as conserving scarce cognitive

resources (Lieder et al., 2018). An ideal general theory would specify how these diverse

factors – including many others, like personality traits, social roles, and cultural norms

(Smaldino & Richerson, 2012) – form a coherent, adaptive design for option generation.

A growing body of work suggests that value influences what comes to mind not

only during decision-making, but in many other contexts such as causal reasoning,

moral judgment, and memory recall (Bear & Knobe, 2017; Braun, Wimmer, &

Shohamy, 2018; Hitchcock & Knobe, 2009; Mattar & Daw, 2018; Phillips, Morris, &

Cushman, 2019). A key inquiry going forward will be the role of cached versus

context-specific value estimation in these cases.
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In sum, the fact that certain actions just “come to mind” is a fundamental and

mysterious part of human cognition: Fundamental because it is necessary for making

efficient decisions in the real world, but mysterious because we don’t know how the

mind does it so quickly and effectively. Cached values may be a key piece of that puzzle.
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This document reports the materials and methods for the simulations and

experiments reported in the main text. All data and code can be found at

https://github.com/adammmorris/consideration-sets.

1 Simulations

In this section, we describe our simulations in more detail. These simulations

illustrate how our proposed hybrid architecture, when facing a common type of decision

problem with many options, can make good choices at low computational cost.

Consider an agent facing a series of decisions with N possible actions; for instance,

a person choosing what to eat for dinner. Each action has an associated reward that

differs based on context (e.g. sometimes steak is good, but other times you have

vegetarian guests). This is an example of a “contextual multi-armed bandit” problem

(Sutton & Barto, 1998). The agent’s goal is to maximize its accumulated reward.

Following Vul et al., we assume that the agent has a fixed “budget” of B units that it

can spend either performing actions to earn reward, or thinking about which actions to

choose (Vul, Goodman, Griffiths, & Tenenbaum, 2014). (The budget can be thought of

as a constraint on time or on resources.)

We consider two methods available to the agent for estimating the value of each

arm. First, we assume that the agent has cached a “context-free” value for each action

based on its reward across past contexts (e.g. through model-free reinforcement

learning; Sutton and Barto (1998)). Accessing these cached values is costless (i.e.

instantaneous, if the budget is interpreted as temporal). Second, we assume the agent

can spend some of its budget to reveal an action’s reward in the present context (e.g.

by doing model-based planning over a model of the present environment; Sutton and

Barto (1998)). Revealing an action’s context-specific reward costs 1 unit.

After spending K units on “thinking” (i.e., revealing the context-specific rewards

of some number K of actions out of the total set of N possible actions), the agent can

choose an action, pay a cost of AC units to perform the action, and receive the reward.

We assume that typically AC is much greater than 1; for the types of real-world

https://github.com/adammmorris/consideration-sets
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decisions we’re considering (e.g. what to eat for dinner), it takes much longer to

perform an action than it does to evaluate the context-specific reward of that action by

deliberating. On the other hand, we also assume that AC is not so much greater than 1

that performing a context-specific evaluation is trivial; for instance, we are not

simulating decisions that are only performed once in a person’s life (e.g. choosing where

to go to college).

To reduce the number of free parameters, we normalize the agent’s budget to the

number of possible actions N ; we assume that, if the agent evaluates every possible

action, then it will have the remaining budget to perform exactly one action. In other

words, B = N + A.

We consider four types of agents. Cached-only agents simply choose actions with

the highest cached value. Context-specific-only agents evaluate the context-specific

reward for all possible actions before making a choice. Random consideration-set

agents choose a random subset of K actions to evaluate among the N total, and then

choose the action among those with the highest context-specific value. Finally, hybrid

agents use the architecture we propose: They create a consideration set via cached

values, evaluate those, and choose from among the set via context-specific value. In

general, we do not make strong claims about exactly how the consideration set is

constructed, or how the final choice happens, so long as the former is influenced by

cached value and the latter by context-specific value. For the purposes of the

simulations, we assumed that the hybrid agents employ a deterministic “hardmax”

procedure (rather than a probabilistic “softmax” one): They take the K actions with

the highest cached values, evaluate those, and then choose the action in the

consideration set with the highest context-specific value.

For simplicity, we do not explicitly simulate the process of learning and caching

context-free values, the process of learning a model, or process of planning. Rather, we

assume asymptotic convergence of cached value estimates to perfectly match the

average reward across contexts, and asymptotic convergence of the model and planning

process such that context-sensitive value estimates perfectly match context-sensitive



SI: GENERATION AND CHOICE RELY ON DISTINCT FORMS OF VALUE 4

rewards. We directly manipulate the key parameter that emerges from this assumed

process: The correlation between cached and context-sensitive values, which captures

how representative cached values are of rewards in the present context. To accomplish

this, we generated two normal random variables (with mean 0 and variance 1) of

pre-specified correlation ρ. This gave us, for each agent, the cached and

context-sensitive values for each action.

Thus, the simulations had four free parameters: N (the total number of possible

actions), AC (the cost of performing an action, relative to the cost of evaluating an

action), K (the size of the consideration set), and ρ (the correlation between cached and

context-sensitive values). We manipulated ρ to take the values 0.25, 0.5, 0.75, 1; K to

take the values 1-5, 7, 9, 12, 15, 20, 40, 80; N to take the values 20, 100, 1,000 and

10,000; and A to take the values 2, 5, 10, 25, 50, 100. Importantly, the case where K = 1

is equivalent to a “cached-only” agent, and the case where K = N is equivalent to a

“context-sensitive-only” agent. So, to simulate cached-only agents, we simply simulate

hybrid agents with a K of 1 but omit any cost of “thought”, because there is no

advantage to retrieving a context-specific value for the sole option under consideration.

To simulate context-sensitive-only agents, we simulate hybrid agents with K = N .

Thus, the problem of determining when hybrid agents outperform cached-only or

context-sensitive-only agents reduces to determining when the optimal K for hybrid

agents is greater than 1 but less than N .

