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the design and analysis of machine learning algorithms. Fundamental to the idea of a graphi-

cal model is the notion of modularity: a complex system is built by combining simpler parts.

Probability theory serves as the glue whereby the parts are combined, ensuring that the sys-

tem as a whole is consistent and providing ways to interface models to data. Graph theory

provides both an intuitively appealing interface by which humans can model highly interact-

ing sets of variables and a data structure that lends itself naturally to the design of efficient

general-purpose algorithms. This book presents an in-depth exploration of issues related to

learning within the graphical model formalism.
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In science, business, and policymaking—anywhere data are used in prediction—two sorts of

problems requiring very different methods of analysis often arise. The first, problems of recog-

nition and classification, concerns learning how to use some features of a system to accurate-

ly predict other features of that system. The second, problems of causal discovery, concerns

learning how to predict those changes to some features of a system that will result if an inter-

vention changes other features. This book is about the second—much more difficult—type of

problem. The contributors discuss recent research and applications using Bayes nets or direct-

ed graphic representations, including representations of feedback or “recursive” systems. The

book contains a thorough discussion of foundational issues, algorithms, proof techniques, and

applications to economics, physics, biology, educational research, and other areas.
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It is with data affected by numerous causes that Statistics is mainly concerned.
Experiment seeks to disentangle a complex of causes by removing all but one of them, or
rather by concentrating on the study of one and reducing the others, as far as
circumstances permit, to comparatively small residium. Statistics, denied this resource,
must accept for analysis data subject to the influence of a host of causes, and must try to
discover from the data themselves which causes are the important ones and how much of
the observed effect is due to the operation of each.
—G. U. Yule and M. G. Kendall, 1950

The Theory of Estimation discusses the principles upon which observational data may be
used to estimate, or to throw light upon the values of theoretical quantities, not known
numerically, which enter into our specification of the causal system operating.
—Sir Ronald Fisher, 1956

George Box has [almost] said “The only way to find out what will happen when a
complex system is disturbed is to disturb the system, not merely to observe it passively.”
These words of caution about “natural experiments” are uncomfortably strong. Yet in
today’s world we see no alternative to accepting them as, if anything, too weak.
—G. Mosteller and J. Tukey, 1977

Causal inference is one of the most important, most subtle, and most neglected of all the
problems of Statistics.
—P. Dawid, 1979





Preface to the Second Edition

This second edition of Causation, Prediction, and Search is the culmination of almost
twenty years of research on automation and causal inference, beginning in 1980 with a
chapter of Glymour’s Theory and Evidence, continuing with our book, Discovering
Causal Structure, written with Kevin Kelly in 1987, and with an essay in 1990 (Spirtes et
al. 1990) which layed out much of the research project we have followed in subsequent
years. The thought—which one of us had—that the subject was more or less exhausted in
1993, when the first edition of this book appeared, has been proved entirely wrong.

For this edition we have substituted a new and briefer introduction, a discussion of d-
separation that eliminates a misleading didacticism of the first edition, and an entirely
new twelfth chapter, surveying and summarizing relevant results and applications since
1993. The original twelfth chapter was chiefly a series of conjectures, most of which have
been proved correct, concerning cyclic graphs and feedback systems.

Our first debt for this edition is to our two former students, Chris Meek and Thomas
Richardson. Much of the new work we describe is theirs. We are almost equally indebted
to Gregory Cooper, David Heckerman, and Larry Wasserman, who have been wonderful,
helpful colleagues and collaborators, and to Jaimie Robins, who, though often unhappy
with the very idea of this book, helped with his insightfulness and fairness of mind. We
have been encouraged by Judea Pearl’s support, by his development of ideas presented
here, particularly those on prediction first presented in chapter 7 of this book, and by his
explorations of a multitude of new aspects of causal inference not considered here. We
have been equally encouraged by the ingenious uses and modifications of our procedures
provided by a number of scientists, including Bill Shipley, David Bessler and his
collaborators, and Ludwig Litzka and his students. We owe a particular thanks to Cooper,
Heckerman and Meek for permitting us to use in chapter 12 their survey of Bayesian
search methods, and to Thomas Richardson for providing us with information about
recent unpublished developments on chain graphs.





Preface

This book is intended for anyone, regardless of discipline, who is interested in the use of
statistical methods to help obtain scientific explanations or to predict the outcomes of
actions, experiments or policies.

Much of G. Udny Yule’s work illustrates a vision of statistics whose goal is to
investigate when and how causal influences may be reliably inferred, and their
comparative strengths estimated, from statistical samples. Yule’s enterprise has been
largely replaced by Ronald Fisher’s conception, in which there is a fundamental
cleavage between experimental and non-experimental inquiry, and statistics is largely
unable to aid in causal inference without randomized experimental trials. Every now and
then members of the statistical community express misgivings about this turn of events,
and, in our view, rightly so. Our work represents a return to something like Yule’s
conception of the enterprise of theoretical statistics and its potential practical benefits.

If intellectual history in the twentieth century had gone otherwise, there might have
been a discipline to which our work belongs. As it happens, there is not. We develop
material that belongs to statistics, to computer science, and to philosophy; the
combination may not be entirely satisfactory for specialists in any of these subjects. We
hope it is nonetheless satisfactory for its purpose. We are not statisticians by training or
by association, and perhaps for that reason we tend to look at issues differently, and,
from the perspective common in the discipline, no doubt oddly. We are struck by the fact
that in the social and behavioral sciences, epidemiology, economics, market research,
engineering, and even applied physics, statistical methods are routinely used to justify
causal inferences from data not obtained from randomized experiments, and sample
statistics are used to predict the effects of policies, manipulations, or experiments.
Without these uses the profession of statistics would be a far smaller business. It may not
strike many professional statisticians as particularly odd that the discipline thriving from
such uses assures its audience that they are unwarranted, but it strikes us as very odd
indeed. From our perspective outside the discipline, the most urgent questions about the
application of statistics to such ends concern the conditions under which causal
inferences and predictions of the effects of manipulations can and cannot reliably be
made, and the most urgent need is a principled, rigorous theory with which to address
these problems. To judge from the testimony of their books, a good many statisticians
think any such theory is impossible. We think the common arguments against the
possibility of inferring causes from statistics outside of experimental trials are unsound,
and radical separations of the principles of experimental and observational study designs
are unwise. Experimental and observational design may not always permit the same
inferences, but they are subject to uniform principles.

The theory we develop follows necessarily from assumptions laid down in the
statistical community over the last fifteen years. The underlying structure of the theory is
essentially axiomatic. We will give two independent axioms on the relation between



causal structures and probability distributions and deduce from them features of causal
relationships and predictions that can and that cannot be reliably inferred from statistical
constraints under a variety of background assumptions. Versions of all of the axioms can
be found in papers by Lauritzen, Wermuth, Speed, Pearl, Rubin, Pratt, Schlaifer, and
others. In most cases we will develop the theory in terms of probability distributions that
can be thought of loosely as propensities that determine long run frequencies, but many
of the probability distributions can alternatively be understood as (normative) subjective
degrees of belief, and we will occasionally note Bayesian applications. From the axioms
there follow a variety of theorems concerning estimation, sampling, latent variable
existence and structure, regression, indistinguishability relations, experimental design,
prediction, Simpson’s paradox, and other topics. Foremost among the “other topics” are
the discovery that statistical methods commonly used for causal inference are radically
suboptimal, and that there exist asymptotically reliable, computationally efficient search
procedures that conjecture causal relationships from the outcomes of statistical decisions
made on the basis of sample data. (The procedures we will describe require statistical
decisions about the independence of random variables; when we say such a procedure is
“asymptotically reliable” we mean it provides correct information if the outcome of each
of the requisite statistical decisions is true in the population under study.)

This much of the book is mathematics: where the axioms are accepted, so must the
theorems be, including the existence of search procedures. The procedures we describe
are applicable to both linear and discrete data and can be feasibly applied to a hundred or
more variables so long as the causal relations between the variables are sufficiently
sparse and the sample sufficiently large. These procedures have been implemented in a
computer program, TETRAD II, which at the time of writing is publicly available.1

The theorems concerning the existence and properties of reliable discovery
procedures of themselves tell us nothing about the reliabilities of the search procedures
in the short run. The methods we describe require an unpredictable sequence of
statistical decisions, which we have implemented as hypothesis tests. As is usual in such
cases, in small samples the conventional p values of the individual tests may not provide
good estimates of type 1 error probabilities for the search methods. We provide the
results of extensive tests of various procedures on simulated data using Monte Carlo
methods, and these tests give considerable evidence about reliability under the
conditions of the simulations. The simulations illustrate an easy method for estimating
the probabilities of error for any of the search methods we describe. The book also
contains studies of one large pseudoempirical data set—a body of simulated data created
by medical researchers to model emergency medicine diagnostic indicators and their
causes—and a great many empirical data sets, most of which have been discussed by
other authors in the context of specification searches.

A further aim of this work is to show that a proper understanding of the relationship
between causality and probability can help to clarify diverse topics in the statistical
literature, including the comparative power of experimentation versus observation,
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Simpson’s paradox, errors in regression models, retrospective versus prospective
sampling, the perils of variable selection, and other topics. There are a number of
relevant topics we do not consider. They include problems of estimation with discrete
latent variables, optimizing statistical decisions, many details of sampling designs, time
series, and a full theory of “nonrecursive” causal structures—that is, finite graphical
representations of systems with feedback.

Causation, Prediction, and Search is not intended to be a textbook, and it is not fitted
out with the associated paraphernalia. There are open problems but no exercises. In a
textbook everything ought to be presented as if it were complete and tidy, even if it isn’t.
We make no such pretenses in this book, and the chapters are rich in unsolved problems
and open questions. Textbooks don’t usually pause much to argue points of view; we
pause quite a lot.

The various theorems in this book often have a graph theoretic character; many of
them are long, difficult case arguments of a kind quite unfamiliar in statistics. In order
not to interrupt the flow of the discussion we have placed all proofs but one in a chapter
at the end of the book. In the few cases where detailed proofs are available in the
published literature, we have simply referred the reader to them. Where proofs of
important results have not been published or are not readily available we have given the
demonstrations in some detail.

The structure of the book is as follows. Chapter 1 concerns the motivation for the
book in the context of current statistical practice and advertises some of the results.
Chapter 2 introduces the mathematical ideas necessary to the investigation, and chapter 3
gives the formal framework a causal interpretation, lays down the axioms, notes
circumstances in which they are likely to fail, and provides a few fundamental theorems.
The next two chapters work out the consequences of two of the axioms for some
fundamental issues in contexts in which it is known, or assumed, that there are no
unmeasured common causes affecting measured variables. In chapter 4 we give
graphical characterizations of necessary and sufficient conditions for causal hypotheses
to be statistically indistinguishable from one another in each of several senses. In chapter
5 we criticize features of model specification procedures commonly recommended in
statistics, and we describe feasible algorithms that from properties of population
distributions extract correct information about causal structure, assuming the axioms
apply and that no unmeasured common causes are at work. The algorithms are illustrated
for a variety of empirical and simulated samples. Chapter 6 extends the analysis of
chapter 5 to contexts in which it cannot be assumed that no unmeasured common causes
act on measured variables. From both a theoretical and practical perspective, this chapter
and the next form the center of the book, but they are especially difficult. Chapter 7
addresses the fundamental issue of predicting the effects of manipulations, policies, or
experiments. As an easy corollary, the chapter unifies directed graphical models with
Donald Rubin’s “counterfactual” framework for analyzing prediction. Chapter 8 applies
the results of the preceding chapters to the subject of regression. We argue that even
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when standard statistical assumptions are satisfied multiple regression is a defective and
unreliable way to assess causal influence even in the large sample limit, and various
automated regression model specification searches only make matters worse. We show
that the algorithms of chapter 6 are more reliable in principle, and we compare the
performances of these algorithms against various multiple regression procedures on a
variety of simulated and empirical data sets. Chapter 9 considers the design of empirical
studies in the light of the results of earlier chapters, including issues of retrospective and
prospective sampling, the comparative power of experimental and observational designs,
selection of variables, and the design of ethical clinical trials. The chapter concludes
with a look back at some aspects of the dispute over smoking and lung cancer. Chapters
10 and 11 further consider the linear case, and analyze algorithms for discovering or
elaborating causal relations among measured and unmeasured variables in linear
systems. Chapter 12 is a brief consideration of a variety of open questions. Proofs are
given in chapter 13.

We have tried to make this work self-contained, but it is admittedly and unavoidably
difficult. The reader will be aided by a previous reading of Pearl 1988, Whittaker 1990,
or Neopolitan 1990.
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Notational Conventions

Text
In the text, each technical term is written in boldface where it is defined.

Variables: capitalized, and in italics, e.g., X
Values of variables: lower case, and in italics, e.g., X = x
Sets: capitalized, and in boldface, e.g., V
Values of sets of variables: lower case, and in boldface, e.g., V = v
Members of X that are not members of Y: X\Y
Error variables: �� ��e

Independence of X and Y: X  Y

Independence of X and Y conditional on Z: X  Y|Z
X ∪ Y: XY
Covariance of X and Y: COV(X,Y) or XY

Correlation of X and Y : XY

Sample correlation of X and Y : rXY

Partial Correlation of X and Y,
controlling for all members of set Z: XY.Z

In all of the graphs that we consider, the vertices are random variables. Hence we use the
terms “variables in a graph” and “vertices in a graph” interchangeably.

Figures
Figure numbers occur just below a figure, starting at 1 within each chapter. Where
necessary, we distinguish between measured and unmeasured variables by boxing
measured variables and circling unmeasured variables (except for error terms). Variables
beginning with e,� � or  are understood to be “error,” or “disturbance,” variables. For
example, in the figure below, X and Y are measured, T is not, and  is an error term.

 Y

T

X

ε

Figure n.1

Y

T

X

e



We will neither box nor circle variables in graphs in which no distinction need be
made between measured and unmeasured variables, for example, figure n.2.

X X

X X1

2

3

4

Figure n.2

For simplicity, we state and prove our results for probability distributions over
discrete random variables. However, under suitable integrability conditions, the results
can be easily generalized to continuous distributions that have density functions by
replacing the discrete variables by continuous variables, probability distributions by
density functions, and summations by integrals.

If a description of a set of variables is a function of a graph G and variables in G, then
we make G an optional argument to the function. For example, Parents(G,X) denotes
the set of variables that are parents of X in graph G; if the context makes clear which
graph is being referred to we will simply write Parents(X).

If a distribution is defined over a set of random variables O then we refer to the
distribution as P(O). An equation between distributions over random variables is
understood to be true for all values of the random variables for which all of the
distributions in the equation are defined. For example if X and Y each take the values 0
or 1 and P(X = 0) ≠ 0 and P(X = 1) ≠ 0 then P(Y|X) = P(Y) means P(Y = 0|X= 0) = P(Y =
0), P(Y = 0|X= 1) = P(Y = 0), P(Y = 1|X= 0) = P(Y = 1), and P(Y = 1|X= 1) = P(Y = 1).

We sometimes use a special summation symbol, 

→
∑ , which has the following

properties:
(i) when sets of random variables are written beneath the special summation symbol, it is
understood that the summation is to be taken over sets of values of the random variables,
not the random variables themselves,
(ii) if a conditional probability distribution appears in the scope of such a summation
symbol, the summation is to be taken only over values of the random variables for which
the conditional probability distributions are defined,
(iii) if there are no values of the random variables under the special summation symbol
for which the conditional probability distributions in the scope of the symbol are
defined, then the summation is equal to zero.

X1
X3

X2 X4

properties:
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P( X|Y = 0,Z = 0)
X

→
∑ = P(X = 0| Y = 0,Z = 0) + P(X = 1|Y = 0,Z = 0)

However, if P(Y=0,Z=0) = 0, then P(X=0|Y=0,Z=0) and P(X=1|Y=0,Z=0) are not defined,
so

P( X|Y = 0,Z = 0)
X

→
∑ = 0

We will adopt the following conventions for empty sets of variables. If Y = ∅  then

(i) P(X|Y) means P(X).
(ii) XZ.Y means XZ.

(iii) A  B|Y means A  B.

(iv) A  Y is always true.

For example, suppose that X, Y, and Z can each take on the values 0 or 1. Then if 
P(Y = 0, Z = 0)  0  
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1 Introduction and Advertisement

1.1 The Issue
Adult judgments about which event is “the cause” of another event are loaded with
topicality, interest, background knowledge about normal cases, and moral implications.
Tell someone that Suzie was injured in an accident while John was driving her home, and
then ask what further information is needed to decide whether John’s actions caused her
injury. People want to know John’s condition, the detailed circumstances of the accident,
including the condition of the roadway, of John’s car, of the other driver if there was one,
and so on (Ahn 1995, 1996). The responses show that in such contexts judgments about
causation have a moral aspect, and an aspect that depends on an understanding of normal
conditions and deviations from the normal. That sort of thing will vary with culture,
background, and circumstance.

Causal claims have a subjunctive complexity—they are associated with claims about
what did not happen, or has not happened yet, or what would have happened if some
circumstance had been otherwise. If someone says their hair is brown because they dye it,
we infer that if they had not dyed their hair it would have been some other color. That
sort of counterfactual conditional is not always correct (someone with brown hair can dye
their hair brown), and endless but indispensable complexities result. Our moral sense, our
very notions of blame and regret, depend on subjunctive aspects of causal claims. In
addition, the kinds of entities that are described as causes and effects are enormously
varied, and the logical form of causal claims can vary from particular to general to
universal. Events are causes—the rise of the middle class caused the American
Revolution; Constantine’s conversion caused the triumph of Christianity in the Roman
Empire; the discovery of penicillin saved millions of lives. Features or properties, or their
changes, are often cited as causes—the pH of the liquid caused it to turn pink when
phenolthalein was added; the heat caused the butter to melt. Objects or persons are cited
as causes—my daughter gave me a cold. Even relationships, or instances of them, can be
described as causes—her love for him caused her to leave the country. Descriptions of
effects can be equally varied. The salient effect of a preventive cause, for example, can be
a circumstance or event that doesn’t exist—she prevented the catastrophe.

The variation—the looseness—of causal claims has provided a reason for many
people to dismiss the very idea of causation as prescientific. Bertrand Russell claimed as
much, and Karl Pearson proposed to replace the idea of causation entirely by the idea of
correlation. To this day, some writers try to avoid the issue by euphemism, as though a
new word would clarify things, and at almost any conference of statisticians or social
scientists (but not, anymore, of philosophers) there is someone—often not alone—who is
eager to say he doesn’t “believe in causality.” But he acts as if he does; we all do, all the
time: we ask people to do things, or do them ourselves, because we want what we think
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will result from the actions—turn down the volume on the radio, its too loud—and we
blame people for the unhappy effects of their actions. The skeptic about causality pushes
the brake pedal to make his car slow, flips a switch to make a lamp glow, puts his money
in the bank to collect interest.

Francis Bacon claimed knowledge is power, and he was talking about the power of
control supplied by causal knowledge. One of the greatest mysteries of the human
condition is that in a few short years a newborn infant comes to control much of her
environment, knows how to climb up to things, how to turn on the television with the
remote control, how to make a balloon expand and a soap bubble form, how to summon
others and how to avoid them. Developmental psychology has hardly begun to crack how
all that causal knowledge, all that power to control, is acquired so quickly. And a great
deal—perhaps most—of our scientific inquiry aims to find out something about causal
relationships. Billions are spent each year to discover the effects of drug treatments alone,
and similar sums to estimate the likely results of possible social and economic policies.
Those who claim not to believe in causality may provide consulting services to clients
who want to predict the effects of alternative business strategies, or who want to know
how to judge the bearing of some body of data on a causal hypothesis. Loose as the
notion may be, there is nothing serious to the claim that we can live and thrive without
using the idea of causation, however we name it.

The baby and the scientist occupy two ends of the same question: how can
observations be turned into causal knowledge, and how can causal knowledge, even if
incomplete, be used to influence and control our environment? The theory of
experimental design offers a route to causal knowledge, but while Fisher’s discussions of
the probabilistic and statistical aspects of experimental design were brilliant and rigorous,
everything causal was left informal. Fisher did not provide as rigorous a theory regarding
causal inference from non-experimental observations. Yet most of what we want to know
about, and most of what we think we know, is not amenable to randomized clinical trials.

The question of prediction has been equally unsettled—the question is: if you know
some causal relations, and you know some of the probability relations among some of the
related variables, can you predict what will result if you intervene and alter the value of
one or more of the variables. In many causal systems the probability of an event Y given
an intervention to bring about an event X is different from the conditional probability of Y
on X . In recent years some philosophers, economists, computer scientists, and
statisticians have realized the importance to many different kinds of problems of the
difference between predicting by conditioning and predicting by intervening.
Philosophers have used the difference between conditioning and intervening to argue that
the principle of maximum expected utility is not always rational. Whether they are right
or wrong about that (and we think wrong: see Meek and Glymour 1994), the essential
thing is to provide a general means of determining when the probability distribution of
one variable can be calculated from an intervention that forces a probability distribution
on the values of another variable, given partial causal and probabilistic knowledge of the
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undisturbed system, and, when the probability of an effect can be calculated, to provide a
means of calculating it.

So we have three problems: first, the problem of clarifying the very idea of a causal
system with sufficient precision for mathematical analysis and sufficient generality to
capture a wide range of scientific practices; second, the problem of understanding the
possibilities and limitations for discovering such causal structures from various kinds of
data; and third, the problem of characterizing the probabilities predicted by a causal
hypothesis given an intervention directly to force a value, or distribution of values, on
one or more variables. This book attempts answers to all three of these questions.

Our answer to the problem of regimenting causal hypotheses uses a formalism
developed by Terry Speed and his students and subsequently elaborated by Judea Pearl
and his students, and gives it a causal interpretation previously suggested (Kiiveri and
Speed 1982). Our answer to the problem of discovery turns on algorithms developed
from the mathematics of the representation; that answer is supplemented in chapter 12 by
a discussion of Bayesian algorithms lent us by David Heckerman, Christopher Meek, and
Gregory Cooper, and by a discussion—based on joint work with Wasserman and
Robins— of the convergence properties of any possible non-experimental discovery
procedure. The assumptions of the theory of manipulation developed here has
anticipations in the econometric literature (Strotz and Wold 1960), but by putting these
assumptions in a graphical framework we are able to prove some novel theorems that
follow from the assumptions.

One approach to clarifying the notion of causation—the philosophers’ approach ever
since Plato—is to try to define “causation” in other terms, to provide necessary and
sufficient and noncircular conditions for one thing, or feature or event or circumstance, to
cause another, the way one can define “bachelor” as “unmarried adult male human.”
Another approach to the same problem—the mathematician’s approach ever since
Euclid—is to provide axioms that use the notion of causation without defining it, and to
investigate the necessary consequences of those assumptions. We have few fruitful
examples of the first sort of clarification, but many of the second: Euclid’s geometry,
Newton’s physics, Frege’s logic and Hilbert’s, Kolmogorov’s probability. Some
axiomatic theories—Newton’s, for example—offer a substantive theory of nature, while
others—Frege’s and Hilbert’s logics and Kolmogorov’s probability—are a
systematization and abstraction from practice and intuition—while still others—Euclid’s
Elements—are something of both. While we do not claim the success of these examples,
they are the models of this book.

We use a formalism—directed graphical models—that is not in the least original with
us; we claim some originality in explicitly stating the causal assumptions implicit in the
causal interpretation of the graphs, and in extending the application of graphs to solving
certain problems about manipulations. The representation invokes two ideas about
causation that are fundamental and ancient. The first idea, which can be traced back at
least to Bernoulli, is that the absence of causal relations is marked by independence in
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probability—in Bernoulli’s examples, if the outcome of one trial has no influence on the
outcome of another trial, then the probability of both outcomes equals the product of each
outcome separately. The second idea, Bacon’s again, is that probability is associated with
control: if variation of one feature, X, causes variation of another feature Y, then Y can be
changed by an appropriate intervention that alters X. It turns out that the representation
captures what is common to a wide variety of statistical models of causal relations—for
example: regression models, logistic regression models, structural equation models, latent
factor models, and many models of categorical data—and captures how these models
may be used in prediction and control. The general assumptions are given in chapter 3.

These axioms have implications for scientific discovery by experimental and non-
experimental means. Our investigations require characterizing when two or alternative
causal theories are, in various technical senses, indistinguishable by data, and
characterizing when and which causal features are shared by all models indistinguishable
from any particular model. These characterizations are given in chapter 4, and more
recent work on equivalence is described in chapter 12. In chapters 5, 6, 10, and 11, and
again in chapter 12, we describe algorithms for discovering causal structure from sample
data. We evaluate the algorithms in terms of several different features. (1) Are they
computationally feasible on realistic problems? (2) Are they reliable—do they in some
sense converge to a description of features common to all models indistinguishable from
the true model? (3) Are they as informative as possible for the features of the data they
use? Our algorithmic results concern the discovery of causal structure in linear and
nonlinear systems, systems with and without feedback, cases where there may, or may
not, be unrecorded common causes of recorded variables, and cases in which membership
in the observed sample is influenced by the variables under study. We investigate the
reliabilities of the algorithms on simulated data, and illustrate their application with
published data sets. In chapter 8, reliable procedures for causal inference are compared
with regression in theory, on simulated data, and on real data sets. In chapter 9 we
compare causal inference from experimental and non-experimental data. Besides reviews
of work on equivalence, prediction and search algorithms, chapter 12 includes a
consideration of the senses in which it is, and is not, possible to have a procedure that
reliably converges to the truth about causal relations as they are represented here, and a
discussion of procedures for learning feedback models, so far as such models can be
represented by directed cyclic graphs, and a brief discussion of the combination of search
methods with the Gibbs sampler and related procedures for estimation of posterior
probabilities.

The discovery of causal relations is only half of the story. The other half concerns the
use in prediction of causal knowledge, even partial and incomplete causal knowledge.
The fundamentals of the theory of prediction are given in chapter 3, and their
consequences are developed in detail in chapter 7. The theory of prediction has a number
of limitations, some of which are considered in chapter 12. The final chapter, 13,
provides detailed proofs of the theorems in the main text.
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2 Formal Preliminaries

This chapter introduces some mathematical concepts used throughout the book. The
chapter is meant to provide mathematically explicit definitions of the formal apparatus
we use. It may be skipped in a first reading and referred to as needed, although the reader
should be warned that for good reason we occasionally use nonstandard definitions of
standard notions in graph theory. We assume the reader has some background in finite
mathematics and statistics, including correlation analysis, but otherwise this chapter
contains all of the mathematical concepts needed in this book. Some of the same
mathematical objects defined here are given special interpretations in the next chapter,
but here we treat everything entirely formally.

We consider a number of different kinds of graphs: directed graphs, undirected graphs,
inducing path graphs, partially oriented inducing path graphs, and patterns. These
different kinds of objects all contain a set of vertices and a set of edges. They differ in the
kinds of edges they contain. Despite these differences, many graphical concepts such as
undirected path, directed path, parent, etc., can be defined uniformly for all of these
different kinds of objects. In order to provide this uniformity for the objects we need in
our work, we modify the customary definitions in the theory of graphs.

2.1 Graphs
The undirected graph shown in figure 2.1 contains only undirected edges (e.g., A - B).

D

E

A B C

Figure 2.1

A directed graph, shown in figure 2.2, contains only directed edges (e.g., A → B).

A B

E

D

C
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D

E

A B C

Figure 2.2

An inducing path graph, shown in figure 2.3, contains both directed edges (e.g., A →
B) and bi-directed edges (e.g., B ↔ C). (Inducing path graphs and their uses are
explained in detail in chapter 6.)

D

E

B CA

Figure 2.3

A partially oriented inducing path graph, shown in figure 2.4, contains directed edges
(e.g., B → F), bi-directed edges (e.g B ↔ C), nondirected edges (e.g., E o-o D), and
partially directed edges (e.g., A o→ B.). (Partially oriented inducing path graphs and their
uses are explained in detail in chapter 6.)

F

B C DA

E

Figure 2.4

      A pattern, shown in fi gure 2.5, contains undirected edges (e.g., A – B) and directed edges 
(e.g., A → E). (Patterns and their uses are explained in detail in chapter 5.) 
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D
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A B C

Figure 2.5

In the usual graph theoretic definition, a graph is an ordered pair <V,E> where V is a
set of vertices, and E is a set of edges. The members of E are pairs of vertices (an ordered
pair in a directed graph and an unordered pair in an undirected graph). For example, the
edge A → B is represented by the ordered pair <A,B>. In directed graphs the ordering of
the pair of vertices representing an edge in effect marks an arrowhead at one end of the
edge. For our purposes we need to represent a larger variety of marks attached to the ends
of undirected edges. In general, we allow that the end of an edge can be unmarked, or can
be marked with an arrowhead, or can be marked with an “o.”

In order to specify completely the type of an edge, therefore, we need to specify the
variables and marks at each end. For example, the left end of “A o→ B” can be
represented as the ordered pair [A, o],1 and the right end can be represented as the ordered
pair [B, >]. The first member of the ordered pair is called an endpoint of an edge, for
example, in [A, o] the endpoint is A. The entire edge is a set of ordered pairs representing
the endpoints, for example, {[A, o], [B, >]}. The edge {[B, >],[A, o]} is the same as {[A,
o],[B, >]} since it doesn’t matter which end of the edge is listed first.

Note that a directed edge such as A → B has no mark at the A endpoint; we consider
the mark at the A endpoint to be empty, but when we write out the ordered pair we will
use the notation EM to stand for the empty mark, for example, [A,EM].

More formally, we say a graph is an ordered triple <V,M,E> where V is a non-empty
set of vertices, M is a non-empty set of marks, and E is a set of sets of ordered pairs of
the form {[V1,M1],[V2,M2]}, where V1 and V2 are in V, V1 ≠ V2, and M1 and M2 are in M.
Except in our discussion of systems with feedback we will always assume that in any
graph, any pair of vertices V1 and V2 occur in at most one set in E, or, in other words, that
there there is at most one edge between any two vertices. If G = <V,M,E> we say that G
is over V.

For example, the directed graph of figure 2.2 can be represented as <{A,B,C,D,E},
{EM, >}, {{[A,EM],[B, >]}, {[A,EM],[E, >]}, {[A,EM],[D, >]}, {[D,EM],[B, >]},
{[D,EM],[C, >]}, {[B,EM],[C, >]}, {[E,EM],[C, >]}}>.

Each member {[V1, M1],[V2,M2]} of E is called an edge (e.g., {[A,EM],[B, >]} in
figure 2.2.) Each ordered pair [V1, M1] in an edge is called an edge-end (e.g., [A,EM] is
an edge-end of {[A,EM],[B, >]}.) Each vertex V1 in an edge {[V1, M1],[V2, M2]} is called
an endpoint of the edge (e.g., A is an endpoint of {[A,EM],[B, >]}.) V1 and V2 are

D
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adjacent in G if and only if there is an edge in E with endpoints V1 and V2 (e.g., in figure
2.2, A and B are adjacent, but A and C are not.)

An undirected graph is a graph in which the set of marks M = {EM}. A directed
graph is a graph in which the set of marks M = {EM, >} and for each edge in E, one
edge-end has mark EM and the other edge-end has mark “>.”

An edge {<[A,EM],[B, >]} is a directed edge from A to B. (Note that in an undirected
graph there are no directed edges.) An edge {[A,M1],[B, >]} is into B. An edge
{[A,EM],[B,M2]} is out of A. If there is a directed edge from A to B then A is a parent of
B and B is a child (or daughter) of B. We denote the set of all parents of vertices in V as
Parents(V) and the set of all children of vertices in V as Children(V). The indegree of a
vertex V is equal to the number of its parents; the outdegree is equal to the number of its
children; and the degree is equal to the number of vertices adjacent to V. (In a directed
graph, the degree of a vertex is equal to the sum of it’s indegree and outdegree.) In figure
2.2, the parents of B are A and D, and the child of B is C. Hence, B is of indegree 2,
outdegree 1, and degree 3.

We will treat an undirected path in a graph as a sequence of vertices that are adjacent
in the graph. In other words for every pair X, Y adjacent on the path, there is an edge
{[X,M1],[Y,M2]} in the graph. For example, in figure 2.2, the sequence <A,B,C,D> is an
undirected path because each pair of variables adjacent in the sequence (A and B, B and
C, and C and D) have corresponding edges in the graph. The set of edges in a path
consists of those edges whose endpoints are adjacent in the sequence. In figure 2.2 the
edges in path <A,B,C,D> are {[A,EM],[B, >]}, {[B,EM],[C, >]}, and {[C, >],[D,EM]}.

More formally, an undirected path between A and B in a graph G is a sequence of
vertices beginning with A and ending with B such that for every pair of vertices X and Y
that are adjacent in the sequence there is an edge {[X,M1],[Y,M2]} in G. An edge
{[X,M1],[Y,M2]} is in path U if and only if X and Y are adjacent to each other (in either
order) in U. If an edge between X and Y is in path U we also say that X and Y are
adjacent on U. If the edge containing X in an undirected path between X and Y is out of X
then we say that the path is out of X; similarly, if the edge containing X in a path
between X and Y is into X then we say that the path is into X. In order to simplify proofs
we call a sequence that consists of a single vertex an empty path. A path that contains no
vertex more than once is acyclic; otherwise it is cyclic. Two paths intersect iff they have
a vertex in common; any such common vertex is a point of intersection. If path U is
<U1, . . . ,Un> and path V is <Un, . . . ,Vm>, then the concatenation of U and V is <U1, . . .
,Un,V1, . . . ,Vm> denoted by U andV. The concatenation of U with an empty path is U,
and the concatenation of an empty path with U is U . Ordinarily when we use the term
“path” we will mean acyclic path; in referring to cyclic path we will always use the
adjective.

A directed path from A to B in a graph G is a sequence of vertices beginning with A
and ending with B such that for every pair of vertices X, Y, adjacent in the sequence and
occurring in the sequence in that order, there is an edge {[X,EM],[Y, >]} in G. A is the

Un,
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source and B the sink of the path. For example, in figure 2.2 <A,B,C> is a directed path
with source A and sink C. In contrast, in figure 2.2 <A,B,D> is an undirected path, but not
a directed path because B and D occur in the sequence in that order, but the edge
{[B,EM],[D, >]} is not in G (although {[D,EM],[B, >]} is in G.) Directed paths are
therefore special cases of undirected paths. For a directed edge e from U to V (U → V),
head(e) = V and tail(e) = U. A directed acyclic graph is a directed graph that contains
no directed cyclic paths.

A semidirected path between A and B in a partially oriented inducing path graph  is
an undirected path U from A to B in which no edge contains an arrowhead pointing
toward A (i.e., there is no arrowhead at A on U, and if X and Y are adjacent on the path,
and X is between A and Y on the path, then there is no arrowhead at the X end of the edge
between X and Y.) Of course every directed path is semidirected, but in graphs with “o”
end marks there may be semidirected paths that are not directed.

A graph is complete if every pair of its vertices are adjacent. Figure 2.6 illustrates a
complete undirected graph.

A                    B                    C

D

E

Figure 2.6

A graph is connected if there is an undirected path between any two vertices. Figures
2.1–2.6 are connected, but figure 2.7 is not.

A                     B                    C

D

E

Figure 2.7

A subgraph of <V,M,E> is any graph <V ,M �� > such that V  is included in V, M
is included in M, and E  is included in E. Figure 2.7 is a subgraph of figure 2.2. The
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subgraph of <V,M,E> over V , where V  is included in V, is the subgraph <V ,M,E > in
which an edge is in E  if and only if it is in E and has both endpoints in V .

A clique in graph G is any subgraph of G that is complete. In figure 2.1, for example,
the subgraph G  =

<{A,B,D},{EM},{{[A,EM],[B,EM]},{[B,EM],[D,EM]},{[A,EM],[D,EM]}}>

is a clique with vertices A, B and D. A clique in G whose vertex set is not properly
contained in any other clique in G is maximal. In figure 2.1, both G  and G  =
<{A,B},{EM}, {{[A,EM],[B,EM]}}>, are cliques, but G , unlike G � is not maximal
because G  is properly contained in G .2

A triangle in a graph G is a complete subgraph of G with three vertices; in other
words, vertices X, Y and Z form a triangle if and only if X and Y are adjacent, Y and Z are
adjacent and X and Z are adjacent. In graph G a vertex V is a collider on undirected
path U if and only if there are two distinct edges on U containing V as an endpoint and
both are into V. Otherwise V is a noncollider on U. In graph G, vertex V is an
unshielded collider on U if V is a collider on U, V is adjacent to distinct vertices V1 and
V2 on U, and V1 and V2 are not adjacent in G. An ancestor of a vertex V is any vertex W
such that there is a directed path from W to V. A descendant of a vertex V is any vertex
W such that there is a directed path from V to W. In figure 2.2, A, B, C, D, and E are all
ancestors of C, although neither A nor C is a parent of C. Similarly, C is a descendant of
A, B, C, D, and E, although it is not a child of A or C. Since every vertex V is the source
of a directed (empty) path from V to V, each vertex is its own descendant and its own
ancestor, but not of course its own parent or its own child.

2.2 Probability
The vertices of the graphs we consider will always be random variables taking values in
one of the following: a copy of the real line; a copy of the nonnegative reals; an interval
of integers.

By a joint distribution on the vertices of a graph we mean a countably additive
probability measure on the Cartesian product of these objects. We say that two random
variables, X, Y are independent when the joint density of (X,Y) is the product of the

density of X and the density of Y for all values of X and Y. We write this as X  Y. We
generalize in the obvious way when asserting that one set of variables is independent of
another set of variables. When we say a set of random variables is jointly independent
we mean that any two disjoint subsets of the set are independent of one another. We say
that random variables X, Y are independent conditional on Z (or given Z), when the
density of X, Y given Z equals the product of the density of X given Z and the density of
Y given Z, for all values of X, Y, and for all values z of Z for which the density of z is not
equal to 0. We generalize in the obvious way for sets of random variables, X, Y, Z. If X
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is independent of Y given Z we write X  Y|Z, and we say that the order of the
conditional independence is equal to the number of variables in Z.

In the discrete case, we say that a distribution over V is positive if and only if for all
values v of V, P(v) ≠ 0. (In general, a distribution over V is positive if the density
function is nonzero for all v.) If V is included in V  and

P(V) = P(V' )
V' \ V

→
∑

we will say that P(V) is the marginal of P(V ) over V.

2.3 Graphs and Probability Distributions
We will examine several different graphical representations of conditional independence
relations true in a distribution.

2.3.1 Directed Acyclic Graphs
A directed acyclic graph can be used to represent conditional independence relations in a
probability distribution.

For a given graph G and vertex W let Parents(W) be the set of parents of W, and
Descendants(W) be the set of descendants of W.

Markov Condition: A directed acyclic graph G over V and a probability distribution
P(V) satisfy the Markov condition if and only if for every W in V, W is independent of
V\(Descendants(W) ∪ Parents(W)) given Parents(W).

A

B

C D

Figure 2.8

(Recall that W is its own descendant.) In the terminology of Pearl (1988) G is an I-
map of P. In figure 2.8, the Markov Condition entails the following conditional
independence relations:3

A  B

D  {A, B} | C

A

B
C D
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For all values of v of V for which f(v) ≠ 0, the joint density function f(V) satisfying the
Markov Condition is given by

f (V) = f (V|Parents(V))
V∈V
∏

where f(V| Parents(V)) denotes the density of V conditional on the (possibly empty) set
of vertices that are parents of V. (See Kiiveri and Speed 1982. Recall our notation

convention that if Parents(V) = ∅ , then f(V|Parents(V)) = f(V).)
If a joint distribution over discrete variables satisfies the Markov Condition for figure

2.8 it can be factored in the following way:

P(A,B,C,D) = P(A) P(B) P(C|A,B) P(D |C)

for all values of A, B, C, D such that P(A,B,C,D) ≠ 0. In a directed acyclic graph G,
vertices of zero indegree are said to be exogenous. If G satisfies the Markov Condition

for a distribution P, then for every pair of exogenous variables V1 and V2, V1  V2 in P.
The Minimality Condition says, intuitively, that each edge in the graph prevents some

conditional independence relation that would otherwise obtain.

Minimality Condition: If G is a directed acyclic graph over V and P a probability
distribution over V, <G, P> satisfies the Minimality Condition if and only if for every
proper subgraph H of G with vertex set V, <H,P> does not satisfy the Markov Condition.

Returning to the example of figure 2.8, a distribution P  which satisfies the Markov
Condition, but in which A is independent of {B,C,D} does not satisfy the Minimality
Condition, because P  also satisfies the Markov Condition for the subgraph in which the
edge between A and C is removed. In the terminology of Pearl (1988) if a distribution
P(V) satisifies the Markov and Minimality conditions for a directed acyclic graph G, then
G is a minimal I-map of P.

If a distribution P satisfies the Markov and Minimality Conditions for directed acyclic
graph G, we will say that G represents P. For any directed acyclic graph G and for any
probability distribution P satisfying the Markov and Minimality Conditions, if variables
A and B are statistically dependent, then either:

(i) there is a directed path in G from A to B; or
(ii) there is a directed path in G from B to A: or
(iii) there is a variable C and directed paths in G from C to B and from C to A.

A trek between distinct vertices A and B is an unordered pair of directed paths between A
and B that have the same source, and intersect only at the source. The source of the pair
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2.3.2 Directed Independence Graphs
Directed independence graphs are another (almost equivalent) way of representing
conditional independence relations true of a probability distribution. Say that directed
acyclic graph G is a directed independence graph of P(V) (Whittaker 1990) for an

ordering > of the vertices of G if and only if A → B occurs in G if and only if ~(A  B |
K(B)), where K(B) is the set of all vertices V such that V ≠ A and V > B.

THEOREM 2.1: If P(V) is a positive distribution, then for any ordering of the variables in
V, P satisfies the Markov and Minimality conditions for the directed independence graph
of P(V) for that ordering.

If a distribution P is not positive, it is possible that the directed independence graph of
P for a given ordering of variables is a subgraph of a directed acyclic graph for which P
satisfies the Minimality and Markov conditions (Pearl 1988).

2.3.3 Faithfulness
Given any graph, the Markov condition determines a set of independence relations. These
independence relations in turn may entail others, in the sense that every probability
distribution having the independence relations given by the Markov condition will also
have these further independence relations. In general, a probability distribution P on a
graph G satisfying the Markov condition may include other independence relations
besides those entailed by the Markov condition applied to the graph. For example, A and
D might be independent in a distribution satisfying the Markov Condition for the graph in
figure 2.9, even though the graph does not entail their independence.

A

B

C

D

Figure 2.9

In linear models such an independence can arise if the product of the partial regression
coefficients for D on C and C on A cancels the corresponding product of D on B and B on
A.

If all and only the conditional independence relations true in P are entailed by the
Markov condition applied to G, we will say that P and G are faithful to one another. We
will, moreover, say that a distribution P is faithful provided there is some directed
acyclic graph to which it is faithful. In the terminology of Pearl (1988) if P and G are
faithful to one another then G is a perfect map of P and P is a DAG-Isomorph of G. If

A

B

C

D

Figure 2.9

In linear models such an independence can arise if the product of the partial regression 
coeffi cients for D on C and C on A cancels the corresponding product of D on B and B 
on A.
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of paths is also called the source of the trek. Note that one of the paths in a trek may be an 
empty path. 
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distribution P is faithful to directed acyclic graph G, X and Y are dependent if and only if
there is a trek between X and Y.
2.3.4 d-separation
Following Pearl (1988), we say that for a graph G, if X and Y are vertices in G, X ≠ Y, and
W is a set of vertices in G not containing X or Y, then X and Y are d-separated given W
in G if and only if there exists no undirected path U between X and Y, such that (i) every
collider on U has a descendent in W and (ii) no other vertex on U is in W. We say that if
X ≠ Y, and X and Y are not in W, then X and Y are d-connected given set W if and only if
they are not d-separated given W. If U, V, and W are disjoint sets of vertices in G and U
and V are not empty then we say that U and V are d-separated given W if and only if
every pair <U,V> in the cartesian product of U and V is d-separated given W. If U, V,
and W are disjoint sets of vertices in G and U and V are not empty then we say that U
and V are d-connected given W if and only if U and V are not d-separated given W. An
illustration of d-connectedness is given in the directed acyclic graph in figure 2.10 (but
note that the definition also applies to other sorts of graphs such as inducing path graphs,
as explained in chapter 6).

X U V W Y

S 1 S 2

Figure 2.10

X and Y are d-separated given the empty set
X and Y are d-connected given set {S1, S2}
X and Y are d-separated given the set {S1, S2, V}

2.3.5 Linear Structures
A directed acyclic graph G over V linearly represents a distribution P(V) if and only if
there exists a directed acyclic graph G  over V  and a distribution P (V ) such that

(i) V is included in V ;
(ii) for each endogenous (that is, with positive indegree) variable X in V, there is a unique
variable X in V \V with zero indegree, positive variance, outdegree equal to one, and a
directed edge from X to X;
(iii) G is the subgraph of G  over V;
(iv) each endogenous variable in G is a linear function of its parents in G ;
(v) in P (V ) the correlation between any two exogenous variables in G  is zero;
(vi) P(V) is the marginal of P (V ) over V.

UX V W Y

S1 S2
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distribution P is faithful to directed acyclic graph G, X and Y are dependent if and only if 
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The members of V \V are called error variables and we call G  the expanded graph.
Directed acyclic graph G linearly implies AB.H = 0 if and only if AB.H = 0 in all
distributions linearly represented by G. (We assume all partial correlations exist for the
distribution.) If G linearly represents P(V) we say that the pair <G,P(V)> is a linear
model with directed acyclic graph G.

2.4 Undirected Independence Graphs
There is a well-known representation of statistical hypotheses about conditional
independence by undirected graphs. The two representations, by directed and by
undirected graphs, are closely related, but it is important not to confuse them.

An undirected independence graph G with a set of vertices V represents a
probability distribution P if and only if there is no undirected edge between A and B just
when A and B are conditionally independent given V\{A,B}in P. If an undirected
independence graph G represents a distribution P, A and B are independent conditional on
some set C if and only if every undirected path between A and B contains a member of C.

