

All generalisations are false - including this one. " — Mark Twain

Generics in contrast A theory and some experiments

A. Kochari, R. van Rooij & K. Schulz, ILLC, University of Amsterdam

Sinn und Bedeutung, September 2019

THE PLAN

- A) A new theory for generics
- B) Testing the theory
- C) Discussing the results
- D) What now?

THE PROPOSAL

Assertability of generic sentences = association

Strength of

 $Ass(G_are_f) = P(f|G) - P(f|Alt(G))$

Assertability of generic sentences = association

Strength of

 $Ass(G_are_f) = P(f|G) - P(f|Alt(G))$

Danks, 2003

Rescola & Wagner, (1972)

 $E_{n+1}(o|c_i) = E_n(o|c) + \lambda(V_n(o|c_i) - \Sigma_j E_n(o|c_j))$

Assertability of generic sentences =

Strength of association

 $Ass(G_are_f) = P(f|G) - P(f|Alt(G))$

Ass(G_are _f) = $\frac{P(f|G) - P(f|A|t(G))}{1 - P(f|A|t(G))}$

Relative Difference [Shep 1958]

Assertability of generic sentences = association

Strength of

X

X

X

$Ass(G_are_f) = P(f|G) - P(f|Alt(G))$

(1) Dogs bark. (2) Kangaroos have spots. (3) Sharks don't eat people. (4) Robins lay eggs. (5) Robins are female. (6) Mosquitos carry malaria.

$Ass(G_are_f) = P(f|G) - P(f|A|t(G))$

(1) Mosquitos carry malaria.

(2) Pit-bulls are dangerous.

STRENGTH OF ASS. = DISTINCTIVENESS × IMPACT

Experiments in aversive (i.e. fear)
 conditioning paradigms: acquisition
 and strength of association increases
 with the intensity of the stimulus.

Assertability of generic sentences = association

Strength of

$Ass(G_are_f) = P(f|G) - P(f|A|t(G))$

We are looking at data from two Galapagos islands, Marchena and Genovesa. Some of the animal species present on both islands show differences in colouring.

You will be shown a representative sample of a particular species from both islands (Jumping Spiders, Hide Beetles and Tree Frogs). The sample from Marchena will always be on the left side of the screen, the sample from Genovesa on the right side.

Genovesa Hide Beetles

Below the sample you will see a sentence. You are asked to judge, using a slider bar, whether you can assert the sentence to describe the variety of the species living on Genovesa.

Tree Frogs from Genovesa have yellow dots.

not at all 0	1	2	3	4	certainly 5

Relevance of contrast

- HO: no interaction with contrast
- Continuous dependence on frequency of observation
 - HO: no interaction with probability
- Appropriateness of contingency as measure
 - confidence intervals for appropriateness of measure

(Study-details: Qualtrics, Prolific, 79 participants, pre-screened)

• P(f|A|t(G)) = 0%

• P(f|G) = 80%

contrastive condition:

- P(f|A|t(G)) = 80%

- P(f|G) = 80%

Genovesa Hide Beetles

Marchena Tree Frogs

HER HAR HAR HER HER

NOV NOV NOV NOV

HEH HEH HEH HEH

Genovesa Tree Frogs

HER HER HER HER HER HER

HER HER HER HER HER HER

Marchena Hide Beetles

STUDY 1

What if some participants don't take given alternative into account?

Assertability of generic sentences = association

Strength of

$Ass(G_are_f) = P(f|G) - P(f|A|t(G))$

What if some participants don't take given alternative into account?

STUDY 1- RESULTS

- Relevance of contrast
 - $-JASP BF_{10} = 104$
- Appropriateness of contingency as measure

		prediction	mean	confidence-
no alt	contrastive	4	3.4	2.98 - 3.71
(51%)	non-contrastive	4	3.35	3.02 - 3.77
alt	contrastive	4.5	3.86	3.57 - 4.14
(38%)	non-contrastive	2.5	1.72	1.28 - 2.15

STUDY 1- DISCUSSION

- Relevance of contrast
 - confirmed
- Appropriateness of contract
 - Weakly confirmed

Histogram of differences between scores in two conditions

<u>Issues</u>

- relatively low assertability value for highly assertable generics
- relatively low assertability values for weakly assertable generics
- substantial variation in the contrastive group

STUDY 1- DISCUSSION

- Relevance of contrast
 - confirmed
- Appropriateness of contingency as measure
 - Weakly confirmed
- Problems with the set-up
- the matter of the interval translation
- the matter of relevant alternatives

Relevance of contrast

- H0: no interaction with contrast
- Continuous dependence on frequency of observation
 - HO: no interaction with probability
- Appropriateness of contingency as measure
 - confidence intervals for appropriateness of measure

• P(f|G) = 54% / P(f|A|t(G)) = 0%• P(f|G) = 54% / P(f|A|t(G)) = 54%• P(f|G) = 68% / P(f|A|t(G)) = 0%• P(f|G) = 68% / P(f|A|t(G)) = 68%• P(f|G) = 80% / P(f|A|t(G)) = 0%• P(f|G) = 80% / P(f|A|t(G)) = 80%• P(f|G) = 92% / P(f|A|t(G)) = 0%• P(f|G) = 92% / P(f|A|t(G)) = 92%(Study-details: Qualtrics, Prolific, 375 participants, pre-screened)

contrastive condition:

non-contrastive condition:

STUDY 2

STUDY 2- RESULTS

		group	\mathbf{Con}		group	noCon	
condition	P(f G)	Mean	SD	Ν	Mean	SD	Ν
contrast,	54%	3.34	1.04	37	2.80	1.01	49
P(f Alt(G) = 0	68%	3.67	0.69	35	2.81	1.32	43
	80%	3.79	1.20	32	3.43	1.22	58
	92%	4.06	0.81	31	3.59	1.30	59
no contrast,	54%	1.71	1.15	37	2.78	1.00	49
P(f Alt(G) = P(f G)	68%	2.20	0.91	35	2.77	1.27	43
	80%	1.89	1.40	32	3.41	1.21	58
	92%	2.27	1.38	31	3.58	1.32	59

No Alt-Group (noCon)• No effect of contrast• Strong effect of proportion• No interaction contrast-proportion

STUDY 2- RESULTS

		group	Con		group	\mathbf{noCon}	
condition	P(f G)	Mean	SD	Ν	Mean	SD	Ν
contrast,	54%	3.34	1.04	37	2.80	1.01	49
P(f Alt(G) = 0	68%	3.67	0.69	35	2.81	1.32	43
	80%	3.79	1.20	32	3.43	1.22	58
	92%	4.06	0.81	31	3.59	1.30	59
no contrast,	54%	1.71	1.15	37	2.78	1.00	49
P(f Alt(G)) = P(f G)	68%	2.20	0.91	35	2.77	1.27	43
	80%	1.89	1.40	32	3.41	1.21	58
	92%	2.27	1.38	31	3.58	1.32	59

Alt-Group (Con)

- Extreme evidence for effect of contrast
- Inconclusive evidence for effect of proportion
- Modest evidence against interaction contrast-proportion

Alt-Group (Con)

- Extreme evidence for effect of contrast
- Inconclusive evidence for effect of proportion
- Modest evidence against interaction contrast-proportion

STUDY 2- DISCUSSION

- Relevance of contrast
 - confirmed
- Continuous dependence on frequency of observation
 - partly confirmed, but not linear
- Appropriateness of contingency as measure
 - weakly confirmed

STUDY 2- DISCUSSION

<u>Issues</u>

- relatively low assertability value for highly assertable generics
- relatively low assertability values for weakly assertable generics in Alt-group
- huge variation in the Alt-group
- weak threshold effect for Alt-group
- huge variation in non-contrastive condition for Altgroup, even between different probabilities
- The higher P(flG), the less alternatives seem to matter.

DISCUSSION

Marchena Hide Beetles Genovesa Hide Beetles	Take on v	e into account what counts a	t dependency s alternative
	(1) Tre have r	e bugs from (red wings.	Genovesa
		P(flAlt(G))	
	prior	after contras-	after non-con-
Alternatives considered	рпог	tive picture	trastive picture
1. All alternative animals	0.0001	tive picture ≈ 0.0001	≈ 0.0001
 Alternatives considered All alternative animals All other bugs 	0.0001 0.2	tive picture ≈ 0.0001 ≈ 0.15	≈ 0.0001 ≈ 0.25

•

Alternatives considered

- 1. All alternative animals
- 2. All other bugs
- 3. Tree bugs from Marchena

Take into account dependency on what counts as alternative

(1) Tree bugs from Genovesa

have red wings.

contrastive	non-contrastive		
condition	condition		
≈ P(flG)	≈ P(flG)		
= P(flG) - 0.15	= P(flG) - 0.25		
= P(flG) - 0	= P(flG) - 0.8		

•

Alternatives considered

- 1. All alternative animals
- 2. All other bugs
- 3. Tree bugs from Marchena

Take into account dependency on what counts as alternative

(1) Tree bugs from Genovesa

have red wings.

Assertability of (1)

contrastive	non-contrastive
condition	condition
≈ 0.8	≈ 0.8
= 0.65	= 0.55
= 0.8	= 0

... and everything in-between.

•

Take into account dependency

on what counts as alternative

(1) Tree bugs from Genovesa

have red wings.

PLUS

- Explains observation of two groups without assuming an ambiguity
- Explains variation, but now for real
- Explains lower value in case of high assertability

•

Take into account dependency

on what counts as alternative

(1) Tree bugs from Genovesa

have red wings.

BUT

- We need to measure the prior.
- We need to test this for different types of group-feature combination.
- There are still observations unexplained by this attempt.

WHAT NEXT?

•

Take into account dependency

on what counts as alternative

(1) Tree bugs from Genovesa

have red wings.

BUT

- We need to measure the prior.
- We need to test this for different types of group-feature combination.
- There are still observations unexplained by this attempt.

THE ROLE OF IMPACT

STRENGTH OF ASS. = DISTINCTIVENESS × IMPACT

(1) Mosquitos carry malaria. 1

(2) Pit-bulls are dangerous.

Marchena Wood Ticks **Genovesa Wood Ticks** Marchena Jumping Spiders **Genovesa Jumping Spiders** **** **** ***** **** ***** ***** ***** **** (a) low impact condition

(b) high impact condition

THE ROLE OF SEQUENTIAL LEARNING

 Teach the frequency information sequentially.

Marchena Jumping Spiders

(a) low impact condition

Marchena Wood Ticks

Genovesa Wood Ticks

(b) high impact condition

All generalisations are false - including this one. " — Mark Twain

Generics in contrast A theory and some experiments

A. Kochari, R. van Rooij & K. Schulz, ILLC, University of Amsterdam

Sinn und Bedeutung, September 2019