The simulations were conducted as follows. For each joint parameter setting, we

simulated 10, 000 agents using each architecture, each with a randomly generated set of

cached and present action values. Each agent made a single decision and earned a

reward; we then averaged the earnings of the 10,000 agents to get the average earning

for a single decision made by a particular architecture. We then calculated the number

of possible actions that could be taken by each architecture (based on how much of

their budget they spent on computing context-specific values), and multiplied that

number by the average earnings for that architecture to get its total earnings. Finally,

we divided each architecture’s total earnings by the maximum earnings achieved by an
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architecture for that joint parameter setting. The result is shown in Figure S1.

Of the four architectures, context-sensitive-only and random consideration sets are

never ideal. When the action cost is low (i.e. performing an action take little time or

effort, relative to evaluating an action), and when the correlation between cached and

online values is high, acting on pure cached values is optimal; constructing a

consideration set and evaluating the context-specific rewards is not worth the time or

effort. For example, see AC = 5 and ρ = .5 in Fig. S1. And when the action cost is

high and there are few possible actions to deliberate about (e.g. AC = 100 and

N = 20), the context-specific-only model becomes nearly as good as the hybrid model;

exhaustively deliberating over all the possible actions becomes more tenable (due to a

lower number of possible actions) and more important (due to a higher time cost of

performing an action). Nonetheless, for a large range of parameter settings, agents do

best by generating a consideration set guided by cached value.

2 Pilot experiment: Validating our consideration set measure

Next, we describe the methods of our experiments in more detail. All experiments

were approved by Harvard’s Committee on the Use of Human Subjects; all subjects

were recruited on Amazon Mechanical Turk and gave informed consent.

In every experiment, we asked people to retrospectively report which candidates

came to mind during a previous decision. Here, we report a pilot experiment (Pilot 1,

N = 599) that performs two basic sanity checks on this measure: Do people report

having generated a reasonable number of candidates? And, do they report having

generated more candidates when they had more time to think during the decision?

We told people: “Imagine that someone offered to cook you any meal you wanted

for dinner tonight. What would you ask them to cook?” We gave people either 5, 10,

15, 20, or 25 seconds to answer. (We excluded anyone who wrote nothing in the answer

box.) Then, we gave them our consideration set measure:

Now, we want to know: Which foods did you consider while making your

decision? In other words, which potential meals came to mind while you
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Figure S 1 . Simulation results. AC represents the cost of performing an action
(relative to evaluating it); N represents the total number of possible actions. As long as
AC is not too low and context-free cached values are not too highly correlated with
context-specific values, agents do best with our hybrid architecture that uses cached
values to generate a consideration set (of size > 1 and less than N) and context-specific
value to select among the generated actions.

were trying to make your choice?

Please list all the foods you considered while making your decision. It’s

completely okay to list foods that you thought about, but then immediately

realized they weren’t good options.

We’re giving you 8 spaces to list foods you thought of, but you don’t have to

use all 8. Don’t make up foods that you could have thought of, but didn’t;
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Figure S 2 . The results of the first pilot experiment. (A) People reported considering
an average of 4 candidates, which aligns with previous work. (B) People reported
considering more candidates when they had more time during the decision. (Dashed
lines indicate ±1 standard error.)

just list all the ones that really came to mind during the decision.

Averaging across all time pressure conditions, people reported generating a mean

of 3.7 [3.5, 3.9] foods (Figure S2A). This aligns with consideration set sizes reported in

previous work (Hauser & Wernerfelt, 1990). Moreover, people reported generating more

foods when they had been given more time to make the decision (Fig. 2B; linear

regression, b = .036 [.012, .060], β = .13 [.047, .22], t(523) = 3.04, p = .0025). These

results suggest that people can retrospectively report which options came to mind.

3 Studies 1-2

Here, we give more detail about the first two experiments reported in the main

text (the “dinner” experiments; Figure 2 in the main text). In both of these

experiments, we ask people to think of a food to make for dinner, where the cached,

general values around different foods are deconfounded from their context-specific

values in the decision. The two experiments were identical except for the text describing

the decision.

3.1 Methods

In Study 1, we asked:
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Imagine that you just got dental surgery, and your doctor gives you food

restrictions for the night. You’re supposed to avoid food with seeds, foods

that require too much chewing, and foods that are moist. What would you

cook yourself for dinner tonight?

In Study 2, we administered the same task, but now with a “social” version of the

cover story:

Imagine that, as a gift, you’re going to cook dinner for a friend who is

currently on crutches and can’t cook for themselves. You know that your

friend is allergic to anything with seeds, prefers foods that don’t require too

much chewing, and dislikes foods that are moist. What would you cook

them? (The food is only for your friend; you won’t eat any of it.)

People had thirty seconds to answer. Then, after eliciting people’s consideration

sets, we asked people to report the general, cached value of each food they considered

(“In general, how much do you like this food?”), and the context-specific value of each

food they considered (“In this situation, how good it would be to cook your friend this

food?”). They responded to these questions on a scale from 1 to 7. When reporting the

general values, 1 was labeled as “this food is among my least favorite dishes”, 4 as

“this food is average for me”, and 7 as “this food is among my favorite dishes”. When

reporting the context-specific values, 1 was labeled as “this food is among the worst

dishes I could make in this situation”, 4 as “this food would be average among the

dishes I could make in this situation”, and 7 as “this food is among the best dishes I

could make in this situation”. The two value questions were presented in a random

order. We excluded anyone who failed to answer all the value rating questions, or who

gave the same rating for all foods. There were 202 subjects in the first experiment, and

we excluded 17, leaving 185 for analysis; there were 100 subjects in the second

experiment, and we excluded 10, leaving 90 for analysis. (Note that our decisions

effectively deconfounded cached and situation-specific values; the correlation between

cached and situation-specific value ratings was .07 in the first experiment and .24 in the
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second experiment. Though both of these correlations were significant, they were low

enough that we could reasonably perform a statistical control for either when testing for

an effect of the other on an outcome of interest.)