Suppose we consider a particular directed acyclic graph G and faithful probability
distribution P. Let U be the undirected graph of adjacencies underlying G; that is, U is
the undirected graph with the same vertex set as G and the same adjacencies as G.
Suppose that I is the undirected independence graph for the distribution P formed
according to the definition just given. Then I and U are not in general the same, but U is
always a subgraph of I. I and U will be the same if and only if G contains no unshielded
colliders (Wermuth and Lauritzen 1983).

2.5 Deterministic and Pseudoindeterministic Systems
We will use the notion of a deterministic system in a technical sense: A joint probability
distribution P on a set V of random variables represented by a directed acyclic graph G is
deterministic if each of the vertices of G of nonzero indegree is a function of the vertices
that are its immediate parents in G; we will also say that G is a deterministic graph of P.
By “function” we mean that for each assignment of a unique value to each of the parent
vertices, there is a unique value of the dependent vertex.

A

B

C D

ε C Dε

Figure 2.11

Suppose that the graph/distribution pair represented in figure 2.11 is deterministic, but
that C and D are not measured. Were we to consider only the measured variables, that is,

A

B

C D

eC eD
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A, B, C, and D, we would find that no variable has its value uniquely determined by the
values of the others, although some of the variables are statistically dependent. The
system looks indeterministic, although C and D are “hidden” variables which make it
deterministic when added. Furthermore, it is not necessary to posit that two measured
variables depend upon the same hidden variable, nor is it necessary to posit any
dependence among the “hidden” variables in order to make the system deterministic.
When a distribution represented by a directed acyclic graph among measured variables is
not deterministic, but is embeddable in this way in a distribution represented by a
directed acyclic graph that is, we say the distribution is pseudoindeterministic.

In contrast, consider figure 2.12. Again suppose that only A, B, C, and D, were
measured. In this case we could not make the system deterministic by adding hidden
variables unless either the hidden variables were associated or at least one hidden
variable is adjacent to at least two of the measured variables.

C DA B

ε
C D

εε

Figure 2.12

More formally, <G,P> is pseudo indeterministic, where P is a probability
distribution over V and G is a directed acyclic graph over V, if and only if G is not a
deterministic graph of P and there exists a distribution P  and a directed acyclic graph G
over a set of variables V  that properly includes V such that

(i) G  is a deterministic graph of P ;
(ii) G is the subgraph of G  over V;
(iii) no vertex in V is an ancestor of a vertex in V \V;
(iv) no vertex in V \V, is the source of a trek connecting two vertices in V;
(v) P is the marginal of P ;
(vi) G represents P.

If we say that <P,G> is linear pseudo indeterministic we mean that <P,G> is
pseudoindeterministic and in addition in G , each vertex in V  is a linear function of its
parents. A distribution linearly represented by a directed acyclic graph is
pseudoindeterministic. (Analogous definitions apply to Boolean pseudo indeterministic
pairs of graphs and distributions, etc.)

C DA B

eC eDe
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deterministic when they are added. Furthermore, it is not necessary to posit that two
measured variables depend upon the same hidden variable, nor is it necessary to posit any
dependence among the “hidden” variables in order to make the system deterministic.
When a distribution represented by a directed acyclic graph among measured variables is
not deterministic, but is embeddable in this way in a distribution represented by a
directed acyclic graph that is, we say the distribution is pseudoindeterministic.

More formally, <G,P> is pseudoindeterministic, where P is a probability distribution
over V and G is a directed acyclic graph over V, if and only if G is not a deterministic
graph of P and there exists a distribution P' and a directed acyclic graph G' over a set of
variables V' that properly includes V such that

If we say that <P,G> is linear pseudoindeterministic we mean that <P,G> is pseudo-
indeterministic and in addition in G', each vertex in V' is a linear function of its parents.
A distribution linearly represented by a directed acyclic graph is pseudoindeterministic.
(Analogous definitions apply to Boolean pseudoindeterministic pairs of graphs and
distributions, etc.)
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2.6 Background Notes
Drawing from purely graph-theoretical work of Lauritzen, Speed, and Vijayan (1978),
and on statistical work in log-linear models (Bishop, Fienberg, and Holland 1975), in
1980 Darroch, Lauritzen, and Speed introduced undirected graphical representations of
log-linear hypotheses of conditional independence. Based on Kiiveri’s thesis work,
Kiiveri and Speed (1982) introduced versions of the Markov Condition, defined the
notion of recursive causal model, obtained maximum likelihood estimates for a
multinomial distribution and provided a systematic survey of applications with both
discrete and continuous variables. Shortly after, Kiiveri, Speed, and Carlin (1984) further
developed the formal foundations. Wermuth and Lauritzen (1983) introduced the notion
of a recursive diagram, or what we have called a directed independence graph. The
definitions of minimality, d-separation, and faithfulness are due to Pearl (1988).
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3 Causation and Prediction: Axioms and Explications

Views about the nature of causation divide very roughly into those that analyze causal
influence as some sort of probabilistic relation, those that analyze causal influence as
some sort of counterfactual relation (sometimes a counterfactual relation having to do
with manipulations or interventions), and those that prefer not to talk of causation at all.
We advocate no definition of causation, but in this chapter we try to make our usage
systematic, and to make explicit our assumptions connecting causal structure with
probability, counterfactuals and manipulations. With suitable metaphysical gyrations the
assumptions could be endorsed from any of these points of view, perhaps including even
the last.

3.1 Conditionals
Intelligent planning usually requires predicting the consequences of actions. Since actions
change the states of affairs, assessing the consequences of actions not yet taken requires
judging the truth or falsity of future conditional sentences—If X were to be the case, then
Y would be the case. Judging the effects of past practice or policy requires judging the
truth or falsity of counterfactual sentences—If X had been the case , then Y would have
been the case.

Giving a detailed description of the conditions under which a future conditional or
counterfactual conditional is true is a well-known and difficult philosophical problem.
Lewis (1973) notes that If kangaroos had no tails, they would topple over is true even
though we can imagine circumstances in which kangaroos use crutches. We mean that if
things were pretty much as they are—given the scarcity of crutches for kangaroos and the
disinclination of kangaroos to use crutches—if kangaroos had no tails they would topple
over. But making this intuition precise is not easy.

It is widely recognized that causal regularities entail counterfactual conditionals;
indeed this is often taken to be the feature that distinguishes a causal law from
generalizations that are true, as it were, by accident. All of the coins in your pocket are
made of silver does not entail the counterfactual If this penny were in your pocket then it
would be made of silver. But the causal law All collisions of electrons and positrons
release energy does entail the counterfactual If this electron were to collide with this
positron then energy would be released.

The connection between causal regularities and the truth of future conditional and
counterfactual sentences makes the discovery of causal structure essential for intelligent
planning in many contexts. A linear equation relating the fatality rate in automobile
accidents to car weight may be true of a given population, but unless it describes a robust
feature of the world it is useless for predicting what would happen to the fatality rate if
car weight was manipulated through legislation. Even quite accurate parametric
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representations of the distribution of values in a population may be useless for planning
unless they also reflect the causal structure among the variables.

3.2 Causation
We understand causation to be a relation between particular events: something happens
and causes something else to happen. Each cause is a particular event and each effect is a
particular event. An event A can have more than one cause, none of which alone suffice
to produce A. An event A can also be overdetermined: it can have more than one set of
causes that suffice for A to occur. We assume that causation is (usually) transitive,
irreflexive, and antisymmetric. That is, i) if A is a cause of B and B is a cause of C, then A
is also a cause of C, ii) an event A cannot cause itself, and iii) if A is a cause of B then B
is not a cause of A.

3.2.1 Direct vs. Indirect Causation
The distinction between direct and indirect causes is relative to a set of events. If C is the
event of striking a match, and A is the event of the match catching on fire, and no other
events are considered, then C is a direct cause of A. If, however, we added B: the sulfur
on the match tip achieved sufficient heat to combine with the oxygen, then we would no
longer say that C directly caused A, but rather that C directly caused B and B directly
caused A. Accordingly, we say that B is a causal mediary between C and A if C causes B
and B causes A.

Having fixed a context and a set of events, what is it for one event to be a direct cause
of another? The intuition is this: once the events that are direct causes of A occur, then
whether A occurs or not no longer has anything to do with whether the events that are
indirect causes of A occur. The direct causes screen off the indirect causes from the
effect. If a child is exposed to chicken pox at her daycare center, becomes infected with
the virus, and later breaks out in a rash, the infection screens off the event of exposure
from the occurrence of the rash. Once she is infected, whether she gets the rash has
nothing to do with whether she was exposed to the virus from her daycare or from her
Saturday morning playgroup.

Suppose V is a set of events including C and A. C is a direct cause of A relative to V
just in case C is a member of some set C included in V\{A} such that (i) the events in C
are causes of A, (ii) the events in C, were they to occur, would cause A no matter whether
the events in V\({A} ∪ C) were or were not to occur, and (iii) no proper subset of C
satisfies (i) and (ii).

3.2.2 Events and Variables
In order for causation to be connected with probabilities that can be estimated
empirically, events must be sorted; some actual or possible events must be gathered
together, declared to be of a type, and distinguished from other actual or possible events
perhaps gathered into other types. The simplest classifications describe events as of a
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kind, for example, solar eclipses, or declines in the Dow-Jones Industrial Average, and
pair each event, A, of a kind with the event, ¬A, the nonoccurrence of A. Such
classifications permit us to speak intelligibly of variables as causes. We do so through the
introduction of Boolean variables that take events of a kind, or their absences, as values.
We say that Boolean variable C causes Boolean variable A if and only if at least one
member of a pair (C, ¬C) causes at least one member of a pair (A, ¬A). Ordinarily no one
would bother with collecting events into a type and examining causal relations among
such variables unless the causal relations among events of the two types had some
generality—that is, lots of events of type A have events of type C as causes and lots of
events of type C have effects of type A, or none do.

Events can be aggregated into variables X and Y, such that some events of kind X
cause some events of kind Y and some events of kind Y cause some events of kind X. In
such cases there will be no unambiguous direction to the causal relation between the
variables.

Some events are of a quantity taking a certain value, such as bringing a particular pot
of water to a temperature of 100 degrees centigrade. Scales of many kinds are associated
with an array of possible events in which a particular system takes on a scale value or
takes on a value within a set of scale values. We can also speak of the variables of such
scales as causes and effects, at least for particular systems over particular time intervals.
For any particular system S we say that scaled variable Q causes scaled variable R in S
provided that there is a value (or set of values) q for Q and a value (or set of values) r for
R and a possible event in which Q taking value q in S would cause an event in which R
takes value r in S. In practice we usually form scales only when we think the causal
relations among values of different measures are not confined to particular values or
particular systems but are more general. We sometimes say that the value r for R is
caused by the value q for Q if the system taking on the value q for Q caused it to take on
the value r for R. If K is a collection of systems, we say that variable Q causes variable R
in K provided that for every system S in K, Q causes R in S.

If our notion of causation between variables were strictly applied, almost every natural
variable would count as a cause of almost every other natural variable, for no matter how
remote two variables, A and B, may be, there is usually some physically possible—even if
very unlikely—arrangement of systems such that variation in some values of A produces
variation in some values of B. (A dictator could, we suppose, arrange circumstances so
that the number of childbirths in Chicago is a function of the price of tea in China.) In
practice, we always consider a restricted range of variation of other variables in judging
whether A causes B. Strictly, therefore, our definitions of causal relations for variables
should be relative to a set of possible values for other variables, but we will ignore this
formality and trust to context. The notion of direct cause generalizes from events to
variables in obvious parallel to the definition of causal dependence between variables:
Variable C is a direct cause of variable A relative to V provided (i) C is a member of a set
C of variables included in V, (ii) there exists a set of values c for variables in C and a
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value a for A such that were the variables in C to take on values c, they would cause A to
take on value a no matter what the values of other variables in V, and (iii) no proper
subset of C satisfies (i) and (ii). We say that a variable X is a common cause of variables
Y and Z if and only if X is a direct cause of Y relative to {X,Y,Z} and a direct cause of Z
relative to {X,Y,Z}. If there is a sequence of variables in V beginning with A and ending
with B such that for each pair of variables X and Y that are adjacent in the sequence in
that order X is a direct cause of Y relative to V, then we say that there is a causal chain
from A to B relative to V. A is an indirect cause of B relative to V if there is a causal
chain from A to B relative to V of length greater than 2. We make the following two
fundamental assumptions about causal relations: (i) if A is a cause of B then A is a direct
cause or an indirect cause of B relative to V; (ii) if A, B, and C are in V, and there exists a
causal chain from A to B relative to V that does not contain C, then for any set V  that
contains A and B there is a causal chain from A to B relative to V  that does not contain C.
When a cause is unmeasured it is sometimes called a latent variable. We say that two
variables are causally connected in a system if one of them is the cause of the other or if
they have a common cause. A causal structure for a population is an ordered pair <V,E>
where V is a set of variables, and E is a set of ordered pairs of V, where <X,Y> is in E if
and only X is a direct cause of Y relative to V. We assume that in the population A is a
direct cause of B either for all units in the population or no units in the population, unless
explicitly noted otherwise. If it is obvious which population is intended we do not
explicitly mention it. If P(V) is a distribution over V in a population with causal structure
C = <V,E>, we say that C generated P(V). Two causal structures <V,E> and <V ,E >
are isomorphic if and only if there is a one-to-one function f from V onto V  such that for
any two members of A and B of V, <A,B> is in E if and only if <f(A),f(B)> is in E . A set
V of variables is causally sufficient for a population if and only if in the population
every common cause of any two or more variables in V is in V, or has the same value for
all units in the population.1 We will often use the notion of causal sufficiency without
explicitly mentioning the population.

3.2.3 Examples
Simple digital logic circuit elements present concrete examples of causal structures. They
are not of much intrinsic interest to most people, but they have the virtue that given a
description of such a circuit element almost everyone can agree about which events
pertaining to the circuit cause which other events. In the element illustrated below, the
variables X1, X2 and X3 have two values, 1 and 0, accordingly as there is or is not a current
through the corresponding line, and the semicircle represents an “and” gate. Current
flows from top to bottom. The value of the variable X3 is thus a simple Boolean function
of the values of X1 and X2. If “•” represents Boolean multiplication, X3 = X1 • X2.
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XX 1 2

X
3

Figure 3.1

We understand the event of X1 taking on value 1 and the event of X2 taking on value 1
each to be a cause of the event in which X3 takes on the value 1. We say that the Boolean
variables X1 and X2 are each causes of the Boolean variable X3.

The form of the causal structure does not depend on the sort of variables involved or
the particular class of functions among them. Isomorphic causal structures might be
realized by a system of linear dependencies of continuous variables. Thus consider three
different variables X1, X2, and X3, that represent the voltage in a given line and therefore
range over the non-negative reals. Suppose we have a mechanism that outputs the sum of
the voltage into it (figure 3.2).

XX
1 2

X
3

+

Figure 3.2

In this case X3 = X1 + X2, but the causal structure is isomorphic to the causal structure
in figure 1: X1 and X2 each are causes of X3.

These examples suggest that the causal dependencies and the functional dependencies
are related; X3 is the effect of X1 and X2, and X3 is a function of X1 and X2. In systems in
which variables that are effects have their values uniquely determined by the values of all
of the variables that are their direct causes, functional dependence can be inferred from
causal dependence by expressing each variable or event as a function of its direct causes.
The converse does not hold: from the fact that an equation correctly describes a system
one cannot infer that the direct causal dependencies in the system are reflected in the

X1 X2

X3

X1 X2

X3

+
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functional dependencies in the equation. For example, if the equation X3 = X1 + X2 is true
of a system then the equation X2 = X3 - X1 is equally true of that system, but if X1 and X2

cause X3, then ordinarily X3 and X1 do not cause X2.
2

3.2.4 Representing Causal Relations with Directed Graphs
Using the notion of a direct cause, it is trivial to represent causal structures with directed
graphs:

Causal Representation Convention: A directed graph G = <V, E> represents a causally
sufficient causal structure C for a population of units when the vertices of G denote the
variables in C, and there is a directed edge from A to B in G if and only if A is a direct
cause of B relative to V.3

We call a directed acyclic graph that represents a causal structure a causal graph.
Figure 3.3 is a causal graph for the circuit devices shown in figures 3.1 and 3.2.

X 1 2

3X

X

Figure 3.3

Consistently with our previous definition, if G is a causal graph and there is a vertex X
in G and a directed path from X to Y that does not contain Z, and a directed path from X to
Z that does not contain Y, we will say X is a common cause of Y and Z.

There are important limitations to the Causal Representation Convention. Suppose
drugs A and B both reduce symptoms C, but the effect of A without B is quite trivial,
while the effect of B alone is not. The directed graph representations we have considered
in this chapter offer no means to represent this interaction and to distinguish it from other
circumstances in which A and B alone each have an effect on C. The interaction is only
represented through the probability distribution associated with the graph. Consider
another example, a simple switch. Suppose as in figure 4 battery A has two states:
charged and uncharged. Charge in battery A will cause bulb C to light up provided the
switch B is on, but not otherwise. If A and B are independent random variables, then A
and C are dependent conditional on B and on the empty set, and B and C are dependent
conditional on A and the empty set, and A and B are dependent conditional on C. The
directed acyclic graph representing the distribution over A, B, and C therefore looks like
the directed graph shown above. There is nothing wrong with this conclusion except that
it is not fully informative. The dependence of A and C arises entirely through the
condition B = 1. When B = 0, A and C are independent.

X1 X2

X3
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A
B

C

A B

C

Figure 3.4

Since in discrete data the conditional independence facts, if known, identify the switch
variables, a better representation would identify certain parents of a variable as switches.
But a general representation of this sort would often not be very easy to grasp.4 Recent
work on extending the directed acyclic graph representation to represent switches is
described in Geiger and Heckerman (1991).

3.3 Causality and Probability
3.3.1 Deterministic Causal Structures
To good approximation the devices in figures 3.1 and 3.2 are deterministic, that is, the
effects are deterministic functions of their direct causes. If each effect is a linear function
of its direct causes in the population, we say the system is a linear deterministic causal
structure in the population.

Variables in a causal graph that have zero indegree, that is, no causal input, are said to
be exogenous. X1 and X2 are exogenous variables in the causal graph in figure 3.3.
Variables that are not exogenous are endogenous. In a deterministic causal structure
values for the exogenous variables determine unique values for the remaining variables.

A
B

C

A B

C
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Circuit Diagram Causal Graph

Figure 3.5

Consider the circuit element in figure 3.1 and its causal graph, both of which are
shown in figure 3.5. Imagine an experiment to verify whether or not the device works as
described. We would assign values to the exogenous variables, that is, decide whether to
put current into X1 and X2, and then read whether or not X3 has current. We can represent
the experiment with the following table.

X1 X1 X3

1 1 ?
1 0 ?
0 1 ?
0 0 ?

Suppose we were satisfied that the device usually worked as designed, but we wanted to
know how often and in what way it fails. For each of a number of trials, we could
randomly assign values to X1 and X2, and then read whether or not X3 has current. That is,
we could assign a probability to each state the set of exogenous variables could occupy.
For example,

P(X1 = 1, X2 = 1) = 0.2
P(X1 = 1, X2 = 0) = 0.3
P(X1 = 0, X2 = 1) = 0.2
P(X1 = 0, X2 = 0) = 0.3

Because this causal structure is deterministic (even though the exogenous variables are
random), a probability distribution over the exogenous variables determines a joint
distribution for the entire set of variables in the system. For this example the joint
distribution over (X1, X2, X3) is:

X1 X2

X1 X2

X3

X3

Circuit Diagram

Causal Graph
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P(X1 = 1, X2 = 1, X3 = 1) = 0.2
P(X1 = 1, X2 = 1, X3 = 0) = 0.0
P(X1 = 1, X2 = 0, X3 = 1) = 0.0
P(X1 = 1, X2 = 0, X3 = 0) = 0.3
P(X1 = 0, X2 = 1, X3 = 1) = 0.0
P(X1 = 0, X2 = 1, X3 = 0) = 0.2
P(X1 = 0, X2 = 0, X3 = 1) = 0.0
P(X1 = 0, X2 = 0, X3 = 0) = 0.3

We say that this distribution is generated by the causal structure of figure 3.5.
We use this example not to investigate sampling schemes for circuits but rather to

illustrate how probability distributions are generated by deterministic causal devices. The
only assumption we make about the connection between deterministic causal structures
and the probability distributions they may generate involves the distributions we will
allow over the exogenous variables. We assume that the exogenous variables are jointly
independent in a probability distribution over the variables in a causally sufficient
structure. This is in part a substantive assumption—that statistical dependence is
produced by causal connection—and in part a convention about representation. If
exogenous variables in a structure are not independent, we expect that the causal graph is
incomplete and there is some further causal mechanism, not represented in the graph,
responsible for the statistical dependence. Either some of the input variables are causes of
others (in which case we have equivocated, and the causal graph is not actually the graph
of the causal structure of the structure) or else some nonconstant common causes of
observed variables have not been included in the description of the structure.

3.3.2 Pseudoindeterministic and Indeterministic Causal Structures
In practice, the variables people measure are seldom deterministic functions of one
another. We call a causal structure over a set V of variables for a population in which
some variable is not a determinate function of its immediate causes in V an
indeterministic causal structure for the population. An indeterministic causal structure
might be pseudoindeterministic. That is, a deterministic causal structure for which not all
of the causes of variables in V are also members of V may appear to be indeterministic,
even though there is no genuine indeterminism if the set of variables is enlarged by
adding variables that are not common causes of variables in V. For example, suppose
again that the device shown in figures 3.1 and 3.5 governs the current in line X3. Suppose
also that X2 is hidden from us so that only X1 and X3 occur in the causal structure we
investigate. We might still hypothesize that X1 is a cause of X3, thereby forming the causal
graph on the right side of figure 3.6.
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Figure 3.6

Assuming that the joint distribution P(X1, X2, X3) generated by the actual circuit device
is the same as the one given for figure 5 in section 3.3.1, the observed distribution P(X1,
X3) is just the marginal of P(X1, X2, X3), namely:

P(X1 = 1, X3 = 1) = 0.2
P(X1 = 1, X3 = 0) = 0.3
P(X1 = 0, X3 = 1) = 0.0
P(X1 = 0, X3 = 0) = 0.5

In the observed distribution X3 is clearly not a function of its immediate parent X1 and the
causal structure appears to be indeterministic. We say the structure is
pseudoindeterministic. More formally, causal structure C = <V,E> is
pseudoindeterministic for a population, if and only if C is not a deterministic causal
structure for the population and there exists a causal structure C ���������	�	
������������
set of variables V  that properly includes V such that

(i) C ������������������
�������
��
�����������	�	
������
(ii) If A and B are in V, then <A,B> is in E if and only if <A,B> is in E ;
(iii) no variable in V is a cause of a variable in V \V;
(iv) no variable in V \V, is a common cause of two variable in V;

We say a structure is linear pseudoindeterministic if all functional dependencies in
C ���������������
��
������
������������������������������������
�
��������
���������
pseudoindeterministic causal structures. The error terms in such models are often
interpreted as omitted causes.

It is at least conceivable that there are genuinely indeterministic structures, even
genuinely indeterministic macroscopic structures, whose variables have a causal

Actual Circuit Diagram Hypothesized Causal Graph

X1

X1

X2

X3

X3
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is the same as the one given for fi gure 3.5 in section 3.3.1, the observed distribution P(X1,
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structure. We will assume that the same relations between conditional independence and
causal structure that obtain for pseudoindeterministic structures hold as well for
genuinely indeterministic causal relations, although as we will see later, there appear to
be quantum mechanical systems for which that assumption must be carefully qualified.
For a discussion of the case in which measured variables are exact functions of other
measured variables see section 3.8.

3.4 The Axioms
We consider three conditions connecting probabilities with causal graphs: The Causal
Markov Condition, the Causal Minimality Condition, and the Faithfulness Condition.
These axioms are not independent. Consequences of various subsets of the conditions are
investigated in the course of this book. We will consider justifications and objections to
the conditions in the next section, but their importance—if not their truth—is evidenced
by the fact that nearly every statistical model with a causal significance we have come
upon in the social scientific literature satisfies all three: if the model were true, all three
conditions would be met. While it is easy enough to construct models that violate the
third of these conditions, Faithfulness, such models rarely occur in contemporary
practice, and when they do, the fact that they have properties that are consequences of
unfaithfulness is taken as an objection to them. In chapters 5 and 8 we will consider
published log-linear models, regression models, and structural equation models satisfying
the three conditions.

3.4.1 The Causal Markov Condition
The intuitions connecting causal graphs with the probability distributions they generate
are unified and generalized in one fundamental condition:

Causal Markov Condition: Let G be a causal graph with vertex set V and P be a
probability distribution over the vertices in V generated by the causal structure
represented by G. G and P satisfy the Causal Markov Condition if and only if for every W
in V, W is independent of V\(Descendants(W) ∪ Parents(W)) given Parents(W).

When G describes causal dependencies in a population with variables distributed as P
satisfying the Causal Markov condition for G, we will sometimes say that P is generated
by G. If V is not causally sufficient and V is a proper subset of the variables in a causal
graph G generating a distribution P, we do not assume that the Causal Markov condition
holds for the marginal over V of P.

The factorization results described in chapter 2 apply to the joint probability
distribution for a set V of variables in a population of systems with a causal structure
satisfying the Causal Markov Condition. If P(V | Parents (V)) denotes the probability of
V conditional on the (possibly empty) set of vertices that are direct causes of V, then
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P(V) = P(V|Parents(V))
V∈V
∏

for all values of V for which each P(V|Parents(V)) is defined.

X
1

X
2

X 4 3X

X 5

Figure 3.7

For the graph in figure 3.7 direct application of the Markov Condition yields a list of
independence facts about the distribution generated by G.

X1  X2

X2  {X1, X4}

X3  X4 | {X1, X2}

X4  {X2, X3} | X1

X5  {X1, X2} | {X3, X4}

Other independence relations are entailed by these, for example

{X4, X5}  X2 | {X1, X3}

A discussion of axioms for conditional independence is found in Pearl 1988.

3.4.2 The Causal Minimality Condition
We will usually impose a further condition connecting probability with causality. The
principle says that each direct causal connection prevents some independence or
conditional independence relation that would otherwise obtain. For example, in the
following causal graph G, C is a direct cause of A .

X1 X2

X4 X3

X5

30  Chapter 3

For the graph in fi gure 3.7, direct application of the Markov Condition yields a list of 
independence facts about the distribution generated by G.
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C A

B

Figure 3.8

In a distribution P over {A,B,C} for which C  A, P satisfies the Markov condition
even if the edge between C and A is removed from the graph.

Causal Minimality Condition: Let G be a causal graph with vertex set V and P a
probability distribution on V generated by G. <G, P> satisfies the Causal Minimality
condition if and only if for every proper subgraph H of G with vertex set V, the pair
<H,P> does not satisfy the Causal Markov condition.

Since we will almost always give the graphs we consider a causal interpretation, we
will in most cases hereafter simply describe these two conditions as the Markov and
Minimality Conditions.

3.4.3 The Faithfulness Condition
Given a causal graph, the Markov condition determines a set of independence relations.
These independence relations in turn may entail others, in the sense that every probability
distribution having the independence relations given by the Markov condition will also
have these further independence relations. In general a probability distribution P on a
causal graph G satisfying the Markov condition may include other independence relations
besides those entailed by the Markov condition applied to the graph. If, however, that
does not occur, and all and only the independence relations of P are entailed by the
Markov condition applied to G, we will say that P and G are faithful to one another. We
will, moreover, say that a distribution P is faithful provided there is some directed acyclic
graph to which it is faithful. So we consider a further axiom:

Faithfulness Condition: Let G be a causal graph and P a probability distribution
generated by G. <G, P> satisfies the Faithfulness Condition if and only if every
conditional independence relation true in P is entailed by the Causal Markov Condition
applied to G.

Note that a distribution P is faithful to G if and only if it satisfies both the Markov and
Faithfulness Conditions. The Faithfulness and Markov Conditions entail Minimality, but
Minimality and Markov do not entail Faithfulness. We will sometimes use the weaker
axiom or axioms and more often the stronger one. Faithfulness turns out to be important
to discovering causal structure, and it also turns out to be the “normal” relation between
probability distributions and causal structures.

C A

B
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3.5 Discussion of the Conditions
When and why should it be thought that probability and causality together satisfy these
conditions, and when can we expect the conditions to be violated? When should the
values of variables in a population be thought to be distributed in accordance with the
conditions?

3.5.1 The Causal Markov and Minimality Conditions
If we consider probability distributions for the vertices of causal graphs of deterministic
or pseudoindeterministic systems in which the exogenous variables are independently
distributed, then the Markov Condition must be satisfied. A proof is given in the last
chapter. We conjecture the Minimality Condition is true of all pseudoindeterministic
systems. The warrant for the conditions lies in this fact, and in the history of human
experience with systems that we can largely control or manipulate. Electrical devices,
mechanical devices, chemical devices all satisfy the condition. Large areas of science and
engineering—from auto mechanics to chemical kinetics to digital circuit design—would
be impossible without using the principles to diagnose failures and infer mechanisms.

In an important class of cases the application of the Minimality and Markov
Conditions may be unclear. In 1903 G. Udny Yule concluded his fundamental paper on
the theory of association of attributes in statistics with a section “On the fallacies that
may be caused by the mixing of distinct records.” (Yule uses |AB | C| to denote “the
association between A and B in the universe of C’s” [p. 131]):

It follows from the preceding work that we cannot infer independence of a pair of
attributes within a sub-universe from the fact of independence within the universe at
large. . . . The theorem is of considerable practical importance from its inverse
application; that is, even if |AB| have a sensible positive or negative value we cannot
be sure that nevertheless |AB | C | and |AB |  | are not both zero. Some given attribute
might, for instance, be inherited neither in the male line nor the female line; yet a
mixed record might exhibit a considerable apparent inheritance. Suppose for instance
that 50% of the fathers and of the sons exhibit the attribute, but only 10% of the
mothers and daughters. Then if there be no inheritance in either line of descent the
record must give (approximately)

fathers with attribute and sons with attribute: 25%
fathers with attribute and sons without attribute: 25%
fathers without attribute and sons with attribute: 25%
fathers without attribute and sons without attribute: 25%

mothers with attribute and daughters with attribute: 1%
mothers with attribute and daughters without attribute: 9%
mothers without attribute and daughters with attribute: 9%
mothers without attribute and daughters without attribute 81%
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3.5.1 The Causal Markov and Minimality Conditions
If we consider probability distributions for the vertices of causal graphs of deterministic
or pseudoindeterministic systems in which the exogenous variables are independently
distributed, then the Markov Condition must be satisfied. We conjecture the Minimality
Condition is true of all pseudoindeterministic systems. The warrant for the conditions lies
in this fact, and in the history of human experience with systems that we can largely
control or manipulate. Electrical devices, mechanical devices, chemical devices all satisfy
the condition. Large areas of science and engineering—from auto mechanics to chemical
kinetics to digital circuit design—would be impossible without using the principles to
diagnose failures and infer mechanisms.
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If these two records be mixed in equal proportions we get

parents with attribute and offspring with attribute 13%
parents with attribute and offspring without attribute 17%
parents without attribute and offspring with attribute 17%
parents without attribute and offspring without attribute 53%

Here 13/30 = 43 [and] 1/3% of the offspring of parents with the attribute possess the
attribute themselves, but only 30% of offspring in general, that is, there is quite a large
but illusory inheritance created simply by the mixture of the two distinct records. A
similar illusory association, that is to say an association to which the most obvious
physical meaning must not be assigned, may very probably occur in any other case in
which different records are pooled together or in which only one record is made of a
lot of heterogeneous material.

The fictitious association caused by mixing records finds its counterpart in the
spurious correlation to which the same process may give rise in the case of continuous
variables, a case to which attention was drawn and which was fully discussed by
Professor Pearson in a recent memoir. If two separate records, for each of which the
correlation is zero, be pooled together, a spurious correlation will necessarily be
created unless the mean of one of the variables, at least, be the same in the two cases.

Yule’s example seems to present a problem for the Causal Markov condition. Let a
mixture over V be any population that consists of a combination of some finite number
of subpopulations Pi each having different joint distributions over the variables in V, with
each distribution satisfying the Causal Markov Condition for some graph. Consider a
population that is a mixture of structures <G,P1> and <G,P2> where P1 and P2 are distinct
and satisfy the Markov Condition for G. Let the proportions in the mixture be n:m.

Let P(X,Y,Z) = nP1(X,Y,Z) + mP2(X,Y,Z), with n + m = 1. A little algebra shows that
P(XY|Z) = P(X|Z)P(Y|Z) if and only if

(1) n2P1(X,Y,Z)P1(Z) + nmP2(X,Y,Z)P1(Z) + mnP1(X,Y,Z)P2(Z) + m2P2(X,Y,Z)P2(Z) =

n2P1(X,Z)P1(Y,Z) + nmP1(X,Z)P2(Y,Z) + mnP2(X,Z)P1(Y,Z) + m2P2(X,Z)P2(Y,Z).

If n, m > 0 and in both distributions, X,Y are independent conditional on Z, that is,
P1(X,Y|Z) = P1(X|Z)P1(Y|Z) and P2(X,Y|Z) = P2(X|Z)P2(Y|Z), then equation (1) reduces to

(2) P2(X|Z)P2(Y|Z) + P1(X|Z)P1(Y|Z) = P1(X|Z)P2(Y|Z) + P2(X|Z)P1(Y|Z)

The old but still rather surprising conclusion is that when we mix probability distributions
we may find all possible conditional dependence relations. Thus, it seems, in many mixed
populations conditional independence and dependence will not be a reliable guide to
causal structure.
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In the case of linear pseudoindeterministic systems, when populations with two
different distributions each associated with a linear structure are mixed, vanishing
correlations in each separate distribution will not produce vanishing correlations in the
mixed distribution, and vanishing partial correlations in each separate distribution will
not produce vanishing partial correlations in the mixed distribution. It is easy to verify
that for any mixture of two distributions—based on linear structures or not—the
covariance of two variables vanishes in the mixture if and only if

k1COV1(XY) + k2COV2(XY) = k1k2[ 1X 2Y + 1Y 2X] +
k1(k1 - 1) 1�� 1Y + k2(k2 - 1) 2�� 2Y

where the proportion of population 1 to population 2 is n: m and k1 = n/(n+m), k2 =
m/(n+m), and “ i” denotes the mean in population i.

So the situation is that we can have population 1 with causal graph G1 and population
2 with causal graph G2, and the joint population will have a distribution that does not
satisfy the Markov Condition for either graph. The question is whether such a mixed
population violates the Causal Markov Condition. When a cause of membership in a
subpopulation is rightly regarded as a common cause of the variables in V, the Causal
Markov Condition is not violated in a mixed population; instead, we have a population of
systems satisfying the Causal Markov Condition but with a common cause (or causes)
that may not have been measured. In some cases the cause of membership in a
subpopulation may act like a latent switch variable of the kind considered in section
3.2.4; the distributions conditional on different values of the latent variable determine
probability relations that are faithful to distinct causal graphs. In Yule’s example, the
missing common cause is gender. If, to take another example, we form a mixed sample of
lead and copper pennies, within each subpopulation density and electrical conductivity
will be independent, but in the mixed population they will be statistically dependent. We
should say that is because chemical composition is a common cause of density and
conductivity. In other cases the cause or causes of membership in relevant subpopulations
may seem like unnatural kinds, or may at least not be the sort of causes a scientist seeks.
Thus an important controversy (Caramazza 1986) in contemporary cognitive
neuropsychology concerns the use of statistical results for samples of people selected by
syndrome, for example subjects with Broca’s aphasia. One aim of studying such groups
may be to discover if two or more normal capacities have a common cause damaged in
Broca’s aphasics. Suppose in a sample of Broca’s aphasics a correlation is observed in
scores on tests of two cognitive skills. Should the psychologist conclude that the test
performances have a common latent cause? Perhaps, but the common cause need not be
any functional capacity—damaged or otherwise—that causes both skills. Instead, the
sample of Broca’s aphasics might be a mixture of people with different sorts of brain
damage, and within each subgroup the skills in question might be independently
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distributed. The common cause is only a variable representing membership in a
subpopulation.

There are contexts in which the statistics of mixtures do not reflect any variable for
population membership. In linear models the correlations and partial correlations are
determined by the linear coefficients and the variances of exogenous variables. These
parameters themselves may be treated as random variables and the resulting population
distribution is a (generally uncountable) mixture of distributions. Statistical, but not
causal, inference has been extensively studied in such settings (Swamy 1971). If X is a
random variable, we denote the expected value of X by E(X).

THEOREM 3.1: Let M be a linear model with directed acyclic graph G and linear
coefficients aij. Let M � ��� �� ���������������� �������� ������� ���	��G, such that the
linear coefficients in M ���������������������a ij that are jointly independent of all other
random variables in M , and E(a ij) = aij. Suppose the variances of the exogenous
noncoefficient random variables are the same in M and M . Then AB.C = 0 in M � �����
only if AB.C = 0 in M.

Thus a population that is a mixture of linear pseudoindeterministic causally sufficient
systems with the same causal graph and with parameters independently distributed will
satisfy the Causal Markov Condition for that graph without any unmeasured common
cause.

Professional philosophers have offered a spate of criticisms of consequences of the
Causal Markov Condition. Most of them appear to depend on omitting relevant latent
variables. Wesley Salmon (1984) claims that “[t]here is another, basically different, sort
of common cause situation” that cannot appropriately be characterized in terms of the
Causal Markov Condition. Salmon calls this other causal relation an “interactive fork.”

One putative example of an “interactive fork” is from Davis (1988):

Imagine a television set with a balky switch: it usually turns the set on, but not always.
When the set is on, it produces both sound and picture. Then the probability of a
picture given that the switch is on and given sound is greater than the probability of a
picture given just that the switch is on. (Davis 1988, p. 156)

C

B A

 = Switch On 
 = Sound On 
 = Screen On

C
B
A

Figure 3.9

So, P(B|C) < P(B|A and C).

C

B A

C = Switch On

B = Sound On

A = Screen On  
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Davis’s example gives an inaccurate picture of the causal situation, which is better
depicted in figure 3.10.

C

B A

 = Switch On
 = Sound On
 = Screen On
 = Circuit

C
B
A

D

D

εD

Figure 3.10

The state of the circuit, or some variable downstream from the switch event, makes A
and B independent.

Salmon’s own illustration uses a slight variant of the following example from the
game of pool (where we replace his events by Boolean variables).

C is the description of causal conditions relevant to both A and B, but A and B are not
independent conditional on C.

L R

1 2

cue

A = 1 ball in L.
B = 2 ball in R.
C = Collision of any sort
       cue ball and either 1 or 2

Figure 3.11

Knowing C (that there was a collision) and A (that ball 1 dropped into its pocket) tells
us more about whether B occurred (the 2 ball dropped into its pocket) than just knowing

C

B

 C = Switch On 
 B = Sound On 
 A = Screen On 
 D = Circuit Closed

D

A

eD

L R

1 2

cue

A = 1 ball in L. 
B = 2 ball in R. 
C = Collision of any sort between  
       cue ball and either 1 or 2 ball.
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C. A and B are not directly causally connected, and they are not independent conditional
on C.

In Salmon’s example, event C does not completely describe all of the common causes
of A and B. C tells us that there was a collision of some sort between the cue ball and the
1 or 2 balls, but it does not tell us the nature of the collision. A informs us about the
nature of the collision and therefore tells us more about B. Were the prior event more
informative—for example, were it to specify the exact momentum of the cue ball on
striking the two target balls—conditional independence would be regained. The example
simply reflects a familiar problem in real data analysis that arises whenever some proxy
variable is used in causal analysis or distinct values of a variable are collapsed. In our
view these examples give no reason to doubt the Causal Markov Condition.

Elliott Sober (1987) argues that we routinely find correlations for which there are no
common causes, or for which residual correlations remain after conditioning on known
common causes. The correlation of bread prices in England and the sea level in Venice
may have some common causes (perhaps the industrial revolution), but not enough to
account for all of the dependency. His point seems to be Yule’s: if we consider a series in
which variable A increases with time and a series in which variable B increases with time,
then A and B will be correlated in the population formed from all the units-at-times, even
though A and B have no causal connection. Any such combined population is obviously a
mixture of populations given by the time values.

There is a more fundamental objection to the Causal Markov Condition, namely that
there exist nondeterministic causal systems for which, to the best of current knowledge,
the condition is false. Consider pair production: a quantum mechanical event produces
two particles which move off in different directions. Because of conservation laws,
dynamical variables in the two particles must be correlated; if one has a component of
spin up, for example, the other must have that spin component down. We can do
experiments in which for pairs we measure either of two different components of spin at
two spatially separated sensors and compute the correlations. Suppose there is some state
S of the system at the moment the pair of particles is produced such that, conditional on
S, the dynamical variables of the two particles are uncorrelated. J. S. Bell (1964) argued
that on such an assumption there follows an inequality constraining the correlations of the
measured dynamical variables. While the assumptions needed for the derivation are
controversial, the empirical facts seem beyond doubt: Bell’s inequality is violated in
certain quantum mechanical experiments. In such experiments the correlated variables
are associated with spatially remote subsystems, so unless principles constraining causal
processes to act “locally” that is, not instantaneously over a distance, are abandoned, any
statistical dependency is presumably not due to the effect of one sub-system on the other
or to a common cause. Thus unless the locality principles are abandoned, the Causal
Markov Condition appears to be false (Elby 1992).

In our view the apparent failure of the Causal Markov Condition in some quantum
mechanical experiments is insufficient reason to abandon it in other contexts. We do not,
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for comparison, abandon the use of classical physics when computing orbits simply
because classical dynamics is literally false. The Causal Markov Condition is used all the
time in laboratory, medical and engineering settings, where an unwanted or unexpected
statistical dependency is prima facie something to be accounted for. If we give up the
Condition everywhere, then a statistical dependency between treatment assignment and
the value of an outcome variable will never require a causal explanation and the central
idea of experimental design will vanish. No weaker principle seems generally plausible;
if, for example, we were to say only that the causal parents of Y make Y independent of
more remote causes, then we would introduce a very odd discontinuity: So long as X has
the least influence on Y, X and Y are independent conditional on the parents of X. But as
soon as X has no influence on Y whatsoever, X and Y may be statistically dependent
conditional on the parents of Y.

The basis for the Causal Markov Condition is, first, that it is necessarily true of
populations of structurally alike pseudoindeterministic systems whose exogenous
variables are distributed independently, and second, it is supported by almost all of our
experience with systems that can be put through repetitive processes and whose
fundamental propensities can be tested. Any persuasive case against the Condition would
have to exhibit macroscopic systems for which it fails and give some powerful reason
why we should think the macroscopic natural and social systems for which we wish
causal explanations also fail to satisfy the condition. It seems to us that no such case has
been made.

3.5.2 Faithfulness and Simpson’s Paradox
Faithfulness can be violated in cases that realize variants of Simpson’s “paradox” as
Simpson originally presented it. We have already seen that both Yule and Pearson
observed that two variables may be independent in subpopulations but dependent in a
combined population. In 1948, M. G. Kendall used an example in his Advanced Theory of
Statistics illustrating the reverse situation: two binary variables are independent but are
dependent conditional on a third variable. Kendall’s case was given a twist in a paper by
Simpson (1951) a few years later, who thought his example introduced difficulties about
the relation between causal dependencies and contingency tables. Subsequently the
phenomenon the example exhibits has been referred to as “Simpson’s paradox.” Like
examples have since become standard puzzlers in discussions of the connection between
causality and probability.

Kendall’s example5 was as follows:

Consider the case in which a number of patients are treated for a disease and there is
noted the number of recoveries. Denoting A by recovery, ~A by nonrecovery, B by
treatment, ~B by not-treatment,6 suppose the frequencies are
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B ~B Tota
ls

A 100 200 300
~A 50 100 150
Totals 150 300 450

Here (AB) = 100 = (A)(B)/N, so that the attributes are independent. So far as can be
seen, treatment exerts no effect on recovery. Denoting male sex by SM and female sex
by SF, suppose the frequencies among males and females are

Males

BSM ~B SM Tota
ls

ASM 80 100 180
~ASM 40 80 120
Totals 120 180 300

Females

BSF ~B SF Tota
ls

ASF 20 100 120
~ASF 10 20 30
Totals 30 120 150

In the male group we now have

QAB.SM = 0.231

and in the female group

QAB.SF = - 0.429

Thus among the males treatment is positively associated with recovery, and among the
females negatively associated. The apparent independence in the two together is due to
canceling of these associations in the sub-populations.

Kendall’s example is thus of a mixture of two distributions, one for males and one for
females, such that the positive association between two variables in one population is
exactly canceled by the negative association in the other. There is nothing paradoxical in
that, and one may find empirical examples for which the same structure is claimed. The
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mixed distribution will violate the Faithfulness Condition, because it will exhibit a
statistical independence relation that does not follow from the Markov condition applied
to the causal graph common to all units.

Kendall’s explanation of his contingency table depends on the fact that in one
population the association of two variables is positive, and in the other negative. But what
can be going on if in both sub-populations the association is positive, and yet in the
mixed population it vanishes? That is exactly the question Simpson posed in 1951.7

Simpson gave the following table and commentary:

Male Female

Untreated Treated Untreated Treated
Alive 4/52 8/52 2/52 12/52
Dead 3/52 5/52 3/52 15/52

This time . . . there is a positive association between treatment and survival both
among males and among females; but if we combine the tables we...find that there is
no association between treatment and survival in the combined population. What is the
“sensible” interpretation here? The treatment can hardly be rejected as valueless to the
race when it is beneficial when applied to males and to females.

The question is what causal dependencies can produce such a table, and that question
is properly known as “Simpson’s paradox.”8

In Simpson’s example the variables G (male or female), T (treated or untreated) and S
(survives or does not) are given an interpretation that imposes tacit restrictions on causal
structure. When we read the example we naturally assume that gender G cannot be
caused by treatment T or survival S, but may cause them. As with Kendall’s example, the
distribution in Simpson’s table satisfies the Causal Markov Condition for a graph in
which G causes T and S and T causes S. Simpson’s distribution is not, however, faithful
to such a graph, because T and S are independent in the distribution even though T is a
parent of S in the graph.