3.2 Analysis

We predicted that that people would tend to think of foods that were above

average in general value (after controlling for context-specific value), but then would

choose among the foods they generated primarily according to context-specific value.

The two predictions, one about option generation and one about choice, require

different analytic approaches. For the first prediction (candidate generation), we don’t

know the universe of possible candidates from which they were sampling. Thus, we

cannot directly test whether the candidates they generated have higher cached values

than the candidates they didn’t generate, because we do not know the members of the

total set of “thinkable” items from which considered candidates were drawn. Instead,

we can ask: Did people generate options with above average cached values, as measured

by their ratings on the 1-7 scale? If, after controlling for context-specific value, the

general values of the generated candidates were significantly above the scale midpoint

(the rating for an “average” option), this would provide evidence that candidate

generation was influenced by cached value.

The raw data are shown in Figure S3. People tended to generate candidate foods

that were above-average in general value, even after controlling for context-specific

value. To test this statistically, we regressed the general value ratings on the

context-specific value ratings, and found that the intercept was significantly greater

than 4 (the midpoint of the scale and the designated rating for an “average” food). In

Study 1, the intercept was 5.0 [4.9, 5.1] (comparison to 4, t(159) = 14, p < .001); in

Study 2, the intercept was 5.2 [5.0, 5.4] (comparison to 4, t(83) = 14, p < .001). This

tells us that, controlling for context-specific value, the foods that come to mind are

more likely to be ones which are good in general.

This result is consistent with people’s candidate generation process being
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influenced by general, cached value. However, there are two concerns with this

inference. First, there could be confounding factors that are correlated with general

value, but which are actually the ones influencing candidate generation. This concern is

impossible to rule out with this design; we address it in the “months” experiments

below by performing an exogenous manipulation on cached values. The second worry is

that there are simply more foods with above-average cached values (i.e. the distribution

of food values is left-skewed), such that random sampling would produce more foods in

the upper range of the rating scale. There is some reason to think that this is not a

concern—in general, real-life reward distributions tend to be right-skewed (Gigerenzer

& Todd, 1999; Stewart, Chater, & Brown, 2006), which means that random sampling

would actually produce foods with lower-than-average cached values. The distribution

of food rewards, of course, could be different. We rule out this concern more rigorously

in the “months” paradigm, where the members of the total set of possible actions (i.e.,

the twelve months of the year) are known.

In sum, in order to draw inferences about the role of value in candidate generation

from these data, we rely on a minimal set of assumptions. We now describe these

assumptions formally, and describe how we produced the graphs in Figure 2 in the main

text.

Let G represent general (i.e., context-free) value, S represent context-specific

value, and CS represent whether a candidate was included in the consideration set. For

the purposes of this analysis, we consider G and S to be dichotomous: either “high”

(above average) or “low” (below average). Dichotomizing the variables allows us to

analyze the results using weaker assumptions, as described below. (In order to

dichotomize the variables ranging from 1-7, we divided responses at the midpoint rating

of the scale (4) evenly into either high or low bins, at random. All results were similar

using undichotomized variables.)

From the current design, we can obtain the joint distribution of people’s value

ratings for the candidates that did come to mind; in other words, we have

Prob(G = g, S = s | CS = 1) (where g, s ∈ {high, low}; Fig S3). However, what we
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ultimately care about is the probability that a candidate would come to mind, given its

value ratings; in other words, we want Prob(CS = 1 | G = g, S = s). (Once we have

these inferred probabilities, we can test whether a food was more likely to come to mind

given G = high versus G = low, and the same for S.)

By making some assumptions, we can derive the latter from the former. By Bayes’

rule:

Prob(CS = 1 | G = g, S = s) = Prob(G = g, S = s | CS = 1) · Prob(CS = 1)
Prob(G = g, S = s)

Our first simplifying assumption is that there are no confounding factors

correlated with the joint distribution of G,S that influence whether an item comes to

mind; hence, Prob(CS = 1) is constant with respect to G,S. (There can, of course, be

other factors that influence CS, so long as they are uncorrelated with Prob(G,S).) Our

second simplifying assumption is that the joint distribution of G,S is uniformly

distributed; in other words, the universe of foods has an equal number of foods that are

above-average and below-average value. (This is why dichotomizing the variables

permitted us to use weaker assumptions; otherwise, we would have to assume that G,S

are uniformly distributed across the entire 1-7 scale on which participants made their

ratings.) Although this assumption is unlikely to be met perfectly, it is probably

conservative with respect to our hypothesized effect; food values are in fact most likely

left-skewed (Gigerenzer & Todd, 1999; Stewart et al., 2006), so by assuming a uniform

distribution we’re making it more difficult to find that value increases the likelihood of a

food being considered. Under this assumption, Prob(G,S) is constant.

Under these two assumptions,

Prob(CS = 1 | G = g, S = s) ∝ Prob(G = g, S = s | CS = 1); the two are equal up to

some multiplicative constant (which depends on the total number of possible foods).

Hence, we can analyze the variable we care about, Prob(CS | G,S), by analyzing the

variable we have, Prob(G,S | CS). Using this logic, we computed

Prob(CS = 1 | G = g, S = s) for each participant, and regressed the resulting
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probabilities on two dummy variables encoding whether G = high or low and S = high

or low. The inferred probability of a food coming to mind was significantly higher when

general value was above-average, controlling for specific value (Study 1,

b = .26 [.23, .29], β = .47 [.41, .54], t(737) = 15, p < .001; Study 2,

b = .31 [.27, .35], β = .57 [.48, .65], t(357) = 13, p < .001). The inferred probability of a

food coming to mind was also higher when specific value was above average, controlling

for general value (Study 1, b = .085 [.052, .12], β = .16 [.093, .22], t(737) = 4.9, p < .001;

Study 2, b = .091 [.046, .14], β = .17 [.084, .25], t(357) = 3.9, p < .001). This effect was,

however, significantly smaller; both coefficients were below the 95% confidence intervals

of the general-value coefficients.

(This statistical approach estimates the effect of each value type while controlling

for the other, e.g. the effect of G = high controlling for S. For simplicity of

visualization, in the graphs in Figure 2 of the main text, we instead show the marginal

effect of each value type. In other words, in Figure 2 of the main text, we show the

inferred Prob(CS = 1 | G = high or low) and Prob(CS = 1 | S = high or low).)

In contrast to candidate generation, analyzing people’s choices among the

generated candidates is straightforward because we do know the members of each

participant’s consideration set. For each participant, we ranked the items in their choice

set according to their general values, and then separately according to their

context-specific values. We ranked items in ascending order (with higher-valued items

getting higher rank numbers). Moreover, since relatively few people considered more

than five items, we collapsed all items that were fifth-best or worse into the lowest rank

of 1. Hence, the highest-valued item was always ranked as 5, and the lowest-value items

were either ranked as 1 (if the person considered at least 5 items), or 2 (if the person

only considered 4 items), etc. (Ties were assigned equal rank, with the rank of the

next-highest value penalized to match the number of ties in the rank preceding it.) This

procedure produced ranks that were easy to visualize and interpret. For instance,

suppose that the items in a person’s consideration set had general value ratings

(5, 6, 4, 2, 7) and context-specific value ratings (2, 2, 3, 6, 7). Then their general-value
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Figure S 3 . Raw data from Studies 1-3. Each dot represents a food that came to mind;
dot color indicates whether the food was chosen or not. The dots are jittered. People
tended to generate items with high general, context-free values and then choose among
those according to context-specific value. Historical choice frequency (Study 3) had a
relatively weak effect on both generation and choice. Histograms represent the
frequency of considered items (i.e., gray plus red dots) within each value septile.

ranks would be (3, 4, 2, 1, 5) and their specific-value ranks would be (1, 1, 3, 4, 5).

(Throughout all our analyses of choice from among generated candidates, we use these

ranks, rather than the raw values, as predictors. Using ranks avoids some conceptual

issues, such as whether the raw values should be normalized by the other values in the

consideration set, and generally fits the data better. All our results are similar,

however, when using the raw values.)

We then estimated a mixed-effect multinomial logistic regression model, with both

general and context-specific values as predictors. We used the “mlogit” R package

(Croissant et al., 2012) with normally distributed random parameters per subject and
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the default Halton sequence for parameter estimation; in these experiments, there were

no consistent “items”, so we omitted item-specific intercepts. People were much more

likely to choose words with high context-specific values (Study 1,

b = 3.3 [1.5, 5.1], β = 5.1 [2.4, 7.8], z = 3.7, p < .001; Study 2,

b = 3.5 [.76, 6.2], β = 5.3 [.99, 9.6], z = 2.5, p = .014); general value either had no, or a

slightly negative, effect (Study 1, b = −.20 [−.42, .016], β = −.32 [−.65, .013], p = .059;

Study 2, b = .065 [−.39, .52], β = .10 [−.61, .81], z = .29, p = .77).

4 Study 3

In Studies 1-2, we pitted cached values against context-specific values. In Study 3,

we also included choice frequency—i.e. how often a food was eaten in the past. Testing

for an effect of frequency is interesting because frequency is considered a primary

influence on what comes to mind in other types of judgment (Tversky & Kahneman,

1973).

To test this, we replicated Study 1 with an additional question. For each food

they had generated, we asked them: “How often do you eat each of these foods,

compared to all the types of food you eat?”We gave them a scale from 1-7, where 1 was

“this food is among the least common dishes I eat”, 4 was “I eat this food an average

amount”, and 7 was “this food is among the most common dishes I eat”.

The raw data are shown in Figure S3. The primary result is that people tended to

generate foods with high general value, with both context-specific value and historical

choice frequency having a relatively smaller effect. From the inferred probability

analysis (Figure 1C in the main text), when all three predictors are entered as

simultaneous regressors, the slopes for general value, context-specific value, and choice

frequency are (respectively): b = .13 [.11, .15], b = .039 [.015, .063], b = .047 [.023, .071].

The slope for general value is above the 95% confidence interval for the latter two slopes.

5 Months experiments (Studies 4-7)

Here, we give details for Studies 4-7 (the “months” experiments; Figure 3 in the

main text). In these experiments, we specify a set of available candidates (the twelve
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months of the year) and manipulate their cached values directly. We describe Study 4,

then Study 5 (which was a pre-registered replication of Study 3), then Study 6 (which

was a follow-up experiment with minor modifications), then Study 7 (which was a

follow-up experiment designed to deconfound value and salience). The results from

Studies 4-6 are visualized in Figure S4, and the results from Study 7 are visualized in

Figure S5.

5.1 Study 4

Study 4 was our initial months experiment.

Methods All three month experiments were divided into two stages. In Stage I,

participants were trained to associate each month with an arbitrary monetary reward.

The reward amounts were 1 points through 12 points, assigned randomly to the twelve

months for each participant. The training phase consisted of 132 trials; on each trial,

participants were given a choice between two of the months (e.g. FEBRUARY vs

AUGUST), and won the number of points associated with the month they chose. After

the participant made their choice, they were shown the value of both months (e.g.

FEBRUARY = 7, AUGUST = 12). Each month was paired with each other month

twice, and all months were presented an equal number of times. For the first third of

trials, participants were allowed to press a “get hint” button that would reveal the two

month values before making a choice, allowing them to learn the values more easily.

Then, in Stage II, participants were told that they were going to make some

decisions involving the month names, and that the decision was completely unrelated to

the point amounts in Stage I. After reading these instructions, they were told:

We’ll ask you to think of a word from Stage 1 whose third letter is late in

the alphabet. You’ll earn bonus money based on the position in the

alphabet of the third letter in your word (i.e. A = 1 cent, Z = 26 cents).