Suppose for a moment that we ignore the interpretation that Simpson gave to the
variables in his example, which was, after all, entirely imaginary, and let ourselves
consider causal structures that would be excluded by that interpretation. To avoid
substantive associations, we substitute A for T, B for G, and C for S and obtain graph (i)
in figure 3.12. Distributions such as Simpson’s and Kendall’s can also be realized by a
graph in which A and C are not adjacent but each causes B, as in graph (ii) in figure 3.12.9

With the substitution of variables just noted, Simpson’s distribution is faithful to graph
(ii) but not to graph (i); moreover (ii) is the only graph faithful to the distribution.
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Figure 3.12

Judea Pearl (1988) offers a Bayesian example that illustrates why, when a causal
structure like that in graph (ii) obtains, one should expect that A and C, though
independent, are dependent conditional on B: Whether or not your car starts depends on
whether or not the battery is charged and also on whether or not there is fuel in the tank,
but these conditions are independent of one another. Suppose you find that your car
won’t start, and you hold in that case that there is some probability that the fuel tank is
empty and some probability that the battery is dead. Suppose next you find that the
battery is not dead. Doesn’t the probability that the fuel tank is empty change when that
information is added?

Were we to find that A and C are independent but dependent conditional on B, the
Faithfulness Condition requires that if any causal structure obtains, it is structure (ii).
Still, structure (i) is logically possible, and if the variables had the significance Simpson
gives them we would of course prefer it. But if prior knowledge does not require structure
(i), what do we lose by applying the Faithfulness Condition; what, in other words, do we
lose by excluding causal structures that are not faithful to the distribution?

In the linear case, the parameter values—values of the linear coefficients and
exogenous variances of a structure—form a real space, and the set of points in this space
that create vanishing partial correlations not implied by the Markov Condition have
Lebesgue measure zero.

THEOREM 3.2: Let M be a linear model with directed acyclic graph G and n linear
coefficients a1,..., an and k positive variances of exogenous variables v1 ,..., vk. Let
M(<u1,...,un, un+1,...,un+k>) be the distributions consistent with specifying values <u1,...,un,
un+1,...,un+k> for a1,..., an and v1,...vk. Let �be the set of probability measures P on the

space ℜ n+k of values of the parameters of M such that for every subset V of ℜ n+k having
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Lebesgue measure zero, P(V) = 0. Let Q be the set of vectors of coefficient and variance
values such that for all q in Q every probability distribution in with M(q) has a vanishing
partial correlation that is not linearly implied by G. Then for all P in � P(Q) = 0.

The theorem can be strengthened a little; it is not really necessary that the set of
exogenous and error variables be jointly independent—pairwise independence is
sufficient. In the pseudoindeterministic case, faithfulness can be violated, if at all, only by
very special choices of the functional dependencies between variables. Consider a
population of linear, pseudoindeterministic systems in which the exogenous variables are
independently and normally distributed. The conditional independence relations required
by the Markov Condition will be automatically fulfilled for every possible value of the
linear coefficients—they are guaranteed just by the way the device acts to compose linear
functions. But conditional independence relations that are not required by the Markov
Condition—the sorts of conditional independence relations that characterize distributions
that are unfaithful to the causal structure of the devices—either cannot be produced at all
or can only be produced if the linear coefficients satisfy very strong constraints.

The same moral applies to other classes of functions. While for discrete variables we
have not attempted a formal proof of a theorem analogous to 3.2, such a result should be
expected on intuitive grounds. The factorization formula for distributions satisfying the
Markov Condition for a graph provides a natural parametrization of the distributions. If
an exogenous variable has n values, it determines n–1 parametric dimensions consisting
of a copy of the open interval (0,1). If an endogenous variable X has n values, a
conditional probability P(X|Parents(X)) in the factorization determines another n–1
parametric dimensions consisting of a copy of (0,1) for each vector of values of the
parents of X. One expects that the set of probability values that generate conditional
independence relations not entailed by the factorization itself will be measure zero in this
parameter space. (Meek [1995] provides a proof of this conjecture.]

3.6 Bayesian Interpretations
We have interpreted the conditions as about frequencies in populations in which all units
have the same causal structure. We wish to consider how the conditions can be given a
Bayesian interpretation in which the probabilities are subjective. Current subjectivist
interpretations hold that probability is an idealization of rational, subjective degree of
belief. On a strict subjectivist view there can be finite frequencies, but there is no such
thing as objective probability. One assumes the systems under study in the sciences are
deterministic, and any appearance of indeterminacy is due simply to ignorance. The
likelihood structures of Bayesian statistical models often look like ordinary un-Bayesian
statistical models; Bayesians add a prior probability distribution over the free parameters.
For example, Bayesian linear models specify a distribution over a parameter 
representing linear coefficients, variances, means, and so on. The Bayesian model is thus
a mixture of ordinary linear models, and the joint distribution over the measured variables
does not satisfy the conditions we have considered in this section.
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Consider a study of systems with causal graph G. Suppose a Bayesian agent’s degrees
of belief are represented by a density, f, satisfying the condition f(X|Parents(G,X)) =
h(Parents(G,X); ), where  is a parameter whose values determine a density for X
conditional on its parents. Let the Bayesian agent also have a distribution over . In such
a case we understand the Causal Markov and Causal Minimality conditions to constrain
the agent’s degrees of belief conditional on . The subjective joint distribution over the
variables conditional on  will satisfy the conditions, but typically the unconditional joint
distribution will not.

Suppose now that the agent entertains a set G of alternative possible causal structures,
and holds that in each structure G in G f(X|Parents(G,X)) = h(Parents(G,X); G), as
before. Then we understand the Causal Markov and Causal Minimality conditions to
constrain the agent’s degrees of belief conditional on G, G.

So understood, the conditions are normative principles about “reasonable” degrees of
belief. In a later chapter we will consider in some detail a Bayesian proposal for clinical
trials and argue that the assumptions the proposal makes about the degrees of belief of
scientific experts accords with the Markov Condition.

3.7 Consequences of the Axioms
Consequences of the Causal Markov, Minimality, and Faithfulness Conditions are
developed throughout this book, but some important connections between causal
dependency and statistical dependency should be noted here.

3.7.1 d-Separation
Given a causal graph G, the Markov Condition axiomatizes the set of independence and
conditional independence relations true of any distribution P faithful to G. But which
conditional independence relations follow from the Markov Condition for a given graph
may not be obvious. Suppose one wanted to know, for each pair of vertices X and Y and
each set of vertices Q not containing X and Y, whether or not X and Y are independent
conditional on Q, that is, all the atomic independence facts among sets of variables.
Applying the Markov Condition directly to G, that is, applying the definition for each
vertex, does not in general suffice.

X Y

ZW V

Figure 3.13

For example, in a distribution faithful to the graph in figure 13, suppose we wanted to
know whether X and Y are independent conditional on the set Q = {Z}. Applying the
Markov Condition directly to figure 3.13, we obtain:

X Y

ZW V
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W  {Z,Y,V}

X  {Y,V}| {W,Z}

Z  {W,V}

Y  {W,X} | {V,Z}

V  {W,X,Z}

It is not obvious that these facts entail X  Y | {Z}. Pearl proposed a purely graphical
characterization—which he called d-separation—of conditional independence, and
Geiger, Pearl, and Verma (Geiger and Pearl 1989a; Verma 1987) proved that d-separation
in fact characterizes all and only the conditional independence relations that follow from
satisfying the Markov condition for a directed acyclic graph.

We define d-separation twice - first concisely and then in terms that make the idea
more accessible and, in our experience, much easier to remember and apply.

D-separation (Definition 1): If X and Y are distinct vertices in a directed graph G, and W
a set of vertices in G not containing X or Y, then X and Y are d-separated given W in G
just in case there exists no undirected path U between X and Y, such that

(i) every collider on U has a descendent in W, and
(ii) no other vertex on U is in W.

X and Y are d-connected given W if and only if they are not d-separated by W. If U, V,
and W are disjoint sets of vertices in G and U and V are not empty then we say that U
and V are d-separated given W if and only if every pair <U,V> in the cartesian product
of U and V is d-separated given W. Similarly for d-connection among sets.

The second definition of d-separation relies on the notions of an “active path” and an
“active vertex” on a path, where active can be thought of as carrying association. Again,
X and Y must be distinct, W cannot contain X or Y, and the concepts are all relative to a
directed graph G.

D-separation (Definition 2): X and Y are d-separated given W just in case there is no
undirected path between X and Y that is active relative to W.

An undirected path U is active relative to W just in case every vertex on U is active
relative to W.

A vertex V is active on a path relative to W just in case either
i) V is a collider, and V or any of its descendents is in W, or
ii) V is a noncollider and is not in W.
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Consider first the situation when W = ∅, which we call the “unconditional” case. If W =
∅, then each vertex on an undirected path U is active just in case it is a noncollider. Since
all the vertices on a path must be active for the whole path to be active, U is
unconditionally active just in case all of its vertices are noncolliders. Unconditionally
active paths are just treks.10

For example, in the causal graph in figure 14, X and V are d-separated by the empty set
because Y is a collider (inactive) on the only path between them.

Conditioning on a node flip-flops its status. Whereas X and Y are unconditionally d-
connected in figure 3.14, they are d-separated given {W}, {Z}, or {W,Z}. This is because
the vertices on the path between X and Y are W and Z, which are noncolliders and thus
unconditionally active. Conditioning flips their status from active to inactive, and if either
is inactive the whole path between X and Y become inactive. That conditioning on a
noncollider makes it inactive is similar to the intuition behind the Markov Condition. A
noncollider is either a common cause (Z in figure 3.14) or part of a directed path, for
example, W. Effects are made independent when we condition on their common causes,
and effects are made independent of their remote causes when we condition on their more
proximate ones.

Figure 3.14

X and V are unconditionally d-separated in figure 3.14, but are d-connected given {Y}.
This is because unconditionally, Y is the only inactive node on the path between X and V.
Conditioning on Y makes it and thus the whole path active. That conditioning on a
collider makes it active was discussed in section 3.5.2 above.

There is one additional twist, however. While conditioning on a collider activates it, so
does conditioning on any of its descendants. In the graph in figure 15, for example, X and
Y are d-connected given W. This is because although U is a collider on the only path
between X and Y and thus unconditionally inactive, it is activated because one of its
descendents W is in the conditioning set.

X

W Y

Z V
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X Y

Z

W

U

Figure 3.15

Checking whether two vertices X and Y are d-separated by a set Q in a graph G, and
thus whether X and Y are independent conditional on Q in a distribution faithful to G
should now be relatively straightforward. Check each undirected path between X and Y
until one is found that is active relative to Q, in which case X and Y are d-connected by
Q, or all paths have been checked and are inactive, in which case X and Y are d-separated
by Q. For each path, check each vertex on the path. If any are inactive the path is
inactive. A vertex is inactive if it is a noncollider in Q or a collider with no descendents
in Q. A vertex is active if it is a noncollider not in Q or a collider with a descendant in Q.
In figure 16, for example, X and Y are d-connected given {U}, but they are d-separated
give n{V,Z}.

X Y

Z
W

V

U

Figure 3.16

In the first case, conditioning on U activates the X → U ← Y path, and all it takes is
one active path for {U} to d-connect X and Y. In the second case, conditioning on {V,Z}
activates V on the X ← W ← Z → V ← Y path, but conditioning inactivates Z on this path
and thus makes it inactive; the X → U ← Y path is also inactive given {V,Z} because U is
a collider on the path that is not in {V,Z} and has no descendent in {V,Z}. Because all of
the undirected paths between X and Y are inactive given {V,Z}, X and Y are d-separated
given {V,Z}.

The essential results are the following:

THEOREM 3.3: P(V) is faithful to directed acyclic graph G with vertex set V if and only if
for all disjoint sets of vertices X, Y, and Z, X and Y are independent conditional on Z if
and only if X and Y are d-separated given Z.

X Y

Z

W

U

X Y

Z

W
V

U
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Theorem 3.4 provides a slightly more intuitive characterization of faithfulness, which
motivates algorithms developed in chapter 5.

THEOREM 3.4: If P(V) is faithful to some directed acyclic graph, then P(V) is faithful to
directed acyclic graph G with vertex set V if and only if

(i) for all vertices X, Y of G, X and Y are adjacent if and only if X and Y are dependent
conditional on every set of vertices of G that does not include X or Y; and
(ii) for all vertices X, Y, Z such that X is adjacent to Y and Y is adjacent to Z and X and Z
are not adjacent, X → Y ← Z is a subgraph of G if and only if X, Z are dependent
conditional on every set containing Y but not X or Z.

The study of correlation is historically tied to the normal distribution, and for that
distribution vanishing partial correlations and conditional independence are equivalent.
But the Markov and Faithfulness Conditions tie vanishing correlation and partial
correlation to graphical and causal structure for linear systems, without any normality
assumption. Thus, for linear systems, correlational structure is a guide to causal structure.
We will say that a distribution P is linearly faithful to a graph G if and only if for
vertices A and B of G and all subset C of the vertices of G, A and B are d-separated given
C if and only AB.C = 0.

THEOREM 3.5: If G is a directed acyclic graph with vertex set V, A and B are in V, and H
is included in V, then G linearly implies AB.H = 0 if and only A and B are d-separated
given H.

It follows that a distribution P is linearly faithful to a graph G if and only if for
vertices A and B of G and all subsets C of the vertices of G, A and B are d-separated
given C if and only AB.C = 0. Theorem 3.5 is the general principle behind all of the path
analysis examples (Wright 1934; Simon 1954; Blalock 1961; Heise 1975) connecting
causal structure in “recursive” (i.e., acyclic) linear models with vanishing partial
correlations.

In the chapters that follow we will frequently remark that some conditional
independence or conditional dependence relation, or vanishing or nonvanishing partial
correlation, follows from a causal structure, assuming the distribution is faithful.
Conversely, we will often observe that given certain conditional independence and
dependence relations, or partial correlation facts, the causal structure must have certain
properties if the distribution is faithful. Whenever we make such claims, we are using
tacit corollaries of theorems 3.3, 3.4, and 3.5.

3.7.2 The Manipulation Theorem
The fundamental aim of many empirical studies is to predict the effects of changes,
whether the changes come about naturally or are imposed by deliberate policy. How can
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an observed distribution P be used to obtain reliable predictions of the effects of
alternative policies that would impose a new marginal distribution on some set of
variables? The very idea of imposing a policy that would directly change the distribution
of some variable (e.g., drug use) necessitates that the resulting distribution PMan will be
different from P. P alone cannot be used to predict PMan, but P and the causal structure
can be.

Suppose that the Surgeon General is considering discouraging smoking, and he asks
“What would the distribution of Cancer be if no one in the U.S were allowed to smoke?”
Let V = {Drinking, Smoking, and Cancer}. For the purpose of illustration assume that in
the actual population in the U.S. the causal structure shown in figure 3.17 is correct.

Cancer
 

Smoking

Drinking

G Unman

Figure 3.17

Let us call the population actually sampled (or produced by sampling and some
experimental procedure) the unmanipulated population, and the hypothetical population
for which smoking is banned the manipulated population. Suppose that if the policy of
banning smoking were put into effect it would be completely effective, stopping
everyone from smoking, but would not affect the value of Drinking in the population.
Then the causal graph for the hypothetical manipulated population will be different than
for the unmanipulated population, and the distribution of Smoking is different in the two
populations. The manipulated causal graph is shown in figure 3.18.

Cancer
 

Smoking

Drinking

G
Man

Figure 3.18

Cancer
 

Smoking

Drinking

GUnman

Cancer
 

Smoking

Drinking

GMan

48  Chapter 3

impose

the actual population, the causal structure shown in fi gure 3.17 is correct.



Causation and Prediction 49

The difference between the unmanipulated graph and the manipulated graph is that
some vertices that are parents of the manipulated variables in GUnman may not (depending
upon the precise form of the manipulation) be parents of manipulated variables in GMan

and vice-versa.
How can we describe the change in the distribution of Smoking that will result from

banning smoking? One way is to note that the value of a variable that represents the
policy of the federal government is different in the two populations. So we could
introduce another variable into the causal graph, the Ban Smoking variable, which is a
cause of Smoking. The full causal graph, including the new variable representing smoking
policy, is then shown in figure 3.19. In the actual unmanipulated population the Ban
Smoking variable is off, and in the hypothetical population the Ban Smoking variable is
on. In the actual population we measure P(Smoking|Ban Smoking = off); in the
hypothetical population that would be produced if smoking were banned P(Smoking = 0
|Ban Smoking = on) = 1. For any subset X of V = {Smoking, Drinking, Cancer} in the
causal graph, let PUnman(Ban Smoking)(X) be P(X|Ban Smoking = off) and let PMan(Ban Smoking)(V)
be P(V|Ban Smoking = on).

Ban   
Smoking Cancer

 
Smoking

Drinking

GComb

Figure 3.19

We can now ask if PUnman(Ban Smoking)(Cancer|Smoking) = PMan(Ban

Smoking)(Cancer|Smoking) (for those values of Smoking for which PMan(Ban

Smoking)(Cancer|Smoking) is defined, namely Smoking = 0)? Clearly the answer is
affirmative exactly when Cancer and Ban Smoking are independent given Smoking; but if
the distribution is faithful this just reduces to the question of whether Cancer and Ban
Smoking are d-separated given Smoking, which they are not in this causal graph. Further,
PUnman(Ban Smoking)(Cancer) ≠ PMan(Ban Smoking)(Cancer) because Cancer is not d-separated
from Ban Smoking given the empty set. But in contrast PUnman(Ban

Smoking)(Cancer|Smoking,Drinking) = PMan(Ban Smoking)(Cancer|Smoking,Drinking) (for those
values of Smoking for which PMan(Ban Smoking)(Cancer|Smoking,Drinking) is defined,
namely Smoking = 0), because Ban Smoking and Cancer are d-separated by {Smoking,
Drinking}. The importance of this invariance is that we can predict the distribution of
cancer if smoking is banned by considering the conditional distribution of cancer given

Ban Smoking Cancer
 

Smoking

Drinking

GComb
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drinking in the observed subpopulation of nonsmokers, and by considering the
distribution of drinking in the unmanipulated population.

Note that one of the inputs to our conclusion about PMan(Ban Smoking)(Cancer) is that the
ban on smoking is completely successful and that it does not affect Drinking; this
knowledge does not come from the measurements that we have made on Smoking,
Drinking and Cancer, but is assumed to come from some other source. Of course, if the
assumption is incorrect, there is no guarantee that our calculation of PMan(Ban

Smoking)(Cancer) will yield the correct result. If we had instead considered a policy that
does not effectively ban smoking, but intervenes to make smoking less likely without
affecting drinking, then the graph of the entire system including the manipulation
variable Ban Smoking, would be the same as in figure 19, and the graph GUnman would be
as in figure 3.17, but the manipulated graph GMan would look like figure 3.17 rather than
3.18. Intervention would alter but not remove the influence of drinking on smoking.

The analysis of prediction for a system involves three distinct graphs: a causal graph
GComb which includes variables W representing manipulations, and a causal graph GUnman

which is the subgraph of GComb over a set of variables V not including the variables
representing manipulations, and a graph GMan over V which represents the causal
relations among variables in V that result from a manipulation. GMan may be a subgraph
of GUnman if the manipulation “breaks” causal dependencies in GUnman; otherwise GUnman

and GMan will be the same graph.
Here are the formal definitions: If G is a directed acyclic graph over a set of variables

V ∪ W, and V ∩ W = ∅, then W is exogenous with respect to V in G if and only if
there is no directed edge from any member of V to any member of W. If GComb is a
directed acyclic graph over a set of variables V ∪ W, and P(V ∪ W) satisfies the Markov
condition for GComb, then changing the value of W from w1 to w2 is a manipulation of
GComb with respect to V if and only if W is exogenous with respect to V, and P(V|W =
w1) ≠ P(V|W = w2).

We define PUnman(W)(V) = P(V|W = w1), and PMan(W)(V) = P(V|W = w2), and similarly
for various marginal and conditional distributions formed from P(V).

We refer to GComb as the combined graph, and the subgraph of GComb over V as the
unmanipulated graph GUnman. (Note that while PUnman(W)(V) satisfies the Markov
Condition for GUnman, it may also satisfy the Markov Condition for a subgraph of GUnman.
This is because G Comb, and hence its subgraph GUnman, may contain edges that are needed
to represent the distribution of the manipulated subpopulation but not needed to represent
the distribution of the unmanipulated subpopulation.)

V is in Manipulated(W) (that is, V is a variable directly influenced by one of the
manipulation variables) if and only if V is in Children(W) ∩ V; we will also say that the
variables in Manipulated(W) have been directly manipulated. We will refer to the
variables in W as policy variables.

The manipulated graph, GMan is a subgraph of GUnman for which PMan(W)(V) satisfies
the Markov Condition and which differs from GUnman in at most the parents of members
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of Manipulated(W). Exactly which subgraph GMan is depends upon the details of the
manipulation and what the causal graph of the subpopulation where W = w2 is. For
example, if smoking is banned, then GMan contains no edge between income and
smoking. On the other hand, if taxes are raised on cigarettes, GMan does contain an edge
between income and smoking. We will prove (in chapter 13) that given a manipulation as
defined, there always exists a subgraph of GUnman for which PMan(W)(V) satisfies the
Markov Condition. All of our theorems about manipulations hold for any GMan that is a
subgraph of GUnman for which PMan(W)(V) satisfies the Markov Condition, and which
differs from GUnman in at most the parents of members of Manipulated(W).

These definitions entail the Manipulation Theorem:

THEOREM 3.6: (Manipulation Theorem): Given directed acyclic graph GComb over vertex
set V ∪ W and distribution P(V ∪ W) that satisfies the Markov condition for GComb, if
changing the value of W from w1 to w2 is a manipulation of GComb with respect to V,
GUnman is the unmanipulated graph, GMan is the manipulated graph, and

∏
PUnman(W )(V) = PUnman(W)(X|Parents(GUnman , X))

X∈V
∏

for all values of V for which the conditional distributions are defined, then

PMan(W )(V) =

PMan(W)( X| Parents(GMan, X))
X∈Manipulated(W)

∏ ×

PUnman(W)( X| Parents(GUnman, X))
X∈V\ Manipulated(W)

∏

for all values of V for which each of the conditional distributions is defined.
The importance of this theorem is that if the causal structure and the direct effects of

the manipulation (i.e., PMan(W)(X|Parents(X)) for each X in Manipulated(W) are known,
then the joint distribution can be estimated from the unmanipulated population.

The Manipulation Theorem is not applicable when a causal mechanism between a pair
of variables is reversible, in which case there can be two subpopulations in which the
direction of the causal relationship between a pair of variables is reversed. For example,
the movement of a motor of a car may cause the wheels to turn (as when the gas pedal is
pressed), but also the turning of the wheels can cause the motor to move (as when the car
rolls downhill).11 An intervention in a causal system which reverses the direction of some
causal relationship is not a manipulation in our technical sense because there is no one
combined graph representing the causal relations in the combined population. We are not
suggesting any non-experimental methods for determining whether a given mechanism is
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the manipulation (i.e., PMan(W)(X|Parents(X)) for each X in Manipulated(W) are known,
then the joint distribution can be estimated from the unmanipulated population.

The Manipulation Theorem is not applicable when a causal mechanism between a pair
of variables is reversible, in which case there can be two subpopulations in which the
direction of the causal relationship between a pair of variables is reversed. For example,
the movement of a motor of a car may cause the wheels to turn (as when the gas pedal is
pressed), but also the turning of the wheels can cause the motor to move (as when the car
rolls downhill).11 An intervention in a causal system which reverses the direction of some
causal relationship is not a manipulation in our technical sense because there is no one
combined graph representing the causal relations in the combined population. We are not
suggesting any non-experimental methods for determining whether a given mechanism is
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reversible. In some cases, such as smoking and yellow fingers, it is obvious from
background knowledge that the mechanism is not reversible, because yellow fingers
cannot cause smoking. In other cases, the relevant background knowledge may not be
available, in which case it is not known whether the Manipulation Theorem is applicable.

Rubin (1977; 1978), and following him Pratt and Schlaifer (1988), have offered rules
for when conditional probabilities in an observed population of systems will equal
conditional probabilities for the same variables if the population is altered by a direct
manipulation of some variables for all population units. We will show in chapter 7 that
their various rules are direct consequences of the special case of the Manipulation
Theorem, illustrated in the discussion of figures 3.17, 3.18, and 3.19, in which one
variable is manipulated and the intervention makes that variable independent of its causes
in the unmanipulated graph.

Because the Manipulation Theorem is a consequence of the Markov condition, it
requires no separate justification. Although the Manipulation Theorem is abstract, it is
just the general formulation of inferences that are routine, if not always correct. When,
for example, a regression model is used to predict the effects of a policy that would force
values on some of the regressors, we have an application of the Manipulation Theorem.
Of course the prediction may be incorrect if the causal or statistical assumptions of the
regression model are false, or if the changes actually carried out do not satisfy the
conditions for a manipulation. There are striking examples of both sorts of failure.
Application of the Manipulation Theorem may give misleading predictions if the values
of variables for each unit depend on the values of other units and if that dependency is
not represented in the causal graph. Some public policy debates illustrate absurd
violations of this requirement. Recently a research institute funded by automobile
insurers carried out a nonlinear regression of the rate of fatalities of occupants of various
kinds of cars against car length, weight and other variables, finding unsurprisingly that
the smaller the car the higher the fatality rate. This statistical analysis was then used by
others to argue that proposed federal policies to downsize the American automobile fleet
would increase highway fatalities. But of course the fatality rate in cars of a given size
depends on the distribution of sizes of other cars in the fleet.

One can mistake which variables will be directly affected by a policy or intervention.
Tacit applications of the Manipulation Theorem in such cases can lead to disappointment.
As we will see in a later chapter, the literature on smoking, lung cancer and mortality
provides vivid examples of predictions that went wrong, arguably because of
misjudgments as to which variables would be directly manipulated by an intervention.

There is no reason why every intervention to deliberately alter the distribution of
values of a set of variables V among units in a population (or sample) must satisfy the
conditions for a direct manipulation of V and no others. But one of the chief aims in the
design of experiments is to see to it that experimental manipulations are in fact direct
manipulations of the intended variables and no others. The point of blind and double
blind designs, for example, is exactly to obtain in experiment a direct manipulation of
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only the treatment variables. The concern with chronic wounding in drug trials with
animals is essentially a worry that with respect to the outcome variables of interest,
outcome variables as well as pharmacological variables have been directly manipulated.
Typically, when we mistake the variables an intervention will directly manipulate,
predictions of the outcomes of intervention will fail.

Our discussion in this section has assumed that the causal structure of the system is
fully known. In chapters 6 and 7 we will consider when and how the effects of
interventions can be predicted from an unmanipulated distribution, assuming the
distribution is the marginal over the measured variables of a distribution faithful to an
unknown causal graph, and assuming the intervention constitutes a direct manipulation in
the sense we have defined here.

3.8 Determinism
Another way that the Faithfulness Condition can be violated is when there are
deterministic relationships between variables. In this section, we will give some rules for
determining what extra conditional independence relations are entailed by deterministic
relationships among variables.

We will say that a set of variables Z determines the set of variables A, when every
variable in A is a deterministic function of the variables in Z, and not every variable in A
is a deterministic function of any proper subset of Z. When there are deterministic
relationships among variables in a graph, there are conditional independencies that are
entailed by the deterministic relationships and the Markov condition that are not entailed
by the Markov condition alone. For example, if G is a directed acyclic graph over V, V
contains Z and A, and Z determines A, then A is independent of V\(Z ∪ {A}) given Z. If
Z is a proper subset of the parents of A then this entails that A is independent of its other
parents given Z, and also independent of its descendants as well as its nondescendants
given Z. But it could also be the case that the members of Z are children of A, in which
case given its children, A is independent of all other variables including its parents. It is
also possible that Z could contain nonparental ancestors of A. Each of these cases entails
conditional independence relations not entailed by the Markov condition alone. For
example, consider the graph in figure 3.20.

A                B                C

Figure 3.20

A B C
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No conditional independence relations among A, B, or C are entailed by the Markov

Condition alone. However, if the grandparent A determines the grandchild C, then C 

B|A. If the parent B determines the child C then C  A|B. If the child C determines the

parent B then B  A|C.
Hence d-separability relations do not capture all of the conditional independencies

entailed by the Markov condition and a set of deterministic relations. We will look for a
graphical condition which entails the conditional independence of variables given the
Markov condition and a set of deterministic relations among variables.

Geiger has proposed a simple, provably complete rule for graphically determining the
conditional independencies entailed by the Markov and Minimality conditions and one
kind of deterministic relationship among variables. Following Geiger (1990), in a
directed acyclic graph G over V that includes A and Z, say that vertex A is a
deterministic variable if it is a deterministic function of its parents in G. (Note that if a
variable A has no parents in G, but has a constant value, then A is a deterministic
variable.) A is functionally determined by Z if and only if A is in Z, or A is a
deterministic variable and all of its parents are functionally determined by Z. If X, Y, and
Z are three disjoint subsets of variables in V, X and Y are D-separated given Z if and
only if there is no undirected path U between any member of X and any member of Y
such that each collider has a descendant in Z and no other variable on U is functionally
determined by Z. Geiger has shown that X and Y are D-separated given Z if and only if
for every distribution that satisfies the Markov and Minimality Conditions for G, and the
deterministic relations, X and Y are independent given Z. We will prove that Geiger’s
rule is correct for a much wider class of deterministic relations; we do not know if it is
complete for this wider class of deterministic relationships.

Suppose G is a directed acyclic graph over V, and Deterministic(V) is a set of ordered
tuples of variables in V, where for each tuple D in Deterministic(V), if D is <V1,...,Vn>
then Vn is a deterministic function of V1 ,..., Vn–1 and is not a deterministic function of any
subset of V1 ,..., Vn–1; we also say {V1,...,Vn–1} determines Vn. Note that Vn could be an
ancestor in G of members of V1,...,Vn–1. Also, if A determines B and B determines A then
Deterministic(V) contains both <A,B> and <B,A>. We assume that Deterministic(V) is
complete in the sense that if it entails some deterministic relationships among variables,
those deterministic relations are in Deterministic(V). (For example, if A determines B
and B determines C, then A determines C.) Det(Z) is the set of variables determined by
some subset of Z. If a variable A has a constant value, then we say that it is determined
by the empty set, and is in Det(Z) for all Z.

Note that Deterministic(V) can entail dependencies between variables as well as
independencies. If Z determines A, and Z is a member of Z, then A is dependent on Z\{Z}
given Z. (Other dependencies may be entailed by Deterministic(V) as well.) These
dependencies may conflict with independencies entailed by satisfying the Markov
Condition for a directed acyclic graph G, so not every Deterministic(V) is compatible
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with every directed acyclic graph with vertex set V. If Deterministic(V) and directed
acyclic graph G are incompatible, theorem 3.7 stated below is vacuously true, but
obviously it would be desirable to have a test for determining whether Deterministic(V)
and G are compatible.

We will expand Geiger’s concept of D-separability so that it is not limited to the kind
of deterministic relations that he considers. If G is a directed acyclic graph with vertex set
V, Z is a set of vertices not containing X or Y, X ≠ Y, then X and Y are D-separated given
Z and Deterministic(V) if and only if there is no undirected path U in G between X and Y
such that each collider on U has a descendant in Z, and no other vertex on U is in Det(Z);
otherwise if X ≠ Y and X and Y are not in Z, then X and Y are D-connected given Z and
Deterministic(V). Similarly, if X, Y, and Z are disjoint sets of variables, and X and Y
are non-empty, then X and Y are D-separated given Z and Deterministic(V) if and only
if each pair <X,Y> in the Cartesian product of X and Y are D-separated given Z and
Deterministic(V); otherwise if X, Y, and Z are disjoint, and X and Y are non-empty,
then X and Y are D-connected given Z and Deterministic(V).

THEOREM 3.7: If G is a directed acyclic graph over V, X, Y, and Z are disjoint subsets of
V, and P(V) satisfies the Markov condition for G and the deterministic relations in
Deterministic(V) then if X and Y are D-separated given Z and Deterministic(V), X and
Y are independent given Z in P.

For example, suppose G is the graph in figure 3.21, and Deterministic(V) = {<A,B>,
<B,C>, <A,C>}.

A                B                C

Figure 3.21

B and C are D-separated given A and Deterministic(V), and A and C are D-
separated given B and Deterministic(V).

Suppose that G is still the graph in figure 3.21, but now Deterministic(V) = {<A,B>,
<B,A>, <B,C>, <C,B>, <A,C>, <C,A>}. In addition to the previous D-separability
relations, now A and B are D-separated given C and Deterministic(V) because C
determines A.

In some cases, conditional independencies are entailed because a parent is determined
by its child. Consider the graph in figure 3.22, where Deterministic(V) =
{<Y,W,Z>,<Z,Y>,<Z,W>}. X and T are D-separated given Z and Deterministic(V)

A B C
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because Z determines Y and W, and Y and W are noncolliders on the only undirected path
between X and T.

X               Y                Z              W                T

Figure 3.22

Finally, we note that it is possible that some nonparental ancestor X of Z determines Z,
even though X does not determine any of the parents of Z. Let G be the graph in figure
3.23 and Deterministic(V) = {<X,Z>}. Suppose X, R, and Z each have two values, and Y
has four values. Consider the following distribution (where we give the probability of
each variable conditional on its parents):

P(X = 0) = .2
P(R = 0) = .3
P(Y = 0|X = 0,R = 0) = 1
P(Y = 1|X = 0,R = 1) = 1
P(Y = 2|X = 1,R = 0) = 1
P(Y = 3|X = 1,R = 1) = 1
P(Z = 0|Y= 0) = 1
P(Z = 0|Y = 1) = 1
P(Z = 1|Y = 2) = 1
P(Z = 1|Y = 3) = 1

In effect Y encodes the values of both R and X, and Z decodes Y to match the value of X.

X               Y                Z  

R

Figure 3.23

It follows that Y and Z are D-separated given X and Deterministic(V), and X and Z are
D-separated given Y and Deterministic(V).

The following example points up an interesting difference between the set of
distributions that satisfy the Markov condition for a given directed acyclic graph G, and
the set of distributions that satisfy the Markov condition and a set of deterministic
relationships among the variables in G. Suppose G is the graph shown in figure 3.24. For
any directed acyclic graph, the set of probability distributions that satisfy the Markov

X W TZY

R

X ZY
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condition for the graph includes some distributions that also satisfy the Minimality
Condition for the graph. Suppose however, that Deterministic(V) = {<X,Y>}. In this
case, among the distributions that satisfy the Markov Condition and the specified
deterministic relations, there is no distribution that also satisfies the Minimality
Condition. All distributions that satisfy the Markov Condition and the specified
deterministic relation are faithful to the subgraph of figure 3.24 that does not contain the
Z → Y edge. This suggests that to find all of the conditional independence relations
entailed by satisfying the Markov Condition for a directed acyclic graph G and a set of
deterministic relations, one would need to test for D-separability in various subgraphs G
of G with vertex set V in which for each Y in V no subset of Parents(G ,Y) determines Y.

X               Y                Z  

Figure 3.24

We will not consider algorithms for constructing causal graphs when such
deterministic relations obtain, nor will we consider tests for deciding whether a set of
variables X determines a variable Y.

3.9 Background Notes
The ambiguous use of hypotheses to represent both causal and statistical constraints is
nearly as old as statistics. In modern form the use of the idea by Spearman (1904) early in
the century might be taken to mark the origins of statistical psychometrics. Directed
graphs at once representing both statistical hypotheses and causal claims were introduced
by Sewell Wright (1934) and have been used ever since, especially in connection with
linear models. For a number of particular graphs the connections between linear models
and partial correlation constraints were described by Simon (1954) and by Blalock (1961)
for theories without unmeasured common causes, and by Costner (1971) and Lazarsfeld
and Henry (1968) for theories with latent variables, but no general characterization
emerged. A distribution-free connection of graphical structure for linear models with
partial correlation was developed in Glymour, Scheines, Spirtes and Kelly (1987), for
first order partials only, but included cyclic graphs. Geiger and Pearl (1989a) showed that
for any directed acyclic graph there exists a faithful distribution. The general
characterization given here as theorem 3.5 is due to Spirtes (1989), but the connection
between the Markov Condition, linearity and partial correlation seems to have been
understood already by Simon and Blalock and is explicit in Kiiveri and Speed (1982).
The Manipulation Theorem has been used tacitly innumerable times in experimental
design and in the analysis of shocks in econometrics but seems never to have previously
been explicitly formulated. A special case of it was first given in Spirtes, Glymour,
Scheines, Meek, Fienberg, and Slate 1991. The Minimality Condition and the idea of

X ZY
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d-separability are due to Pearl (1988), and the proof that d-separability determines the
consequences of the Markov condition is due to Verma (1987), Pearl (1988), and Geiger
(1989a). A result entailing theorem 3.4 was stated by Pearl, Geiger, and Verma (1990).
Theorem 3.4 was used as the basis for a causal inference algorithm in Spirtes, Glymour,
and Scheines (1990c). D-separability is described in Geiger (1990).
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4 Statistical Indistinguishability

Without experimental manipulations, the resolving power of any possible method for
inferring causal structure from statistical relationships is limited by statistical
indistinguishability. If two causal structures can equally account for the same statistics,
then no statistics can distinguish them. The notions of statistical indistinguishability for
causal hypotheses vary with the restrictions one imposes on the connections between
directed graphs representing causal structure and probabilities representing the associated
joint distribution of the variables. If one requires only that the Markov and Minimality
Conditions be satisfied, then two causal graphs will be indistinguishable if the same class
of distributions satisfy those conditions for one of the graphs as for the other. A different
statistical indistinguishability relation is obtained if one requires that distributions be
faithful to graph structure; and still another is obtained if the distributions must be
consistent with a linear structure, and so on. For each case of interest, the problem is to
characterize the indistinguishability classes graph-theoretically, for only then will one
have a general understanding of the causal structures that cannot be distinguished under
the general assumptions connecting causal graphs and distributions.

There are a number of related considerations about the resolving power of any
possible method of causal inference from statistical properties. Given axioms about the
connections between graphs and distributions, what graph theoretic structure must two
graphs share in order also to share at least one probability distribution satisfying the
axioms? When, for example, do two distinct graphs admit one and the same distribution
satisfying the Minimality and Markov Conditions? When do two distinct graphs admit
one and the same distribution satisfying the Minimality and Markov Conditions for one
and the Faithfulness and Markov Conditions for the other? Reversing the question, for
any given probability distribution that satisfies the Markov and Minimality Conditions
(or in addition the Faithfulness Condition) for some directed acyclic graph, what is the set
of all such graphs consistent with the distribution and these conditions? Finally, there are
relevant measure-theoretic questions. If procedures exist that will identify causal
structure under a more restrictive assumption such as Faithfulness, but not always under
weaker assumptions such as the Markov and Minimality Conditions, how likely are the
cases in which the procedures fail? Under various natural measures on sets of
distributions, for example, what is the measure of the set of distributions that satisfy the
Minimality and Markov Conditions for a graph but are not faithful to the graph?

These are fundamental questions about the limits of any possible inference
procedure—whether human or computerized—from non-experimental data to structure.
We will provide answers for many of these questions when the system of measured
variables is causally sufficient. Statistical indistinguishability is less well understood
when graphs can contain variables representing unmeasured common causes.
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Figure 4.1

4.1 Strong Statistical Indistinguishability
Two directed acyclic graphs G, G  are strongly statistically indistinguishable (s.s.i) if
and only if they have the same vertex set V and every distribution P on V satisfying the
Minimality and Markov Conditions for G satisfies those conditions for G , and vice-
versa.

That two structures are s.s.i. of course does not mean that the causal structures are one
and the same, or that the difference between them is undetectable by any means
whatsoever. From the correlation of two variables, X and Y, one cannot distinguish
whether X causes Y, Y causes X or there is a third common cause, Z. But these alternatives
may be distinguished by experiment or, as we will see, by other means.

Strong statistical indistinguishability is characterized by a simple relationship, namely
that two graphs have the same underlying undirected graph and the same collisions:

THEOREM 4.1: Two directed acyclic graphs G1, G2, are strongly statistically
indistinguishable if and only if (i) they have the same vertex set V, (ii) vertices V1 and V2

are adjacent in G1 if and only if they are adjacent in G2, and (iii) for every triple V1, V2, V3

in V, the graph V1 → V2 ← V3 is a subgraph of G1 if and only if it is a subgraph of G2.

Given an arbitrary directed acyclic graph G, the graphs s.s.i. from G are exactly those that
can be obtained by any set of reversals of the directions of edges in G that preserves all
collisions in G. A decision as to whether or not two graphs are s.s.i. requires O(n3)
computations, where n is the number of vertices.
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4.1 Strong Statistical Indistinguishability
We say that two directed acyclic graphs G, G' are strongly statistically indistinguish-
able (s.s.i) if and only if they have the same vertex set V and every distribution P on V
satisfying the Minimality and Markov Conditions for G satisfies those conditions for G',
and vice-versa.
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In figure 4.1 graphs G1 and G2 are s.s.i., but G1 and G3, and G2 and G3 are not s.s.i.
Note, however, if a set of variables V is totally ordered, as for example by a known

time order, and P(V) is positive, then there is a unique graph for which P(V) satisfies the
Minimality and Markov conditions. (See corollary 3 in Pearl 1988.)

4.2 Faithful Indistinguishability
Suppose we assume that all pairs <G, P> are faithful: all and only the conditional
independence relations true in P are a consequence of the Markov condition for G. We
will say that two directed acyclic graphs, G, G  are faithfully indistinguishable (f.i.) if
and only if every distribution faithful to G is faithful to G  and vice-versa. The problem is
to characterize faithful indistinguishability graphically.

THEOREM 4.2: Two directed acyclic graphs G and H are faithfully indistinguishable if
and only if (i) they have the same vertex set, (ii) any two vertices are adjacent in G if and
only if they are adjacent in H, and (iii) any three vertices, X, Y, Z, such that X is adjacent
to Y and Y is adjacent to Z but X is not adjacent to Z in G or H, are oriented as X → Y ← Z
in G if and only if they are so oriented in H.

The question of faithful indistinguishability for two graphs can be decided in O(n3)
where n is the number of vertices.

It is immediate from theorems 4.1 and 4.2 that if two graphs are strongly statistically
indistinguishable they are faithfully indistinguishable, but not necessarily conversely. The
graphs G4 and G5 in figure 4.1 are not s.s.i. but they are f.i.

A class of f.i. graphs may be represented by a pattern. A pattern  is a mixed graph
with directed and undirected edges. A graph G is in the set of graphs represented by  if
and only if:

(i) G has the same adjacency relations as ;
(ii) if the edge between A and B is oriented A → B in , then it is oriented A → B in G;
(iii) if Y is an unshielded collider on the path <X,Y,Z> in G then Y is an unshielded
collider on <X,Y,Z> in .

For example, the set of all complete, acyclic directed graphs on three vertices forms a
faithful indistinguishability class that can be represented by a pattern consisting of the
complete undirected graph on the same vertex set. When the pattern of the faithful
indistinguishability class of a directed acyclic graph has no directed edges, and so is
purely undirected, the statistical hypothesis represented by the directed graph is
equivalent to the statistical hypothesis of the undirected independence graph
corresponding to the pattern.
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4.3 Weak Statistical Indistinguishability
The indistinguishability relations characterized in the two previous sections ask for the
graphs that can accommodate the same class of probability distributions as a given graph.
We can turn the tables, at least partly, by starting with a particular probability distribution
on a set of variables and asking for the set of all directed acyclic graphs on those vertices
that are consistent with the given distributions. The answers characterize how much the
probabilities and our assumptions about the connection between probabilities and causes
underdetermine the causal structure. Assuming Markov and Minimality only, the
equivalence of these two conditions (under positivity) with the defining conditions for a
directed independence graph provides an (impractical) algorithm for generating the set of
all graphs that satisfy the two conditions for a given distribution P. For every ordering of
the variables in P there is a directed acyclic graph G compatible with that ordering (i.e., A
precedes B in the ordering only if A is not a descendant of B in G) satisfying the
Minimality and Markov Conditions for P. It can be generated by assuming the ordering
and the conditional independence relations in P and applying the definition of directed
independence graph. An algorithm that does not assume positivity is given by Pearl
(1988). According to that algorithm let Ord be a total ordering of the variables, and
Predecessors(Ord,X) be the predecessors of X in the ordering Ord. For each variable X,
let the parents of X in G be a smallest subset R of Predecessors(Ord,X) such that X is
independent of Predecessors(Ord,X)\R given R in P. It follows that P satisfies the
Minimality and Markov Conditions for P.

The alternatives are more limited if we start with P and assume that any graph must be
faithful to P. In that case all of the graphs faithful to P form a faithful indistinguishability
class, that is, the set of all graphs f.i. from any one graph faithful to P. The next chapter
presents a number of algorithms that generate the faithful indistinguishability classes
from properties of distributions.

Given axioms connecting causal graphs with probability distributions it makes sense
to ask for which pairs G, G  of graphs there exists some probability distribution satisfying
the axioms for both G and G . Let us say that two graphs are weakly faithfully
indistinguishable (w.f.i.) if and only if there exists a probability distribution faithful to
both of them. We say that two graphs are weakly statistically indistinguishable (w.s.i.)
if and only if there exists a probability distribution meeting the Minimality and Markov
Conditions for both of them. Weak faithful indistinguishability proves to be equivalent to
faithful indistinguishability:

THEOREM 4.3: Two directed acyclic graphs are faithfully indistinguishable if and only if
some distribution faithful to one is faithful to the other and conversely; that is, they are
f.i. if and only if they are w.f.i.
This theorem tells us that faithfulness divides the set of probability distributions over a
vertex set into equivalence classes that exactly correspond to the equivalence classes of
graphs induced by faithful indistinguishability. It follows that if a distribution is faithful
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to some graph G then it is faithful to all and only the graphs faithfully indistinguishable
from G.