For example, the third letter of the word IMPACT is P, which is the 16th

letter in the alphabet. Thus, if IMPACT had been one of the words in Part

1, it would earn 16 cents.
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Participants were then given a comprehension check question:

If the word FIZZLE had been one of the words in Part 1, how many cents

would FIZZLE earn you?

After receiving these instructions and answering the comprehension check,

participants were given 25 seconds to make a decision. Finally, after making a decision,

participants were asked to report which words came to mind during the decision:

Because the last question had a time limit, most people are unable to

consider all the words from Part 1 before making their choice.

In Question 2, we’ll ask you: Which words did you consider while answering

the last question, before choosing your final answer? In other words, which

words came to mind while you were trying to answer Question 1?

We’ll show you one word at a time. Select ’Yes’ if that word came to mind

at all while answering the question, and ’No’ if it never came to mind. (This

won’t affect your bonus pay, so please answer honestly.)

We then showed participants each month (in random order), and asked them:

“Did this word come to mind while you were answering the last question?”. Participants

could respond with “Yes” or “No”.

To parse participants’ choices, we compared their response to the list of month

names using the restricted Damerau-Levenshtein distance method in the “amatch”

function of R package “stringdist” (with a maximum distance of 2; Van der Loo

(2014)). We excluded any participants who didn’t complete the study, who chose the

better alternative in Stage 1 training on less than 70 percent of trials, who failed to

choose a month within the time limit in Stage 2, who failed the Stage 2 comprehension

check, or who wrote things down physically during the experiment (as measured by self

report at the end of the experiment). These exclusion criteria were chosen before

analyzing the results.

Study 4 had N = 502 subjects, and we excluded 178, leaving 324 subjects for

analysis.
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Analysis Since people only had 25 seconds to make a decision, they did not

have time to consider all the months. We predicted that, when generating months to

consider, people would be more likely to think of months that were higher value in

Stage I (the month’s “cached” value), but would choose between generated months

according to their value for the specific situation at hand (i.e. how late the third letter

of the word was).

To test the first prediction, we estimated a mixed-effects logistic regression,

regressing whether each month came to mind on the month’s Stage I value (with

random intercepts and slopes for each subject and month). Stage I value had a

significant positive influence on the likelihood of a month coming to mind

(b = .032 [.0085, .056], β = .23 [.052, .41], z = 2.5, p = .011). Stage II value also ostensibly

influenced the likelihood of a month coming to mind

(b = .050 [.0088, .091], β = .72 [.13, 1.3], z = 2.4, p = .016). However, this effect is

uninterpretable because, in this paradigm, the Stage II value of a month is confounded

with the identity of the month itself; the likelihood of October coming to mind, for

instance, could be because of October’s third letter (i.e. its Stage II value), but it could

also be because of extraneous associations specific to October. As in the rest of the

paper, we do not make claims about when context-specific values can influence

candidate generation. (This issue does not arise for the Stage I values since they were

randomly assigned to different months for each participant.)

(Note that in all of our months experiments, when testing for the influence of

value on consideration sets, we fit separate regression models for Stage I and Stage II

value rather than estimating one regression with both predictors. This approach is valid

since Stage I values are randomized for each participant, and it facilitated convergence

during statistical parameter estimation. However, all results are similar if both

predictors are entered into the same regression model.)

To test the second prediction, we estimated a mixed-effects multinomial logit,

regressing people’s choice from among the months that came to mind on the Stage I

and Stage II value rankings. (We used the same procedure as in the food experiments,
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with one exception: We included month-specific intercepts, unless they prevented model

convergence.) Choice among the considered months was determined by their Stage II

value rank (b = 2.2 [1.4, 3.0], β = 3.4 [2.2, 4.6], z = 5.6, p =< .001); we did not find an

effect of Stage I value rank

(b = −.00081 [−.18, .18], β = −.0012 [−.28, .27], z = −.0088, p = .99, BFnull = 312).

Moreover, the slope for Stage I value ranking was significantly below the 95% confidence

interval of the Stage II value ranking slope. (When analyzing consideration set

construction above we entered Stage I and Stage II predictors into separate regression

models because these predictors were orthogonal by design. But, when analyzing choice

out of the consideration set, we enter them into the same model. This is necessary

because rankings of items by Stage I and Stage II value within people’s consideration

sets were no longer orthogonal. Entering these in a single statistical model allows us to

estimate their unique effects.)

Note that, when graphing the choice results in the main text, for simplicity we

plotted the effects of Stage I and Stage II value rankings separately (Fig. 3E-F in the

main text). However, since the rankings are correlated, a more complex but accurate

representation of the data can be obtained by plotting the effect of Stage II value rank

at each level of Stage I value rank. Those are the plots we present at the bottom of

Figure S4.

“Checkmark” shape In Study 4, the effect of Stage I value on candidate

generation appeared nonlinear; the worst month also showed an increased likelihood of

coming to mind. We explored this nonlinearity in two ways. First, we tested whether

our main effect—months with higher Stage I values being more likely to come to mind

in Stage II—was robust to excluding the extreme (best and worst) months. It was; after

excluding the best and worst months,

b = .042 [.0087, .75], β = .25 [.047, .45], z = 2.4, p = .016. Second, we tested whether

there was a quadratic component to the effect. We regressed whether each month came

to mind on both the Stage I value and the square of the Stage I value (after centering

Stage I value to prevent collinearity). In this regression, both the linear and quadratic
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Figure S 4 . Results from Studies 4-6, with best-fit lines (dashed lines represent ±1
standard error).

regressors were significant (blinear = .029 [.0055, .052], β = .21 [.036, .38], z = 2.4, p = .018;

bquadratic = .012 [.0038, .020], β = .27 [.091, .45], z = 2.9, p = .003). This result suggests

that there was a nonlinear effect of Stage I value on candidate generation.

5.2 Study 5

Study 5 was a pre-registered replication of Study 4; the pre-registration document

can be found at http://aspredicted.org/blind.php?x=3aa3vq. Study 5 had N = 605

participants; we excluded 232 (using the pre-registered exclusion criteria, which were

identical to the criteria from the first experiment), leaving 373 for analysis.