There is no reason to expect so nice a match in general. Suppose we assume only the
Minimality and Markov Conditions. Under what conditions will there exist a distribution
P satisfying those axioms for two distinct graphs, G, and G ? The answer is not: exactly
when G and G  are strongly statistically indistinguishable. The two graphs shown in
figure 4.2 are not s.s.i., but there exist distributions that satisfy the Minimality and
Markov Conditions for both.

A

B

C A

B

C

G G
1 2

Figure 4.2

The distributions in Simpson’s “paradox” provide an example, as we have already
seen in chapter 3. We conjecture that if a distribution satisfies the Minimality and
Markov Conditions for two graphs G and G , then G and G  have the same edges and the
same colliders, save that triangles such as G1 in one graph may be replaced by collisions
such as G2 in the other, provided appropriate conditions are met by other edges. We don’t
know how to characterize the “appropriate” conditions. There is, however, a related
property of interest we can characterize.

No distribution that is faithful to graph G1 in figure 4.2 can be faithful to graph G2, but
a distribution that satisfies the Minimality and Markov Conditions for G1 can be faithful
to graph G2. Just when can this sort of thing happen? When, in other words, can the
generalization of Simpson’s “paradox” arise? If probability distribution P satisfies the
Minimality and Markov Conditions for G, and P is faithful to graph H, what is the
relation between G and H?

THEOREM 4.4: If probability distribution P satisfies the Markov and Minimality
Conditions for directed acyclic graphs G and H, and P is faithful to H, then for all
vertices X, Y, if X, Y are adjacent in H they are adjacent in G.

THEOREM 4.5: If probability distribution P satisfies the Markov and Minimality
Conditions for directed acyclic graphs G and H, and P is faithful to graph H, then (i) for
all X, Y, Z such that X → Y ← Z is in H and X is not adjacent to Z in H, either X → Y ← Z
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A C
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graphs induced by faithful indistinguishability. It follows that if a distribution is faithful
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figure 4.2 are not s.s.i., but there exist distributions that satisfy the Minimality and
Markov Conditions for both.

The distributions in Simpson’s “paradox” provide another example, as we have already



64 Chapter 4

in G or X, Z are adjacent in G and (ii) for every triple X, Y, Z of vertices such that X → Y
← Z is in G and X is not adjacent to Z in G, if X is adjacent to Y in H and Y is adjacent to
Z in H then X → Y ← Z.

COROLLARY 4.1: If probability distribution P satisfies the Markov Condition for directed
acyclic graph G, P is faithful to directed acyclic graph H, and G and H agree on an
ordering of the variables (as, for example, by time) such that X → Y only if X < Y in the
order, then H is a subgraph of G.

4.4 Rigid Indistinguishability
In addition to the notions of strong, faithful and weak statistical indistinguishability, there
is still another. Suppose two directed acyclic graphs, G and G , are statistically
indistinguishable in some sense over a common set O of vertices. Then without
experiment, no measurement of the variables in O will reliably determine which of the
graphs correctly describes the causal structure that generated the data. It might be,
however, that G and G  can be distinguished if other variables besides those in G or G
are measured and stand in appropriate causal relations to the variables in O. For example,
the following simple graphs are both s.s.i., and f.i. (where A and B are assumed to be
measured and in O).

A B A B

1
G 2G

Figure 4.3

But if we also measure a variable C that is a cause of A or has a common cause with A
and no connection with B save possibly through A, then the two structures can be
distinguished.

The graphs in figure 4.4 are not f.i. or s.s.i. It is equally easy to give examples of w.s.i.
structures that can be embedded in graphs that are not w.s.i. Which causally sufficient
structures can be distinguished by measuring extra variables? To answer the question we
require some further definitions.

Let G1, G2 be two directed acyclic graphs with common vertex set O. Let H1, H2 be
directed graphs having a common set U of vertices that includes O and such that

A B

G1

A B

G2

64  Chapter 4

Z.

But if we also measure a variable C that is a cause of A or has a common cause with A
and no connection with B save possibly through A, then the two structures can be
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For example, the graphs in figure 4.4 are not f.i. or s.s.i. It is equally easy to give
examples of w.s.i. structures that can be embedded in graphs that are not w.s.i. Which
causally sufficient structures can be distinguished by measuring extra variables? To
answer the question we require some further definitions.

Let G1, G2 be two directed acyclic graphs with common vertex set O. Let H1, H2 be
directed graphs having a common set U of vertices that includes O such that
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(i) the subgraph of H1 over O is G1 and the subgraph of H2 over O is G2;
(ii) every directed edge in H1 but not in G1 is in H2 and every directed edge in H2 but not
in G2 is in H1.

We will say then that directed acyclic graphs G1 and G2 with common vertex set O have a
parallel embedding in H1 and H2 over O and U. In figures 4.3 and 4.4, G1 and G2 have a
parallel embedding in H1 and H2 over O = {A,B} and U = {A,B,C,D}. The question of
whether two s.s.i. structures can be distinguished by measuring further variables then
becomes the following: do the structures have parallel embeddings that are not s.s.i.? If
no such embedding exists we will say the structures G1 and G2 are rigidly statistically
indistinguishable (r.s.i.).

THEOREM 4.6: No two distinct s.s.i. directed acyclic graphs with the same vertex set are
rigidly statistically indistinguishable.

In other words, provided additional variables with the right causal structure exist and can
be measured, the causal structure among a causally sufficient collection of measured
variables can in principle be identified. The proof of theorem 4.6 also demonstrates a
parallel result for faithfully indistinguishable structures. We conjecture that an analog of
theorem 4.6 also holds for weak statistical indistinguishability assuming positivity.

4.5 The Linear Case
Parameter values can force conditional independencies or zero partial correlations that
are not linearly implied by a graph. The graphs in figure 4.2 (reproduced in figure 4.5
with error variables explicitly included) illustrate the possibility: treat the vertices of the
graphs as each attached to an “error” variable, and let the graphs plus error variables
determine a set of linear equations. (We assume that any pair of exogenous variables,
including the error terms, have zero covariance.) The result is, up to specification of the
joint distribution of the exogenous variables, a structural equation model. A linear
coefficient is attached to each directed edge. The correlation matrix, and hence all partial
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correlations, is determined by the linear coefficients and the variances of the exogenous
variables.

A
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C A

B 

C

ε ε

ε
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ε ε

ε

a' b'

(i) (ii)
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B

C A

B
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Figure 4.5

If in the structure on the left ab = -c, then A, C will be uncorrelated as in the model on
the right. This sort of phenomenon—vanishing partial correlations produced by values of
linear coefficients rather than by graphical structure—is bound to mislead any attempt to
infer causal structure from correlations. When can it happen? We have already answered
that question in the previous chapter, when we considered the conditions under which
linear faithfulness might fail. In the linear case, the parameter values—values of the
linear coefficients and exogenous variances of a structure with a directed acyclic graph
G—form a real space, and the set of points in this space that create vanishing partial
correlations not linearly implied by G have Lebesgue measure zero.

THEOREM 3.2: Let M be a linear model with directed acyclic graph G and n linear
coefficients a1,..., an and k positive variances of exogenous variables v1 ,..., vk. Let
M(<u1,...,un, un+1,...,un+k>) be the distributions consistent with specifying values <u1,...,un,
un+1,...,un+k> for a1,..., an and v1,...vk. Let �be the set of probability measures P on the

space ℜ n+k of values of the parameters of M such that for every subset V of ℜ n+k having
Lebesgue measure zero, P(V) = 0. Let Q be the set of vectors of coefficient and variance
values such that for all q in Q every probability distribution in with M(q) has a vanishing
partial correlation that is not linearly implied by G. Then for all P in � P(Q) = 0.

Measure theoretic arguments of this sort are interesting but may not be entirely
convincing. One could, after all, argue that in the general linear model absence of causal
connection is marked by linear coefficients with the value zero, and thus form a set of
measure zero, so by parity of reasoning everything is causally connected to everything
else. In a recent book Nancy Cartwright (1989) objects that since in linear structures
independence relations may be produced by special values of the linear coefficients and
variances as well as by the causal structure, it is illegitimate to infer causal structure from
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If, in the structure on the left, ab = -c, the A, C will be uncorrelated as in the model on
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such relations. In effect, she rejects any inference procedure that is unable to distinguish
the true causal structure from w.s.i. alternatives. Such a position may be extreme, but it
does serve to focus attention on two interesting questions: when is it impossible for two
structures to be w.s.i. but not f.i. or s.s.i., and are there special marks or indicators that a
distribution satisfies the Markov and Minimality conditions for two w.s.i. but not s.s.i. or
f.i. causal structures? The answers to these questions are essentially just applications to
the linear case of the theorems of the preceding sections.

We will assume, with Cartwright, that a time ordering of the variables is known. Pearl
and Verma (Pearl 1988) have proved that for a positive distribution P and a given
ordering of variables, there is only one directed acyclic graph for which P satisfies the
Minimality and Markov Conditions. It follows that for a positive distribution with a given
correlation matrix and a given ordering of a causally sufficient set of variables there is a
unique directed acyclic graph that linearly represents the distribution and is consistent
with the ordering.

In some cases at least, the positivity of a distribution can be tested for. (For example,
in a bi-variate normal distribution the density function is everywhere nonzero if the
correlation is not equal to one.) It follows for those cases that for a given ordering of
variables either there is a unique directed acyclic graph for which P satisfies the Markov
and Minimality Conditions, or it is detectable that more than one such directed acyclic
graph exists. However, even if for a given ordering of variables there is a unique directed
acyclic graph for which P satisfies the Markov and Minimality Conditions, algorithms for
finding that graph are not feasible for large numbers of variables, because of the number
and order of the conditional independence relations that they require be tested.

Suppose that we wrongly assume that a distribution is faithful to the causal graph that
generated it. Then corollary 4.1 applies, which means, informally, that if faithfulness is
assumed but not true, then conditional independence relations or vanishing partial
correlations due to special parameter values can only produce erroneous causal inferences
in which a true causal connection is omitted; no other sorts of error may arise. We will
consider when this circumstance is revealed in the correlations.

Recall that a trek is an unordered pair of directed acyclic paths having a single
common vertex that is the source of both paths (one of the paths in a pair may be the
empty path defined in chapter 2). For standardized models, in which the mean of each
variable is zero and non-error variables have unit variance, the correlation of two
variables is given by the sum over all treks connecting X, Y of the product for each trek of
the linear coefficients associated with the edges in that trek (we call this quantity the trek
sum). For example, in directed acyclic graph (i) in figure 4.5, the trek sum between A and
C is ab + c. We will use standardized systems throughout our examples in this section.
The system of correlations determines all partial correlations of every order through the
following formula.
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ρXY .Z∪{R} =
ρXY.Z − ρXR.Z × ρYR.Z

1 − ρXR.Z
2 × 1 − ρYR.Z

2

Since the recursion relations give the same partial correlation between two variables on a
set U no matter in what sequence the partials on the members of U are taken, a vanishing
partial correlation corresponds to a system of equations in the coefficients of a
standardized system.

Suppose now that special values of the linear parameters in a normal, standardized
system G produce vanishing partial correlations that are exactly those linearly implied
only by some false causal structure, say H. Then the parameter values must generate extra
vanishing partial correlations not linearly implied by G. Any partial correlation is a
function just of the trek sums connecting pairs of variables, and the trek sums in this case
involve just the linear parameters in G. Hence each additional vanishing partial
correlation not linearly implied by G determines a system of (nonlinear) equations in the
parameters of G that must be satisfied in order to produce the coincidental vanishing
partial correlation. (For example, in directed acyclic graph (i) of figure 4.5, the
correlation between A and C is 0 only if the single equation ab = -c is satisfied). Now for
some G and some H (a sub-graph of G), these systems of equations may have no
simultaneous solution. In that case there are no values for the parameters of G that will
produce partial correlations that are exactly those linearly implied by H. For other choices
of G and a subgraph H, it may be that the system of equations has a solution, but only
solutions that allow only a finite number of alternative values for one or more parameters
and that require some error variance to vanish. Such a solution must “give itself away” by
special correlation constraints that are not themselves vanishing partial correlation
relations. Consider the following choices of G and H, where in each pair G is on the left
hand side and H is on the right hand side.

In (i) and (iii), coefficients and variances can be chosen for the graph on the left hand
side so that it appears as though an edge does not occur, but only by making the
coefficient labeled b equal to either 1 or –1. Since the variables are standardized, this
requires that the error term for Y have zero variance and zero mean—that is, it vanishes.
Thus in order for the true graph to be the one on the left hand side and the parameter
values to produce vanishing partial correlations that are exactly those linearly implied by
the graph on the right hand side, variable Y must be a linear function of variable X and
only variable X. The same result obtains if the edges that are not eliminated in the first
and last examples are replaced by directed paths of any length. Clearly in these cases
special parameter values that create vanishing partial correlations not linearly implied by
the true graph will be revealed by the correlations. In (ii) the edge between variables X
and Z cannot be made to appear to be eliminated by any choice of parameter values for
the true graph.
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Consider Figure 4.6. In (i) and (iii), coefficients and variances can be chosen for the
graph on the left hand side so that it appears as though an edge does not occur, but only
by making the coefficient labeled b equal to either 1 or –1. Since the variables are
standardized, this requires that the error term for Y have zero variance and zero
mean—that is, it vanishes. Thus in order for the true graph to be the one on the left hand
side and the parameter values to produce vanishing partial correlations that are exactly
those linearly implied by the graph on the right hand side, variable Y must be a linear
function of variable X and only variable X. The same result obtains if the edges that are
not eliminated in the first and last examples are replaced by directed paths of any length.
Clearly in these cases special parameter values that create vanishing partial correlations
not linearly implied by the true graph will be revealed by the correlations. In (ii) the edge
between variables X and Z cannot be made to appear to be eliminated by any choice of
parameter values for the true graph.
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We conjecture that even without a prior time order, unless three edges form a triangle
in G, if parameter values of G determine exactly the collection of vanishing partial
correlations linearly implied by a graph H—whether or not H is a subgraph of G—then
there are extra constraints on the correlations not entailed by the vanishing partial
correlations.

4.6 Redefining Variables
The indistinguishability results so far considered relate alternative graphs over the same
set of vertices. The vertices are interpreted as random variables whose values are subject

Statistical Indistinguishability  69 



70 Chapter 4

to some system of measurement. New random variables can always be defined from a
given set, for example by taking linear or Boolean combinations. For any specified
apparatus of definitions, and any axioms connecting graphs with distributions, questions
about indistinguishability classes arise parallel to those we have considered for fixed sets
of variables. A distribution P over variable set V may correspond to a graph G, and a
distribution P ������������������V  may correspond to a different graph G  (with P �����V
obtained from P and V by defining new variables, ignoring old ones, and marginalizing).
The differences between G and G  may in some cases be unimportant, and one may
simply want to say that each graph correctly describes causal relations among its
respective set of variables. That is not so, however, when the original variables are
ordered by time, and redefinition of variables results in a distribution whose
corresponding graphs have later events causing earlier events. Consider the following
pair of graphs.

A C

B

(A - C) (A + C)

B

(i) (ii)

Figure 4.7

In directed acyclic graph (i), A and C are effects of B; suppose that B occurs prior to A
and C. By the procedure of definition and marginalization, a distribution faithful to graph
(i) can be transformed into a distribution faithful to graph (ii). First, standardize A and C
to form variables A �����C �����
���������������������������������������A ���C ) and
(A + C ). Their covariance is equal to the expected value of A 2 - C 2 which is zero. Simple
algebra shows that the partial correlation of (A ���C ) and (A + C ) given B does not vanish.
The marginal of the original distribution is therefore linearly faithful to (ii), and faithful
to (ii) if the original distribution is normal.

Note that the transformation just illustrated is unstable; if the variances of A �����C
are unequal in the slightest, or if the transformation gives (xA ���zC ) and (yA ���wC ) for
any values of x, y, z, and w such that xy + wz + A � (zy + xw) ≠ 0 then the marginal on the
transformed distribution will be faithful, not to (ii), but to all acyclic orientations of the
complete graph on the three variables, a hypothesis that is not inconsistent with the time
order.

Viewed from another perspective, a transformation of variables that produces a
“coincidental” vanishing partial correlation is just another violation of the Faithfulness
Condition. Consider the linear model in figure 4.8.
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Let A �  � rB + A , C �  � sB + C , D = xA + zC � �� D, and E = yA + wC � �� E. If the
variables are standardized, DE is equal to xy + zw + rysz + rxsw = xy + zw + rs(yz + xw),
which, since rs = A � , is the formula of the previous paragraph. If DE = 0, the
Faithfulness Condition is violated. Hence the conditions under which we obtain a linear
transformation of A and C that produces a “coincidental” zero correlation are identical to
the conditions under which the treks between A and C exactly cancel each other in a
violation of the Faithfulness Condition. We get the example of figure 4.7 when D = A ��
C �������x = z = 1), and E = A ���C �������y = -w = 1) where the variances and means of the
error terms have been set to zero. Since the set of parameter values that violate
Faithfulness in this example has Lebesgue measure zero, so does the set of linear
transformations of A and C that produce a “coincidental” zero correlation.

4.7 Background Notes
The underdetermination of linear statistical models by values of measured variables has
been extensively discussed as the “identification problem,” especially in econometrics
(Fisher 1966) where the discussion has focused on the estimation of free parameters. The
device of “instrumental variables,” widely used for linear models, is in the spirit of
Theorem 4.6 on rigid distinguishability, although instrumental variables are used to
identify parameters in cyclic graphs or in systems with latent variables. The possibility of
“rewriting” a pure linear regression model so that the outcome variable is treated as a
cause seems to have been familiar for a long while, and we do not know the original
source of the observation, which was brought to our attention by Judea Pearl.

Accounts of statistical indistinguishability in something like one or another of the
senses investigated in this chapter have been proposed by Basmann (1965), Stetzl (1986)
and Lee (1987). Basmann argued, in our terms, that for every simultaneous equation
model with a cyclic graph (i.e., “nonrecursive”) there exists a statistically
indistinguishable model with an acyclic graph. The result is a weak indistinguishability
theorem (see chapter 12). Stetzl and Lee focus exclusively on linear structural equation
models with free parameters for linear coefficients and variances, and they define
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equivalence in terms of maximum likelihood estimates of the parameters and hence of the
covariance matrix. No general graph theoretic characterizations are provided, although
interesting attempts were made in Lee’s thesis.

The notion of a pattern and theorem 4.2 are due to Verma and Pearl (1990b). We state
some results about indistinguishability relations for causally insufficient graphs in chapter
6. A well-known result due to Suppes and Zanotti (1981) asserts that every joint
distribution P on a set X of discrete variables is the marginal of some joint distribution P*
on X ∪ {T} satisfying the Markov Condition for a graph G in which T is the common
cause of all variables in X and there are no other directed edges. The result can be viewed
as a weak indistinguishability theorem when causally insufficient structures are admitted.
Except in special cases, P* cannot be faithful to G.

72  Chapter 4
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5 Discovery Algorithms for Causally Sufficient Structures

5.1 Discovery Problems
A discovery problem is composed of a set of alternative structures, one of which is the
source of data, but any of which, for all the investigator knows before the inquiry, could
be the structure from which the data are obtained. There is something to be found out
about the actual structure, whichever it is. It may be that we want to settle a particular
hypothesis that is true in some of the possible structures and false in others, or it may be
that we want to know the complete theory of a certain sort of phenomenon. In this book,
and in much of the social sciences and epidemiology, the alternative structures in a
discovery problem are typically directed acyclic graphs paired with joint probability
distributions on their vertices. We usually want to know something about the structure of
the graph that represents causal influences, and we may also want to know about the
distribution of values of variables in the graph for a given population.

A discovery problem also includes a characterization of a kind of evidence; for
example, data may be available for some of the variables but not others, and the data may
include the actual probability or conditional independence relations or, more realistically,
simply the values of the variables for random samples. Our theoretical discussions will
usually consider discovery problems in which the data include the true conditional
independence relations among the measured variables, but our examples and applications
will always involve inferences from statistical samples.

A method solves a discovery problem in the limit if as the sample size increases
without bound the method converges to the true answer to the question or to the true
theory, whatever (consistent with prior knowledge) the truth might be. A procedure for
inferring causes does not solve the problem posed if for some of the alternative
possibilities it gives no answer or the wrong answer, although it may solve another, easier
problem that arises when some of the alternative structures are excluded. Which causal
discovery problems are solvable in the limit, and by what methods, are determinate,
mathematical questions. The metaphysical wrangling lies entirely in motivating the
problems, not in solving them. The remainder of this book is an introduction to the study
of these formal questions and to the practical applications of particular answers.

5.2 Search Strategies in Statistics
The statistical literature is replete with procedures that use data to guide a search for
some restricted parametrization of alternative distributions. When the representation of
the statistical hypothesis is used to guide policy or practice, to predict what will happen if
some of the variables are manipulated or to retrodict what would have happened if some
of the variables had in the past been manipulated, then the statistical hypotheses are
usually also causal hypotheses. In that case the first question is whether the search
procedures are any good at finding causal structure.

without bound,
,
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Many of the search strategies proposed in the statistical literature are best-only beam
searches, beginning either with an arbitrary model, or with a complete (or almost
complete) structure that entails no constraints, or with a completely (or almost
completely) constrained structure in which all variables are independent. Statisticians
sometimes refer to the latter procedure as “forward” search, and the former procedures as
“backward” search. Depending on which order is followed, the procedures iteratively
apply a fit measure of some kind to determine which fixed parameter in the
parametrization will most improve fit when freed—or which free parameter should be
fixed. They then reestimate the modified structure to determine if a stopping criterion is
satisfied. A “forward” procedure of this kind was proposed by Arthur Dempster (1972)
for covariance structures, and a “backward” procedure was proposed by his student,
Nanny Wermuth (1976), for both log-linear and linear systems whose distributions are
“multiplicative”—in our terms, satisfy the Markov condition for some directed acyclic
graph. Forward search algorithms using goodness of fit statistics were proposed for
mutinormal linear systems by Byron (1972) and by Sorbom (1975) and versions of them
have been automated in the LISREL (Joreskog and Sorbom 1984) and EQS (Bentler
1985) estimation packages. The latter program also contains a backward search
procedure. Versions of the general strategy for log-linear parametrizations are described
by Bishop, Fienberg and Holland (1975), by Fienberg (1977) by Aitkin (1979), by
Christensen (1990) and many others. The same representations and search strategies have
been used in the systems science literature by Klir and Parviz (1976) and others under the
title of “reconstructability” analysis. Stepwise regression procedures in logistic regression
can be viewed as versions of the same strategies. The same strategies have been applied
to undirected and directed graph representations. They are illustrated for a variety of
examples by Whittaker (1990).

In each of these cases the general statistical search strategy is unsatisfactory if the goal
is not just to estimate the distribution but also to identify the causal structure or to predict
the results of manipulations of some of the variables. When used to these ends, these
searches are inefficient and unreliable for at least three reasons: (i) they often search a
hypothesis space that excludes many causal hypotheses and includes many hypotheses of
no causal significance; (ii) the specifications of distributions typically force the use of
numerical procedures that for statistical or computational reasons unnecessarily limit
search; (iii) restrictions requiring the search to output a single hypothesis entail that the
search fails to output alternative hypotheses that may be indistinguishable given the
evidence. We will consider each of these points in more detail.

5.2.1 The Wrong Hypothesis Space
In searching for the correct causal hypothesis the space of alternatives should, insofar as
possible, include all causal hypotheses that have not been ruled out by background
knowledge and no hypotheses that do not have a causal interpretation. The log-linear
formalism, introduced by Birch in 1963, provides an important example of a search space
poorly adapted to the goal of finding correct causal hypotheses. For discrete data a more
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appropriate search space turns out to be a sub-class of conjunctions of log-linear
hypotheses.

The log-linear formalism provides a general framework for the analysis of
contingency tables of any dimension. In the discrete case we are concerned with variables
that take a finite number of values, whether ordered or not. For a system with four
variables, for example, we will let i range over the values of the first variable, j the
second, k the third and l the fourth. In a particular sample or population, xijkl will then
denote the number of units that have value i for the first variable, value j for the second
variable, k for the third and l for the fourth. We will refer to a particular vector of values
for the four (or other number of) variables as a “cell.” In the formalism the joint
distribution over the cells is given by an equation for the logarithm of the expected value
of each cell, expressed as the sum of a number of parameters. For example, in Birch’s
notation in which mijk denotes the expected number in cell i, j, k,

ln(mijk) = u + u1i + u2j + u3k + u12ij + u13ik + u23jk + u123ijk

The various u’s are arbitrary parameters with an associated set of indices; only seven of
the u terms can be independent for a system of three binary variables. The power of
Birch’s parametrization lies in at least two features. First, associations in multi-
dimensional contingency tables that had long been studied in statistics can be represented
as hypotheses that certain of the parameters are zero. For example Bartlett’s
representation of the hypothesis of no “three factor interaction” among three binary
variables is given by the following relation among the cell probabilities:

p111p122p212p221 = p222p211p121p112

Birch shows that a generalization of this condition to variables of any finite number of
categories obtains if and only if various of the u terms are zero. Second, for each
hypothesis obtained by setting some of the u terms to zero, there exist iterative methods
for obtaining maximum likelihood estimates for a variety of sampling procedures.

Birch’s results were extended by several researchers. A hypothesis in the log-linear
parametrization has come to be treated as a specification that particular u terms vanish.
There are direct maximum likelihood estimates of the expected cell counts for certain
forms of such specifications, and for other specifications iterative algorithms have been
developed that converge to the maximum likelihood estimates. Various formal
motivations have been developed for focusing on particular classes of log-linear
parametrizations. Using his information-based distance measure, for example, Kullback
(1959) derived a class of log-linear relations that could be obtained in the same way from
a slightly different perspective, the maximum entropy principle. Fienberg (1977) and
others have urged restricting attention to “hierarchical models”—log linear
parametrizations in which if a u term with a set of indices is put to zero so are all other u
terms whose indices contain the first set. The motivation for the restriction is that these
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parametrizations bear a formal analogy to analysis of variance, so that the u1 term, for
example, may be thought of as the variation from the grand mean due to the action of the
first variable.

To see the difficulties in representing causal structure in the log-linear formalism,
consider the most fundamental causal relation of the preceding chapters, namely any
collider A → B ← C in which A and C are not adjacent. Such a structure corresponds
(assuming faithfulness) to two facts about conditional independence: first, A and C are
independent conditional on some set of variables that does not contain B; second, A and C
are dependent conditional on every set that does contain B but not A or C. In the very
simplest case of this kind, in which A, B, and C are the only variables, A and B are
independent, but dependent conditional on C. The hypothesis that these relations obtain
cannot be expressed in the log-linear formalism by vanishing u terms. Birch himself
observed that in a three variable system the hypothesis that in the marginal distribution
two of the variables are independent cannot be expressed by the vanishing of any subset
of parameters in the general log-linear expansion for the three variables. There are of
course log-linear hypotheses that are consistent with marginal independence hypotheses,
but do not entail them.

Another inappropriate search space is provided by the LISREL program. The LISREL
formalism—at least as intended by its authors, Joreskog and Sorbom—allows search for
structures corresponding to causal relations among measured variables when there are no
unmeasured common causes, but when the search includes structures with unmeasured
common causes, causal relations among measured variables are forbidden. Users have
found ways around these restrictions (Glymour et al. 1987; Bollen 1989), rather to the
dissatisfaction of the authors of the program (Joreskog and Sorbom 1990). LISREL owes
these peculiarities to its ancestry in factor analysis, which provides still another example
of an artificially contracted search space. Thurstone (1935) carefully and repeatedly
emphasized that his “factors” were not to be taken as real causes but only as a
mathematical simplifications of the measured correlations. Of course factors were
immediately treated as hypothetical causes. But so applied, Thurstone’s methods exclude
a priori any causal relations among measured variables themselves, they exclude the
possibility that measured variables are causes of unmeasured variables, and they cannot
determine causal structure—only correlations—among the latent variables.

5.2.2 Computational and Statistical Limitations
Some searches examine only a small portion of the possible space of hypotheses because
they require computationally intensive iterative algorithms in order to test each
hypothesis. For example, the automatic model respecification procedure in LISREL re-
estimates the entire model every time it examines a new hypothesis. One consequence is
that the slowness of the search prohibits the procedure from examining large portions of
the hypothesis space where the truth may be hiding.

Another common problem is that many searches require the determination of
conditional independence relations that cannot be reliably tested. Many log-linear search
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procedures implicitly require the estimation of probabilities conditional on a set of
variables whose size equals the total number of variables minus two, no matter what the
true structure turns out to be. Estimates of higher order conditional probabilities and tests
of higher order conditional independencies tend to be unreliable (especially with
variables taking several discrete values) because at reasonable sample sizes most cells
corresponding to an array of values of the variables will be empty or nearly empty. This
disadvantage is not inherent in the log-linear formalism. A recent algorithm proposed by
Fung and Crawford (1990) for searching the set of graphical models (the subset of the
hierarchical log-linear models that can be represented by undirected independence
graphs) reduces the need for testing high order conditional independencies. A version of
the same problem arises for linear regression with a large number of regressors and small
sample size, since in tests of the hypothesis that a regression coefficient vanishes, the
sample size is effectively reduced by the number of other regressors, or the degrees of
freedom are altered, so that the test may have little power against reasonable alternatives.

A related but equally fundamental difficulty is that searches for models of discrete
data that use some measure of fit requiring model estimation at each (or any) stage are
subject to an exponential increase in the number of cells that must be estimated as the
number of variables increases. If, to take the simplest case, the variables are binary, then
the number of cells for which an expected value must be computed is 2n. When n = 50,
say, the number of cells is astronomical.

One might think that these difficulties will beset any possible reliable search
procedure. As we will see in this chapter and the next, that is not the case.

5.2.3 Generating a Single Hypothesis
If a kind of evidence is incapable of reliably distinguishing when one rather than another
of several alternative hypotheses is correct, then an adequate search procedure should
reflect this fact by outputting all of them. Producing only a single hypothesis in such
circumstances misleads the user, and denies her information that may be vital in making
decisions.

An example of this sort of flaw is illustrated by the LISREL and EQS programs.
Beginning with a structure constructed from background knowledge, each of these
programs searches for causal models among linear structures using a best-only beam
search. At each stage they free the fixed parameter that is judged will most increase the
fit of the model to the data. Since freeing a number of different fixed parameters may
result in the very same improvement in fit, the programs employ an arbitrary tie-breaking
procedure. The output of the search is a single linear model and any alternative
statistically indistinguishable models are ignored.

In a later chapter we will describe a large simulation study of the reliabilities of the
statistical search procedures implemented in the LISREL and EQS programs for linear
models. Because of the computational problems and arbitrary choices from among
indistinguishable models at various stages of search, we find that the procedures are of
little value in discovering dependencies in the structures from which the data are

disadvantage is not inherent in the log-linear formalism. An algorithm proposed by 
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generated, even when the programs are given most of the structure correctly to start with,
including even correct linear coefficients and variances. The study involves systems with
unmeasured variables, but we expect that similar results would be obtained in studies
with causally sufficient systems.

5.2.4 Other Approaches
There are several exceptions to the generalization that statistical search strategies have
been confined to generate-and-test-best-only procedures. Edwards and Havranek (1987)
describe a form of procedure that tests models in sequence, under the assumption that if a
model passes the test so will any more general model and if a model fails the test so will
any more restricted model. Their proposal is to keep track of a bounding set of rejected
hypotheses and a bounding set of accepted hypotheses until all possible hypotheses (in
some parametrization) are classified. Apparently unknown to Edwards and Havranek, the
same idea was earlier developed at length in the artificial intelligence literature under the
name of “version spaces” (Mitchell 1977). For the applications they have in mind, no
analysis of complexity or reliability is available.

5.2.5 Bayesian Methods
The best known discussion of search problems in statistics from a Bayesian perspective is
Leamer’s (1978). Leamer’s book contains a number of interesting points, including a
consideration of what a Bayesian should do upon meeting a novel hypothesis, but it does
not contain a method for reliable search. Considering the use of regression methods in
causal inference, for example, Leamer subsequntly recommended analyzing separately
the sets of relevant regressors endorsed by any opinion, and giving separate Bayesian
updates of distributions of parameters for each of these sets of regressors. The problem of
deciding which variables actually influence an outcome of interest is effectively ignored.

A much more promising Bayesian approach to search has been developed by Cooper
and Herskovits (1991, 1992). At present, their procedure is restricted to discrete variables
and requires a total ordering such that no later variable can cause an earlier variable. Each
directed graph compatible with the order is assigned a prior probability. The joint
distribution of the variables assigns each vertex in the graph a distribution conditional on
its parents, and these conditional probabilities parametrize the distributions for each
graph. Using Dirchelet priors, a density function is imposed on the parameters for each
graph. The data are used to update the density function by Bayes’s rule. The probability
of a graph is then just the integral of the density function over the distributions
compatible with the graph. The probability of an edge is the sum of the probabilities of
all graphs that contain it. Cooper and Herskovits use a greedy algorithm to construct the
output graph in stages. For each vertex X in the graph, the algorithm considers the effect
of adding to the parent set of X each individual predecessor of X that is not already a
parent of X; it chooses the vertex whose addition to the parent set of X most increases the
posterior probability of the local structure consisting of X and its parents. Parents are
added to X in this fashion until there is no single vertex that can be added to the parent set

parent of X; it chooses the vertex whose addition to the parent set of X most increases 
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of X that will increase the posterior probability of the local structure. The program runs
very well even on quite large sets of variables provided the true graph is sparse, and on
discrete data with a prior ordering appears to determine adjacencies with remarkable
accuracy. Its accuracy on dense graphs is not known at this time.

The Bayesian approach developed by Cooper and Herskovits has the advantages that
appropriate prior degrees of belief can be used in search, that models are output with
ratios of posterior distributions consistent with the specified prior distribution and the
data, and that under appropriate assumptions1 the method converges to the correct graph.
Because the method can calculate the ratio of the posterior probabilities of any pair of
graphs, it is possible to make inferences over multiple graphs weighted by the probability
of the graph (although generally some heuristic to consider only the most probable graphs
must be used because of the sheer number of possibilities.) The method works with
Dirchelet priors because the relevant integrals are available analytically and posterior
densities can therefore be rapidly evaluated without any numerical analysis. In view of
the combinatorics of graphs, any other application of the search architecture must have
the same feature. One problem is to extend the method to continuous variables, which
depends on finding a family of conjugate priors that can be rapidly updated for
parameters that describe graphs. Another, more fundamental, problem concerns whether
the requirement of a prior ordering of the variables can be relaxed while preserving
computational feasibility. Using a fixed ordering of the variables reduces the
combinatorics enormously, but in many applied cases any such ordering may be
uncertain. Since the procedure is reasonably fast, requiring about 15 minutes (on a
Macintosh II) to analyze data from the ALARM network described in chapter 1, Cooper
and his colleagues are investigating procedures that use a number of orderings and
compare the posterior probabilities of the graphs obtained. More recent work on Beyesian
search algorithms is described in chapter 12.

5.3 The Wermuth-Lauritzen Algorithm
In 1983 Wermuth and Lauritzen defined what they called a recursive diagram. A
recursive diagram is a directed acyclic graph G together with a total ordering of the
vertices of the graph such that V1 → V2 occurs only if V1 < V2 in the ordering. In addition
there is a probability distribution P on the vertices such that Vi is a parent of Vk if and
only if Vi < Vk and Vi and Vk are dependent conditional on the set of all other variables
previous to Vk in the ordering. Following Whittaker (1990), we call such systems directed
independence graphs.

We can view this definition as an algorithm for constructing causal graphs from
conditional independence relations and a time ordering of the variables. It has in fact
been used in this way by some authors (Whittaker 1990). Given an ordering of the
variables and a list of the conditional independence relations, proceed through the
variables in their time order, and for each variable Vk to each variable Vi such that Vi < Vk

apply the dependence test in the definition, and add Vi → Vk if the test is passed. The
procedure will correctly recover the directed graph from the order and the independence
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relations of a faithful distribution in which, for discrete variables, every combination of
variable values has positive probability. In a sense, the discovery problem for causally
sufficient faithful systems is solved. In practice, however, the Wermuth-Lauritzen
algorithm is not feasible save for very small variable sets. The remaining issues are
therefore these:

(i) how to remove the requirement that an ordering of the variables be known beforehand;
(ii) how to improve on the computational efficiency and statistical requirements of the
Wermuth-Lauritzen procedure;
(iii) how to remove the tacit restriction to causally sufficient systems of variables.

In this chapter we will address the first two of these problems. The problem of causal
inference when unmeasured common causes, or “latent variables,” may be acting will be
taken up in chapter 6.

5.4 New Algorithms
We will describe several algorithms for discovering causal structure (assuming causal
sufficiency); they eliminate the need for a prior ordering of the variables and all but two
of them improve computational efficiency and reduce the difficulty of statistical
decisions in comparison with the Wermuth-Lauritzen algorithm. Some of the
improvements are dramatic, others less so. Each of the search procedures described can
also be used on discrete data to search for graphical log-linear models. (For each triple of
variables, if X → Y ← Z occurs in the directed graph, and X is not adjacent to Z, add an
undirected edge between X and Z; then remove all arrowheads from the graph. The result
is an undirected independence graph.)

Under the following assumptions all of the algorithms presented in this section
provably recover features of graphs faithful to the population distribution:

(i) The set of observed variables is causally sufficient.
(ii) Every unit in the population has the same causal relations among the variables.
(iii) The distribution of the observed variables is faithful to an acyclic directed graph of
the causal structure (in the discrete case) or linearly faithful to such a graph (in the linear
case).
(iv) The statistical decisions required by the algorithms are correct for the population.

The fourth requirement is unnecessarily strong, since the algorithms will in many cases
succeed even if some statistical decisions are in error. Nonetheless, this is a strong set of
assumptions that is often not met in practice, but it is no stronger than the assumptions
that would be required to warrant most of the particular statistical models with a causal
interpretation found in the medical, behavioral, and social scientific literature. In
subsequent chapters we will examine the consequences of weakening some of these
assumptions.
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In practice, the algorithms take as input either a covariance matrix or cell counts.
Where d-separation facts are needed by an algorithm, in the discrete case the procedure
performs tests of conditional independence and in the linear continuous case tests for
vanishing partial correlations. (Recall that if P is a discrete distribution faithful to a graph
G, then A and B are d-separated given a set of variables C if and only A and B are
conditionally independent given C, and if P is a distribution linearly faithful to a graph G,
then A and B are d-separated given C if and only if AB.C = 0.) The algorithms construct
the set of directed acyclic graphs that satisfy the given set of d-separability relations, if
any such graph exists. Since the results of either kind of test are used only to determine
the d-separation relations among the variables, we will speak as if the input to the
algorithms is simply the d-separation relations themselves.2

Let us say that a graph G faithfully represents a list of d-separations L if and only if
all and only the d-separations in L are true of G. A list L of d-separations is faithful if
and only some acyclic directed graph faithfully represents L. In practice, even if a
distribution is faithful to the causal structure that generates it, sampling error or minor
violations of the assumptions of the statistical tests employed can lead to errors in
judgment about the properties of the population. The robustness of the procedures to
erroneous specification of the distribution family or to sampling variation can be
investigated by Monte Carlo simulation methods.

Each of the following algorithms can have as output either a class of directed acyclic
graphs, or else a single mixed object with both directed and undirected edges—the
pattern that represents a class of graphs. Recall that pattern  represents a set of directed
acyclic graphs. A graph G is in the set of graphs represented by  if and only if:

(i) G has the same adjacency relations as ;
(ii) if the edge between A and B is oriented A → B in , then it is oriented A → B in G;
(iii) if Y is an unshielded collider on the path <X,Y,Z> in G then Y is an unshielded
collider on <X,Y,Z> in .

If any of the algorithms use as input a covariance matrix from a distribution linearly
faithful to G, or cell counts from a distribution faithful to G, we will say the input is data
faithful to G. All of the algorithms we will discuss in this section have the following
correctness property:

THEOREM 5.1: If the input to any of the algorithms is data faithful to G, the output of each
of the algorithms is a pattern that represents the faithful indistinguishability class of G.

The algorithms do not, however, always provide a pattern that explicitly characterizes
all of the orientation information implicit in the d-separation facts; a pattern may be
produced that is consistent only with one orientation of an edge but does not explicitly
contain the corresponding arrowhead.

THEOREM 5.1: If the input to any of the algorithms is data faithful to G, the output of each
of the algorithms is a pattern that represents the faithful indistinguishability class of G.

The algorithms do not, however, always provide a pattern that explicitly characterizes
all of the orientation information implicit in the d-separation facts; a pattern may be
produced that is consistent only with one orientation of an edge but does not explicitly
contain the corresponding arrowhead.
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5.4.1 The SGS Algorithm
The correctness of the SGS algorithm (Spirtes, Glymour, and Scheines 1990c) follows
from theorem 3.4:

THEOREM 3.4: If P is faithful to some directed acyclic graph, then P is faithful to G if and
only if

(i) for all vertices, X, Y of G, X and Y are adjacent if and only if X and Y are dependent
conditional on every set of vertices of G that does not include X or Y; and
(ii) for all vertices X, Y, Z such that X is adjacent to Y and Y is adjacent to Z and X and Z
are not adjacent, X → Y ← Z is a subgraph of G if and only if X, Z are dependent
conditional on every set containing Y but not X or Z.

SGS Algorithm

A.) Form the complete undirected graph H on the vertex set V.
B.) For each pair of vertices A and B, if there exists a subset S of V\{A,B} such that A and
B are d-separated given S, remove the edge between A and B from H.
C.) Let K be the undirected graph resulting from step B). For each triple of vertices A, B,
and C such that the pair A and B and the pair B and C are each adjacent in K (written as A
- B - C) but the pair A and C are not adjacent in K, orient A - B - C as A → B ← C if and
only if there is no subset S of {B} ∪ V\{A,C} that d-separates A and C.
D.) repeat

If A → B, B and C are adjacent, A and C are not adjacent, and there is no arrowhead
at B, then orient B - C as B → C.
If there is a directed path from A to B, and an edge between A and B, then orient A -
B as A → B.

until no more edges can be oriented.

5.4.1.1 Complexity
Reliability is one thing, efficiency another. Step B) of the SGS algorithm requires that for
each pair of variables adjacent in G we look at all possible subsets of the remaining
variables, and that, of course, is an exponential search. In the worst case that complexity
is unavoidable if reliability is to be maintained. Two variables can be dependent
conditional on a set U but independent on a superset or subset of U. Any procedure that
in the worst case does not examine the conditional independence relations of variables X,
Y on all subsets of vertices not containing that pair will fail—there will be some structure
the procedure does not get correctly.

5.4.1.2 Stability of SGS
We need to consider whether an algorithm remains reasonably reliable when the data are
imperfect. We will use the notion of stability informally: If intuitively small errors of
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input produce intuitively large errors of output, the algorithm is not stable. For the SGS
algorithm, an intuitively small error in input consists of a few d-separation relations that
are falsely included or falsely excluded from the input. An intuitively small error for Step
B is a few undirected edges erroneously included in or omitted from the output. An
intuitively small error for Step C is a few edges misoriented.

Step B) of the SGS algorithm is stable. If, for example, a single correct d-separation
relation is omitted from the input, the algorithm will nonetheless produce the correct
undirected graph unless there is no other set besides U on which X, Y are d-separated.
Even in that case Step B will make an error in postulating an X - Y connection, but no
other errors. If X and Y are adjacent in the true graph, but it is incorrectly judged that X
and Y are d-separated given U, the algorithm will fail to connect X and Y but no other
error will be made.

Step C) of the SGS algorithm is less stable. A small error in either component of the
input, either the undirected graph or the list of d-separation relations, can (and often will)
produce large errors in the output. That is because the edges that occur in collisions
determine the orientations of other edges in the graph, and if input errors lead the
algorithm erroneously to include or exclude a collision, the error may affect the
orientations of many other edges in the graph.

Suppose, for example, an edge connecting X, Z is erroneously omitted in the
undirected graph input to step C), and X - Y - Z correctly occurs in the input. Then if X
and Z are not d-separated by any subset of variables containing Y but not X, Z, the
algorithm will mistakenly require a collision at Y, and this requirement will ramify
through orientations of other edges. Or, if the true structure contains a collision at Y but X
- Y is omitted in the input to step C), no unique orientation will be given to Y - Z, and this
uncertainty may ramify through the orientations of other edges on paths including Z.

Instabilities may also arise in Step C) because of errors in the list of d-separation
relations input, even when the underlying undirected graph is correct. If in the input to
C), X is adjacent to Y and Y to Z but not X to Z and a d-separation relation between X and
Z given S containing Y is omitted from the input, no orientation error will result unless no
other set containing Y d-separates X and Z. But if in the true directed graph, the edges
between X and Y and between Y and Z collide at Y, and a d-separation relation involving
X and Z and some set U containing Y but not X or Z is erroneously included in the input,
the algorithm will conclude that there is no collision at Y, and this error may be ramified
to other edges.

A little reflection on Step C) reveals that its output may not be a collection of directed
acyclic graphs if one of the four assumptions listed at the beginning of this section is
violated. This is not necessarily a defect of the algorithm. If the algorithm finds that the
edges X - Y - Z collide at Y, and Y - Z - W collide at Z, it will create a pattern with an edge
Y ↔ Z. Double headed edges can occur when the causal structure is not causally
sufficient, or when there is an error in input (as from sampling variation). They have a
theoretical role in identifying the presence of unmeasured common causes, an issue
discussed further in the next chapter.
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5.4.2 The PC Algorithm
In the worst case, the SGS algorithm requires a number of d-separation tests that
increases exponentially with the number of vertices, as must any algorithm based on
conditional independence relations or vanishing partial correlations. But the SGS
algorithm is very inefficient because for edges in the true graph the worst case is also the
expected case. For any undirected edge that is in the graph G, the number of d-separation
tests that must be conducted in stage B) of the algorithm is unaffected by the connectivity
of the true graph, and therefore even for sparse graphs the algorithm rapidly becomes
infeasible as the number of vertices increases. Besides problems of computational
feasibility, the algorithm has problems of reliability when applied to sample data. The
determination of higher order conditional independence relations from sample
distributions is generally less reliable than is the determination of lower order
independence relations. With, say, 37 variables taking three values each, to determine the
conditional independence of two variables on the set of all remaining variables requires
considering the relations among the frequencies of 335 distinct states, only a fraction of
which will be instantiated even in very large samples.

We should like an algorithm that has the same input/output relations as the SGS
procedure for faithful distributions but which for sparse graphs does not require the
testing of higher order independence relations in the discrete case, and in any case
requires testing as few d-separation relations as possible. The following procedure
(Spirtes, Glymour, and Scheines 1991) starts by forming the complete undirected graph,
then “thins” that graph by removing edges with zero order conditional independence
relations, thins again with first order conditional independence relations, and so on. The
set of variables conditioned on need only be a subset of the set of variables adjacent to
one or the other of the variables conditioned.

Let Adjacencies(C,A) be the set of vertices adjacent to A in directed acyclic graph C.
(In the algorithm, the graph C is continually updated, so Adjacencies(C,A) is constantly
changing as the algorithm progresses.)

PC Algorithm

A.) Form the complete undirected graph C on the vertex set V.
B.)

n = 0.
repeat

repeat
select an ordered pair of variables X and Y that are adjacent in C such that
Adjacencies(C,X)\{Y} has cardinality greater than or equal to n, and a subset S
of Adjacencies(C,X)\{Y} of cardinality n, and if X and Y are d-separated given S
delete edge X - Y from C and record S in Sepset(X,Y) and Sepset(Y,X);

Let Adjacencies(C, A) be the set of vertices adjacent to A in directed acyclic graph C. 
(In the algorithm, the graph C is continually updated, so Adjacencies(C, A) is constantly 
changing as the algorithm progresses.) 
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until all ordered pairs of adjacent variables X and Y such that
Adjacencies(C,X)\{Y} has cardinality greater than or equal to n and all subsets S of
Adjacencies(C,X)\{Y} of cardinality n have been tested for d-separation;
n = n + 1;

until for each ordered pair of adjacent vertices X, Y, Adjacencies(C,X)\{Y} is of
cardinality less than n.

C.) For each triple of vertices X, Y, Z such that the pair X, Y and the pair Y, Z are each
adjacent in C but the pair X, Z are not adjacent in C, orient X - Y - Z as X → Y ← Z if and
only if Y is not in Sepset(X,Z).
D.) repeat

If A → B, B and C are adjacent, A and C are not adjacent, and there is no arrowhead
at B, then orient B - C as B → C.
If there is a directed path from A to B, and an edge between A and B, then orient A -
B as A → B.

until no more edges can be oriented.

Figure 5.1 traces the operation of the first two parts of the PC algorithm.
Although it does not in this case, stage B) of the algorithm may continue testing for

some steps after the set of adjacencies in the true directed graph has been identified. The
undirected graph at the bottom of figure 5.1 is now partially oriented in step C). The
triples of variables with only two adjacencies among them are:

A - B - C; A - B -D;
C - B - D; B - C - E;
B - D - E; C - E - D

E is not in Sepset(C,D) so C - E and E - D collide at E. None of the other triples form
colliders. The final pattern produced by the algorithm is shown in figure 5.2.

The pattern in figure 5.2 characterizes a faithful indistinguishability class. Every
orientation of the undirected edges in figure 5.2 is permissible that does not include a
collision at B.

5.4.2.1 Complexity
The complexity of the algorithm for a graph G is bounded by the largest degree in G. Let
k be the maximal degree of any vertex and let n be the number of vertices. Then in the
worst case the number of conditional independence tests required by the algorithm is
bounded by
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which is bounded by
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Figure 5.1

This is a loose upper bound even in the worst case; it assumes that in the worst case for n
and k, no two variables are d-separated by a set of less than cardinality k, and for many
values of n and k we have been unable to find graphs with that property. While we have
no formal expected complexity analysis of the problem, the worst case is clearly rare, and
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the average number of conditional independence tests required for graphs of maximal
degree k is much smaller. In practice it is possible to recover sparse graphs with as many
as a hundred variables. Of course the computational requirements increase exponentially
with k.

The structure of the algorithm and the fact that it continues to test even after having
found the correct graph suggest a natural heuristic for very large variable sets whose
causal connections are expected to be sparse, namely to fix a bound on the order of
conditional independence relations that will be tested.

5.4.2.2 Stability of PC
In theory, the PC Algorithm is unstable in both steps B) and C) although in practice step
B) has proved to be much more reliable than step C).

If an edge is mistakenly removed from the true graph at an early stage of step B) of the
algorithm, then other edges which are not in the true graph may be included in the output.
Consider the following example.

A                  B                  C                   D

E

Figure 5.3

If the edge E - D is mistakenly removed from the initial complete graph then at a
subsequent stage of the search the edge B - D will not be removed, because E will no
longer be in the adjacency set for D, and B and D are dependent on every subset of A and
C. The omission of an edge can also lead to orientation errors. If an edge is mistakenly
left in the graph and there are no additional errors in the list of d-separations in the input,
the only further errors that result are that some edges which theoretically could be
oriented, will not be oriented.

Step C) of the algorithm is unstable for the same reasons as in step C) of the SGS
algorithm.
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The PC algorithm is faster than the SGS algorithm because it tests fewer d-separation
relations. Given a faithful list of d-separability relations, the two algorithms output the
same set of pattern graphs. But if the list of d-separability relations is not faithful, due to
sampling error for example, the two algorithms can output different pattern graphs.
Consider the following example.

A                 B                    C                    D E

Figure 5.4

According to this graph, A and E are d-separated from each other given any non-empty
subset of B, C, and D. If, after the A - C and E - C edges have been removed from the
initial undirected graph, the procedure incorrectly judges that A and E are not d-separated
given any non-empty subset of B and D, the PC algorithm will incorrectly include an
edge between A and E, because it only tests whether A and E are d-separated given
subsets of the adjacencies of A and E. On the other hand, because the SGS algorithm tests
whether A and E are d-separated given any subset of V\{A,B}, it would properly
recognize that there is not an edge between A and E because A and E are d-separated
given C.

In contrast, if after the A - E and B - E edges are removed from the initial undirected
graph, it is mistakenly judged that A and B are d-separated given E, the SGS algorithm
will mistakenly remove the A → B edge. If the A - E and B - E edges are removed first,
the PC algorithm, would correctly leave the A → B edge in, because it would not test
whether A and B are d-separated given E.

Because the PC algorithm attempts to use “local” information to judge whether an
edge exists or not, it is not guaranteed to produce a graph that is in some sense “closest”
to an unfaithful distribution. Consider the example shown in figure 5.5.

In a distribution faithful to this graph, every variable is dependent on every other
variable. Suppose a test determines that A and B are independent conditional on some
other variable, either because of some coincidental parameter values, or because of
sampling error. The PC algorithm would then remove the A - B edge in order to satisfy
that constraint. In doing so, however, it would disconnect the graph. The resulting graph
would entail that A and all of its descendants to the left are independent of B and all of its
descendants. So, in order to satisfy one conditional independence constraint, the PC
algorithm may produce a graph that violates a great many independence constraints. In a
number of data sets the correlations between two variables do not vanish but the output
pattern disconnects them. For greater reliability the procedure should be supplemented
with a repair algorithm, for which the Cooper and Herskovits Bayesian procedure might
suffice in the discrete case; alternatively, a variation of the procedure described in chapter
11 could be applied.
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A B

Figure 5.5

5.4.2.3 The PC* Algorithm
The PC algorithm is computationally efficient and asymptotically reliable, but on sample
data the procedure takes unnecessary risks. In determining whether to eliminate an
undirected edge between variables A and B, the procedure may test every subset of the
adjacency set of A and of the adjacency set of B. But the independence or dependence of
A and B on many of these subsets of variables may be entirely irrelevant to the causal
relations between A and B. For a distribution faithful to a directed acyclic graph, if
variables A and B are independent conditional given Parents(A) or given Parents(B) then
they are independent given a subset of Parents(A) or given a subset of Parents(B)
consisting only of vertices lying on undirected paths between A and B. It is sufficient,
then, to test for the conditional independence of A and B given subsets of variables
adjacent to A and subsets of variables adjacent to B that are on undirected paths between
A and B. Call the modified algorithm PC*.

The PC and PC* algorithms yield the same output given a faithful list of conditional
independence relations or correlations as input, but they may differ given conditional
independence relations determined from tests on sample data. The PC* algorithm avoids
one kind of error made by the PC algorithm. If, however, at an early stage the PC*
algorithm mistakenly disconnects a path between X and Y it may then mistakenly leave
the X - Y edge in the undirected graph, while the PC algorithm, given the same data,
might avoid that error. Moreover, whatever increased reliability the PC* algorithm may
have is bought at great cost, since the algorithm must at each stage of step B) keep track
of all of the undirected paths in the graph it considers at that stage. The number of
undirected paths is typically very large, and the memory requirements of the PC*
algorithm are not feasible save for relatively small numbers of variables, in which case it
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may be the algorithm of choice. For large numbers of variables the PC algorithm must be
used instead, although if the true graph is sparse, the PC algorithm can be used until the
average degree of the undirected graph C is small, after which stage the PC* algorithm
may be used. Later in this chapter we will describe the performance of the two algorithms
on discrete data taken from Christensen 1990.

5.4.2.4 Speed-Up Heuristics for Ordering Tests
Step B of the PC algorithm selects some variable pair and some subset S of a given size
to test for d-separation. The faster edges are eliminated from the complete graph, the
smaller the search that has to be conducted at later stages of the algorithm, and the faster
the algorithm runs. Hence, it is best to select first for testing those variable pairs A and B
and subsets S for which A and B are most likely to be d-separated by S. We have
considered three variants of the PC algorithm that use different methods of selecting the
order of tests.

Heuristic 1 Test the variable pairs and subsets S in lexicographic order. (We will call this
PC–1.)

Heuristic 2 First test those variables pairs that are least dependent3 in probability. The
conditioning subsets are selected by lexicographic order. (We will call this PC–2.)

Heuristic 3 For a given variable A, first test those variables B that are least
probabilistically dependent on A, conditional on those subsets of variables that are most
probabilistically dependent on A. (We will call this PC–3.)

The intuition behind heuristic 2 is that variables with the highest probabilistic
dependence are most likely to be adjacent in the true graph, and hence not ever
eliminated from the graph being constructed, while those with the smallest probabilistic
dependence are least likely to be adjacent in the true graph. Of course, no such relation
strictly holds.

The intuition behind heuristic 3 is similar. A variable B that is not genuinely adjacent
to a variable A is d-separated from A given some subset of the variables that are adjacent
to A or given some subset of the variables that are adjacent to B in the true graph.
Assuming that variables with the highest probabilistic dependence upon A are most likely
to be adjacent to A in the true graph, this suggests testing whether A is d-separated from
variables with a low probabilistic dependence on A, conditional on variables with a high
probabilistic dependence upon A.

5.4.3 The IG (Independence Graph) Algorithm
Verma and Pearl (1990) have suggested a variation of the SGS algorithm. In their
alternative, the first step in searching for the directed acyclic graph is to construct the
undirected independence graph N, that is, for each pair of variables A, B introduce an
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undirected edge between them if they are dependent conditional on the set of all other
variables. In the undirected independence graph for a distribution faithful to a directed
acyclic graph the parents of any variable form a maximal complete subgraph—a clique.
Again for each pair of variables A, B adjacent in N, determine if A and B are d-separated
given any subsets of variables in the cliques in N containing A or B. If so A is not adjacent
to B in G. The complexity is thus a function of the size of the largest clique in N.

Determining the cliques in a graph would appear to require unnecessary computation,
and in other than the worst case, testing for conditional independence of two variables
conditional on all members of the maximal clique of one or the other will involve a test
of unnecessarily high order. A better idea might be to blend the procedure with the PC
algorithm: modify step A of the PC algorithm by setting the initial graph in the PC
procedure to the undirected independence graph, rather than the complete undirected
graph, and then proceed in the same way. We will call this algorithm IG (independence
graph.)

The efficiency of these algorithms obviously depends upon how easily the
independence graph can be constructed. The off-diagonal elements of the standardized
inverse of the correlation matrix are the negatives of the partial correlation coefficients
between the corresponding variables given the remaining variables (see e.g., Whittaker
1990). Hence in the linear case, the independence graph can be efficiently constructed by
placing an edge between A and B if and only if the entry in the standardized inverse
correlation matrix is nonzero. In the discrete case, Fung and Crawford (1990) have
recently proposed a fast algorithm for constructing an independence graph from discrete
data. We have not tested their procedure as a preprocessor for the PC algorithm.

5.4.4 Variable Selection
While prior knowledge of causal structure can sometimes make the results of the
algorithms we have described more informative on real samples, correct selection of
variables is essential for reliable inference, and for that algorithms (at least these
algorithms) provide no help.

We can aggregate variables or we can aggregate distinct values of a variable. As in
Salmon’s imaginary example discussed in chapter 3, we sometimes measure a variable
that is an imprecise version of a more precise natural variable; we fail, in other words, to
distinguish values that have differing effects on other variables. Continuous variables are
often deliberately collapsed into a few discrete categories, sometimes because
contingency table methods offer the promise of statistical analysis free of the substantive
assumptions that would otherwise be required about the form of the functional
dependencies—e.g., linear or otherwise—and sometimes because some of the variables
to be analyzed are necessarily discrete and there are few methods available for problems
with mixtures of discrete and continuous variables. Sometimes, whether through
ignorance or even deliberately, we may aggregate two or more distinct variables with
distinct causal structures into a single scale. What effects can aggregation and collapse
have on the reliability of causal inference?



92  Chapter 5

We have already observed that if C is a cause of A and B and some proxy C �����C is
used that is not so precise as C and not perfectly correlated with C, it may be that A and B
are statistically dependent conditional on C . Examples of this sort appear whenever a
theory postulates a cause that is measured by proxies. Friedman (1957), for example,
advocated a much discussed theory in which consumption is caused by “permanent”
income which can only be measured by proxies; if Friedman’s theory were true,
regression of consumption on measured income would provide a biased estimate of the
regression coefficient of consumption on permanent income and might leave unexplained
correlations between consumption and other variables. Klepper (1988) has shown how, in
the linear normal case, such errors may be bounded.

Suppose we are given variables A, B, C such that A and B are independent conditional
on C. Let C � �PROJ(C) where PROJ(C) is a projection mapping the set of n values of C
to a set of m < n values. If there exist values c1, c2 for C such that P(A,B|C=c1) ≠
P(A,B|C=c2) and PROJ(C=c1) = PROJ(C=c2), then A and B are not independent
conditional on C . Independence relations can be made to appear rather than disappear by
collapsing values of a variable. Suppose that variable B, C are dependent. Let C �  
PROJ(C) where PROJ(C) is a projection mapping the set of n values of C to a set of m <
n values. If there exists a value c1 of C such that P(C = c1 | B) = P(C = c1) and PROJ(c1)
has a unique inverse and PROJ(ck) = PROJ(cj) for all k, j not equal to 1, then B and C ����
independent.

Pearl (personal communication) has pointed out that a very simple sort of aggregation
can produce an unfaithful distribution. Suppose A causes C1 and B causes C2, and C1 and
C2 are each binary, and there is no other causal connection among the variables. So {A,
C1} is independent of the set {B, C2}, but A and C1 are dependent and so are B and C2.
Introduce variable C taking values 0, 1, 2, 3 coding the different value pairs for C1 and
C2. Then the actual causal structure among A, B and C is shown in figure 5.6.

A                C                  C                  C                 B1 2

Figure 5.6

But in the joint distribution A and B are independent conditional on C, and so the joint
distribution is not faithful to any causal structure whatsoever. In this case the
unfaithfulness of the distribution is due to the fact that it is the marginal of a distribution
that is unfaithful because of deterministic relationships among the variables: the
independence of A and B given C follows directly from the application of D-separability
(see chapter 3) to figure 5.6. This sort of thing may sometimes happen in practice, but it
could always be tested for and in principle identified: Conditioning on A divides the
values of C into two equivalence classes each containing values of C with the same
conditional probability, and conditioning on B divides the values of C into a distinct pair
of equivalence classes. Letting the equivalence classes induced by A be values of one

A C1 C2C B
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variable and the equivalence classes induced by B be values of another variable recovers
C1 and C2.

5.4.5 Incorporating Background Knowledge
A user of any of these algorithms may have a great deal of background knowledge—or at
least belief—that could constrain the search. This knowledge might be about the
existence or non-existence of certain edges in the graph, or it might be about the
orientation of some of the edges, or it might be about the time order of the variables. How
can this background knowledge be used by the algorithms?

The most common sort of reliable prior belief orders or partially orders the variables
by time of occurrence: either measurements of A were taken before measurements of B,
or A and B are believed to be exact measures of events that are so ordered. Any of the
algorithms of this section can be easily modified to make two uses of such knowledge:

(i) In determining whether A and B are adjacent in the true graph by testing whether B is
independent of A conditional on some subset of the current adjacencies of A, do not test
for independence conditional on any set of variables that includes a variable that is later
than A.
(ii) If A and B are adjacent and B is later than A, orient the edge as A → B.

In the examples we give throughout this book the algorithms have been so modified,
and we sometimes make use of common sense time order, always noting where such
assumptions have been made.

Prior belief about whether one variable directly influences another can also be
incorporated in these algorithms: if prior belief forbids an adjacency, for example, the
algorithms need not bother to test for that adjacency; if prior belief requires than there be
a direct influence of one variable on another, the corresponding directed edge is imposed
and assumed in the orientation procedures for other edges. These procedures assume that
prior belief should override the results of unconstrained search, a preference that may not
always be judicious; they are nonetheless incorporated in versions of the TETRAD II
program with the PC algorithm.

5.5 Statistical Decisions
The algorithms we have described are completely modular, and can be applied given any
procedures for making the requisite statistical decisions about conditional independence
or vanishing partial correlations. The better the decisions the better the performance to be
expected from the algorithms. While tests of conditional independence relations form the
most obvious class of such decisions, any statistical constraints that give d-separability
relations for graphical structure will suffice. For example, in the linear normal case,
vanishing partial correlation is equivalent to conditional independence, and the statistical
decisions required by the algorithms could be provided by t-tests of the hypotheses that
partial correlations vanish. But vanishing partial correlation marks d-separability whether
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or not the distribution is normal, so long as linearity and linear Faithfulness hold.4 Hence
under these assumptions the test of any statistic that vanishes when partial correlations
vanish would suffice; one might, for example, use an F test for the square of the
semipartial correlation coefficient, which equals the square of the t-test for a
corresponding regression coefficient (Edwards 1976).

In the examples in this book we test whether XY.C = 0 using Fisher’s z:

z(ρXY.C,n) =
1

2
n − C − 3 ln

1+ ρ XY.C( )
1− ρ XY.C( )

 

 
 

 

 
 

XY.C = population partial correlation of X and Y given C, and |C| equals the number of
variables in C. If X, Y, and C are normally distributed and rXY.C denotes the sample partial
correlation of X and Y given C, the distribution of z( XY.C,n) - z(rXY.C,n) is standard normal
(Anderson 1984).

In the discrete case, for simplicity consider two variables. Recall that we view the
count in a particular cell, xij, as the value of a random variable obtained from sampling N
units from a multinomial distribution. Let xi+ denote the sum of the counts in all cells in
which the first variable has the value i, and similarly let x+j denote the sum of the counts
in all cells in which the second variable has the value j. On the hypothesis that the first
and second variables are independent, the expected value of the random variable xij is:

E(xij ) =
xi+ x+ j

N

Analogously, we can compute the expected values of cells on any hypothesis of
conditional independence from appropriate marginals. For example, on the hypothesis
that the first variable is independent of the second conditional on the third, the expected
value of the cell xijk is

E(xijk) =
xi+ kx+ jk

x+ +k

If there are more than three variables this formula applies to the expected value of the
marginal count of the i, j, k values of the first three variables, obtained by summing over
all other variables. The number of independent constraints that a conditional
independence hypothesis places on a distribution is an exponential function of the order
of the conditional independence relation and also depends on the number of distinct
values each variable can assume.

Tests of such independence hypotheses have used—among others—two statistics:
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X2 =
Observed − Expected( )2

Expected
∑

G2 = 2 Observed( )∑ ln
Observed

Expected

 
 
  

 

����� ����	��������� �����
���� ��� 2 with appropriate degrees of freedom. In the
examples in this book we calculate the degrees of freedom for a test of the independence
of A and B conditional on C in the following way. Let Cat(X) be a function which returns
the number of categories of the variable X, and n be the number of variables in C. Then
the number of degrees of freedom (df) in the test is:

df = Cat A( )−1( )× Cat B( ) − 1( )× Cat Ci( )
i=1

n

∏

We assume that there are no structural zeroes. As a heuristic, for each cell of the
distribution that has a zero entry, we reduce the number of degrees of freedom by one.5

Because the number of cells grows exponentially with the number of variables, it is
easy to construct cases with far more cells than there are data points. In that event most
cells in the full joint distribution will be empty, and even non-empty cells may have only
small counts. Indeed, it can readily happen that some of the marginal totals are zero and
in these cases the number of degrees of freedom must be reduced in the test. For reliable
estimation and testing, Fienberg recommends that the sample size be at least five times
the number of cells whose expected values are determined by the hypothesis under test.

For discrete data we fill out the PC algorithm with tests for independence using G2

which in simulations we have found more often leads to the correct graph than does X2.
In testing the conditional independence of two variables given a set of other variables, if
the sample size is less than ten times the number of cells to be fitted we assume the
variables are conditionally dependent.

5.6 Reliability and Probabilities of Error
Most of the algorithms we have described require statistical decisions which, as we have
just noted, can be implemented in the form of hypothesis tests. But the parameters of the
tests cannot be given their ordinary significance. The usual comforts of a statistical test
are the significance level, which offers assurance as to the limiting frequency with which
a true null hypothesis would erroneously be failed by the test, and the power against an
alternative, which is a function of the limiting frequency with which a false null
hypothesis would not be rejected when a specified alternative hypothesis is true. Except
in very large samples, neither the significance level nor the power of tests used within the
search algorithms to decide statistical dependence measures the long run frequency of
anything interesting about the search. What does?
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The error probabilities one might naturally want to know for a search procedure
include:

1. Given that model M is true, what is the probability that the procedure will return a
conclusion inconsistent with M on sample size n?
2. Given that model M* is true, what is the probability that the procedure will return a
conclusion inconsistent with M* but consistent with M on sample size n?
3. Given that model M is true, for samples of size n what is the probability that a search
procedure will specify an adjacency not in M? What is the probability that a search
procedure will omit an adjacency in M? What is the probability that a search procedure
will add an arrowhead not in M to an edge that is in M? What is the probability that a
search procedure will omit an arrowhead in M? What are these probabilities for any
particular variable pair, A, B?

For large models, where we expect some errors of specification from most samples,
questions of kind 3 are the most important.

There is little hope of obtaining analytic answers to these questions. In repeated tests
of independence hypotheses in a sample, each using the same significance level, the
probability that some true hypothesis will be rejected is not given by the significance
level; depending on the number of hypotheses and the sample size, that probability may
in fact be much higher than the significance level, but in any case the probability of some
erroneous decision depends on which hypotheses are tested, and for all of the algorithms
considered that in turn depends in a complex way on the actual structure. Further, each of
the algorithms can produce correct output even though some required statistical decisions
are made incorrectly. For example, suppose in graph G, vertices A and B are not adjacent.
Suppose in fact A and B are independent conditional on C, on D, on C and D, and so on.
If the hypothesis that A and B are independent conditional on C is rejected in the search
procedure, and the algorithm goes on to test whether A and B are independent conditional
on D, and decides in favor of the latter independence, then despite the earlier error the
procedure will correctly conclude that A and B are not adjacent. Chapter 12 discusses
various senses in which there do or do not exist confidence intervals for any search
procedure for causal models.

For any particular M and M* estimates of the answers to questions 1, 2, and 3 can be
found empirically by Monte Carlo methods. Simulation packages for linear normal
models are now common in commercial statistical packages, and the TETRAD II
program contains a simulation package for linear and for discrete variable models with a
variety of distributions. For small models it takes only a few minutes to generate a
hundred or more samples and run the samples through the search procedures. Most of the
time required is in counting the outcomes, a process that we have automated ad hoc for
our simulations, and that can and should be automated in a general way for testing the
reliabilities of particular search outcomes.
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5.7 Estimation
There are wel- known methods for obtaining maximum likelihood estimates subject to a
causal hypothesis under the assumption of normality, even with unmeasured variables
(Joreskog 1981; Lohmoller 1989). A variety of computerized estimation methods,
including ordinary and generalized least squares, are also available when the normality
assumption is given up. In the discrete case, for a positive multinomial distribution, the
maximum likelihood estimates (when they exist) for a cell subject to the independence
constraints of the graph over a set of variables V can be obtained by substituting the
marginal frequencies for probabilities in the factorization formula of chapter 3 (Kiiveri
and Speed 1982).

P(V) = P V|Parents(V )( )
V∈V
∏

When there are unmeasured variables that act as common causes of measured variables,
the pattern obtained from the procedures we have described can have edges with arrows
at each end. In that rather common circumstance we do not know how to obtain a
maximum likelihood estimate for the joint distribution of discrete measured variables.

5.8 Examples and Applications
We illustrate the algorithms for simulated and real data sets. With simulated data the
examples illustrate the properties of the algorithms on samples of realistic sizes. In the
empirical cases we often do not know whether an algorithm produces the truth. But it is
at the very least interesting that in cases in which investigators have given some care to
the treatment and explanation of their data, the algorithm reproduces or nearly reproduces
the published accounts of causal relations. It is also interesting that in cases without these
virtues the algorithm suggests quite different explanations from those advocated in
published reports.

Studies of regression models and alternatives produced by the PC algorithm and by
another procedure, the Fast Causal Inference (FCI) algorithm, are postponed until chapter
8, after latent variables and prediction have been considered in chapters 6 and 7,
respectively.

5.8.1 The Causes of Publishing Productivity
In the social sciences there is a great deal of talk about the importance of “theory” in
constructing causal explanations of bodies of data. Of course in explaining a data set one
will always eliminate causal graphs that contradict common sense or that violate the time
order of variables. But in addition, many practitioners require that every attempt to
provide a causal explanation of observational data in the social sciences proceed through
the particulars of principles in sociology, psychology, economics, political science, or
whatever, and come accompanied with a denial of the possibility of determining a correct
explanation from the statistical dependencies and common sense alone. In many of these
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cases the necessity of theory is badly exaggerated. Indeed, for every “recursive”
structural equation model in the entire scientific literature, if the assumptions of the
model are correct and no unmeasured common causes are postulated, then if the
distribution is faithful the statistical dependencies in the population uniquely determine
the undirected graph underlying the directed graph of causal relations. And in many cases
the population statistics alone determine a direction of some, or even all, edges. When the
variables are linearly ordered by time, so that variable A can be a cause of variable B only
if A occurs later than B, the statistical dependencies and the time order determine a
unique directed graph assuming only that the distribution is positive and the Markov and
Minimality Conditions are satisfied. The efforts spent citing literature to justify
specifications of causal dependencies are not misplaced, but in many cases effort would
be better directed toward establishing the fundamental statistical assumptions, including
the approximate homogeneity of the units, the correctness of the sampling assumptions,
and sometimes the linearity of dependencies.

Here is a recent and rather vivid example. There is a considerable literature on causes
of academic success, including publication and citation rates. A recent paper by Rodgers
and Maranto (1989) considers hypotheses about the causes of academic productivity
drawn from sociology, economics, and psychology, and produces a combined
“theoretically based” model.

Their data were obtained in the following way: solicitations and questionnaires were
sent to 932 members of the American Psychological Association who obtained doctoral
degrees between 1966 and 1976 and were currently working academic psychologists.
Equal numbers of male and female psychologists were sampled, and after deleting
respondents who did not have degrees in psychology, did not take their first job in
psychology, etc. a sample of 86 men and 76 women was obtained.

The response items were clustered into groups. For example, the ABILITY group
consisted of measures of the mean ACT, NMSQT, and selectivity scores of the subject’s
undergraduate institution, together with membership in Phi Beta Kappa and
undergraduate honors at graduation. Graduate Program Quality (GPQ) consisted of the
scholarly quality of department faculty and program effectiveness using national
rankings, the fraction of faculty with publications between 1978 and 1980, and whether
an editor of a journal was on the department faculty. These response items were treated as
indicators—that is, as effects—of the unmeasured variables GPQ, and ABILITY. Other
measures were quality of first job (QFJ), SEX, citation rate (CITES) and publication rate
(PUBS). In preliminary analyses they also used an aggregated measure of productivity
(PROD). The various hypotheses Rodgers and Maranto considered were then treated as
linear “structural equation models”6 They report the following correlations among the
cluster variables
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ABILITY GPQ PREPROD QFJ SEX CITES PUBS
1.0
.62 1.0
.25 .09 1.0
.16 .28 .07 1.0
-.10 .00 .03 .10 1.0
.29 .25 .34 .37 .13 1.0
.18 .15 .19 .41 .43 .55 1.0

There follows a very elaborate explanation of causal theories suggested by the pieces of
sociological, economic and psychological literature. Rodgers and Maranto estimate no
fewer than six different sets of structural equations and corresponding causal theories.
The six structures they consider are as shown in figure 5.7.

The labels on the graphs indicate simply the social scientific theory from which
Rodgers and Maranto derived the causal graph. For example, the “Human Capital” and
the “Screening” graphs were obtained from economic theory in the following way:

In the human capital model (Becker 1964) education has a direct effect on productivity
because it conveys relevant knowledge. People invest in education until its marginal
cost (the extra expenses and foregone earnings for an additional year of education) is
equal to its marginal benefit (the increase in lifetime earnings caused by another year
of education). More able individuals are more productive in both work and the
acquisition of skills than their less able counterparts. Thus, ability has a direct effect
on productivity and an indirect effect through education, because more able
individuals gain more from school. Work experience also increases productivity by
providing on-the-job training. The quality as well as the quantity of education is
relevant to the human capital framework.

The screening hypothesis implicitly views ability as the primary determinant of
productivity. Employers wish to hire the most productive applicants, but ability is not
directly observable. Individuals invest in education as a means of signaling their
ability to employers. The marginal cost of education is inversely related to ability,
inducing a positive correlation between ability and the level of education. Therefore,
by selecting applicants based on their education, employers hire by ability (Spence
1973). In this model, education does not affect productivity directly, but only through
its association with ability. Variations in the quality of education are consistent with
the screening model. (Wise 1975)
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Figure 5.7

The “empirical model” was obtained from a previous study that did not appeal to social
theory.

None of the structural equation systems based on these models save the phenomena.
But combining all of the edges in the “theoretical” models, adding two more that seem
plausible, and then throwing out statistically insignificant (at .05) dependencies, leads
Rodgers and Maranto instead to propose a different causal structure that fits the data quite
well.

It would appear that the tour through “theory” was nearly useless, but Rodgers and
Maranto say otherwise:
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Figure 5.8

Causal models based solely on the pattern of observed correlations are highly suspect.
Any data can be fitted by several alternative models. The construction of the best-fit
model was thus guided by theory-based expectations. By using the two measures of
productivity, PUBS and CITES, and the five causal antecedents, we initially estimated
a composite model with all of the paths identified by the six theories. This model
produced a large positive deviation between the observed and predicted correlation of
ABILITY with PREPROD, suggesting that we omitted one or more important paths.
Reexamination of our initial interpretation of the six theories led us to conclude that
two paths had been overlooked. One such path is from ABILITY to PREPROD. . . .
The other previously unspecified path is from ABILITY to PUBS. These two paths
were added and all nonsignificant paths were deleted from the composite model to
arrive at the best-fit model.

If the Rodgers and Maranto theory were completely correct, the undirected graph
underlying their directed graph would be uniquely determined by the conditional
independence relations, and the orientation would be almost uniquely determined; only
the directions of the GPQ → QFJ, ABILITY → GPQ and ABILITY → PREPROD edges
could be changed, and only in a way that does not create a new collision.

When the PC algorithm is applied to their correlations with the common sense time
order using a significance level of .1 for tests of zero partial correlations, the output is the
graph on the left side of figure 5.9, which we show alongside the Rodgers and Maranto
model.
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All but one of the edges in the Rodgers and Maranto model is produced
instantaneously from the data and common sense knowledge of the domain—the time
�����������������������!"������������������� 2 of 13.58 with 11 degrees of freedom and
p = .257. If the search procedure is repeated using .05 as the significance level, the
program deletes the PREPROD → PUBS edge. When that model is estimated and tested
��������!"��	������������������� 2 is 19.2 with 12 degrees of freedom and a p value of
.08, figures that should be taken as estimates of fit rather than of the probability of error.

Any claim that social scientific theory—other than common sense—is required to find
the essentials of the Rodgers and Maranto model is clearly false. Nor do the preliminary
results of Rodgers and Maranto’s search afford any reason for confidence in social
scientific theory. In contrast, we know a good deal about the reliability and limitations of
the PC algorithm. The entire study with TETRAD and EQS takes a few minutes. A slight
variant of the model is obtained using the SGS algorithm rather than the PC algorithm.

5.8.2 Education and Fertility
Rindfuss, Bumpass, and St. John (1980) were interested in the mutual influence in
married women of education at time of marriage (ED) and age at which a first child is
born (AGE). On theoretical grounds they argue at length for the model on the left in
figure 5.10, where the regressors from top to bottom are as follows:
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DADSO = father’s occupation
RACE = race
NOSIB = absence of siblings
FARM = farm background
REGN = region of the United States
ADOLF = presence of two adults in the subject’s childhood family
REL = religion
YCIG = cigarette smoking
FEC = whether the subject had a miscarriage.

Regressors are correlated. The sample size is 1766, and the covariances are given below.

DADSO RACE NOSIB FARM REGN ADOLF REL YCIG FEC ED AGE
456.676

-.9201 .089
-15.825 .1416 9.212
-3.2442 .0124 .3908 .2209
-1.3205 .0451 .2181 .0491 .2294
-.4631 .0174 -.0458-.0055 .0132 .1498
.4768 -.0191 .0179-.0295 -.0489 -.0085  .1772
-0.3143 .0031 .0291-.0096 -.0018 .0089 -.0014 .1170
.2356 .0031 .0018-.0045 -.0039 .0021 -.0003 .0009 .0888
18.66 -.1567 -2.349 -.2052 -.2385 -.1434 -.0119-.1380 .0267 5.5696
16.213 -.2305 -1.4237-.2262 -.3458 .1752 .1683-.1702 .2626 3.6580 16.6832

Apparently to their surprise, the investigators found on estimating coefficients that the
AGE → ED parameter is zero. Given the prior information that ED and AGE are not
causes of the other variables, the PC algorithm (using .the 05 significance level for tests)
directly finds the model on the right in figure 5.10, where connections among the
regressors are not pictured. This case is discussed further in chapter 12, section 5.10.

5.8.3 The Female Orgasm
Bentler and Peeler (1979) obtained data from 281 female university undergraduates
regarding personality and sexual response. They include the Eysenck Personality
Inventory which measured neuroticism (N) and extraversion (E); a heterosexual behavior
inventory (HET), a monosexual behavior inventory (MONO); a scale of negative attitudes
toward masturbation (ATM) and an inventory of subjective assessments of coital and
masturbatory experiences. Using factor analysis the investigators formed scales, thought
to be unidimensional, from these responses, including two scales (SCOR) and (SMOR)
from the subjective assessments of coital and masturbatory experiences.

The investigators were interested in two hypotheses: (1) subjective orgasm responses
in masturbation and coitus are due to distinct internal processes; (2) extraversion,

DADSO = father’s occupation
RACE = race
NOSIB = absence of siblings
FARM = farm background
REGN = region of the United States
ADOLF = presence of two adults in the subject’s childhood family
REL = religion
YCIG = cigarette smoking
FEC = whether the subject had a miscarriage.

Regressors are correlated. The sample size is 1766, and the covariances are given below.

DADSO RACE NOSIB FARM REGN ADOLF REL YCIG FEC ED AGE
 456.676

-.9201 .089

-15.825 .1416 9.212

-3.2442 .0124 .3908 .2209

-1.3205 .0451 .2181 .0491 .2294

-.4631 .0174 -.0458 -.0055 .0132 .1498

.4768 -.0191 .0179 -.0295 -.0489 -.0085  .1772

-0.3143 .0031 .0291 -.0096 -.0018 .0089 -.0014 .1170

.2356 .0031 .0018 -.0045 -.0039 .0021 -.0003 .0009 .0888

18.66 -.1567 -2.349 -.2052 -.2385 -.1434 -.0119 -.1380 .0267 5.5696

16.213 -.2305 -1.4237 -.2262 -.3458 .1752 .1683 -.1702 .2626 3.6580 16.6832

Apparently to their surprise, the investigators found on estimating coefficients that the
AGE →  ED parameter is zero. Given the prior information that ED and AGE are not

causes of the other variables, the PC algorithm (using .the 05 significance level for tests)
directly finds the model on the right in figure 5.10, where connections among the
regressors are not pictured. This case is discussed further in chapter 12, section 5.10.

5.8.3 The Female Orgasm
Bentler and Peeler (1979) obtained data from 281 female university undergraduates
regarding personality and sexual response. They include the Eysenck Personality
Inventory which measured neuroticism (N) and extraversion (E); a heterosexual behavior
inventory (HET), a monosexual behavior inventory (MONO); a scale of negative attitudes
toward masturbation (ATM) and an inventory of subjective assessments of coital and
masturbatory experiences. Using factor analysis the investigators formed scales, thought
to be unidimensional, from these responses, including two scales (SCOR) and (SMOR)
from the subjective assessments of coital and masturbatory experiences.

The investigators were interested in two hypotheses: (1) subjective orgasm responses
in masturbation and coitus are due to distinct internal processes; (2) extraversion,

DADSO      RACE   NOSIB   FARM  REGN  ADOLF  REL    YCIG   FEC   ED       AGE
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neuroticism and attitudes toward masturbation have no direct effect on orgasmic
responsiveness, measured by SCOR and SMOR, but influence that phenomenon only
through the history of the individual’s sexual experience measured by HET and MONO.

We will not discuss the formation of the scales in this case, since the only data
presented are the correlations of the scales and inventory scores, which are:

E N ATM HET MONO SCOR SMOR
1.0
-.1321.0
.009 -.136 1.0
.22 -.166 .403 1.0
-.008 .008 .598 .282 1.0
.119 -.076 .264 .514 .176 1.0

.118 -.137 .368 .414 .336 .338 1.0

Bentler and Peeler offer two linear models to account for the correlations. The models
��������	������������
�������������������������	����� 2 are shown in figure 5.11.

E N ATM HET MONO SCOR SMOR
1.0

-.132 1.0

.009 -.136 1.0

.22 -.166 .403 1.0

-.008 .008 .598 .282 1.0

.119 -.076 .264 .514 .176 1.0

.118 -.137 .368 .414 .336 .338 1.0
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Figure 5.11

Only the second model saves the phenomena. The authors write that

it proved possible to develop a model of orgasmic responsiveness consistent with the
hypothesis that extraversion (e), neuroticism (n), and attitudes toward masturbation
(atm) influence orgasmic responsiveness only through the effect these variables have
on heterosexual (het) and masturbatory (mono) experience. Consequently hypothesis 2
appears to be accepted. (p. 419)

The logic of the argument is not apparent. As the authors note “it must be remembered
that other modes (sic) could conceivably also be developed that would equally well
describe the data” (p. 419). But if the data could equally well be described, for example,
by a model in which ATM has a direct effect on SCOR or on SMOR, there is no reason
why hypothesis 2 should be accepted. Using the PC algorithm, one readily finds such a
model.

The model on���������������
���#�$%������������	����� 2 value of 17 with 12 degrees
of freedom, with p� 2) = .148.

The PC algorithm finds a model that cannot be rejected on the basis of the data and
that postulates a direct effect of attitude toward masturbation on orgasmic experience
during masturbation, contrary to Bentler and Peeler.

5.8.4 The American Occupational Structure
Blau and Duncan’s (1967) study of the American occupational structure has been praised
by the National Academy of Sciences as an exemplary piece of social research and
criticized by one statistician (Freedman 1983a) as an abuse of science. Using a sample of
20,700 subjects, Blau and Duncan offered a preliminary theory of the role of education
(ED), first job (J1), father’s education (FE), and father’s occupation (FO) in determining
one’s occupation (OCC) in 1962. They present their theory in the graph in figure 5.13, in
which the undirected edge represents an unexplained correlation.
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Blau and Duncan argue that the dependencies are linear. Their salient conclusions are
that father’s education affects occupation and first job only through the father’s
occupation and the subject’s education.

FE

FO

ED

J

OCC

1

Figure 5.13

Blau and Duncan’s theory was criticized by Freedman as arbitrary, unjustified, and
statistically inadequate (Freedman 1983a). Indeed, if the theory is subjected to the
����	����� 2 likelihood ratio test of the EQS (Bentler 1985) or LISREL (Joreskog and
Sorbom 1984) programs the model is decisively rejected (p < .001), and Freedman
reports it is also rejected by a bootstrap test.

If the conventional .05 significance level is used to test for vanishing partial
correlations, given a common sense ordering of the variables by time, from Blau and
Duncan’s covariances the PC algorithm produces the following graph shown in figure
5.14.
Duncan’s covariances the PC algorithm produces the graph shown in fi gure 5.14. 
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Figure 5.14

In this case every collider occurs in a triangle and there are no unshielded colliders.
The data therefore do not determine the directions of the causal connections, but the time
order of course determines the direction of each edge. We emphasize that the adjacencies
are produced by the program entirely from the data, without any prior constraints. The
model shown passes the same likelihood ratio test with p > .3.

The algorithm adds to Blau and Duncan’s theory a direct connection between FE and
J1. The connection between FE and J1 would only disappear if the significance level used
to test for vanishing partial correlations were .0002. To determine a collection of
vanishing partial correlations that are consistent with a directed edge from FE to OCC in
1962 one would have to reject hypotheses of vanishing partial correlations at a
significance level greater than .3. The conditional independence relations found in the
data at a significance level of .0001 are faithful to Blau and Duncan’s directed graph.

Freedman argues that in the American population we should expect that the influences
among these variables differ from family to family, and therefore that the assumption that
all units in the population have the same structural coefficients is unwarranted. A similar
conclusion can be reached in another way. We noted in chapter 3 that if a population
consists of a mixture of subpopulations of linear systems with the same causal structure
but different variances and linear coefficients, then unless the coefficients are
independently distributed or the mixture is in special proportions, the population
correlations will be different from those of any of the subpopulations, and variables
independent in each subpopulation may be correlated in the whole. When subpopulations
with distinct linear structures are mixed and these special conditions do not obtain, the
directed graph found from the correlations will typically be complete. We see that in
order to fit Blau and Duncan’s data we need a graph that is only one edge short of being
complete.

The same moral is if anything more vivid in another linear model built from the same
empirical study by Duncan, Featherman, and Duncan (1972). They developed the
following model of socioeconomic background and occupational achievement, where FE
signifies father’s education, FO father’s occupational status, SIB the number of the
respondent’s siblings, ED the respondent’s education, OCC the respondent’s
occupational status and INC the respondent’s income.
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In this case the double headed arrows merely indicate a residual correlation. The
������������
�������������������������������������������!"���&������������������ 2 is
165). When the correlation matrix is given to the TETRAD II program along with an
obvious time ordering of the variables, the PC algorithm produces a complete graph.
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Figure 5.16

5.8.5 The ALARM Network
Recall the ALARM network developed to simulate causal relations in emergency
medicine (figure 5.16).

The SGS and PC* algorithms will not run on a problem this large. We have applied
the PC algorithm to a linear version of the ALARM network. Using the same directed
graph, linear coefficients with values between .1 and .9 were randomly assigned to each
directed edge in the graph. Using a joint normal distribution on the variables of zero
indegree, three sets of simulated data were generated, each with a sample size of 2,000.
The covariance matrix and sample size were given to a version of the TETRAD II

6 5 4 27 11 32 34 35 36 37
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program with an implementation of the PC–1 algorithm. This implementation takes as
input a covariance matrix, and it outputs a pattern. No information about the orientation
of the variables was given to the program. Run on a Decstation 3100, for each data set the
program required less than fifteen seconds to return a pattern. In each trial the output
pattern omitted two edges in the ALARM network; in one of the cases it also added one
edge that was not present in the ALARM network.

In a related test, another ten samples were generated, each with 10,000 units. The
results were scored as follows: We call the pattern the PC algorithm would generate
given the population correlations the true pattern. We call the pattern the algorithm
infers from the sample data the output pattern. An edge existence error of commission
(Co) occurs when any pair of variables are adjacent in the output pattern but not in the
true pattern. If an edge e between A and B occurs in both the true and output patterns,
there is an edge direction error of commission when e has an arrowhead at A in the
output pattern but not in the true pattern (and similarly for B.) Errors of omission (Om)
are defined analogously in each case. The results are tabulated as the average over the
trial distributions of the ratio of the number of actual errors to the number of possible
errors of each kind. The results at sample size 10,000 are summarized below:

For similar data from a similarly connected graph with 100 variables, for ten trials the
PC–1 algorithm required an average of 134 seconds and the PC–3 algorithm required an
average of 16 seconds.