The results were similar to Study 4. (In this section, as indicated in the

pre-registration document, we report one-tailed p values.) The key finding was, again,

that people were more likely to think of months for the Stage II decision that were good

http://aspredicted.org/blind.php?x=3aa3vq
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in Stage I (b = .021 [−.0056, .043], β = .15 [.0027, .30], z = 2.0, pone-tailed = .023). (People

were again more likely to think of months that had high Stage II value

(b = .039 [.0037, .074], β = .55 [.052, 1.1], z = 2.2, p = .03) but this result has the same

caveat as before.) When choosing among the generated candidates, they again relied on

Stage II value rankings (b = 2.6 [1.8, 3.4], β = 3.9 [2.7, 5.1], z = 6.3, p < .001), with no

detectable effect of Stage I value rankings

(b = .10 [.090, .29], β = .15 [−.14, .44], z = 1.0, p = .30, BFnull = 57). Moreover, the slope

for Stage I was again significantly below the 95% confidence interval of the Stage II

slope.

Recall that in our previous study, Study 4, Stage I value had a “checkmark” shape

effect on candidate generation: There was a general positive linear relationship between

Stage I value and the probability of a month coming to mind, with a bump for the

lowest-value word. To explore this potential nonlinearity, in Study 5 we preregistered

the same two tests as in Study 3. First, to ensure that our overall effect—words with

higher Stage 1 values being more likely to come to mind—existed without the extreme

Stage 1 values, we reran the analysis while excluding the words with the highest and

lowest Stage 1 value. The effect remained unchanged

(b = .029 [.0016, .056], β = .17 [.0049, .34], z = 2.0, pone-tailed = .022). Second, to explicitly

test for the nonlinearity, we reran the analysis including a quadratic term (i.e. Stage 1

value squared). In Study 5, there was not a clearly detectable checkmark shape; the

quadratic term was marginally significant

(b = .0058 [−.0013, .013], z = 1.6, pone-tailed = .053). The checkmark shape, did, however,

appear clearly when aggregating Studies 4-6; see the “Combined analysis” section below.

We note two deviations from our pre-registered analysis. First, the

pre-registration document indicates a sample size of 600. We posted the study on

Amazon Mechanical Turk indicating a desired sample size of 600; the N = 605 number

includes people who started the study but did not complete it. Second, we

pre-registered a slightly different choice analysis. Instead of using value ranks and

entering the Stage I and Stage II predictors into the same model, we pre-registered
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using the raw values and entering the two predictors into separate models. This analysis

produces a similar result: Stage II value influenced choice from the consideration set

(b = .63 [.49, .77], β = 4.4 [3.4, 5.4], z = 8.9, p < .001), while Stage I value did not

(b = .014 [−.021, .049], β = .050 [−.073, .17], z = .78, p = .43). However, for consistency

with the other studies (and because of the advantages of using rankings for the choice

analysis), we reported the rankings version above.

5.3 Study 6

Studies 4 and 5 demonstrate an effect of cached value on candidate generation. In

Study 6, we ran a follow-up designed to test for an additional effect of choice frequency

– i.e. how often a month is chosen, controlling for its value. Specifically, we tested

whether people would be more likely to think of months that they chose more often in

Stage I, even if those months did not have a higher Stage I value. We did not find

strong evidence for a role of choice frequency, as described below; but this experiment

did provide an additional replication of the effect of Stage I value. (Study 6 had

N = 500; we excluded 174 participants using the same criteria as the other two month

experiments, leaving 326 for analysis.)

In this experiment, we modified the Stage I training such that half the months

would have equal Stage I value but would be chosen at different frequencies. Six of the

months, chosen at random, were given a Stage I value of 8 points (the “equal-value

months”); the other six months had values 2, 4, 6, 10, 12, and 14 points, assigned at

random (the “unequal-value months”). Then, in the Stage I training, the equal-value

months were presented alongside the unequal-value months such that distinct

equal-value months would be chosen at varying frequencies. Specifically, half the

equal-value month (“commonly chosen”) were paired with months of lesser value on 14

trials and months of greater value on only 6 trials. The other half of equal-value months

(“rarely chosen”) were instead paired with 14 greater-value months and only 6 lesser

value months. Thus, the “commonly chosen” equal-value months should be chosen

approximately twice as often as the “rarely chosen” equal-value months. By comparing
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the two types of equal-value months, we can test whether commonly chosen months are

more likely to come to mind.

The manipulation worked; people chose the “commonly chosen” equal-value

months an average of 13.1 times [13.0, 13.2] and the “rarely chosen” equal-value months

an average of 6.3 times [6.2, 6.4]. However, people were not significantly more likely to

think of the “commonly chosen” words in Stage II

(b = .12 [−.096, .34], β = .12 [−.10, .35], z = 1.1, p = .29, BFnull = 25.8).

This experiment also provided a replication of the effect of Stage I values. Among

the unequal-value months, months with higher Stage I values were more likely to come

to mind (b = .031 [.00096, .062], β = .28 [.0083, .54], z = 2.0, p = .043). (Here, Stage II

value did not detectably influence which months came to mind

(b = .02 [−.019, .059], β = .30 [−.21, .82], z = 1.2, p = .24, BFnull = 23); but, again, this

result is not interpretable.) And when choosing among the months which came to mind,

people relied on Stage II value rankings

(b = 2.3 [1.6, 3.0], β = 3.5 [2.4, 4.6], z = 6.3, p < .001); there was no detectable effect of

Stage I value rankings

(b = .13 [−.086, .35], β = .18 [−.13, .49], z = 1.1, p = .25, BFnull = 85). (Again, the slope

for Stage I was significantly below the 95% confidence interval of the Stage II slope.)

Thus, this third months experiment provides an additional replication of the patterns

observed in the prior two experiments.