Herskovits and Cooper (1990) generated discrete data for the ALARM network, using
variables with two, three and four values. Given their data, the TETRAD II program with
the PC algorithm reconstructs almost all of the undirected graph (it omitted two edges in
one trial; and in another also added one edge) and orients most edges correctly. In most
orientation errors an edge was oriented in both directions. Broken down by the same
measures as were used for the linear data from the same network (with simulated data
obtained from Herskovits and Cooper at sample size 10,000) the results are:

5.8.6 Virginity
A retrospective study by Reiss, Banwart, and Foreman (1975) considered the relationship
among a sample of undergraduate females between a number of attitudes, including

#trials %Edge Existence Errors %Edge Direction Errors

Commission Omission Commission Omission

10 .06 4.1 17 3.5

trial %Edge Existence Errors %Edge Direction Errors
Commission Omission Commission Omission

1 0 4.3 27.1 10.0
2 0.2 4.3 5.0 10.4

The covariance matrix and sample size were given to a version of the TETRAD II program 
with an implementation of the PC–1 algorithm. This implementation takes as input a cova-
riance matrix, and it outputs a pattern. No information about the orientation of the variables 
was given to the program. In each trial the output pattern omitted two edges in the ALARM 
network; in one of the cases it also added one edge that was not present in the ALARM 
network.
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attitude toward premarital intercourse, use of a university contraceptive clinic, and
virginity. Two samples were obtained, one of women who had used the clinic and one of
women who had not; the samples did not differ significantly in relevant background
variables such as age, education, parental education, and so on. Fienberg gives the cross-
classified data for three variables: Attitude toward extramarital intercourse (E) (always
wrong; not always wrong); virginity (V) and use of the contraceptive clinic (C) (used; not
used). All variables are binary. The PC and SGS procedures immediately produces the
following pattern shown in figure 5.17, which is consistent with any of the orientations of
the edges that do not produce a collision at V. One sensible interpretation is that attitude
affects sexual behavior which causes clinic use. Fienberg (1977) obtains the same result
with log linear methods.

E V C

Figure 5.17

5.8.7 The Leading Crowd
Coleman (1964) describes a study in which 3398 schoolboys were interviewed twice. At
each interview each subject was asked to judge whether or not he was a member of the
“leading crowd” and whether his attitude toward the leading crowd was favorable or
unfavorable. The data have been reanalyzed by Goodman (1973a,b) and by Fienberg
(1977). Using Fienberg’s notation, let A and B stand for the questions at the first
interview and C and D stand for the corresponding questions at the second interview. The
data are given by Fienberg as follows:

Second Interview
Membership Attitude + + - -

+ - + -
Membership Attitude

+ + 458 140 110 49
First + - 171 182 56 87
Interview - + 184 75 531 281

- - 85 97 338 554

Fienberg summarizes his conclusions after a log-linear analysis in the path diagram in
figure 5.18. He does not explain what interpretation is to be given to the double-headed
arrow.
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Figure 5.18                                      Figure 5.19

When the PC algorithm is told that C and D occur after A and B, with the usual .05
significance level for tests the program produces the pattern in figure 5.19.

Orienting the undirected edge in the PC model as a directed edge from A to B
produces expected values for the various cell counts that are almost identical with
Fienberg’s (p. 127) expected counts.7 Note, however, this is a nearly complete graph,
which may indicate that the sample is a mixture of different causal structures.

5.8.8 Influences on College Plans
Sewell and Shah (1968) studied five variables from a sample of 10,318 Wisconsin high
school seniors. The variables and their values are:

SEX [male = 0, female = 1]
IQ = Intelligence Quotient, [lowest = 0, highest = 2]
CP = college plans [yes = 0, no = 1]
PE = parental encouragement [low = 0, high = 1]
SES = socioeconomic status [lowest = 0, highest = 3]

They offer the causal hypothesis shown in figure 5.20.

IQ

SES

SEX CPPE

Figure 5.20

The data were reanalyzed by Fienberg (1977), who attempted to give a causal
interpretation using log-linear models, but found a model that could not be given a
graphical interpretation.

Given prior information that orders the variables by time as follows:
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1 SEX
2 IQ PE SES
3 CP

so that later variables cannot be specified to be causes of earlier variables, the output with
the PC algorithm is the structure shown in figure 5.21.

IQ

SES

SEX PE CP

Figure 5.21

The program cannot orient the edge between IQ and SES. It seems very unlikely that
the child’s intelligence causes the family socioeconomic status, and the only sensible
interpretation is that SES causes IQ, or they have a common unmeasured cause. Choosing
the former, we have a directed graph whose joint distribution can be estimated directly
from the sample. We find, for example, that the maximum likelihood estimate of the
probability that males have college plans (CP) is .35, while the probability for females is
.31. Judged by this sample the probability a child with low IQ, no parental
encouragement (PE) and low socioeconomic status (SES) plans to go to college is .011;
more distressing, the probability that a child otherwise in the same conditions but with a
high IQ plans to go to college is only .124.

5.8.9 Abortion Opinions
Christensen (1990) illustrates log-linear model selection and search procedures with a
data set whose variables are Race (R) [white, nonwhite], Sex (S), Age (A) [six categories]
and Opinion (O) on legalized abortion (supports, opposes, undecided). Forward selection
procedures require fitting 43 log-linear models. A backward elimination method requires
22 fits; a method due to Aitkin requires 6 fits; another backward method due to Wermuth
requires 23 fits. None of these methods would work at all on large variable sets.

R

S

O

A

Figure 5.22
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Christensen suggests that the “best” log-linear model is an undirected conditional
independence graphical model whose maximal cliques are [RSO] and [OA]. This is
shown in figure 5.22.

Subsequently, Christensen proposes a recursive causal model (in the terminology of
Kiiveri and Speed 1982) for the data. He suggests on substantive grounds a mixed graph
and says “The undirected edge between R and S...represents an interaction between R and
S.” Figure 5.23 is not a causal model in the sense we have described. It can be interpreted
as a pattern representing the equivalence class of causal graphs whose members are the
two orientations of the R - S edge, but R and S in Christensen’s data are very nearly
independent.

R

S

O

A                 

R

S

O

A

Figure 5.23                                           Figure 5.24

This example is small enough to use the PC* algorithm, which with significance level
.05 for independence tests gives exactly figure 5.24. Assuming faithfulness, the statistical
hypothesis of figure 5.24 is inconsistent with the independence of {R,S} and A
conditional on O, required by the log-linear model of figure 5.22.

At a slightly lower significance level (.01) R and O are judged independent, and the
same algorithm omits the R → O connection. On this data with significance level .05 the
PC algorithm also produces the graph of figure 5.24 but with the R → O connection
omitted. The difference in the outputs of the PC* and PC algorithms occur in the
following way. Both algorithms produce at an intermediate stage the undirected graph
underlying figure 5.24. In that undirected graph A does not lie on any undirected path
between R and O. For that reason, the PC* algorithm never tests the conditional
independence of R and O on A, and leaves the R - O edge in. In contrast, the PC
algorithms does test the conditional independence of R and O on A, with a positive result,
and removes the R - O edge.

5.8.10 Simulation Tests with Random Graphs
In order to test the speed and the reliability of the algorithms discussed in this chapter, we
have tested the algorithms SGS, PC–1, PC–2, PC–3, and IG on a large number of
simulated examples. The graphs themselves, the linear parameters, and the samples were
all pseudorandomly generated. This section describes the sample generation procedures
for both linear and discrete data and gives simulation results for the linear case.
Simulation results with discrete data are considered in the chapter on regression.

This example is small enough to use the PC* algorithm, which, with signifi cance level 
.05 for independence tests, gives exactly fi gure 5.24. Assuming faithfulness, the statistical
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The average degree of the vertices in the graphs considered are 2, 3, 4, or 5; the
number of variables is 10 or 50; and the sample sizes are 100, 200, 500, 1000, 2000, and
5000. For each combination of these parameters, 10 graphs were generated, and a single
distribution obtained faithful to each graph, and a single sample taken from each such
distribution.

Because of its computational limitations, the SGS algorithm was tested only with
graphs of 10 variables.

5.8.10.1 Sample Generation
All pseudorandom numbers were generated by the UNIX “random” utility. Each sample
is generated in three stages:

(i) The graph is pseudorandomly generated.
(ii) The linear coefficients (in the linear case) or the conditional probabilities (in the
discrete case) are pseudorandomly generated.
(iii) A sample for the model is pseudorandomly generated.

We will discuss each of these steps in more detail.

(i) The input to the random graph generator is an average degree and the number of
variables. The variables are ordered so that an edge can only go from a variable lower in
the order to a variable higher in the order, eliminating the possibility of cycles. Since
some of the procedures use a lexicographic ordering, variable names were then randomly
scrambled so that no systematic lexicographic relations obtained among variable pairs
connected by edges. Each variable pair is assigned a probability p equal to

average degree

number of variables - 1

For each variable pair a number is drawn from a uniform distribution over the interval 0
to 1. The edge is placed in the graph if and only if the number drawn is less than or equal
to p.8

(ii) For simulated continuous distributions, an “error” variable was introduced for each
endogenous variable and values for the linear coefficients between .1 and .9 were
generated randomly for each edge in the graph. For the discrete case, a range of values of
variables is selected by hand, and for each variable taking n values, the unit interval is
divided into n sub-intervals by random choice of cut-off points. A distribution (e.g.,
uniform) is then imposed on the unit interval.
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(iii) In the discrete case for each such distribution produced, each sample unit is obtained
by generating, for each exogenous variable, a random number between 0 and 1.0
according to the distribution and assigning the variable value according to the category
into which the number falls. Values for the endogenous variables were obtained by
choosing a value randomly with probability given by the conditional probabilities on the
obtained values of the parents of the variable. In the linear case, the exogenous
variables—including the error terms—were generated independently from a standard
normal distribution, and values of endogenous variables were computed as linear
functions of their parents.

5.8.10.2 Results
As before, reliability has several dimensions. A procedure may err by omitting undirected
edges in the true graph or by including edges—directed or undirected—between vertices
that are not adjacent in the true graph. For an edge that is not in the true graph, there is no
fact of the matter about its orientation, but for edges that are in the true graph, a
procedure may err by omitting an arrowhead in the true graph or by including an
arrowhead not in the true graph. We count errors in the same way as in section 5.8.5.

Each of the procedures was run using a significance level of .05 on all trials. The five
procedures tested are not equally reliable or equally fast. The SGS algorithm is much the
slowest, but in several respects it proves reliable. The graphs on the following pages
show the results. Each point on the graph is a number, which represents the average
degree of the vertices in the directed graphs generating the data. We plot the run times
and reliabilities of the PC–1 PC–2, PC–3, IG, and SGS algorithms against sample size for
data from linear models based on randomly generated graphs with 10 variables, and
similarly the reliabilities of the first four of these algorithms for linear models based on
randomly generated graphs with 50 variables. In each case the results are plotted
separately for graphs of degree 2, 3, 4, and 5.

The following qualitative conclusions can be drawn.
The rates of arrow and edge omission decrease dramatically with sample size up to

about sample size 1000; after that the decreases are much more gradual. The rates of
arrow and edge commission vary much less dramatically with sample size than do the
rates of arrow and edge omission. As the average degree of the variables increases, the
average error rates increase in a very roughly linear fashion, but the PC–2 algorithm
tends to be less reliable than the other algorithms with respect to edge omissions when
the average degree of the graph is high.

The PC–1, PC–3, IG, and SGS algorithms have compensating virtues and
disadvantages. None of the procedures are reliable on all dimensions when the graphs are
not sparse. One reliable dimension is the addition of edges: If two vertices are not
adjacent in the true graph, there is very little chance they will be mistakenly output by
any of these four procedures, no matter what the average degree of the graph and no
matter what the sample size.



116  Chapter 5

In contrast, at high average degree and low sample sizes the output of each of the
procedures tends to omit over 50% of the edges in the true graph. At large sample sizes
and low average degree only a few percent of the true edges are omitted, but with high
average degree the percentage of edges omitted even at large sample sizes is significant.
For example, at sample size 5000 and average degree 5, PC–1 omits over 30% of the
edges in the true graph.

Arrow commission errors are much more common than edge commission errors. If an
arrow does not occur in a graph, there is a considerable probability for any of the
procedures that the arrow will be output, unless the sample size is large and the true
graph is of low degree. For 10 variables with average degree about 2 and sample sizes of
1,000 or more, the SGS and IG algorithms are quite reliable, with errors of commission
for arrows around 6%. Under the same conditions the error rates for the PC–1 and PC–2
algorithms run about 20%. In the case of the SGS algorithm, these relations are reversed
for the question of arrow omission—if an arrow occurs in the true graph, what is the
chance that the procedure will fail to include the arrow in its output? The answer is about
8% for PC–1 and PC–2 and about 20% for the SGS procedure. The IG algorithm, while
much less reliable for arrow omissions at low sample sizes, is only slightly more
unreliable at high sample sizes.

The return time of the PC–3 algorithm is dramatically smaller than the other
algorithms. It’s run time also does not increase as sharply with average degree, but the
procedure does produce many more edge commission errors as the average degree
increases.

The results suggest that the programs can reasonably be used in various ways
according to the size of the problem, the questions one wants answered, and the character
of the output. Roughly the same conclusions about reliability can be expected for the
discrete case, but with lower absolute reliabilities. For larger number of variables the
same patterns should hold, save that the SGS algorithm cannot be run at all.

More research needs to be done on local “repairs” to the graphs generated by these
procedures, especially for edge omission errors and arrow commission errors. In order for
the method to converge to the correct decisions with probability 1, the significance level
used in making decisions should decrease as the sample sizes increase, and the use of
higher significance levels (e.g., .2 at samples sizes less than 100, and .1 at sample sizes
between 100 and 300) may improve performance at small sample sizes.
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Figure 5.24a
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Figure 5.24b
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Figure 5.24c
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Figure 5.24d
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Figure 5.25e

5.9 Conclusion
This chapter describes several algorithms that can reliably recover sparse causal
structures even for quite large numbers of variables, and illustrates their application. The
algorithms have each been implemented using tests for conditional independence in the
discrete case and for vanishing partial correlations in the linear case. We make no claim
that these uses of tests to decide relevant probability relations is optimal, but any
improvements in the statistical decision methods can be prefixed to the algorithms. With
the exception of the PC* and SGS algorithms, the procedures described are feasible for
large numbers of variables so long as the true causal graphs are sparse.

The algorithms we have described scarcely exhaust the possibilities, and a number of
very simple alternative procedures should work reasonably well, at least for finding
adjacency relations in the causal graph.

5.10 Background Notes
The idea of discovery problems is already contained in the notion of an estimation
problem, and the requirement that an estimator be consistent is essentially a demand that
it solve a particular kind of discovery problem. An extension of the idea to general
nonstatistical settings was proposed by Putnam (1965) and independently by Gold (1965)
and has subsequently been extensively developed in the literature of computer science,
mathematical linguistics and logic (Osherson, Stob, and Weinstein 1986).

A more or less systematic search procedure for causal/statistical hypotheses can be
found in the writings of Spearman (1904) and his students early in this century. A
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Bayesian version of stepwise search was proposed by Harold Jeffreys (1957).
Thurstone’s (1935) factor analysis inaugurated a form of algorithmic search separated
from any precise discovery problem: Thurstone did not view factor analysis as anything
more than a device for finding simplifications of the data, and a similar view has been
expressed in many subsequent proposals for statistical search. The vast statistical
literature on search has focused almost exclusively on optimizing fitting functions.

The SGS algorithm was proposed by Glymour and Spirtes in 1989, and appeared in
Spirtes, Glymour and Scheines (1990c). Verma and Pearl (1990b) subsequently proposed
a more efficient version that examines cliques. A version of the PC algorithm was
developed by Spirtes and Glymour (1990). The version presented here contains an
improvement suggested by Pearl and Verma in the efficiency of step C) of the algorithm.
Bayesian discovery procedures have been studied in Herskovits’s thesis (1992).

The maximum likelihood estimation procedure for “recursive causal models” was
developed in Kiiveri’s (1982) doctoral thesis. The mathematical properties of the
structures are further described in Kiiveri, Speed, and Carlin (1984).



6 Discovery Algorithms without Causal Sufficiency

6.1 Introduction
The preceding chapter complied with a common statistical fantasy, namely that in typical
data sets it is known that no part of the statistical dependencies among measured
variables are due to unmeasured common causes. We almost always fail to measure all of
the causes of variables we do measure, and we often fail to measure variables that are
causes of two or more measured variables. Any examination of collections of social
science data gives the striking impression that variables in one study often seem relevant
to those in other studies. Record keeping practices sometimes force econometricians to
ignore variables in studies of one economy thought to have a causal role in studies of
other economies (Klein 1961). In many studies in psychometrics, social psychology, and
econometrics, the real variables of interest are unmeasured or measured only by proxies
or “indicators.” In epidemiological studies that claim to show that exposure to a risk
factor causes disease, a burden of the argument is to show that the statistical association
is not due to some common cause of risk factor and disease; since not everything
imaginably relevant can be measured, the argument is radically incomplete unless a case
can be made that unmeasured variables do not “confound” the association. If, as we
believe, no reliable empirical study can proceed without considering whether relevant
variables are unmeasured, then few published uncontrolled empirical studies are reliable.

In both experimental and non-experimental studies the unrecognized presence of
unmeasured variables can lead to erroneous conclusions about the causal relations among
the variables that are measured, and to erroneous predictions of the effects of policies that
manipulate some of these variables. Until reliable, data-based methods are used to
identify the presence or absence of unmeasured common causes, most causal inferences
from observational data can be no more than guesswork at best and pseudoscience at
worst. Are such methods possible? That question surely ought to be among the most
important theoretical issues in statistics.

Statistical methods for detecting unmeasured common causes, or “confounding” in the
terminology epidemiologists prefer, has been chiefly developed in psychometrics, where
criteria for the existence and numbers of common causes have been sought since the turn
of the century for special statistical models. The results include a literature on linear
systems that contain criteria (e.g., Charles Spearman’s [1904] vanishing tetrad
differences) for latent variables that proved, however, to be neither necessary nor
sufficient even assuming linearity. Criteria for two latent common causes were
introduced by Kelley (1928), and related criteria are used in factor analysis, but they are
not correct unless it is assumed that all statistical dependencies are due to unmeasured
common causes. For problems in which the measured variables are discrete and their
values a stochastic function of an unobserved continuous vector parameter , a number of
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criteria have been developed for the dimensionality of  (Holland and Rosenbaum 1986).
Suppes and Zanotti (1981) showed that for discrete variables there always exists a formal
latent variable model in which all measured variables are effects of an unmeasured
common cause and all pairs of measured variables are independent conditional on the
latent variable. Their argument assumes the model must satisfy only the Markov
Condition; the result does not hold if it is required that the distributions be faithful.

Among epidemiologists (Breslow and Day 1980; Kleinbaum, Kupper, and
Morgenstern 1982) the criteria introduced by the Surgeon General’s report on Smoking
and Health (1964) are sometimes still advocated as a means for deciding whether a
statistical dependency between exposure to risk factor A and disease B is “causal,”
apparently meaning that A causes B and A and B have no common causes. The criteria
include (i) increase in response with dosage; (ii) that the statistical dependency between a
risk factor and disease be specific to particular disease subgroups and to particular
conditions of risk exposure; (iii) that the statistical association be strong; (iv) that
exposure to a risk factor precede the period of increased risk; (v) lack of alternative
explanations.

E i ll ffi i t t h ll f d i bl
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Even in causally sufficient systems, where all common causes of measured variables
are themselves measured, such criteria do not separate causes from correlated variables.
They fail even to come to grips with the problem of unmeasured “confounders.” The
problem with criterion (v) is exactly that there are too many alternative explanations of
the data. Criterion (iv) is often of no use in deciding whether there are measured or
unmeasured common causes at work. Criterion (iii) is defended on the grounds that “If an
observed association is not causal, but simply the reflection of a causal association be-
tween some other factor and disease, then this latter factor must be more strongly related
to disease (in terms of relative risk) than is the former factor,” (Breslow and Day 1980).
But the inference is incorrect: if there are two or more common causes, measured or not,
none of them need be more strongly related to the disease than is the putative measured
cause; and if A causes B and A and B also have a common cause, the latter need not be
more strongly associated with B than is A. On behalf of Breslow and Day one might
appeal to simplicity against all hypotheses of multiple common causes, but that would be
an implausible claim in medical science, where multiple causal mechanisms abound.
Nothing about the first two criteria separates the situation in which A and B have com-
mon causes from circumstances in which they do not.

In this chapter we present a more or less systematic account of how the presence of
unmeasured common causes can mislead an investigator about causal relationships
among measured variables, and of how the presence of unmeasured common causes can
be detected. We deal with these questions separately for the general case and for the case
in which all structures are linear. But the central aim of this chapter is to show how,
assuming the Markov and Faithfulness conditions, reliable causal inferences can some-
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can be made from appropriate sample data without any prior knowledge as to whether the
system of measured variables is causally sufficient.

6.2 The PC Algorithm and Latent Variables
A natural idea is that a slight modification of the PC algorithm will give correct
information about causal structure even when unmeasured variables may be present.
Suppose that P � �� �� �����
���������V that is faithful to a causal graph, and P is the
marginal of P � �����O, properly included in V. We will refer to the members of O as
measured or observed variables. As we have already seen, if there are unmeasured
common causes, the output of the PC algorithm can include bi-directed edges of the form
A ↔ B. We could interpret a bi-directed edge between A and B to mean that there is an
unmeasured cause C that directly causes A and B relative to O. We modify the algorithm
by using a “o” on the end of an arrow to indicate that it is not known whether an
arrowhead should occur in that place. We use a “*” as a metasymbol to stand for any of
the three kinds of endmarks that an arrow can have: EM (empty mark), “>,” or “o.”

Modified PC Algorithm
A.) Form the complete undirected graph C on the vertex set V.
B.)

n = 0.
repeat
repeat

select an ordered pair of variables X and Y that are adjacent in C such that
Adjacencies(C,X)\{Y} has cardinality greater than or equal to n, and a subset S
of Adjacencies(C,X)\{Y} of cardinality n, and if X and Y are d-separated given S
delete edge X - Y from C and record S in Sepset(X,Y) and Sepset(Y,X)

until all ordered pairs of adjacent variables X and Y such that
Adjacencies(C,X)\{Y} has cardinality greater than or equal to n and all subsets of
Adjacencies(C,X)\{Y} of cardinality n have been tested for d-separation.
n = n + 1.

until for each ordered pair of adjacent vertices X, Y, Adjacencies(C,X)\{Y} is of
cardinality less than n.

C.) Let F be the graph resulting from step B). If X and Y are adjacent in F, orient the edge
between X and Y as X o-o Y.
D.) For each triple of vertices X, Y, Z such that the pair X, Y and the pair Y, Z are each
adjacent in F but the pair X, Z are not adjacent in F, orient X *-* Y *-* Z as X *→ Y ←* Z
if and only if Y is not in Sepset(X,Z).
E.) repeat

If A *→ B, B *-* C, A and C are not adjacent, and there is no arrowhead at B on
B *-* C, then orient B *-* C as B → C.
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If there is a directed path from A to B, and an edge between A and B, then orient
the edge as A *→ B.

until no more edges can be oriented.

(When we say orient X *-* Y as X *→ Y we mean leave the same mark on the X end of
the edge and put an arrowhead at the Y end of the edge.)

The result of this modification applied to the examples of the previous chapter is
perfectly sensible. For example, in figure 6.1 we show both the model obtained from the
Rodgers and Marantodata at significance level .1 by the PC algorithm and the model that
would be obtained by the modified PC algorithm from a distribution faithful to the the
graph in the PC output. (In each case with the known time order of the variables imposed
as a constraint.)

ABILITY

GPQ

QFJ

SEX

CITES

PUBS

PREPROD

ABILITY

GPQ

QFJ

SEX

CITES

PUBS

PREPROD

o

oo o

PC Output                                Modified PC Output

o

o oo

Figure 6.1

The output of the Modified PC Algorithm indicates that GPQ and ABILITY, for
example, may be connected by an unmeasured common cause, but that PUBS is a direct
cause of CITES, unconfounded by a common cause. Where a single vertex has “o”
symbols for two or more edges connecting it with vertices that are not adjacent, a special
restriction applies. ABILITY, for example has an edge to GPQ and to PREPROD, each
with an “o” at the ABILITY end, and GPQ and PREPROD are not adjacent to one
another. In that case the two “o” symbols cannot both be arrowheads. There cannot be an
unmeasured cause of ABILITY and GPQ and an unmeasured cause of ABILITY and
PREPROD, because if there were, GPQ and PREPROD would be dependent conditional
on ABILITY, and the modified pattern entails instead that they are independent.
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In many cases—perhaps most practical cases—in which the sampled distribution is the
marginal of a distribution faithful to a graph with unmeasured variables, this simple
modification of the PC algorithm gives a correct answer if the required statistical
decisions are correctly made.

6.3 Mistakes
Unfortunately, this straightforward modification of the PC algorithm is not correct in
general. An imaginary example will show why.

Everyone is familiar with a simple mistake occasioned by failing to recognize an
unmeasured common cause of two variables, X, Y, where X is known to precede Y. The
mistake is to think that X causes Y, and so to predict that a manipulation of X will change
the distribution of Y. But there are more interesting cases that are seldom noticed, cases in
which omitting a common cause of X and Y might lead one to think, erroneously, that
some third variable Z directly causes Y. Consider an imaginary case:

A chemist has the following problem. According to received theory, which he very
much doubts, chemicals A and B combine in a low yield mechanism to form chemical
D through an intermediate C. Our chemist thinks there is another mechanism in which
A and B combine to form D without the intermediate C. He wishes to do an
experiment to establish the existence of the alternative mechanism. He can readily
obtain reagents A and B, but available samples may be contaminated with varying
quantities of D and other impurities. He can measure the concentration of the unstable
alleged intermediate C photometrically, and he can measure the equilibrium
concentration of D by standard methods. He can manipulate the concentrations of A
and B, but he has no means to manipulate the concentration of C.

The chemist decides on the following experimental design. For each of ten different
values of the concentration of A and B, a hundred trials will be run in which the
reagents are mixed, the concentration of C is monitored, and the equilibrium
concentration of D is measured. Then the chemist will calculate the partial correlation
of A with D conditional on C, and likewise the partial correlation of B with D
conditional on C. If there is an alternative mechanism by which A and B produce D
without C, the chemist reasons, then there should be a positive correlation of A with D
and of B with D in the samples in which the concentration of C is all the same; and if
there is no such alternative mechanism, then when the concentration of C is controlled
for, the concentrations of A, B on the one hand, and D on the other, should have zero
correlation.

The chemist finds that the equilibrium concentrations of A, B on the one hand and
of D on the other hand are correlated when C is controlled for—as they should be if A
and B react to produce D directly—and he announces that he has established an
alternative mechanism.

Alas, within the year his theory is disproved. Using the same reagents, another
chemist performs a similar experiment in which, however, a masking agent reacts with
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the intermediate C preventing it from producing D. The second chemist finds no
correlation in his experiment between the concentrations of A and B and the
concentration of D. What went wrong with the first chemist’s procedure?

By substituting a statistical control for the manipulation of C the chemist has run afoul
of the fact that the marginal probability distribution with unmeasured variables can give
the appearance of a spurious direct connection between two variables. The chemist’s
picture of the mechanism is given in graph G1, and that is one way in which the observed
results can be produced. Unfortunately, they can also be produced by the mechanism in
graph G2, which is what happened in the chemist’s case: impurities (F) in the reagents are
causes of both C and D:

A

B

C

D

G

A

B

D

C

G

F

1 2

Figure 6.2

The general point is that a theoretical variable F acting on two measured variables C
and D can produce statistical dependencies that suggest causal relations between A and D
and between B and D that do not exist. For faithful distributions, if we use the SGS or PC
algorithms, a structure such as G2 will produce a directed edge from A to D in the output.

We can see the same point more analytically as follows: In a directed acyclic graph G
over a set of variables V, if A and D are adjacent in G, then A and D are not d-separated
given any subset of V\{A,D}. Hence under the assumption of causal sufficiency, either A
is a direct cause of D or D is a direct cause of A relative to V if and only if A and D are
independent conditional on no subset of V\{A,D}. However, if O is not causally
sufficient, it is not the case that if A and D are independent conditional on every subset of
O\{A,D} that either A is a direct cause of D relative to O, or D is a direct cause of A
relative to O, or there is some latent variable F that is a common cause of both A and D.

This is illustrated by G2 in figure 6.2, where V = {A,B,C,D,F} and O = {A,C,D}. O is
not causally sufficient because F is a cause of both C and D which are in O, but F itself is
not in O. A and D are not d-separated given any subset of O\{A,D}, so in any marginal of
a distribution faithful to G, A and D are not independent conditional on any subset of
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G1 G2
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F
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results can be produced. Unfortunately, they can also be produced by the mechanisms in

The general point is that a latent variable F acting on two measured variables C and 
D can produce statistical dependencies that suggest causal relations between A and D
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O\{A,D}, and the modified PC algorithm would leave an edge between A and D. Yet A is
not a direct cause of D relative to O, D is not a direct cause of A relative to O, and there
is no latent common cause of A and D. The directed acyclic graph G1 shown in figure 6.2,
in which A is a direct cause of D, and in which there is a path from A to D that does not
go through C, has the same set of d-separation relations over {A,C,D} as does graph G2.
Hence, given faithful distributions, they cannot be distinguished by their conditional
independence relations alone.

A further fundamental problem with the simple modification of the PC algorithm
described above is that if we allow bi-directed edges in the graphs constructed by the PC
algorithm, it is no longer the case that if A and B are d-separated given some subset of O,
then they are d-separated given a subset of Adjacencies(A) or Adjacencies(B). Consider
the graph in figure 6.3, where T1 and T2 are assumed to be unmeasured.

T

1

2

A                   B         F          C         H           D                     E

T

Figure 6.3

Among the measured variables, Parents(A) = {D} and Parents(E) = {B}, but A and E
are not d-separated given any subset of {B} or any subset of {D}; the only sets that d-
separate them are sets that contain F, C, or H. The Modified PC algorithm would
correctly find that C, F, and H are not adjacent to A or E. It would then fail to test
whether A and E are d-separated given any subset containing C. Hence it would fail to
find that A and E are d-separated given {B,C,D} and would erroneously leave A and E
adjacent. This means that it is not possible to determine which edges to remove from the
graph by examining only local features (i.e., the adjacencies) of the graph constructed at a
given stage of the algorithm. Similarly, once bi-directed edges are allowed in the output
of the PC algorithm, it is not possible to extract all of the information about the
orientation of edges by examining local features (i.e., pairs of edges sharing a common
endpoint) of the graph constructed at a given stage of the algorithm.

Because of these problems, for full generality we must make major changes to the PC
algorithm and in the interpretation of the output. We will show that there is a procedure,
which we optimistically call the Fast Causal Inference (FCI) algorithm, that is feasible in
large variable sets provided the true graph is sparse and there are not many bidirected

A B F C H D E

T2

T1
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edges chained together. The algorithm gives asymptotically correct information about
causal structure when latent variables may be acting, assuming the measured distribution
is the marginal of a distribution satisfying the Markov and Faithfulness conditions for the
true graph. The FCI algorithm avoids the mistakes of the modified PC algorithm, and in
some cases provides more information.

For example, with a marginal distribution over the boxed variables from the imaginary
structure in figure 6.4, the modified PC algorithm gives the correct output shown in the
first diagram in figure 6.5, whereas the FCI algorithm produces the correct and much
more informative result in the second diagram in figure 6.5.

In figure 6.5, the double headed arrows indicate the presence of unmeasured common
causes, and as in the modified PC algorithm the edges of the form o→ indicate that the
algorithm cannot determine whether the circle at one end of the edge should be an
arrowhead. Notice that the adjacencies among the set of variables {Cilia damage, Heart
disease, Lung capacity, Measured breathing dysfunction} form a complete graph, but
even so the edges can be completely oriented by the FCI algorithm.

The derivation of the FCI algorithm requires a variety of new graphical concepts and a
rather intricate theory. We introduce Verma and Pearl’s notions of an inducing path and
an inducing path graph, and show that these objects provide information about causal
structure. Then we consider algorithms that infer a class of inducing path graphs from the
data.

6.4 Inducing Paths
Given a directed acyclic graph G over a set of variables V, and O a subset of V, Verma
and Pearl (1991) have characterized the conditions under which two variables in O are
not d-separated given any subset of O\{A,B}. If G is a directed acyclic graph over a set of
variables V, O is a subset of V containing A and B, and A ≠ B, then an undirected path U
between A and B is an inducing path relative to O if and only if every member of O on
U except for the endpoints is a collider on U, and every collider on U is an ancestor of
either A or B. We will sometimes refer to members of O as observed variables.
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Environmental
Pollution

Genotype

Cilia damage                                Heart disease                       Lung capacity

Measured breathing
dysfunction

Smoking

Income Parents' smoking
habits

Figure 6.4

For example, in graph G3, the path U = <A,B,C,D,E,F> is an inducing path over O =
{A,B,D,F} because each collider on U (B and D) is an ancestor of one of the endpoints,
and each variable on U that is in O (except for the endpoints of U) is a collider on U.
Similarly, U is an inducing path over O = {A,B,F}. However, U is not an inducing path
over O = {A,B,C,D,F} because C is in O, but C is not a collider on U.

THEOREM 6.1: If G is a directed acyclic graph with vertex set V, and O is a subset of V
containing A and B, then A and B are not d-separated by any subset Z of O\{A,B} if and
only if there is an inducing path over the subset O between A and B.

It follows from theorem 6.1 and the fact that U is an inducing path over O = {A,B,D,F}
that A and F are d-connected given every subset of {B,D}. Because in graph G3 there is
no inducing path between A and F over O = {A,B,C,D,F} it follows that A and F are d-
separated given some subset of {B,C,D} (in this case, {B,C,D} itself.)
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6.5 Inducing Path Graphs
The inducing paths relative to O in a graph G over V can be represented in the following
structure described (but not named) in Verma and Pearl (1990b). G  is an inducing path
graph over O for directed acyclic graph G if and only if O is a subset of the vertices in
G, there is an edge between variables A and B with an arrowhead at A if and only if A and
B are in O, and there is an inducing path in G between A and B relative to O that is into
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Figure 6.6: Graph G3
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A. (Using the notation of chapter 2, the set of marks in an inducing path graph is {>,
EM}.) In an inducing path graph, there are two kinds of edges: A → B entails that every
inducing path over O between A and B is out of A and into B, and A ↔ B entails that
there is an inducing path over O that is into A and into B. This latter kind of edge can
only occur when there is a latent common cause of A and B.

Figures 6.7 through 6.9 depict the inducing path graphs of G3 over O = {A,B,D,E,F},
O = {A,B,D,F} and O = {A,B,F} respectively. Note that in G3 <B,D> is an inducing path
between B and D over O = {A,B,D,E,F} that is out of D. However, in the inducing path
graph the edge between B and D has an arrowhead at D because there is another inducing
path <B,C,D> over O = {A,B,D,E,F} that is into D. There is no edge between A and F in
the inducing path graph over O = {A,B,D,E,F}, but there is an edge between A and F in
the inducing path graphs over O = {A,B,D,F} and O = {A,B,F}.

 A                     B                                             D                      E                     F

Figure 6.7

 A                     B                                              D                                              F

Figure 6.8

 A                    B                                                                                               F

Figure 6.9. Inducing path graph of G3 over {A,B,F}

A B D E F

A B D F

A B F

Figure 6.9. Inducing path graph of G3 over {A, B, F} 
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We can extend without modification the concept of d-separability to inducing path
graphs if the only kinds of edges that can occur on a directed path are edges with one
arrowhead, and undirected paths may contain edges with either single or double
arrowheads. If G is a directed acyclic graph, G  is the inducing path graph for G over O,
and X, Y, and S are disjoint sets of variables included in O, then X and Y are d-
separated given S in G  if and only they are d-separated given S in G.

Double-headed arrows make for a very important difference between d-separability
relations in an inducing path graph and in a directed acyclic graph. In a directed acyclic
graph over O, if A and B are d-separated given any subset of O\{A,B} then A and B are d-
separated given either Parents(A) or Parents(B). This is not true in inducing path graphs.
For example, in inducing path graph G4, which is the inducing path graph of figure 6.3
over O = {A,B,C,D,E,F,H}, Parents(A) = {D} and Parents(E) = {B}, but A and E are
not d-separated given any subset of {B} or any subset of {D}; all of the sets that d-
separate A and E contain C, H, or F.

A                    B         F         C          H          D                     E

Figure 6.10. Inducing path graph G4

There is, however, a kind of set of vertices in inducing path graphs that, so far as d-
separability is concerned, behaves much like the parent sets in directed acyclic graphs.

If G  is an inducing path graph over O and A ≠ B, let V ∈ D-SEP(A,B) if and only if A
≠ V and there is an undirected path U between A and V such that every vertex on U is an
ancestor of A or B and (except for the endpoints) is a collider on U.

THEOREM 6.2: In an inducing path graph G  over O, where A and B are in O, if A is not
an ancestor of B, and A and B are not adjacent then A and B are d-separated given a
subset of D-SEP(A,B).

In an inducing path graph either A is not an ancestor of B or B is not an ancestor of A.
Thus we can determine whether A and B are adjacent in an inducing path graph without
determining whether A and B are dependent conditional on all subsets of O.

If O is not a causally sufficient set of variables, then although we can infer the
existence of an inducing path between A and B if A and B are dependent conditional on
every subset of O\{A,B}, we cannot infer that either A is a direct cause of B relative to O,
or that B is a direct cause of A relative to O, or that there is a latent common cause of A

A B F C H D E
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and B. Nevertheless, the existence of an inducing path between A and B over O does
contain information about the causal relationships between A and B, as the following
lemma shows.

LEMMA 6.1.4: If G is a directed acyclic graph over V, O is a subset of V that contains A
and B, and G contains an inducing path over O between A and B that is out of A, and A
and B are in O, then there is a directed path from A to B in G.

It follows from lemma 6.1.4 that if O is a subset of V and we can determine that there is
an inducing path between A and B over O that is out of A, then we can infer that A is a
(possibly indirect) cause of B. Hence, if we can infer properties of the inducing path
graph over O from the distribution over O, we can draw inferences about the causal
relationships among variables, regardless of what variables we have failed to measure. In
the next section we describe algorithms for inferring properties of the inducing path
graph over O from the distribution over O.

6.6 Partially Oriented Inducing Path Graphs
A partially oriented inducing path graph can contain several sorts of edges: A → B, A
o→ B, A o-o B, or A ↔ B. We use “*” as a metasymbol to represent any of the three
kinds of ends (EM (the empty mark), “>,” or “o”); the “*” symbol itself does not appear
in a partially oriented inducing path graph. (We also use “*” as a metasymbol to represent
the two kinds of ends (EM or “>“) that can occur in an inducing path graph.)

A partially oriented inducing path graph  for directed acyclic graph G with inducing
path graph G  over O is intended to represent the adjacencies in G , and some of the
orientations of the edges in G  that are common to all inducing path graphs with the same
d-connection relations as G . If G  is an inducing path graph over O, Equiv(G ) is the set
of inducing path graphs over the same vertices with the same d-connections as G . Every
inducing path graph in Equiv(G ) shares the same set of adjacencies. We use the
following definition:
� ��� �� ���	��

�� ����	�� ��������� ��	�� ������ ��� ����	�� ����
��� ������ �� ��	�

inducing path graph G  over O if and only if

(i). if there is any edge between A and B in , it is one of the following kinds:
A → B, B → A, A o→ B, B o→ A, A o-o B, or A ↔ B;
(ii).  and G  have the same vertices;
(iii).  and G  have the same adjacencies;
(iv). if A o→ B is in , then in every inducing path graph X in Equiv(G ) either A → B or
A ↔ B is in X;
(v). if A → B is in , then A → B is in every inducing path graph in Equiv(G );
(vi). if A *-* B *-* C is in , then the edges between A and B, and B and C do not collide
at B in any inducing path graph in Equiv(G );
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(vii). if A ↔ B is in , then A ↔ B is in every inducing path graph in Equiv(G );
(viii). if A o-o B is in , then in every inducing path graph X in Equiv(G ), either A → B,
A ↔ B, or A ← B is in X.

(Strictly speaking a partially oriented inducing path graph is not a graph as we have
defined it because of the extra structure added by the underlining.) Note that an edge A *-
o B does not constrain the edge between A and B either to be into or to be out of B in any
subset of Equiv(G ). The adjacencies in a partially oriented inducing path graph  for G
can be constructed by making A and B adjacent in  if and only if A and B are d-
connected given every subset of O\{A,B}.

Once the adjacencies have been determined, it is trivial to construct an uninformative
partially oriented inducing path graph  for G. Simply orient each edge A *-* B as A o-o
B. Of course this particular partially oriented inducing path graph  for G is very
uninformative about what features of the orientation of G  are common to all inducing
path graphs in Equiv(G ). For example, figure 6.11 shows again the imaginary graph of
causes of measured breathing dysfunction. Figure 6.12 shows an uninformative partially
oriented inducing path graphs of graph G5 over O = {Cilia damage, Smoking, Heart
disease, Lung capacity, Measured breathing dysfunction, Income, Parents’ smoking
habits}.

Let us say that B is a definite noncollider on undirected path U if and only if either B
is an endpoint of U, or there exist vertices A and C such that U contains one of the
subpaths A ← B *-* C, A *-* B → C, or A *-* B *-* C. In a maximally informative
partially oriented inducing path graph  for G with inducing path graph G ,
(i) an edge A *-o B appears only if the edge between A and B is into B in some members
of Equiv(G ), and out of B in other members of Equiv(G .), and
(ii) for every pair of edges between A and B, and B and C, either the edges collide at B, or
they are definite noncolliders at B, unless the edges collide in some members of
Equiv(G) and not in others.
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Figure 6.11. Graph G5
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Figure 6.12. Uninformative partially oriented inducing graph of G5 over O

Such a maximally informative partially oriented inducing path graph  for G could be
oriented by the simple but inefficient algorithm of constructing every possible inducing
path graph with the same adjacencies as G , throwing out the ones that do not have the
same d-connection relations as G , and keeping track of which orientation features are
common to all members of Equiv(G ). Of course, this is completely computationally
infeasible. Figure 6.13 shows the maximally oriented partially oriented inducing path
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graph of graph G5 over O = {Cilia damage, Smoking, Heart disease, Lung capacity,
Measured breathing dysfunction, Income, Parents’ smoking habits}.

 Cilia damage                              Heart disease                           Lung capacity

Measured breathing
dysfunction

Smoking

Income Parents' smoking
habits

o o

Figure 6.13. Maximally informative partially oriented inducing path graph of G5 over O

Our goal is to state algorithms that construct a partially oriented inducing path graph
for a directed acyclic graph G containing as much orientation information as is consistent
with computational feasibility. The algorithm we propose is divided into two main parts.
First, the adjacencies in the partially oriented inducing path graph are determined. Then
the edges are oriented in so far as possible.

6.7 Algorithms for Causal Inference with Latent Common Causes
In order to state the algorithm, a few more definition are needed. In a partially oriented
inducing path graph :

(i). A is a parent of B if and only if A → B in .
(ii). B is a collider along path <A,B,C> if and only if A *→ B ←* C in .
(iii). An edge between B and A is into A if and only if A ←* B in .
(iv). An edge between B and A is out of A if and only if A → B in .
(v). In a partially oriented inducing path graph ‘, U is a definite discriminating path
for B if and only if U is an undirected path between X and Y containing B, B ≠ X, B ≠ Y,
every vertex on U except for B and the endpoints is a collider or a definite noncollider on
U, and

(i) if V and V  are adjacent on U, and V  is between V and B on U, then V *→ V  on U,

Cilia damage Heart disease Lung capacity

Smoking

Income

Measured breathing
dysfunction

Parents’ smoking
habits

o o
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(ii) if V is between X and B on U and V is a collider on U then V → Y in , else V ←*
Y in ,
(iii) if V is between Y and B on U and V is a collider on U then V → X in , else V ←*
X in .
(iv) X and Y are not adjacent in .

Figure 6.14 illustrates the concept of a definite discriminating path.

E                       F                     G                    A                     B

 C

o

o

o

Figure 6.14. <E,F,G,A,C,B> is a definite discriminating path for C

In practice, the Causal Inference Algorithm and the Fast Causal Inference Algorithm
(described later in this section) take as input either a covariance matrix or cell counts.
Where d-separation facts are needed by the algorithms, the procedure performs tests of
conditional independence (in the discrete case) or of vanishing partial correlations in the
linear, continuous case. (Recall that if P is a discrete distribution faithful to a graph G,
then A and B are d-separated given a set of variables C if and only A and B are
conditionally independent given C, and if P is a distribution linearly faithful to a graph G,
then A and B are d-separated given C if and only if AB.C = 0.) Both algorithms construct a
partially oriented inducing path graph of some directed acyclic graph G, where G
contains both measured and unmeasured variables.

Causal Inference Algorithm1

A.) Form the complete undirected graph Q on the vertex set V.
B.) If A and B are d-separated given any subset S of V, remove the edge between A and
B, and record S in Sepset(A,B) and Sepset(B,A).
C.) Let F be the graph resulting from step B). Orient each edge as o-o. For each triple of
vertices A, B, C such that the pair A, B and the pair B, C are each adjacent in F but the
pair A, C are not adjacent in F, orient A *-* B *-* C as A *→ B ←* C if and only if B is
not in Sepset(A,C), and orient A *-* B *-* C as A *-* B *-* C if and only if B is in
Sepset(A,C).

Figure 6.14 illustrates the concept of a defi nite discriminating path. 

o

o

o

E F G A B

C
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D.) repeat
If there is a directed path from A to B, and an edge A *-* B, orient A *-* B as A *→ B,
else if B is a collider along <A,B,C> in , B is adjacent to D, and D is in Sepset(A,C),
then orient B *-* D as B ←* D,
else if U is a definite discriminating path between A and B for M in , and P and R are
adjacent to M on U, and P - M - R is a triangle, then

if M is in Sepset(A,B) then M is marked as a noncollider on subpath P *-* M *-* R
else P *-* M *-* R is oriented as P *→ M ← * R.

else if P *→ M *-* R then orient as P *→ M → R.
until no more edges can be oriented.

If the CI or FCI algorithms use as input a covariance matrix from the marginal over O of
a distribution linearly faithful to G, or cell counts from the marginal over O of a
distribution faithful to G, we will say the input is data over O that is faithful to G.

THEOREM 6.3: If the input to the CI algorithm is data over O that is faithful to G, the
output is a partially oriented inducing path graph of G over O.

If data over O = {Cilia damage, Smoking, Heart disease, Lung capacity, Measured
breathing dysfunction, Income, Parents’ smoking habits} that is faithful to the graph in
figure 6.11 is input to the CI algorithm, the output is the maximally informative partially
oriented inducing path graph over O shown in figure 6.13.