5.4 Aggregated analysis

To gain a higher-resolution picture of the small effects in the months paradigm, we

aggregated data from the three months experiments. This gave us a total of 1023

subjects for analysis.

We first looked at our key effect: the influence of cached on which candidates

came to mind. For this analysis, we combined all twelve months from the first two

experiments with the six “unequal-value” months in the third experiment. To make the

Stage I values of these months comparable, we divided the values into six percentile
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bins; so, e.g., the lowest percentile would include each subject’s two least valuable

months from the first two experiments and each subject’s single least valuable month

from the third experiment. (The results are similar if the months are aggregated with

their raw values.) We then regressed whether each month came to mind on this Stage I

value percentile. As in each experiment alone, months with higher Stage I values were

more likely to come to mind (b = .055 [.030, .080], β = .20 [.10, .29], z = 4.1, p < .001).

We then tested for an aggregate effect of Stage II values on which months came to

mind. (For this analysis, since the Stage II values were identical across the three

experiments, we did not need to bin the values by percentile to aggregate them.) Words

with higher Stage II values were more likely to come to mind

(b = .18 [.027, .33], β = .62 [.10, 1.1], z = 2.3, p = .021), although this result has the same

caveat as before: Since Stage II values are not randomized across participants, they are

confounded with the months themselves (i.e. “May” could come to mind more often

because its third letter is late in the alphabet, or because it happens to just be a salient

month).

Finally, we tested for an aggregate effect of Stage I value and Stage II value on

selection among generated candidates, using the same mixed-effect multinomial logit

analyses as above. There was a strong effect of Stage II value

(b = 2.3 [1.9, 2.7], β = 3.5 [2.9, 4.1], z = 10.5, p < .001), and no detectable effect of Stage

I value (b = .054 [−.050, .16], β = .08 [−.075, 2.3], z = 1.0, p = .31, BFnull = 313). These

results reaffirm the patterns observed in each experiment individually.

5.5 Study 7

Study 7 was a follow-up study designed to test whether our results could be

explained by a salience confound. The logic is described in detail in the main text. If

people are more likely to generate items high in cached value, then, collapsing across

the “gains” and “losses” conditions, we should see a main effect of Stage I value; if

people are instead more likely to generate items high in absolute extremity (i.e. furthest

from zero), then we should see an interaction between Stage I value and condition; and
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if people are doing a mixture of both, we should see both a main effect and an

interaction (i.e. a significant simple effect in the gains condition and an attenuated or

nonexistent effect in the losses condition).

We preregistered the following procedure for determining sample size:

We will stop data collection when we either (a) obtain 2000 participants who

pass the exclusion criteria (i.e. N = 2000 after exclusion), (b) obtain 4000

participants pre-exclusion, or (c) the rate at which we are collecting new

participants falls below 50 per day. The first criterion requires us to "look at

the data" in order to determine the stopping point, but we will not examine

the effects of interest, and since the exclusion criteria are predetermined (as

described above) this data collection procedure is not biased.

Option (c) occurred; the rate at which we were able to collect new participants on

Amazon Mechanical Turk dropped below 50 per day, and so we stopped collecting more

participants. This left us with 2745 total participants and 1787 participants who passed

the preregistered exclusion criteria.

For our analysis, one detail is worth noting: We coded condition as -0.5 for the

losses condition and 0.5 for the gains condition, and coded Stage I word values by their

rank within the range of word values available in the participant’s condition (so the

lowest-valued word was coded as 1, the highest-valued word was be coded as 12, and

the others as 2-11 accordingly). This coding scheme supported a straightforward

interpretation of the main effect as the average effect of Stage I value across the

conditions, and the interaction as the difference between slopes in the two conditions.

We also centered Stage I value before entering it into the regression.

The results supported our hypothesis (Fig. S??). When regressing whether each

word came to mind on condition, Stage I value, and their interaction, people showed a

main effect of Stage I value

(b = .013 [.0036, .022], β = .090 [.022, .16], z = 2.6, pone-tailed = .0045), as well as a

marginal interaction

(b = .017 [−.0085, .042], β = .060 [−.028, .15], z = 1.3, pone-tailed = .09). As predicted by
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the “mixture” account, there was a significant simple effect of Stage I value in the gains

condition (b = .021 [.0065, .036], β = .15 [.048, .25], z = 2.9, p = .0040) and a

weak-to-nonexistent effect in the losses condition

(b = .0038 [−.012, .019], β = .027 [−.083, .14], z = .48, p = .63). (There was no significant

effect of Stage II value on whether a word came to mind

(b = .03 [−.0062, .068], β = .44 [−.096, .98], z = 1.6, p = .11) or interaction between Stage

II value and condition

(b = −.005 [−.021, .011], β = −.035 [−.15, .076], z = −.62, p = .54), although, as

described above, this result is uninformative.) As in Studies 4-6, which option was

selected out of the consideration set was determined almost entirely by Stage II value

(b = 1.9 [1.7, 2.1], β = 2.9 [2.6, 3.3], z = 17, p < .001), not Stage I value

(b = −.01 [−.069, .049], β = −.018 [−.12, .082], z = −.35, p = .73, BFnull = 1700).

6 Negation experiments (Studies 8-9)

Here, we report the details of the two experiments where we pitted cached and

context-specific values against each other (the “negation” experiments; Fig 4 in the

main text). In both experiments, we asked people to make decisions where the online,

context-specific value of each candidate was exactly anticorrelated with the cached

value, and compared these to decisions where the cached and context-specific values

were aligned. We describe each experiment in turn.

6.1 Study 8

The first experiment involved choosing a food that people would either most or

least want to eat for dinner. Specifically, we asked half of participants (“think of best”

condition):

Imagine that someone has offered to cook you dinner tonight. What meal

would you most want for the dinner? (Please limit your answer to normal

meals that someone would reasonably cook.)

And we asked the other half of participants (“think of worst” condition):
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Imagine that someone has offered to cook you dinner tonight. What meal

would you least want for the dinner? (Please limit your answer to normal

meals that someone would reasonably cook.)

We then gave people our consideration set measure, and asked them to rate the

general value of each food that came to mind. As in the earlier dinner experiments, we

asked, for each food that came to mind: “How much do you like each of these foods?”

We gave participants a scale from 1-7, where 1 was labeled as “this food is among my

least favorite dishes”, 4 as “this food is average for me”, and 7 as “this food is among

my favorite dishes”.

Analysis Study 8 had N = 500 participants, and we excluded 113 (using the

same exclusion criteria as in the earlier dinner experiments), leaving 387 for analysis.

To test whether general cached values persisted in influencing candidate generation

in this setting, we examined how often people generated foods that were the “opposite”

valence from the current decision. Specifically, we examined how often people thought

of above-average foods (greater than 4 on the 1-7 scale) when they were supposed to be

thinking of bad ones, compared to how often people thought of below-average foods

when they were supposed to be thinking of good ones. We estimated a mixed-effects

logistic regression model, regressing whether each generated food was the opposite

valence from the current decision on each participant’s decision condition. In both

experiments, people were more likely to generate opposite-valence foods in the “think of

worst” condition (b = 3.1 [2.5, 3.7], β = 3.8 [3.1, 4.5], z = 11, p < .001). (Here in the

Supplement, we also visualize the same results, but without dichotomizing value into

above-average and below-average. Specifically, we plot the total number of candidates

of each value generated by subjects (Fig. S6A). The same pattern holds; people in the

“think of worst” condition generated many more candidates that were low in

context-specific value, i.e. foods that were generally good.)

Moreover, this effect was not driven by increased confusion in the “think of worst”

condition. People in the “think of worst” condition were actually slightly better at

selecting the correct context-specific food from among the foods they generated (Fig
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S6A; 73% [67%, 79%] chose the best food in their consideration set in the “think of

best” condition, while 76% [70%, 82%] chose the worst food in their consideration set in

the “think of best” condition).

6.2 Study 9

In the second negation experiment, we applied the same design to our “months”

paradigm. People went through the same Stage I training as in the other month

experiments, with one change: The month values were now stochastic (each drawn from

a Gaussian with a randomly assigned mean of 1-12, each with a standard deviation of

1.75). Then, in Stage II, we asked half of participants, “What was the best month to

choose in Part 1?”, and we asked the other half, “What was the worst month to choose

in Part 1?”. We then administered the same consideration set measure as in the other

month experiments.

Analysis As mentioned in the main text, we collected data in the paradigm of

Study 9 on two separate instances. The first instance was to establish the effect

reported in this paper; the second was as part of piloting a larger follow-up design

which we did not ultimately pursue. The effect in the first instance was large and

significant (N = 135, b = 1.1 [.59, 1.6], β = 1.2 [.67, 1.8], z = 4.1, p = .000036); the second

instance showed the same directional effect as the first, but was not significant

(N = 260, b = 0.22 [−.11, .55], β = .25 [−.12, .63], z = 1.3, p = .18). (This non-significant

result would not be too surprising, assuming the effect size obtained by aggregating the

two data sets; a post-hoc bootstrap power analysis showed that a sample of that size,

with the effect size from the aggregated data, would only have a 60% chance of

obtaining a significant result.) For transparency, we include all data we had collected in

this paradigm in order to report our best estimate of the effect. For the remainder of

the analysis, we report the results from the aggregated data, and note that these results

should be viewed as suggestive but preliminary and needing further replication.

Study 9 had N = 457 total, and we excluded 62, leaving 395 for analysis. For

Study 9, we used the same exclusion criteria as in the months experiments above, with
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two changes. First, since the Stage I training was now stochastic, we dropped the

criterion that people had to make the correct Stage I choice in over 70% of trials.

Second, we added a question asking whether people had done an experiment very

similar to this one before, and excluded anyone who answered yes.

The analysis was similar to Study 8. We characterized a month as

“opposite-valence” if it was above-average in the “think of the worst month” condition

(i.e. had a Stage I mean value greater than 6) or below-average in the “think of best”

condition (i.e. had a mean value less than 7). People were again more likely to think of

opposite-valence words in the “think of worst” condition

(b = 0.50 [.23, .77], β = .57 [.25, .89], z = 3.5, p < .001). (We again visualize the

undichotomized results in Fig. S6.) And again, this effect was not driven by increased

confusion in the “think of worst” condition: People were slightly better at selecting the

correct context-specific month in the “think of worst” condition (Fig S6B; 48% [41%,

55%] chose the best month from their consideration set in the “think of best” condition,

versus 57% [50%, 64%] chose the worst month from their consideration set in the “think

of worst” condition).



SI: GENERATION AND CHOICE RELY ON DISTINCT FORMS OF VALUE 29

Figure S 5 . Results from Study 7, with best-fit lines (dashed lines represent ±1
standard error).
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Figure S 6 . (A-B) The total number of candidates of each value generated by subjects
in Studies 8 and 9. Here, the x-axis denotes context-specific value—so in the “think of
best” condition, it was good foods/months that were high in context-specific value, and
in the “think of worst” condition it was bad foods/months that were high in
context-specific value. In the “think of worst” condition, candidates with low
context-specific value (i.e. foods/months with good cached values) were much more
likely to intrude on people’s minds compared to the “think of best” condition. (C-D)
Probability of a candidate (food or month) being chosen given that it came to mind, in
Studies 8 (C) and 9 (D), as a function of its context-specific rank in the
decision-maker’s consideration set. For example, if a person was in the “think of best”
condition, then the best food in their consideration set would be ranked first and the
worst food would be ranked last; if a person was in the “think of worst” condition, then
the worst food in their set would be ranked first, and the best food would be ranked
last. Unsurprisingly, people were likely to choose the highest-ranked word in their
consideration set. The important result is that people were equally good at selecting
candidates in the “think of worst” conditions, suggesting that the results in (A-B) are
not because people were more confused in those conditions.
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