Unfortunately, the Causal Inference (CI) algorithm as stated is not practical for large
numbers of variables because of the way the adjacencies are constructed. While it is
theoretically correct to remove an edge between A and B from the complete graph if and
only if A and B are d-separated given some subset of O\{A,B}, this is impractical for two
reasons. First, there are too many subsets of O\{A,B} on which to test the conditional
independence of A and B. Second, for discrete distributions, unless the sample sizes are
enormous there are no reliable tests of independence of two variables conditional on a
large set of other variables.

In order to determine that a given pair of vertices, such as X and Y are not adjacent in
the inducing path graph, we have to find that X and Y are d-separated given some subset
of O\{X, Y}. Of course, if X and Y are adjacent in the inducing path graph, they are d-
connected given every subset of O\{X,Y}. We would like to be able to determine that X
and Y are d-connected given every subset of O\{X,Y} without actually examining every
subset of O\{X ,Y}.

In a directed acyclic graph over a causally sufficient set V, by using the PC algorithm
we are able to reduce the order and number of d-separation tests performed because of
the following fact: if X and Y are d-separated by any subset of V\{X,Y}, then they are d-
separated either by Parents(X) or Parents(Y). While the PC algorithm is constructing the
graph it does not know which variables are in Parents(X) or in Parents(Y), but as the
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algorithm progresses it is able to determine that some variables are definitely not in
Parents(X) or Parents(Y) because they are definitely not adjacent to X or Y. This reduces
the number and the order of the d-separation tests that the PC algorithm performs (as
compared to the SGS algorithm).

In contrast, an inducing path graph over O it is not the case that if X and Y are d-
separated given some subset of O\{X,Y}, then X and Y are d-separated given either
Parents(X) or given Parents(Y). However, if X and Y are d-separated given some subset
of O\{X,Y}, then X and Y are d-separated given either D-Sep(X) or given D-Sep(Y). If we
know that some variable V is not in D-Sep(X) and not in D-Sep(Y), we do not need to test
whether X and Y are d-separated by any set containing V. Once again, we do not know
which variables are in D-Sep(X) or D-Sep(Y) until we have constructed the graph. But
there is an algorithm that can determine that some variables are not in D-Sep(X) or D-
Sep(Y) as the algorithm progresses.

Let G be the directed acyclic graph of figure 6.3 (reproduced in figure 6.15). Let G  be
the inducing path graph of G over O = {A,B,C,D,E,F,H}. A and E are not d-separated
given any subset of the variables adjacent to A or adjacent to D (in both cases {B,D}).
Because A and E are not adjacent in the inducing path graph of A and E, they are d-
separated given some subset of O\{A,E}. Hence they are d-separated by either D-
Sep(A,E) (equal to {B,D,F}) or by D-Sep(E,A)) (equal to {B,D,H}). (In this case A and E
are d-separated by both D-Sep(A,E) and by D-Sep(E,A).) The problem is: how can we
know to test whether A and E are d-separated given {B,D,H} or {B,D,F} without testing
whether A and E are d-separated given every subset of O\{A,E}?

A variable V is in D-Sep(A,E) in G  if and only if V ≠ A and there is an undirected path
between A and V on which every vertex except the endpoints is a collider, and each
vertex is an ancestor of A or E. If we could find some method of determining that a
variable V does not lie on such a path, then we would not have to test whether A and E
were d-separated given any set containing V (unless of course V was in D-Sep(E,A).) We
will illustrate the strategy on G. At any given stage of the algorithm we will call the graph
constructed thus far .
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Graph

Inducing Path Graph

A                    B         F         C          H          D                    E

T

T

1

2

A                    B         F         C          H          D                     E

G

G

Figure 6.15

The FCI algorithm determines which edges to remove from the complete graph in
three stages. The first stage is just like the first stage of the PC Algorithm. We intialize 
to the complete undirected graph, and then we remove an edge between X and Y if they
are d-separated given subsets of vertices adjacent to X or Y in . This will eliminate
many, but perhaps not all of the edges that are not in the inducing path graph. When this
operation is performed on data faithful to the graph in figure 6.15, the result is the graph
in figure 6.16.

Note that A and E are still adjacent at this stage of the procedure because the
algorithm, having correctly determined that A is not adjacent to F or H or C, and that E is
not adjacent to F or H or C, never tested whether A and E are d-separated by any subset
of variables containing F, H, or C.

A

T2

T1

B F C H D E

A B F C H D E

Graph G

Inducing Path Graph G
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A                  B                   F          C           H                D                    E

Figure 6.16

Second, we orient edges by determining whether they collide or not, just as in the PC
algorithm. The graph at this stage of the algorithm is show in figure 6.17.

Figure 6.17 is essentially the graph constructed by the PC algorithm given data faithful
to the graph in figure 6.15, after steps A), B), and C) have been performed.

A                     B                      F           C           H                  D                       E

Figure 6.17

We can now determine that some vertices are definitely not in D-Sep(A,E) or in D-
Sep(E,A); it is not necessary to test whether A and E are d-separated given any subset of
O\{A,E} that contains these vertices in order to find the correct adjacencies. At this stage
of the algorithm, a necessary condition for a vertex V to be in D-Sep(A,E) in G  is that in
 there is an undirected path U between A and V in which each vertex except for the

endpoints is either a collider, or has its orientation hidden because it is in a triangle. Thus
C and H are definitely not in D-Sep(A,E) and C and F are definitely not in D-Sep(E,A).
All of the vertices that we have not definitely determined are not in D-Sep(A,E) in G  we
place in Possible-D-Sep(A,E), and similarly for Possible-D-Sep(E,A). In this case,
Possible-D-Sep(A,E) is {B,F,D} and Possible-D-Sep(E,A) is {B,D,H}. We now know
that if A and E are d-separated given any subset of O\{A,E} then they are d-separated
given some subset of Possible-D-Sep(A,E) or some subset of Possible-D-Sep(E,A). In
this case we find that A and E are d-separated given a subset of Possible-D-Sep(A,E) (in
this case the entire set) and hence remove the edge between A and E.

A B F C H D E

A B F C H D E
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Once we have obtained the correct set of adjacencies, we unorient all of the edges, and
then proceed to reorient them exactly as we did in the Causal Inference Algorithm. The
resulting output is shown in figure 6.18.

FCI Output

o oo oo oA                    B                F               C                H                D                      E

Figure 6.18

For a given partially constructed partially oriented inducing path graph , Possible-D-
SEP(A,B) is defined as follows: If A ≠ B, V is in Possible-D-Sep(A,B) in  if and only if
V ≠ A , and there is an undirected path U between A and V in  such that for every
subpath <X,Y,Z> of U either Y is a collider on the subpath, or Y is not a definite
noncollider and on U, and X, Y, and Z form a triangle in .
Using this definition of Possible-D-Sep(A,E), we can prove that every vertex not in
Possible-D-Sep(A,E) in  is not in D-Sep(A,E) in G . However, it may be possible to
determine from  that some members that we are including in Possible-D-Sep(A,E) are
not in D-Sep(A,E) in G . There is clearly a trade-off between reducing the size of
Possible-D-Sep(A,E) (so that the number and order of tests of d-separability performed
by the algorithm is reduced) and performing the extra work required to reduce the size of
the set, while ensuring that it is still a superset of D-Sep(A,E) in G . We do not know
what the optimal balance is. If G is sparse (i.e., each vertex is not adjacent to a large
number of other vertices in G), then the algorithm does not need to determine whether A
and B are d-separated given C for any C containing a large number of variables.

Fast Causal Inference Algorithm

A). Form the complete undirected graph Q on the vertex set V.
B). n = 0.
repeat

repeat
select an ordered pair of variables X and Y that are adjacent in Q such that
Adjacencies(Q,X)\{Y} has cardinality greater than or equal to n, and a subset S of
Adjacencies(Q,X)\{Y} of cardinality n, and if X and Y are d-separated given S
delete the edge between X and Y from Q, and record S in Sepset(X,Y) and
Sepset(Y,X)

A B F C H D Eo o o o oo

FCI Output
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until all ordered variable pairs of adjacent variables X and Y such that
Adjacencies(Q,X)\{Y} has cardinality greater than or equal to n and all subsets S of
Adjacencies(Q,X)\{Y} of cardinality n have been tested for d-separation;
n = n + 1;

until for each ordered pair of adjacent vertices X, Y, Adjacencies(Q,X)\{Y} is of
cardinality less than n.
C). Let F ���� ����
������������	�����
�������������	�'(��)�����������������������*��
each triple of vertices A, B, C such that the pair A, B and the pair B, C are each adjacent
in F ��
������	���A, C are not adjacent in F’, orient A *-* B *-* C as A *→ B ←* C if and
only if B is not in Sepset(A,C).
D). For each pair of variables A and B adjacent in F’, if A and B are d-separated given
any subset S of Possible-D-SEP(A,B)\{A,B} or any subset S of Possible-D-
SEP(B,A)\{A,B} in F remove the edge between A and B, and record S in Sepset(A,B) and
Sepset(B,A).

The algorithm then reorients an edge between any pair of variables X and Y as X o-o Y,
and proceeds to reorient the edges in the same way as steps C) and D) of the Causal
Inference algorithm.

THEOREM 6.4: If the input to the FCI algorithm is data over O that is faithful to G, the
output is a partially oriented inducing path graph of G over O.

The Fast Causal Inference Algorithm (FCI) always produces a partially oriented inducing
path graph for a graph G given correct statistical decisions from the marginal over the
measured variables of a distribution faithful to G. We do not know whether the algorithm
is complete, that is, whether it in every case produces a maximally informative partially
oriented inducing path graph.

As with the CI algorithm, if the input to the FCI algorithm is data faithful to the graph
of figure 6.11, the output is the maximally informative partially oriented inducing path
graph of figure 6.13.

Two directed acyclic graphs G and G  that have the same FCI partially oriented
inducing path graph over O have the same d-connection relations involving just members
of O.

COROLLARY 6.4.1: If G is a directed acylic graph over V, G  is a directed acyclic graph
over V , and O is a subset of V and of V , then G and G  have the same d-separation
relations among only the variables in O if and only if they have the same FCI partially
oriented inducing path graph over O.

Given a directed acyclic graph G, it is possible to determine what d-separation
relations involving just members of O are true of G from the FCI partially oriented
inducing path graph of G over O. In a partially oriented inducing path graph , if X ≠ Y,
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and X and Y are not in Z, then an undirected path U between X and Y definitely d-
connects X and Y given Z if and only if every collider on U has a descendant in Z, every
definite noncollider on U is not in Z, and every other vertex on U is not in Z but has a
descendant in Z. In a partially oriented inducing path graph , if X, Y, and Z are disjoint
sets of variables, then X is definitely d-connected to Y given Z if and only if some
member of X is d-connected to some member of Y given Z.

COROLLARY 6.4.2: If G is a directed acylic graph over V, O is a subset of V,  is the FCI
partially oriented inducing path graph of G over O, and X, Y, and Z are disjoint subsets
of O, then X is d-connected to Y given Z in G if and only if X is definitely d-connected
to Y given Z in .

These corollaries are proved in Spirtes and Verma 1992.

6.8 Theorems on Detectable Causal Influence
In this section we show that a number of different kinds of causal inferences can be
drawn from a partially oriented inducing path graph.

THEOREM 6.5: If  is a partially oriented inducing path graph of directed acyclic graph G
over O, and there is a directed path U from A to B in , then there is a directed path from
A to B in G.

If G is a directed acyclic graph over V, and O is included in V, if the input to the CI
algorithm is data faithful to G over O, then we call the output of the CI algorithm the CI
partially oriented inducing path graph of G over O. We adopt a similar terminology
for the FCI algorithm. A semidirected path from A to B in partially oriented inducing
path graph  is an undirected path U from A to B in which no edge contains an arrowhead
pointing toward A, that is, there is no arrowhead at A on U, and if X and Y are adjacent on
the path, and X is between A and Y on the path, then there is no arrowhead at the X end of
the edge between X and Y.

THEOREM 6.6: If  is the CI partially oriented inducing path graph of directed acyclic
graph G over O, and there is no semidirected path from A to B in , then there is no
directed path from A to B in G.

Recall that a trek between distinct variables A and B is either a directed path from A to
B, a directed path from B to A, or a pair of directed paths from a vertex C to A and B
respectively that intersect only at C. The following theorem states a sufficient condition
for when the edges in a partially oriented inducing path graph indicate a trek in the graph
that contains no measured vertices except for the endpoints.
THEOREM 6.7: If  is a partially oriented inducing path graph of directed acyclic graph G
over O, A and B are adjacent in , and there is no undirected path between A and B in 
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except for the edge between A and B, then in G there is a trek between A and B that
contains no variables in O other than A or B.

THEOREM 6.8: If  is the CI partially oriented inducing path graph of directed acyclic
graph G over O, and every semidirected path from A to B contains some member of C in

, then every directed path from A to B in G contains some member of C.

THEOREM 6.9: If  is a partially oriented inducing path graph of directed acyclic graph G
over O, and A ↔ B in , then there is a latent common cause of A and B in G.

Parallel results holds for the FCI algorithm.
To illustrate the application of these theorems, condsider the maximally informative

partially oriented inducing path graph in figure 6.13 of the causal structure of G5.
Applying theorem 6.5 we infer that Smoking causes Cilia damage, Lung capacity, and
Measured breathing dysfunction. Applying theorem 6.6, we infer that Smoking does not
cause Heart disease or Income or Parents’ Smoking Habits. It is impossible to determine
from the conditional independence relations among the measured variables whether
Income causes Smoking, or there is a common cause of Smoking and Income. The
statistics among the measured variables determine that Cilia damage and Heart disease
have a latent common cause, Cilia damage does not cause Heart disease, and Heart
disease does not cause Cilia damage.

We note here a topic that will be more fully explored in the next chapter. In the
example from figure 6.11, in order to infer that smoking causes breathing dysfunction, it
is necessary to measure two causes of Smoking (whose collision at Smoking orients the
edge from Smoking to Cilia damage.) In general, this suggests that in the design of
studies intended to determine if there is a causal path from variable A to variable B, it is
useful to measure not only variables that might mediate the connection between A and B,
but also to measure possible causes of A.

6.9 Nonindependence Constraints
The Markov and Faithfulness conditions applied to a causally insufficient graph may
entail constraints on the marginal distribution of measured variables that are not
conditional independence relations, and hence are not used in the FCI algorithm.
Consider, the example in figure 6.19, due to Thomas Verma (Verma and Pearl 1991).

Assume T is unmeasured. Then a joint distribution faithful to the entire graph must
satisfy the constraint that the quantity
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A B C D

T

Figure 6.19

P(B| A)P(D| B,C, A)
B

→
∑

is a function only of the values of C and D.

P(B| A)P(D| B,C, A) =
B

→
∑ P(B| A)P(D| B,C, A,T )

B

→
∑ P(T| B,C, A) =

T

→
∑

P(D|C,T )
T

→
∑ P(B| A)

B

→
∑ P(T |B, A)

(because A, B are independent of D given {C, T} and C is independent of T given {A,
B}). Hence

P(D|C,T )
T

→
∑ P(B| A)

B

→
∑ P(T| B, A) = P(D|C,T )

T

→
∑ P(T | A) =

P(D|C,T )
T

→
∑ P(T ) = g(C, D)

(because T and A are independent).
This constraint is not entailed if a directed edge from A to D is added to the graph. The

moral is that there is further marginal structure not in the form of conditional
independence relations that could in principle be used to help identify latent structure. We
will see a similar point when we turn to linear models in the next section. A general
theory of how Verma constraints arise is given by Desjardins (1999).

T

A B C D
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6.10 Generalized Statistical Indistinguishability and Linearity
Suppose that for whatever reasons an investigation were to be confined to linear
structures and to probability distributions that are consistent with the assumption that
each random variable is a linear function of its parents and of unmeasured factors. The
effect of restrictions such as linearity is to make distinguishable causal structures that
would otherwise be indistinguishable. That happens because the restriction, whatever it
is, together with the conditional dependence and independence relations required by the
Markov, Minimality or Faithfulness Conditions, entails additional constraints on the
measured variables. These additional constraints may not be in the form of conditional
independence relations. In the linear case they typically are not. Consider for example the
two structures shown below, where the X variables are measured and the T variables are
unmeasured.

T

T1 T2

X 1 X 2 X 3 X 4

ε 1 ε 2 ε 3 ε 4

ε 1 ε 2 ε 3 ε 4

X 1 X 2
X 3 X 4

Figure 6.20

These structures each imply that in the marginal distribution over the measured
variables every pair of variables is dependent conditional on every other set of measured
variables. In each case the maximally informative partially oriented inducing path graph
on the X variables is a complete undirected graph. By examining conditional
independence relations among these variables, one could not tell which structure obtains.
But if linearity is required, then it is easy to tell which structure obtains. For under the
linearity assumption, the second structure entails all three of the following constraints on
the correlations of the measured variables, while the first structure entails only the first of

X1

X1

e1 e2 e3 e4

e1 e2 e3 e4

X2 X4

T1 T2

X3

X2 X3 X4

T
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these constraints (where we denote the correlation between X1 and X2 as 12 in order to
avoid subscripts with subscripts):

13 24 − 14 23 = 0

12 34 − 14 23 = 0

13 24 − 12 34 = 0

Early in this century Charles Spearman (1928) called constraints of these sorts vanishing
tetrad differences, and we will use his terminology.

Characterizing statistical indistinguishability under the linearity restriction thus
presents an entirely new problem, and one for which we will offer no general solution. It
is not true, for example, that conditional independence relations and vanishing tetrad
differences jointly determine the faithful indistinguishability classes of linear structures
with unmeasured variables. For example, each of the following linear structures entails
that a single tetrad difference vanishes in the marginal distribution over A, B, C, and D,
and has a partially oriented inducing path graph for these variables consisting of a
complete undirected graph:

1

(i)

(ii)

T          T

A B C D

T          T

A B C D

T

2

3

21

Figure 6.21

But the two graphs are not faithfully indistinguishable over the class of linear structures.
Structure (ii) permits distributions consistent with linearity in which the correlation of A
and B is positive, the correlation of B and C is positive and the correlation of A and C is
negative. Structure (i) admits no distributions consistent with linearity whose marginals
satisfy this condition.

A B C D

T1 T2

(i)

(ii)

A B C D

T1

T3

T2
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Structures (i) and (ii) are not typical of the linear causal structures with unmeasured
variables one finds in the social science literature. For practical purposes, the examination
of vanishing tetrad constraints provides a powerful means to distinguish between
alternative causal structures, even in structures that are only partially linear. Tests for
hypotheses of vanishing tetrad differences were introduced by Wishart in the 1920s
assuming normal variates, and asymptotically distribution free tests have been described
by Bollen (1989).

Algorithms that take advantage of vanishing tetrad differences will be described and
illustrated later in this book. In order to take that advantage, we need to be able to
determine algorithmically when a structure with or without unmeasured common causes
entails a particular vanishing tetrad difference among the measured variables. This
question leads to an important theorem.

6.11 The Tetrad Representation Theorem
We wish to characterize entirely in graph theoretic terms a necessary and sufficient
condition for a distribution on the vertices of an arbitrary directed acyclic graph G to
linearly imply a vanishing tetrad difference, that is the tetrad difference vanishes in all of
the distributions linearly represented by G. We will call a distribution linearly represented
by some directed acyclic graph G a linear model. (A slightly more formal definition is
given in chapter 13.) A linear model is uniquely determined by the directed acyclic graph
G that represents it, and linear coefficients and the independent marginal distributions on
the variables (including error terms) of zero indegree.

First some terminology: Given a trek T(I,J) between vertices I and J, I(T(I,J)) denotes
the directed path in T(I,J) from the source of T(I,J) to I and J(T(I,J)) denotes the directed
path in T(I,J) from the source of T(I,J) to J. (Recall that one of the directed paths in a trek
may be an empty path.) T(I,J) denotes the set of all treks between I and J.

In a directed acyclic graph G, if for all T(K,L) in T(K,L) and all T(I,J) in T(I,J),
L(T(K,L)) and J(T(I,J)) intersect at a vertex Q, then Q is an LJ(T(I,J),T(K,L)) choke
point. Similarly, if for all T(K,L) in T(K,L) and all T(I,J) in T(I,J), L(T(K,L)) and all
J(T(I,J)) intersect at a vertex Q, and for all T(I,L) in T(I,L) and all T(J,K) in T(J,K),
L(T(I,L)) and J(T(J,K)) also intersect at Q, then Q is an LJ(T(I,J),T(K,L),T(I,L),T(J,K))
choke point. Also see the definition of trek.

The fundamental theorem for vanishing tetrad differences in linear models is this:

TETRAD REPRESENTATION THEOREM 6.10: In a directed acyclic graph G, there exists an
LJ(T(I,J),T(K,L),T(I,L),T(J,K)) or an IK(T(I,J),T(K,L),T(I,L),T(J,K)) choke point if and
only if G linearly implies IJ KL - IL JK = 0.

A consequence of theorem 6.10 is
THEOREM 6.11: A directed acyclic graph G linearly implies IJ KL - IL JK = 0 only if
either it linearly implies that IJ or KL = 0, and IL or JK = 0, or there is a (possibly
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empty) set Q of random variables in G that does not contain both I and K or both J and L
such that G linearly implies that IJ.Q = KL.Q = IL.Q = JK.Q = 0.

Theorem 6.10 provides a fast algorithm for calculating the vanishing tetrad differences
linearly implied by any directed acyclic graph. Theorem 6.11 provides a means to
determine when unmeasured common causes are acting in linear structures. In later
chapters we describe some of the implications of these facts for investigating the
structure of causal relations among unmeasured variables.

6.12 An Example: Math Marks and Causal Interpretation
In several places in his recent text on graphical models in statistics, Whittaker (1990)
discusses a data set from Mardia, Kent and Bibby (1979) concerning the grades of 88
students on examinations in five mathematical subjects: mechanics, vectors, algebra,
analysis and statistics. The example illustrates one of the uses of the Tetrad
Representation Theorem, and provides occasion to comment on some important
differences of interpretation between our methods and those Whittaker describes. The
variance/covariance matrix for the data is as follows:

Mechanics Vectors Algebra Analysis Statistics
302.29
125.78 170.88
100.43 84.19 111.60
105.07 93.60 110.84 217.88
116.07 97.89 120.49 153.77 294.37

When given these data, the PC algorithm immediately determines the pattern show in
figure 6.22.

Whittaker obtains the same graph under a different interpretation. Recall that an
undirected independence graph is any pair <G,P> where G is an undirected graph and P
is a distribution such that vertices, X, Y in G are not adjacent if they are independent
conditional on the set of all other vertices of G; or to state the contrapositive: if X, Y are
dependent conditional on the set of all other vertices of G, then X, Y are adjacent in G.
Undirected independence graphs hide much of the causal structure, and sometimes many
of the independence relations. Thus if variables X and Z are causes of variable Y but X
and Z are statistically independent and have no causal relations whatsoever, the
undirected independence graph has an edge between X and Z. In effect, the independence
graph fails to represent the conditional independence relations that hold among proper
subsets of a set of variables.
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Mechanics

Vectors

Algebra

Analysis

Statistics 
   

Figure 6.22

Every undirected pattern graph obtained from a faithful distribution (or sample) is a
subgraph of the undirected independence graph obtained from that distribution. In the
case at hand the two graphs are the same, but they need not be in general.

Whittaker claims that identifying the undirected independence graph is important for
four reasons: (i) it reduces the complex five dimensional object into two simpler three
dimensional objects—the two maximal cliques in the graph; (ii) it groups the variables
into two sets; (iii) it highlights Algebra as the one crucial examination in analyzing the
interrelationship between different subjects in exam performance; (iv) it asserts that
Algebra and Analysis alone will be sufficient to predict Statistics and that Algebra and
Vectors will be sufficient to predict Mechanics; but that all four marks are needed to
predict Algebra (p. 6)

The second reason seems simply a consequence of the first, and the first seems of little
consequence: the cognitive burden of noting that there are five variables is not very great.
There is a long tradition in statistics of introducing representations on grounds that they
simplify the data and in practice treating the objects of such reductions as causes. That is,
for example, the history of factor analysis after Thurstone. But as with factor analysis,
causal conclusions drawn from independence graphs would be unreliable. The third
reason seems too vague to be worth much trouble. The assertion given in the fourth
reason is sound, but only if “predict” is understood in all cases to have nothing to do with
predicting the values of variables when they are deliberately altered, as by coaching. We
suspect statistical analyses of such educational data are apt to be given a causal
significance, and for such purposes directed graphical models better represent the
hypotheses.

Applying theorem 6.11, the vanishing tetrad test for latent variables, we find that there
are four vanishing tetrad differences that cannot be explained by vanishing partial
correlations among the measured variables. This suggests that they are entailed by
vanishing partial correlations involving latent variables, and thus suggests the
introduction of latent variables. A natural idea in view of the mathematical structure of
the subjects tested is that Algebra is an indicator of Algebraic knowledge, which is a
factor in the Knowledge of vector algebra measured by Vector and Mechanics and is also

Mechanics

Vectors

Algebra

Analysis

Statistics 
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a factor in Knowledge of real analysis that affects Analysis and Statistics. The
explanation of the data then looks as shown in figure 6.23.

Knowledge 
of vector  
algebra

Algebraic 
knowledge

Knowledge of  
real analysis

Mechanics Vector Algebra Analysis Statistics 

Figure 6.23

The arrows without notation attached to them indicate other sources of variation.
Assuming a faithful distribution and linearity, this graph does not entail the vanishing
first order partial correlations among the measured variables that the data suggest. But if
the variance in Algebra due to factors other than algebraic knowledge is sufficiently
small, a linear distribution faithful to this graph will to good approximation give exactly
those vanishing partial correlations.

This structure (assuming linearity) entails eight vanishing tetrad differences, all of
which the TETRAD II program identifies and tests and cannot reject (p > .7). The model
itself, when treated as the null hypotheses in a likelihood ratio test, yields a p value of
about .9, roughly the value Whittaker reports for the undirected graphical independence
model.
6.13 Background Notes
In a series of papers (Pearl and Verma 1990, 1991, Verma and Pearl 1990a, 1990b, 1991)
Verma and Pearl describe an “Inductive Causation” algorithm that outputs a structure that
they call a pattern (or sometimes a “completed hybrid graph”) of a directed acyclic graph
G over a set of variables O. The most complete description of their theory appears in
Verma and Pearl (1990b). The key ideas of an inducing path, an inducing path graph, and
the proof of (what we call) theorem 6.1 all appear in this paper. Unfortunately, the two
main claims about the output of the Inductive Causation Algorithm made in the paper,
given in their lemma A2 and their theorem 2, are false (see Spirtes 1992).

Algebraic
knowledge

Mechanics Vector Algebra Analysis Statistics

Knowledge of
real analysis

Knowledge
of vector algebra
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Early versions of the Inductive Causation Algorithm did not distinguish between A →
B and A o→ B, and hence could not be used to infer that A causes B as in theorem 6.5.
This distinction was introduced (in a different notation) in order to prove a version of
theorem 6.5 and theorem 6.6 in Spirtes and Glymour (1990); Verma and Pearl
incorporated it in a subsequent version of the Inductive Causation Algorithm. The
Inductive Causation Algorithm does not use definite discriminating paths to orient edges,
and hence in some cases gives less orientation information than the FCI procedure. The
output of the Inductive Causation Algorithm has no notation distinguishing between
edges in triangles that definitely do not collide and merely unoriented edges. Like the CI
algorithm, the Inductive Causation Algorithm cannot be applied to large numbers of
variables because testing the independence of some pairs of variables conditional on
every subset of O\{A,B} is required.

The vanishing tetrad difference was used as the principle technique in model
specification by Spearman and his followers. A brief account of their methods is given in
Glymour, Scheines, Spirtes, and Kelly (1987). Spearman’s inference to common causes
from vanishing tetrad differences was challenged by Godfrey Thomson in a series of
papers between 1916 and 1935. In our terms, Thomson’s models all violated linear
faithfulness.
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7Prediction

7.1 Introduction
The fundamental aim of many empirical studies is to predict the effects of changes,
whether the changes come about naturally or are imposed by deliberate policy: Will the
reduction of sources of environmental lead increase the intelligence of children in
exposed regions? Will increased taxation of cigarettes decrease lung cancer? How large
will these effects be? What will be the differential yield if a field is planted with one
species of wheat rather than another; or the difference in number of polio cases per capita
if all children are vaccinated against polio as against if none are; or the difference in
recidivism rates if parolees are given $600 per month for six months as against if they are
given nothing; or the reduction of lung cancer deaths in middle aged smokers if they are
given help in quitting cigarette smoking; or the decline in gasoline consumption if an
additional dollar tax per gallon is imposed?

One point of experimental designs of the sort found in randomized trials is to attempt
to create samples that, from a statistical point of view, are from the very distributions that
would result if the corresponding treatments were made general policy and applied
everywhere. For such experiments under such assumptions, the problems of statistical
inference are conventional, which is not to say they are easy, and the prediction of policy
outcomes is not problematic in principle. But in empirical studies in the social sciences,
in epidemiology, in economics, and in many other areas, we do not know or cannot
reasonably assume that the observed sample is from the very distribution that would
result if a policy were adopted. Implementing a policy may change relevant variables in
ways not represented in the observed sample. The inference task is to move from a
sample obtained from a distribution corresponding to passive observation or quasi-
experimental manipulation, to conclusions about the distribution that would result if a
policy were imposed. In our view one of the most fundamental questions of statistical
inference is when, if ever, such inferences are possible, and, if ever they are possible, by
what means. The answer, according to Mosteller and Tukey, is “never.” We will see
whether that answer withstands analysis.

7.2 Prediction Problems
The possibilities of prediction may be analyzed in a number of different sorts of
circumstances, including at least the following:

Case 1: We know the causal graph, which variables will be directly manipulated, and
what the direct manipulation will do to those variables. We want to predict the
distribution of variables that will not be directly manipulated. More formally, we know
the set X of variables being directly manipulated, P(X|Parents(X)) in the manipulated
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distribution, and that Parents(X) in the manipulated population is a subset of Parents(X)
in the unmanipulated population. That is essentially the circumstance that Rubin,
Holland, Pratt, and Schlaifer address, and in that case the causal graph and the
Manipulation Theorem specify a relevant formula for calculating the manipulated
distribution in terms of marginal conditional probabilities from the unmanipulated
distribution. The latter can be estimated from samples; we can find the distribution of Y
(or of Y conditional on Z) under direct manipulation of X by taking the appropriate
marginal of the calculated manipulated distribution.

Case 2: We know the set X of variables being directly manipulated, P(X|Parents(X)) in
the manipulated distribution, that Parents(X) in the manipulated population is a subset of
Parents(X) in the unmanipulated population, and that the measured variables are causally
sufficient; unlike case 1, we do not know the causal graph. The causal graph must be
conjectured from sample data. In this case the sample and the PC (or some other)
algorithm determine a pattern representing a class of directed graphs, and properties of
that class determine whether the distribution of Y following a direct manipulation of X
can be predicted.

Case 3: The difficult, interesting and realistic case arises when we know the set X of
variables being directly manipulated, we know P(X|Parents(X)) in the manipulated
population, and that Parents(X) in the manipulated population is a subset of Parents(X)
in the unmanipulated population, but prior knowledge and the sample leave open the
possibility that there may be unmeasured common causes of the measured variables. If
observational studies were treated without unsupported preconceptions, surely that would
be the typical circumstance. It is chiefly because of this case that Mosteller and Tukey
concluded that prediction from uncontrolled observations is not possible. One way of
viewing the fundamental problem of predicting the distribution of Y or conditional
distribution of Y on Z upon a direct manipulation of X can be formulated this way: find
conditions sufficient for prediction, and conditions necessary for prediction, given only a
partially oriented inducing path graph and conditional independence facts true in the
marginal (over the observed variables) of the unmanipulated distribution. Show how to
calculate features of the predicted distribution from the observed distribution. The
ultimate aim of this chapter is to provide a partial solution to this problem.

We will take up these cases in turn. Case 1 is easy but we take time with it because of the
connection with Rubin’s theory. Case 2 is dealt with very briefly. In our view Case 3
describes the more typical and theoretically most interesting inference problems. The
reader is warned that even when the proofs are postponed the issue is intricate and
difficult.
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7.3 Rubin-Holland-Pratt-Schlaifer Theory1

Rubin’s framework has a simple and appealing intuition. In experimental or observational
studies we sample from a population. Each unit in the population, whether a child or a
national economy or a sample of a chemical, has a collection of properties. Among the
properties of the units in the population, some are dispositional—they are propensities of
a system to give a response to a treatment. A glass vase, for example, may be fragile,
meaning that it has a disposition to break if struck sharply. A dispositional property isn’t
exhibited unless the appropriate treatment is applied—fragile vases don’t break unless
they are struck. Similarly, in a population of children, for each reading program each
child has a disposition to produce a certain post-test score (or range of test scores) if
exposed to that reading program. In experimental studies when we give different
treatments to different units, we are attempting to estimate dispositional properties of
units (or their averages, or the differences of their averages) from data in which only
some of the units have been exposed to the circumstances in which that disposition is
manifested. Rubin associates with each such dispositional quantity, Q, and each value x
of relevant treatment variable X, a random variable, QXf=x, whose value for each unit in
the population is the value Q would have if that unit were to be given treatment x, or in
other words if the system were forced to have X value equal to x. If unit i is actually given
treatment x1 and a value of Q is measured for that unit, the measured value of Q equals
the value of QXf=x1.

Experimentation may give a set of paired values <x, yXf=x>, where yXf=x is the value of
the random variable YXf=x. But for a unit i that is given treatment x1, we also want to
know the value of YXf=x2, YXf=x3, and so on for each possible value of X, representing
respectively the values for Y unit i is disposed to exhibit if unit i were exposed to
treatment x2 or x3, that is, if the X value for these units were forced to be x2 or x3 rather
than x1. These unobserved values depend on the causal structure of the system. For
example, the value of Y that unit i is disposed to exhibit on treatment x2 might depend on
the treatments given to other units. We will suppose that there is no dependence of this
kind, but we will investigate in detail other sorts of connections between causal structure
and Rubin’s counterfactual random variables.

A typical inference problem in Rubin’s framework is to estimate the distribution of
YXf=x for some value x of X, over all units in the population, from a sample in which only
some members have received the treatment x. A number of variations arise. Rather than
forcing a unique value on X, we may contemplate forcing some specified distribution of
values on X, or we may contemplate forcing different specified distributions on X
depending on the (unforced) values of some other variables Z; our “experiment” may be
purely observational so that an observed value q of variable Q for unit i when X is
observed to have value x is not necessarily the same as QXf=x. Answers to various
problems such as these can be found in the papers cited. For example, in our
paraphrasing, Pratt and Schlaifer claim the following:
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When all units are systems in which Y is an effect of X and possibly of other variables,
and no causes of Y other than X are measured, in order for the conditional distribution of
Y on X = x to equal YXf=x for all values x of X, it is sufficient and “almost necessary” that
X and each of the random variables YXf=x (where x ranges over all possible values of X)
be statistically independent.

In our terminology, when the conditional distribution of Y on X = x equals YXf=x for all
values x of X we say that the conditional distribution of Y on X is “invariant”; in their
terminology it is “observable.” Pratt and Schlaifer’s claim may be clarified with several
examples, which will also serve to illustrate some tacit assumptions in the application of
the framework. Suppose X and U, which is unobserved, are the only causes of Y, and they
have no causal connection of any kind with one another, a circumstance that we will
represent by the graph in figure 7.1.

X Y U Xf UXf=1 YXf=1

1 1 0 1 0 1

1 2 1 1 1 2

1 3 2 1 2 3

2 2 0 1 0 1

2 3 1 1 1 2

2 4 2 1 2 3

Table 7.1

X                    Y                    U

Figure 7.1

For simplicity let’s suppose the dependencies are all linear, and that for all possible
values of X, Y and U, and all units, Y = X + U. Let Xf represent values of X that could
possibly be forced on all units in the population. X is an observed variable; Xf is not. X is
a random variable; Xf is not. Consider values in table 7.1.

X Y U
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Suppose for simplicity that each row (ignoring Xf, which is not a random variable) is
equally probable. Here the X and Y columns give possible values of the measured
variables. The U column gives possible values of the unmeasured variable U. Xf is a
variable whose column indicates values of X that might be forced on a unit; we have not
continued the table beyond Xf = 1. The UXf=1 column represents the range of values of U
when X is forced to have the value 1; the YXf=1 gives the range of values of Y when X is
forced to have the value 1. Notice that in the table YXf =1 is uniquely determined by the
value of Xf and the value of UXf =1 and is independent of the value of X.

The table illustrates Pratt and Schlaifer’s claim: YXf =1 is independent of X and the
distribution of Y conditional on X = 1 equals the distribution of YXf =1. We constructed the
table by letting U = UXf =1, and YXf =1 = 1 + UXf=1. In other words, we obtained the table by
assuming that save for the distribution of X, the causal structure and probabilistic
structure are completely unaltered if a value of X is forced on all units. By applying the
same procedure with YXf=2 = 2 + UXf=2, the table can be extended to obtain values when Xf
= 2 that satisfy Pratt and Schlaifer’s claim.

Consider a different example in which, according to Pratt and Schlaifer’s rule, the
conditional probability of Y on X is not invariant under direct manipulation. In this case X
causes Y and U causes Y, and there is no causal connection of any kind between X and U,
as before, but in addition an unmeasured variable V is a common cause of both X and Y, a
situation represented in figure 7.2.

V

X                              Y                      U

Figure 7.2

Consider the distribution shown in table 7.2, with the same conventions as in table 7.1.
Again, assume all rows are equally probable, ignoring the value of Xf which is not a
random variable. Notice that Yxf = 1 is now dependent on the value of X. And, just as Pratt
and Schlaifer require, the conditional distribution of Y on X = 1 is not equal to the
distribution of YXf=1.

X Y U

V
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X Y U Xf UXf=1 YXf=1

1 1 0 1 0 1

1 2 1 1 1 2

1 3 2 1 2 3

2 2 0 1 0 1

2 3 1 1 1 2

2 4 2 1 2 3

Table 7.2

The table was constructed so that when X = 1 is forced, and hence Xf = 1, the
distributions of UXf=1, and VXf=1 are independent of Xf. In other words, while the system of
equations

Y = X + V + U
X = V

was used to obtain the values of X, Y, and U, the assumptions UXf=1 = U, VXf=1 = V and the
equation

YXf=1 = Xf + VXf=1 + UXf=1

were used to determine the values of UXf=1, VXf=1 and YXf =1. The forced system was treated
as if it were described by the diagram depicted in figure 7.3.

V

 X                             Y                    U

Figure 7.3

X Y U

V
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V

X                           Y                        U

Figure 7.4

For another example, suppose Y = X + U, but there is also a variable V that is
dependent on both Y and X, so that the system can be depicted as in figure 7.4.

Table 7.3 is a table of values, obtained by assuming Y = X + U and V = Y + X, and
these relations are unaltered by a direct manipulation of X.

X Y V U Xf VXf=1 UXf=1 YXf=1

0 0 0 0 1 2 0 1

0 1 1 1 1 3 1 2

0 2 2 2 1 4 2 3

1 1 2 0 1 2 0 1

1 2 3 1 1 3 1 2

1 3 4 2 1 4 2 3

Table 7.3

Again assume all rows are equally probable. Note that YXf=1 is independent of X, and
YXf=1 has the same distribution as Y conditional on X = 1. So Pratt and Schlaifer’s
principle is again satisfied, and in addition the conditional probability of Y on X is
invariant. The table was constructed by supposing the manipulated system satisfies the
very same system of equations as the unmanipulated system, and in effect that the graph
of dependencies in figure 7.4 is unaltered by forcing values on X.

Pratt and Schlaifer’s rules, as we have reconstructed them, are consequences of the
Markov Condition. So are other examples described by Rubin. To make the connection
explicit we require some results. We will assume the technical definitions introduced in
chapter 3, and we will need some further definitions.

X

V

Y U
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The importance of theorem 7.1 is that whether P(Y|Z) is invariant under a direct
manipulation of X in GComb by changing W from w1 to w2 is determined by properties of
GUnman alone. Therefore, we will sometimes speak of the invariance of P(Y|Z) under a
direct manipulation of X in GUnman without specifying W or GComb. (As the proofs show, a
simpler but equivalent way of formulating theorem 7.1 is that P (Y|Z) is invariant under
manipulation of X when Y is d-separated from the policy variables given Z.)

Each of the preceding examples, and Pratt and Schlaifer’s general rule, are
consequences of a corollary to theorem 7.1:

COROLLARY 7.1: If GComb is a directed acyclic graph over V ∪ W, W is exogenous with
respect to V in GComb, X and Y are in V, and P(V ∪ W) is a distribution that satisfies the
Markov condition for GComb, then P(Y|X) is invariant under direct manipulation of X in
GComb by changing W from w1 to w2 if in GUnman no undirected path into X d-connects X
and Y given the empty set of vertices. Equivalently, if (1) Y is not a (direct or indirect)
cause of X, and (2) there is no common cause of X and Y in GUnman.

In graphical terms, Pratt and Schlaifer’s claim amounts to requiring that for
“observability” (invariance) G and G —the graph of a manipulated system obtained by
removing from G all edges into X—and their associated probabilities must give the same
conditional distribution of Y on X. Corollary 7.1 characterizes the sufficiency side of this
claim. Pratt and Schlaifer say their condition is “almost necessary.” What they mean, we
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If G is a directed acyclic graph over a set of variables V ∪ W, W is exogenous with
respect to V in G, Y and Z are disjoint subsets of V, P(V ∪ W) is a distribution that
satisfies the Markov condition for G, and Manipulated(W) = X, then P(Y|Z) is
invariant under direct manipulation of X in G by changing W from w1 to w2 if and only
if P(Y|Z,W = w1) = P(Y|Z,W = w2) wherever they are both defined. Note that a sufficient
condition for P(Y|Z) to be invariant under direct manipulation of X in G by changing W
is that W be d-separated from Y given Z in G. In a directed acyclic graph G containing Y
and Z, ND(Y) is the set of all vertices that do not have a descendant in Y. If Y ∩ Z = ∅,
then V is in IV(Y,Z) (informative variables for Y given Z) if and only if V is d-connected
to Y given Z, and V is not in ND(YZ). (Note that this entails that V is not in Y ∪ Z.) If Y
∩ Z = ∅+�W is in IP(Y,Z) (W has a parent who is an informative variable for Y given Z)
if and only if W is a member of Z, and W has a parent in IV(Y,Z) ∪ Y. We will use the
following result.

THEOREM 7.1: If GComb is a directed acyclic graph over V ∪ W, W is exogenous with
respect to V in GComb, Y and Z are disjoint subsets of V, P(V ∪ W) is a distribution that
satisfies the Markov condition for GComb, no member of X ∩ Z is a member of IP(Y,Z) in
GUnman, and no member of X\Z is a member of IV(Y,Z) in GUnman, then P(Y|Z) is
invariant under a direct manipulation of X in GComb by changing W from w1 to w2.
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the consequent does hold, and, furthermore, that when the antecedent fails to hold the
consequent will not hold unless a special constraint is satisfied by the conditional
probabilities. Parallel remarks apply to the graphical condition we have given. There exist
cases in which there are d-connecting paths between X and Y given the empty set that are
into X and the probability of Y when X is directly manipulated is equal to the original
conditional probability of Y on X. Again the antecedent will fail and the consequent will
hold only if a constraint is satisfied by the conditional probabilities, so the condition is
“almost necessary.”

It may happen that the distribution of Y when a value is forced on X cannot be
predicted from the unforced conditional distribution of Y on X but, nonetheless, the
conditional distribution of Y on Z when a value is forced on X can be predicted from the
unforced conditional distribution of Y on X and Z. Pratt and Schlaifer consider the
general case in which, besides X and Y, some further variables Z are measured. Pratt and
Schlaifer say that the law relating Y to X is “observable with concomitant Z” when the
unforced conditional distribution of Y on X and Z equals the conditional distribution of Y
on Z in the population in which X is forced to have a particular value.

Pratt and Schlaifer claim sufficient and “almost necessary” conditions for
observability with concomitants, namely that for any value x of X the distribution of X be
independent of the conditional distribution of YXf=x on the value of z of ZXf=x when X is
forced to have the value x. This rule, too, is a special case of theorem 7.1.

Consider an example due to Rubin. (Rubin’s X is Pratt and Schlaifer’s Z; Rubin’s T is
Pratt and Schlaifer’s X). In an educational experiment in which reading program
assignments T are assigned on the basis of a randomly sampled value of some pretest
variable X which shares one or more unmeasured common causes, V, with Y, the score on
a post-test, we wish to predict the average difference  in Y values if all students in the
population were given treatment T = 1 as against if all students were given treatment T =
2. The situation in the experiment is represented in figure 7.5.

X Y

T

U

V
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take it, is that there are cases in  which the antecedent of their condition fails to hold and
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Figure 7.5

Provided the experimental sample is sufficiently representative, Rubin says that an
unbiased estimate of  can be obtained as follows: Let k range over values of X, from 1 to
K, let Y1k  be the average value of Y conditional on T = 1 and X = k, and analogously for
Y2k . Let n1k be the number of units in the sample with T = 1 and X = k, and
K, let Y1k be the average value of Y conditional on T = 1 and X = k, and analogously 
for Y2k. Let n1k be the number of units in the sample with T = 1 and X = k, and
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analogously for n2k. The numbers n1 and n2 represent the total number of units in the
sample with T = 1 and T = 2 respectively.

Let Y Tf =1 = expected value of Y if treatment 1 is forced on all units. According to
Rubin, estimate Y Tf =1 by:

n1k + n2k

n1 + n2k =1

K

∑ Y1k

and estimate  by:

n1k + n2k

n1 + n2k =1

K

∑ Y1k − Y2k( )

The basis for this choice may not be apparent. If we look at the hypothetical
population in which every unit is forced to have T = 1, then it is clear from Rubin’s tacit
independence assumptions that he treats the manipulated population as if it had the causal
structure shown in figure 7.6, as the following derivation shows.

Y Tf =1 = Y × P(YTf =1) =
Y

→
∑

Y × P(YTf =1| XTf =1 = k, TTf =1 =1)P(XTf =1 = k| TTf =1 =1)P(TTf =1 = 1
k =1

K

∑
Y

→
∑ ) =

Y × P(YTf =1| XTf =1 = k,TTf =1 = 1)P(XTf =1 = k
k=1

K

∑
Y

→
∑ )

The second equality in the above equations hold because P(TTf=1 = 1) = 1, and XTf=1 and
TTf=1 are independent according to the causal graph shown in figure 7.6. By theorem 7.1,
both P(YTf=1|XTf=1,TTf=1) and P(XTf=1) are invariant under direct manipulation of T in the
graph of figure 7.5. This entails the following equation.

Y Tf =1 = Y × P(YTf =1| XTf =1 = k,TTf =1 = 1)P(XTf =1 = k
k=1

K

∑
Y

→
∑ ) =

P(X = k) × Y × P(Y| X = k,T = 1)
Y

→
∑

k =1

K

∑ = n1k + n2k
n1 + n2

× Y1k

P(YTf =1| XTf =1 = k, TTf =1 =1)P(XTf =1 = k
k =1

K

∑

Y
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X  Y

V

T

U

Figure 7.6

Note that X and T, unlike XTf=1 and TTf=1 are not independent. Rubin’s tacit assumption
that XTf=1 and TTf=1 are independent indicates that he is implicitly assuming that the causal
graph of the manipulated population is the graph of figure 7.6, not the graph of figure 7.5,
which is the causal structure of the unmanipulated population. Y Tf =2  can be derived in
an analogous fashion.

The reconstruction we have given to Rubin’s theory assumes that all units in the
population have the same causal structure for the relevant variables, but not, of course,
that the units are otherwise homogenous. It is conceivable that someone might know the
counterfactuals required for prediction according to the Pratt and Schlaifer rules even
though the relevant causal structure in the population (and in the sample from which
inferences are to be made) differs from unit to unit. For example, it might somehow be
known that A and B have no unmeasured common cause and that B does not cause A, and
the population might in fact be a mixture of systems in which A causes B and systems in
which A and B are independent. In that case the distribution of B if A is forced to have the
value A = a can be predicted from the conditional probability of B given A = a, indeed the
probabilities are the same. For this, and analogously for other cases of prediction for
populations with a mixture of causal structures, the predictions obtained by applying Pratt
and Schlaifer’s rule can be derived from the Markov Condition by considering whether
the relevant conditional probabilities are invariant in each of the causally homogenous
subpopulations. Thus if A and B have no causal connection, P(B|A = a) equals the
probability of B when A is forced to have value a, and if A causes B, P(B|A = a) equals
the probability of B when A is forced to have value a, and so the probability is also the
same in any mixture of systems with these two causal structures.

7.4 Prediction with Causal Sufficiency
The Rubin framework is specialized in two dimensions. It assumes known various
counterfactual (or causal) properties, and it addresses invariance of conditional
probability. But we very often don’t know the causal structure or the counterfactuals
before considering the data, and we are interested not in invariance per se but only as an
instrument in prediction. We need to be clearer about the goal. We suppose that the
investigator knows (or estimates) a distribution PUnman(O) which is the marginal over O
of a distribution faithful to an unknown causal graph GUnman, with unknown vertex set V
that includes O. She also knows the variable, X, that is the member of O that will be

X Y

T

U

V
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which is the causal structure of the unmanipulated population. YTf = 2 can be derived in an 
analogous fashion.
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directly manipulated, and the variables Parents(GMan,X) that will be direct causes of X in
GMan. She knows that X is the only variable directly manipulated. Finally she knows what
the manipulation will do to X, that is, she knows PMan(X|Parents(GMan,X)). The
distribution of Y conditional on Z is predictable if in these circumstances PMan(Y|Z) is
uniquely determined no matter what the unknown causal graph, no matter what the
manipulated and unmanipulated distributions over unobserved variables, and no matter
how the manipulation is brought about consistent with the assumptions just specified.
The goal is to discover when the distribution of Y conditional on Z is predictable, and
how to obtain a prediction.

The assumption that PUnman(O) is the marginal over O of a distribution faithful to the
unmanipulated graph GUnman may fail for several reasons. First, it may fail because of the
particular parameters values of the distribution. If W is a set of policy variables, it also
may fail because the w2 (manipulated) subpopulation contains dependencies that are not
in the w1 (unmanipulated) subpopulation. For example, suppose that a battery is
connected to a light bulb by a circuit that contains a switch. Let W be the state of the
switch, w1 be the unmanipulated subpopulation where the switch is off and w2 be the
manipulated subpopulation where the switch is on. In the w1 subpopulation the state of
the light bulb (on or off) is independent of the state of the battery (charged or not)
because the bulb is always off. On the other hand in the w2 subpopulation the state of the
light bulb is dependent on the state of the battery. Hence in GComb there is an edge from
the state of the battery to the state of the light bulb; it follows that there is also an edge
from the state of the battery to the state of the light bulb in GUnman (which is the subgraph
of GComb that leaves out W.) This implies that the joint distribution over the state of the
battery and the state of the light bulb in the w1 subpopulation is not faithful to GUnman.The
results of the Prediction Algorithm are reliable only in circumstances where a
manipulation does not introduce additional dependencies (which may or may not be part
of one’s background knowledge.)

Suppose we wish to make a prediction of the effect of an intervention or policy from
observations of variables correctly believed to be causally sufficient for systems with a
common but unknown causal structure. In that case the sample and the PC (or some
other) algorithm determine a pattern representing a class of directed graphs, and
properties of that class determine whether the distribution of Y following a direct
manipulation of X can be predicted. Suppose for example that the pattern is X - Y - Z
which represents the set of graphs in figure 7.7.
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X                           Y                       Z

(i)

X                           Y                       Z

(ii)

X                           Y                       Z

(iii)

Figure 7.7

For each of these causal graphs, the distribution of Y after a direct manipulation of X
can be calculated, but the result is different for the first graph than for the two others.
PMan(Y) for each of the graphs can be calculated from the Manipulation Theorem and
taking the appropriate marginal; the results for each graph are given below:

(i) PMan(Y ) = PUnman(Y | X)PMan(X ) ≠ PUnman(Y )
X

→
∑

(ii) PMan(Y ) = PUnman (Y )

(iii) PMan(Y ) = PUnman(Y |Z )PUnman(Z )
Z

→
∑ = PUnman (Y )

If every unit in the population is forced to have the same value of X, then for (i) the
manipulated distribution of Y does not equal the unmanipulated distribution of Y. For (ii)
and (iii) the manipulated distribution of Y equals the unmanipulated distribution. Since
the pattern does not tell us which of these structures is correct, the distribution of Y on a
manipulation of X cannot be predicted.

If a different pattern had been obtained a prediction would have been possible; for
example the pattern U - X → Y ← Z can represent either of the graphs in figure 7.8.

X                           Y                       ZU

(i)

X                           Y                       ZU

(ii)

Figure 7.8

X Y Z

(i)

X Y Z

(ii)

X Y Z

(iii)

X Y Z

X Y Z

U

(i)

U

(ii)
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PMan(Y) for each of the graphs can be calculated from the Manipulation Theorem and
taking the appropriate marginal; the results for each graph are given below:

(i) PMan(Y ) =
X

→
∑ PUnman(Y | X)PMan(X )

(ii) PMan(Y ) =
X

→
∑ PUnman(Y | X)PMan(X )

(Note, however, that while PMan(Y) is the same for (i) and (ii), PMan(U,X,Y,Z) is not the
same for (i) and (ii), so PMan(U,X,Y,Z) is not predictable.)

When it is known that the structure is causally sufficient, we can decide the
predictability of the distribution of a variable (or conditional distribution of one set of
variables on another set) by finding the pattern and applying the Manipulation Theorem
and taking the appropriate marginal for every graph represented by the pattern. If all
graphs give the same result, that is the prediction. Various computational shortcuts are
possible, some of which are described in the Prediction Algorithm stated in the next
section.

7.5 Prediction without Causal Sufficiency
We come finally to the most serious case, in which for all we know the causal structure of
the manipulated systems will be different from the causal structure of the observed
systems, the causal structure of the observed systems is unknown, and for all we know
the observed statistical dependencies may be due to unobserved common causes. This is
the situation that Mosteller and Tukey seem to think typical in non-experimental studies,
and we agree. The question is whether, nonetheless, prediction is sometimes possible, and
if so when and how.

Consider the following trivial example. If we have measured only smoking and lung
cancer, we will find that they are correlated. The correlation could be produced by any of
the three causal graphs depicted in figure 7.9.
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(i)

(ii)

Genotyp

Smoking                   Lung

Smoking                       Lung

Smoking                         Lung

(iii)

Figure 7.9

All three graphs yield the same maximally informative partially oriented inducing path
graph, shown in figure 7.10.

Smoking                                   Lung Cancero o

Figure 7.10

If Smoking is directly manipulated in graphs (i) or (iii), then P(Lung cancer) will not
change; but if Smoking is directly manipulated in graph (ii) then P(Lung cancer) will
change. So it is not possible to predict the effects of the direct manipulation of Smoking
from the marginal distribution of the measured variables.

In the causally sufficient case each complete orientation of the pattern yields a directed
acyclic graph G. According to the Manipulation Theorem, for each directed acyclic graph
GUnman when we factor the distribution into a product of terms of the form
PUnman(W)(V|Parents(GUnman,V)) we can calculate the effect of manipulating a variable X
simply by replacing PUnman(W)(X|Parents(GUnman,X)) with PMan(W)(X|Parents(GMan,X))
(where GMan is the manipulated graph). This simple substitution works because each of
the terms in the factorization other than PUnman(W)(X|Parents(GUnman,X)) is guaranteed to
be invariant under any direct manipulation of X in GUnman, and hence can be estimated
from frequencies in the unmanipulated population.

Let us now try and generalize this strategy to the causally nonsufficient case, where
P(O) is the marginal of a distribution P(V) that is faithful to a directed acyclic graph
GUnman, and  is the partially oriented inducing path graph of GUnman. We could search for
a factorization of the distribution of P(O) that is a product of terms of the form
PUnman(V|M(V)) (where membership in the set M(V) is a function of V) in which each of

Smoking

Smoking Lung cancer

Lung cancer

Lung cancerSmoking

Genotype

(i)

(ii)

(iii)

Lung cancerSmoking o o
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In the causally suffi cient case each complete orientation of the pattern yields a directed 
acyclic graph G. According to the Manipulation Theorem, for each directed acyclic graph 
GUnman when we factor the distribution into a product of terms of the form PUnman(W)(V | 
Parents(GUnman,V)) we can calculate the effect of manipulating a variable X simply by 
replacing PUnman(W)(X | Parents(GUnman,X)) with PMan(W)(X | Parents(GMan,X)) (where GMan 
is the manipulated graph). This simple substitution works because each of the terms in 
the factorization other than PUnman(W)(X | Parents(GUnman,X)) is guaranteed to be invariant 
under any direct manipulation of X in GUnman, and hence can be estimated from frequencies 
in the unmanipulated population.   

PUnman(V | M(V)) (where membership in the set M(V) is a function of V) in which each of
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the terms except PUnman(X|M(X)) is invariant under all direct manipulations of X in all
directed acyclic graphs for which  is a partially oriented inducing path graph over O. If
we find such a factorization, then we can predict the effect of the manipulation by
substituting the term PMan(X|Parents(GMan,X)) for PUnman(V|M(X)) (where GMan is the
manipulated graph), just as we did in the causally sufficient case. We will not know
which of the many directed acyclic graphs for which  is a partially oriented inducing
path graph over O actually generated the distribution; however, it will not matter,
because PMan(Y|Z) will be the same for each of them. This is essentially the strategy that
we adopt. However, the task of finding such a factorization is considerably more difficult
in the causally nonsufficient case: unlike the causally sufficient case where we can
simply construct a factorization in which each term except P(X|Parents(GUnman,X)) is
invariant under direct manipulation of X in GUnman, in the causally nonsufficient case we
have to search among different factorizations in order to find a factorization in which
each term except PUnman(X|M(X)) is invariant under all direct manipulations of X for all
directed acyclic graphs G that have partially oriented inducing path graph over O equal to

. Fortunately, as we will see, we do not have to search though every possible
factorization of P(O).

We will flesh out the details of this strategy and provide examples. We will use the
FCI algorithm to construct a partially oriented inducing path graph  over O of GUnman.
Note that in view of Verma and Pearl’s example described in chapter 6, it may be that
some graphs for which  is a partially oriented inducing path graph over O may not
represent any distribution with marginal PUnman(O) because of nonindependence
constraints. From the theory developed in this book, we cannot hope to provide a
computational procedure that decides predictability and obtains predictions whenever
they are possible in principle, because we have no understanding of all constraints that
graphs may entail for marginal distributions. But by considering only conditional
independence constraints we can provide a sufficient condition for predictability.

Here is an example that provides a more detailed illustration of the strategy: Suppose
we measure Genotype (G), Smoking (S), Income (I), Parents’ smoking habits (PSH) and
Lung cancer (L). Suppose the unmanipulated distribution is faithful to the unmanipulated
graph that has the partially oriented inducing path graph shown in figure 7.11.
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the terms except PUnman(X | M(X)) is invariant under all direct manipulations of X in all   

substituting the term PMan(X | Parents(GMan,X)) for PUnman(V | M(X)) where GMan is the     

simply construct a factorization in which each term except P(X | Parents(GUnman,X)) is

each term except PUnman(X | M(X)) is invariant under all direct manipulations of X for all
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Income Smoking                                                        Lung cancero

Parents'
smoking

habits

o

oo
Genotype

Figure 7.11

The partially oriented inducing path graph does not tell us whether Income and
Smoking have a common unmeasured cause, or Parents’ smoking habits and Smoking
have a common unmeasured cause, and so on. The measured distribution might be
produced by any of several structures, including, for example those in figure 7.12, where
T1 and T2 are unmeasured.

If we directly manipulate Smoking so that Income and Parents’ smoking habits are not
parents of Smoking in the manipulated graph, then no matter which graph produced the
marginal distribution, the partially oriented inducing path graph and the Manipulation
Theorem tell us that if Smoking is directly manipulated then in the manipulated
population the resulting causal graph will look like the graph shown in figure 7.13.

In this case, we can determine the distribution of Lung cancer given a direct
manipulation of Smoking. Three steps are involved. Here, we simply give the results of
carrying out each step. How each step is carried out is explained in more detail in the next
section.

First, from the partially oriented inducing path graph we find a way to factor the joint
distribution in the manipulated graph. Let PUnman be the distribution on the measured
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Income   Smoking                                                             Lung cancer

Parents'
smoking
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Genotype

Income   Smoking                                                           Lung cancer
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Genotype
T

T

1

2

Figure 7.12

variables and let PMan be the distribution that results from a direct manipulation of
Smoking. It can be determined from the partially oriented inducing path graph that

PMan(I, PSH, S, G, L) = PMan(I) ×  PMan(PSH) ×  PMan(S) ×  PMan(G) ×  PMan(L | G, S)

Income Smoking Lung cancer

Genotype

Parents’
smoking
habits

Income Smoking Lung cancer

Genotype

Parents’
smoking
habits

T1

T2
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Income Smoking                                                     Lung

Parents'
smoking

habits

Genotype

Figure 7.13

where I = Income, PSH = Parents’ smoking habits, S = Smoking, G = Genotype, and L =
Lung cancer. This is the factorization of PMan corresponding to the immediately
preceding graph that represents the result of a direct manipulation of Smoking.

Second, we can determine from the partially oriented inducing path graph which
factors in the expression just given for the joint distribution are needed to calculate
PMan(L). In this case PMan(I) and PMan(PSH) prove irrelevant and we have:

PMan(L) = PMan(S)
G,S

→
∑ × PMan (G) × PMan(L|G,S)

Third, we can determine from the partially oriented inducing path graph that PMan(G) and
PMan(L|G,S) are equal respectively to the corresponding unmanipulated probabilities,
PUnman(G) and PUnman(L| G,S). Furthermore, PMan(S) is assumed to be known, since it is
the quantity being manipulated. Hence, all three factors in the expression for PMan(L) are
known, and PMan(L) can be calculated.

Note that PMan(L) can be predicted even though P(L) is most definitely not invariant
under a direct manipulation of S. The example should be enough to show that while
Mosteller and Tukey’s pessimism about prediction from observation may have been
justified when they wrote, it was not well-founded.

The algorithm sketched in the example is described more formally below, where
we have labeled each step by a letter for easy reference. Suppose PUnman(V) is
the distribution before the manipulation, PMan(V) the manipulation after the
distribution, and a single variable X in X is manipulated to have distribution

Income Smoking Lung cancer

Genotype

Parents’
smoking
habits
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PUnman(G) and PUnman(L |G,S). Furthermore, PMan(S) is assumed to be known, since it is
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PMan(X|Parents(GMan,X)), where GMan is the manipulated graph. We assume that
PUnman(V) is faithful to the unmanipulated graph GUnman, that Parents(GMan,X) is known,
that PMan(X|Parents(GMan,X)) is known, and that we are interested in predicting
PMan(Y|Z). The Prediction Algorithm is simplified by the fact that if PUnman(O) satisfies
the Markov Condition for a graph GUnman, then so does PMan(O), and hence any factorized
expression for PUnman(Y|Z) is also an expression for PMan(Y|Z). Recall that a total order
Ord of variables in a graph G  is acceptable for G  if and only if whenever A ≠ B and
there is a directed path from A to B in G , A precedes B in Ord. If  is the FCI partially
oriented inducing path graph of G over O, then X is in Definite-Nondescendants(Y) if
and only if there is no semidirected path from any Y in Y to X in . Recall that a directed
acyclic graph G is a minimal I-map of distribution P if and only if P satisfies the Markov
and Minimality Conditions for G.

Prediction Algorithm

A.) PMan(Y|Z) = unknown.
B.) Generate partially oriented inducing path graph  from PUnman(O).
C.) For each ordering of variables acceptable for  in which the predecessors of X in Ord
equals Parents(GMan,X) ∪ Definite-Nondescendants(X)

C1.) Form the minimal I-map F of PUnman(O) for that ordering;
C2.) Extract an expression for PUnman(Y|Z) from F; call it E;
C3.) If for each V ≠ X, the term PUnman(V|Parents(F,V)) in E is invariant in GMan when
X is directly manipulated then

C3a). return PMan(Y|Z) = E , where E � �� ��
��� ��� E except that
PUnman(X|Parents(F,X)) is replaced by PMan(X|Parents(GMan,X))
C3b). exit

(The algorithm can also be applied to the case where a set X of variables is manipulated,
as long as it is possible to find an ordering of variables such that for each X in X all of the
predecessors of X are in Definite-Nondescendants(X) or Parents(GMan,X), there are no
causal connections among the variables in X, and if some X in X is a parent of some
variable V not in X, then every member of X is a predecessor of V.) The description
leaves out important details. How can we find the partially oriented inducing path graph
(step B), the graph for which PUnman(V) satisfies the Minimality and Markov conditions
for a given ordering of variables (step C1), the expression E for PMan(Y|Z) (step C2); how
do we determine if a given conditional probability term that appears in the expression for
PUnman(Y|Z) is invariant under a direct manipulation of X in GUnman when we do not know
what GUnman is (step C3)? The details are described below.
Step B: We carry out step B) with the FCI Algorithm.
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PMan(X | Parents(GMan,X)), where GMan is the manipulated graph. We assume that 
PUnman(V) is faithful to the unmanipulaated graph GUnman, that Parents(GMan,X) is known, 
that PMan(X | Parents(GMan,X)) is known, and that we are interested in predicting 

PUnman(X | Parents(F,X)) is replaced by PMan(X | Parents(GMan,X)) 
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Step C: Say steps C1) and C2) are successful if they produce an expression for
PUnman(Y|Z) in which for every V in O\{X}, PUnman(V|Parents(F,V)) is invariant under
direct manipulation of X in GUnman. We conjecture that if there is an ordering of variables
for which some directed acyclic graph makes C1) and C2) successful, then there is such
an ordering that is acceptable for . (Notice that the correctness of the algorithm does not
depend upon the correctness of this conjecture, although if it is wrong the algorithm will
be less informative than some other algorithm that searches a larger set of variable
orderings.)

Step C1: For a given ordering Ord, let Predecessors(Ord,V) be the predecessors of V in
Ord. For each V in F over O, let Parents(V) be the smallest subset of Predecessors(V)
such that V is independent of Predecessors(Ord,V)\Parents(V) given Parents(V). Then F
is a minimal I-map of P(O). See Pearl 1988. Under the assumption that P(O) is the
marginal of a faithful distribution P(V) we can test whether V is independent of
Predecessors(Ord,V)\Parents(V) given Parents(V) by testing whether each member of
Predecessors(Ord,V)\Parents(V) is independent of V given Parents(V). This clearly
suggests testing whether small sets of variables are equal to Parents(V) first.

For inducing path graph G  and acceptable total ordering Ord, W is in SP(Ord,G ,V)
(separating predecessors of V in G  for ordering Ord) if and only if W precedes V in Ord
and there is an undirected path U between W and V such that each vertex on U except for
the endpoints precedes V in Ord and is a collider on U. If G is a directed acyclic graph
over V, GIP is the inducing path graph of G over O, Ord is an ordering acceptable for GIP,
and P(V) is faithful to G, then the directed acyclic graph GMin in which for each X in O
Parents(X) = SP(Ord,X) is a minimal I-map of P(O). Of course we are not generally
given GIP. However, we can construct a partially oriented inducing path graph and
identify sets of variables that narrow down the search for SP(Ord,X). For a partially
oriented inducing path graph  and ordering Ord acceptable for , let V be in Possible-
SP(Ord,X) if and only if V ≠ X and there is an undirected path U in  between V and X
such that every vertex on U except for X is a predecessor of X in Ord, and no vertex on U
except for the endpoints is a definite-noncollider on U. For a partially oriented inducing
path graph  over O and ordering Ord acceptable for , V is in Definite-SP(Ord,X) if and
only if V ≠ X and there is an undirected path U in  between V and X such that every
vertex on U except for X is a predecessor of X in Ord, and every vertex on U except for
the endpoints is a collider on U.

THEOREM 7.2: If P(O) is the marginal of a distribution faithful to G over V,  is a
partially oriented inducing path graph of G over O, and Ord is an ordering of variables in
O acceptable for some inducing path graph over O with partially oriented inducing path
graph , then there is a minimal I-map GMin of P(O) in which Definite-SP(Ord,X) in  is
included in Parents(GMin,X) which is included in Possible-SP(Ord,X) in .
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We can use theorem 7.2 as a heuristic for searching for a minimal I-map of P(O). The
procedure is only a heuristic for the following reason. While from  we can identify
orderings that are not acceptable for any inducing path graph over O with partially
oriented inducing path graph , we cannot always definitely tell that some ordering
acceptable for  is acceptable for some inducing path graph over O with partially oriented
inducing path graph . For orderings not acceptable for any such inducing path graph
over O, it is possible that making SP(Ord,X) the parents of X in GMin does not make GMin

a minimal I-map, in which case it may be that no set M including Definite-SP(Ord,X)
and included in Possible-SP(Ord,X) makes Predecessors(Ord,V)\M independent of X
given M. If that is the case, we must conduct a wider search.

Step C2: If P satisfies the Markov condition for directed acyclic graph G, the following
lemma shows how to determine an expression E for P(Y|Z). (For a related result see
Geiger, Verma, and Pearl 1990)

LEMMA 3.3.5: If P satisfies the Markov condition for directed acyclic graph G over V,
then

P(Y|Z) =

P(W |Parents(W))
W ∈IV(Y,Z)∪IP (Y ,Z)∪Y

∏
IV(Y,Z)

→
∑

P(W |Parents(W ))
W∈IV(Y,Z)∪IP(Y ,Z)∪Y

∏
IV(Y,Z)∪ Y

→
∑

for all values of V for which the conditional distributions in the factorization are defined,
and for which P(z) ≠ 0.

Step C3: We use theorems 7.3 and 7.4 below to determine from  whether a given
conditional distribution is invariant under a direct manipulation of X in GUnman. If  is a
partially oriented inducing path graph over O, then a vertex B on an undirected path U in
a partially oriented inducing path graph  over O is a definite noncollider on U if and
only if B is an endpoint of U or there are edges A *-* B *-* C, A *-* B → C, or A ← B *-
* C on U. If A ≠ B, and A and B are not in Z, then an undirected path U between A and B
in a partially oriented inducing path graph  over O is a possibly d-connecting path
between A and B given Z if and only if every collider on U is the source of a semidirected
path to a member of Z, and every definite noncollider is not in Z. If Y and Z are disjoint,
then X is in Possibly-IP(Y,Z) if and only if X is in Z, and there is a possibly d-connecting
path between X and some Y in Y given Z\{X} that is not out of X. If Y and Z are disjoint,
X is in Possibly-IV(Y,Z) if and only if X is not in Z, there is a possibly d-connecting path
between X and some Y in Y given Z, and there is a semidirected path from X to a member
of Y ∪ Z. Note that theorems 7.3 and 7.4 also entail that if there is a directed acyclic
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graph G for which an ordering of variables is acceptable that makes steps C1 and C2
successful, then so does the minimal I-map for which that ordering is acceptable.

THEOREM 7.3: If G is a directed acyclic graph over V ∪ W, W is exogenous with respect
to V in G, O is included in V, GUnman is the subgraph of G over V,  is the FCI partially
oriented inducing path graph over O of GUnman, Y and Z are included in O, X is included
in Z, Y and Z are disjoint, and no X in X is in Possibly-IP(Y,Z) in , then P(Y|Z) is
invariant under direct manipulation of X in G by changing the value of W from w1 to w2.

THEOREM 7.4: If G is a directed acyclic graph over V ∪ W, W is exogenous with respect
to V in G, O is included in V, GUnman is the subgraph of G over V,  is the FCI partially
oriented inducing path graph over O of GUnman, X, Y and Z are included in O, X, Y and Z
are pairwise disjoint, and no X in X is in Possibly-IV(Y,Z) in , then P(Y|Z) is invariant
under direct manipulation of X in G by changing the value of W from w1 to w2.

The Prediction Algorithm is based upon the construction of a partially oriented inducing
path graph from PUnman(W)(V). Consider the model in figure 7.14, where the relationships
among X, Z, and T are linear in graph G1, and W is a policy variable.

Although the distribution over X, Z, and T is not faithful to G1 when W = w1 if a = -bc,
the distribution over X and Z is faithful to G1’. In effect, although the distribution over X
and Z when W = w1 is faithful to a directed acyclic graph, it is not faithful to the graph of
the causal process that generated the distribution. Graph G2 depicts the model when X is
directly manipulated by changing the value of W from w1 to w2; this makes the coefficient
of T in the equation for X equal to 0, and imposes some new distribution upon X. The
manipulated distribution over X and Z does not satisfy the Markov condition for G1 ;
rather it satisfies the Markov condition for graph G2 , which contains an edge between X
and Z that G1 ������������������,�������������������
�����	������������������
����	���
graph from the unmanipulated distribution over X and Z it would contain no edges, and
make the prediction that the distribution of Z would be the same in the manipulated and
unmanipulated distributions, we would be wrong. Hence the Prediction Algorithm is only
guaranteed to be correct when the unmanipulated distribution is faithful to the
unmanipulated graph (which includes the X → Z edge because the combined graph
contains the X → Z edge.)

Prediction  179 



180 Chapter 7

W = w          X                                   Z              X              Z

T

Graph                     Graph

b                 c

a

a = - b  c

T

Graph                      Graph

0                 c

a
W = w            X                                   Z              X              Z

G

1

2

1

2

1

2G

G G '

'

Figure 7.14

This assumption is not as restrictive as it might first appear. Suppose that we perform
an experiment of the effects of Smoking upon Cancer. We decide to assign each subject a
number of cigarettes smoked per day in the following way. For each subject in the
experiment, we roll a die: if the die comes up 1, they are assigned to smoke no cigarettes,
if the die comes up 2, they are assigned to smoke 10 cigarettes per day, etc. Let W =
{Experiment} and V = {Die, Smoking, Drinking, Cancer}. Figure 7.15 shows the causal
graph for the combined population of experimental and non-experimental subjects, and
GUnman. The policy variable is Experiment: it has the same value (0) for everyone in the
non-experimental population, and the same value (1) for everyone in the experimental
population. Die is not a policy variable because it takes on different values for members
of the experimental population.

Die            Smoking                   Cancer

Drinking

G G

Experiment

Die            Smoking                   Cancer

Drinking

Comb Unman

Figure 7.15
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In this case, the assumption that PUnman(V) is faithful to GUnman is clearly false because
the outcome of the roll of a die and the number of cigarettes smoked by a subject are
independent in the non-experimental population, but there is an edge between them in
GUnman. Suppose, however that we consider the subset of variables V �  � -Smoking,
Drinking, Cancer}. The causal graphs that result from marginalizing over V ����������
in figure 7.16. In this case, PUnman(V (��������
�����GUnman. Since variables that are causes
of Smoking in the manipulated population but not in the unmanipulated population
complicate the analysis, we will in general simply not consider them. There is no problem
in leaving them out of the causal graphs, as long as relative to the set of measured
variables they are direct causes only of the manipulated variable. This guarantees that the
set of variables that remain after they are removed is causally sufficient.

G GComb Unman

                 Smoking                   Cancer

Drinking

Experiment

                 Smoking                   Cancer

Drinking

Figure 7.16

THEOREM 7.5: If G is a directed acyclic graph over V ∪ W, W is exogenous with respect
to V in G, GUnman is the subgraph of G over V, PUnman(W)(V) = P(V|W = w1) is faithful to
GUnman, and changing the value of W from w1 to w2 is a direct manipulation of X in G,
then the Prediction Algorithm is correct.

The Prediction Algorithm is not complete; it may say that PMan(Y|Z) is unknown when
it is calculable in principle.

7.6 Examples
First we consider our hypothetical example from the previous chapter, with the directed
acyclic graph depicted in figure 7.17, and the partially oriented inducing path graph 
over O = {Income, Parents’ smoking habits, Smoking, Cilia damage, Heart disease, Lung
capacity, Measured breathing dysfunction} depicted in figure 7.18. We assume that
PUnman is faithful to GUnman, and that in the manipulated graph that Income and Parents’
smoking habits are not parents of Smoking. We will use the Prediction Algorithm to draw
our conclusions.

Drinking

Experiment

Smoking Cancer Cancer

GComb GUnman

Drinking

Smoking

Prediction  181 



182 Chapter 7

Environmental
Pollution

Genotype

Cilia damage                                Heart disease                            Lung capacity

Measured breathing
dysfunction

Smoking

Income Parents' smoking
habits

Figure 7.17

We will show in some detail the process of determining that the entire joint
distribution of {Income, Parents’ smoking habits, Heart disease, Lung capacity and
Measured breathing dysfunction} is predictable given a direct manipulation of Smoking.
Let us abbreviate the names of the variables in the following way:

Income I
Parents’ Smoking Habits PSH
Smoking S
Cilia damage C
Heart disease H
Measured breathing dysfunction M
Lung capacity L

Environmental 
Pollution

Genotype

Measured breathing 
dysfunction

Smoking

Income Parents’ smoking 
habits

Cilia damage Heart disease  Lung capacity
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Cilia damage                              Heart disease                           Lung capacity

Measured breathing
dysfunction

Smoking

Income Parents' smoking
habits

o o

Figure 7.18

We begin by choosing an ordering for the variables. There are two constraints we impose
upon the orderings. First, the only variables that precede S are those variables that are in
Definite-Nondescendant(S), and second, the ordering is acceptable for the partially
oriented inducing path graph. That means that I, PSH, and H precede S. Second, in order
to be acceptable for the partially oriented inducing path graph, S, C, L, and M have to
occur in that order. We arbitrarily choose one ordering Ord compatible with these
constraints: I, PSH, H, S, C, L M. (Note that the ordering among the variables that are
predecessors of the directly manipulated variable never matters because each term
containing only variables that are predecessors of the directly manipulated variable is
always invariant.)

We generate a directed graph for which PUnman(I,PSH,S,C,H,M,LC) satisfies the
Minimality and Markov conditions. In this case we can determine that any ordering
acceptable for the partially oriented inducing path graph in figure 7.18 is also an ordering
acceptable for the inducing path graph. Hence, we can apply theorem 7.2. The resulting
factorization is PUnman(I) x PUnman(PSH) x PUnman(H) x PUnman(S|I,PSH) x PUnman(C|S,H) x
PUnman(L|C,H,S) x PUnman(M|C,H,L).

We now determine which terms in the factorized distribution are needed in order to
predict the conditional distribution under consideration. Because we are predicting the
entire joint distribution, it is trivial that we need every term in the factorized distribution.

Finally, we use the partially oriented inducing path graph to test whether each of the
terms except PUnman(S|I,PSH) in the factorized distribution is invariant under direct
manipulation of S in GUnman. PUnman(I), PUnman(PSH), and PUnman(H) are invariant by
theorem 7.4 because there are no semidirected paths from S to I, H, or PSH.
PUnman(C|S,H) is invariant by theorem 7.3 because every path possibly d-connecting path

Measured breathing 
dysfunction

Smoking

Income Parents’ smoking 
habits

o o

Heart disease Lung capacityCilia damage
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S to C given H is out of S. PUnman(L|C,S,H), is invariant by theorem 7.3 because every
path possibly d-connecting path between S and L given C and H is out of S. Finally
PUnman(M|C,H,L) is invariant by theorem 7.4 because there is no possibly d-connecting
path between S and M given C, H, and L.

Hence, PMan(I,PSH,H,S,C,L,M) = PUnman(I) ×  PUnman(PSH) ×  PUnman(H) ×  PMan(S) ×
PUnman(C|S,H) ×  PUnman(L|C,H,S) ×  PUnman(M|C,H,L).

In this case, the search was simple because for the given ordering of variables, every
term in the expression for PUnman(I,PSH,H,S,C,L,M) except for PMan(S) is invariant under
direct manipulation of Smoking in GUnman. If the expression had failed this test we would
have repeated the process by generating different orderings of variables, until we had
found a factorized expression of P(I,PSH,H,S,C,L,M) in which each term except PMan(S)
was invariant or we ran out of orderings.

For the next example, consider three alternative models of the relationship between
Smoking and Lung cancer depicted in figure 7.19. In G1, Smoking causes Lung cancer,
and there is a common cause of Smoking and Lung cancer; in G2, Smoking does not cause
Lung cancer, but there is a common cause of Lung cancer and Smoking; and in G3,
Smoking causes Lung cancer, but there is no common cause of Smoking and Lung cancer.

The maximally informative partially oriented inducing path graph of G1, G2, and G3

over O = {Smoking, Lung cancer} is shown in figure 7.20.
From this partially oriented inducing path graph it is impossible to determine whether

Smoking causes Lung cancer (as in G3) or Smoking does not cause Lung cancer but there
is a common cause of Smoking and Lung cancer (as in G2), or Smoking causes Lung
cancer and there is also a common cause (as in G1). In addition, we cannot predict the
distribution of Lung cancer when Smoking is directly manipulated. If we try the ordering
of variables <Smoking,Lung cancer> then in order to apply the Prediction Algorithm, we
need to show that P(Lung cancer|Smoking) is invariant under direct manipulation of
Smoking in GUnman. But we cannot use theorem 7.3 to show that P(Lung cancer|Smoking)
is invariant because the Smoking o-o Lung cancer edge guarantees that there is a possibly
d-connecting path between Smoking and Lung cancer given the empty set that is not out
of Smoking. This is a quite general feature of the method; it cannot be used to predict a
conditional distribution of Y whenever there is an edge between the variable X being
directly manipulated and Y that has a “o” at the X end. Of course, this feature does not of
itself show that P(Lung cancer) is not predictable by some other method (although in this
example it clearly is not.)

Suppose, however, that O = {Smoking, Lung cancer, Income}. If the true graph is G2,
the partially oriented inducing path graph is shown in figure 7.21.
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PUnman(M | C,H,L) is invariant by theorem 7.4 because there is no possible d-connecting

PUnman(C | S,H) × PUnman(L|C,H,S) × PUnman(M | C,H,L). 
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Smoking                                Lungo o

Figure 7.20

Income Smoking                                                              Lung cancero o

Figure 7.21

By the results of the previous chapter, we can conclude that Smoking does not cause
Lung cancer, because there is no semidirected path from Smoking to Lung cancer. In this
case P(Lung cancer) is invariant under direct manipulation of Smoking in GUnman, so
PMan(Lung cancer) is predictable.

Income Smoking                                                            Lung cancero ooo

oo

Partially Oriented Inducing Path Graph of G1

Over O = {Lung Cancer, Smoking, Income}

Income Smoking                                                 Lung cancero ooo

Partially Oriented Inducing Path Graph of G3

Over O = {Lung Cancer, Smoking, Income}

Figure 7.22

The partially oriented inducing path graphs for G1 and G3 over O = {Lung cancer,
Smoking, Income} (shown in figure 7.22) do not contain enough information in order to
determine whether Smoking causes Lung cancer. Because in each case there is a Smoking
o-o Lung cancer edge it follows that we cannot use the Prediction Algorithm to predict
PMan(Lung cancer).

If the true graph is G3 it is possible to determine that Smoking causes Lung cancer by
also measuring two causes of Smoking that are not directly connected in the partially
oriented inducing path graph, as in figure 7.23. Because there is a directed path from

Smoking oo Lung cancer

Income Smoking Lung canceroo

Income Smoking Lung canceroooo

oooo

o o

Income Smoking Lung cancer

Partially Oriented Inducing Path Graph of G1 over O = {Lung Cancer, Smoking, Income}

Partially Oriented Inducing Path Graph of G3 over O = {Lung Cancer, Smoking, Income}
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Smoking to Lung cancer in the partially oriented inducing path graph, by the results of the
preceding chapter there is a directed path from Smoking to Lung cancer in the causal
graph of the process that generated the data, and Smoking causes Lung cancer. The output
of the Prediction Algorithm is:

PMan(Lung Cancer) = PMan(Smoking)PUnman (Lung Cancer
Smoking

→
∑ |Smoking)

Note that it is not necessary that Parents’ Smoking Habits and Income be uncorrelated, or
direct parents of Smoking. The Smoking to Lung cancer edge is oriented by any pair of
variables that have edges that collide at a third variable V, that are not adjacent in the
partially oriented inducing path graph, and such that there is a directed path U from V to
Smoking and for every subpath <X,Y,Z> of U, X, Y, and Z do not form a triangle.

Income Smoking                                                           Lung cancero

Parents' Smoking
Habits

o

Figure 7.23

Unfortunately, it is more difficult to determine whether Smoking is a cause of Lung
cancer if G1 is the true causal graph. If O = {Smoking, Lung cancer, Income, Parents’
Smoking Habits} and G1 is the true causal graph, without further background knowledge
we cannot determine whether Smoking causes Lung cancer. Figure 7.24 shows that in the
partially oriented inducing path graph the Smoking to Lung cancer edge is in triangles
with Income and Parents’ smoking habits and hence is oriented with an ‘o’ at each end. It
follows from the existence of the Smoking o-o Lung cancer edge that we cannot use the
Prediction Algorithm to predict P(Lung cancer) when Smoking is directly manipulated.

It is plausible that Income does not cause Lung cancer directly. If we know from
background knowledge that if there is a causal connection between Income and Lung
cancer it contains a causal path from Smoking to Lung cancer, then we can conclude
from the partially oriented inducing path graph that Smoking does cause Lung cancer.

Income o

Parents’ Smoking 
Habits 

o

Smoking Lung cancer
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Income Smoking                                                           Lung cancero

Parents' Smoking
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o
o

o
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Figure 7.24

Alternatively, if G1 is the correct model, we might try to determine that Smoking is a
cause of cancer by measuring a variable such as Tar deposits, that is causally between
Smoking and Lung cancer. While there is still an induced edge between Income and Lung
Cancer in the partially oriented inducing path graph, Income, Smoking, and Tar deposits
are not in a triangle, and the edge from Smoking to Tar deposits can be oriented.
Unfortunately, as figure 7.25 illustrates, this now leaves one end of the edge between Tar
deposits and Lung cancer oriented with a “o” at one end, so the partially oriented
inducing path graph still does not entail that Smoking causes Lung cancer. And because
there is a Smoking o-o Lung cancer edge, PMan(Lung cancer) is not predictable using the
Prediction Algorithm.

Income Smoking                                                          Lung cancero

Parents' Smoking
Habits

o
o

o
oTar deposits

o o

Figure 7.25

However, if G1 is the correct model, and we measure a variable between Smoking and
Lung cancer, such as Tar deposits, and another cause of Tar deposits, such as Cilia
damage, we can determine that Smoking causes Lung cancer. (See figure 7.26.) However,
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o o
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o

o

Parents’ Smoking 
Habits   

o

Smoking Lung cancerTar deposits

Income o o o

o
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o

Smoking Lung cancer
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we cannot predict PMan(Lung cancer) using the Prediction Algorithm because of the
Smoking o→ Lung cancer edge.

Income Smoking                                                          Lung cancero

Parents' Smoking
Habits

o

o

o
 Tar deposits

o

Cilia damage o

Figure 7.26

We can also determine that Smoking is a cause of Lung cancer by breaking the
Income-Smoking-Lung cancer triangle by measuring all of the common causes of
Smoking and Lung cancer (in this case, Genotype). By measuring all of the common
causes of Smoking and Lung cancer, the edge between Income and Lung cancer is
removed from the partially oriented inducing path graph. This breaks triangles involving
Income, Smoking, and Lung cancer, so that the Smoking to Lung cancer edge can be
oriented by the edge between Income and Smoking, as in figure 7.27. In addition,
PMan(Lung cancer) is predictable. The output of the Prediction Algorithm is:

PMan(Lung Cancer) =

PMan(Smoking)PUnman(Genotype)PUnman(Lung Cancer| Smoking,Genotype)
Smoking,Genotype

→
∑

Of course, measuring all of the common causes of Smoking and Lung cancer may be
difficult both because of the number of such common causes, and because of
measurement difficulties (as in the case of Genotype). So long as even one common
cause remains unmeasured, the inducing path graph has an Income - Smoking - Lung
cancer triangle, and the edge between Smoking and Lung cancer cannot be oriented.

Although we cannot determine from the partially oriented inducing path graph in
figure 7.27 whether Genotype is a common cause of Smoking and Lung cancer, we can
determine that there is some common cause of Smoking and Lung cancer.
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we cannot predict Pman(Lung cancer) using the Prediction Algorithm because of the Smok-
ing o→ Lung cancer edge.
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Income Smoking                                                         Lung cancero

Parents'
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o
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Figure 7.27

7.7 Conclusion
The results developed here show that there exist possible cases in which predictions of
the effects of manipulations can be obtained from observations of unmanipulated
systems, and predictions of experimental outcomes can be made from uncontrolled
observations. Some examples from real data analysis problems will be considered in the
next chapter. We do not know whether our sufficient conditions for prediction are close
to maximally informative, and a good deal of theoretical work remains to be done on the
question.

7.8 Background Notes
Anticipations of the theory developed in this chapter can be found in Strotz and Wold
1960, in Robins 1986, and in the tradition of work inaugurated by Rubin. The special
case of the Manipulation Theorem that applies when an intervention makes a single
directly manipulated variable X independent of its parents was independently conjectured
by Fienberg in a seminar in 1991. Subsequently, Pearl (1995) has given rules for
calculating predictions from interventions. the rules, which follow from theorem 7.1, are
discussed in chapter 12.
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8 Regression, Causation, and Prediction

Regression is a special case, not a special subject. The problems of causal inference in
regression studies are instances of the problems we have considered in the previous
chapters, and the solutions are to be found there as well. What is singular about
regression is only that a technique so ill suited to causal inference should have found such
wide employment to that purpose.

8.1 When Regression Fails to Measure Influence
Regression models are commonly used to estimate the “influence” that regressors X have
on an outcome variable, Y.1 If the relations among the variables are linear then for each Xi

the expected change in Y that would be produced by a unit change in Xi if all other X
variables are forced to be constant can be represented by a parameter, say i. It is obvious
and widely noted (see, e.g., Fox 1984) that the regression estimate of i will be incorrect
if Xi and Y have one or more unmeasured common causes, or in more conventional
statistical terminology, the estimate will be biased and inconsistent if the error variable
for Y is correlated with Xi. To avoid such errors, it is often recommended (Pratt and
Schlaifer 1988) that investigators enlarge the set of potential regressors and determine if
the regression coefficients for the original regressors remain stable, in the hope that
confounding common causes, if any, will thereby be measured and revealed. Regression
estimates are known often to be unstable when the number of regressors is enlarged,
because, for example, additional regressors may be common causes of previous
regressors and the outcome variable (Mosteller and Tukey 1977). The stability of a
regression coefficient for X when other regressors are added is taken to be evidence that
X and the outcome variable have no common cause.

It does not seem to be recognized, however, that when regressors are statistically
dependent, the existence of an unmeasured common cause of regressor Xi and outcome
variable Y may bias estimates of the influence of other regressors, Xk; variables having no
influence on Y whatsoever, nor even a common cause with Y, may thereby be given
significant regression coefficients. The error may be quite large. The strategy of
regressing on a larger set of variables and checking stability may compound rather than
remedy this problem. A similar difficulty may arise if one of the measured candidate
regressors is an effect, rather than a cause, of Y, a circumstance that we think may
sometimes occur in uncontrolled studies.

To illustrate the problem, consider the linear structures in figure 8.1, where for
concreteness we specify that exogenous and error variables are all uncorrelated and
jointly normally distributed, the error variables have zero means, and linear coefficients
are not zero. Only the X variables and Y are assumed to be measured. Each set of linear
equations is accompanied by a directed graph illustrating the assumed causal and
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functional dependencies among the non-error variables. In large samples, for data from
each of these structures linear multiple regression will give all variables in the set {X1, X2,
X3, X5} nonzero regression coefficients, even though X2 has no direct influence on Y in
any of these structures, and X3 has no influence direct or indirect on Y in structures (i),
and (ii), and the effect of X3 in structures (iii) and (iv) is confounded by an unmeasured
common cause. The regression estimates of the influences of X2 and X3 will in all four
cases be incorrect. If a specification search for regressors had selected X1 alone or X1 and
X5 in (i) or (ii), or X5 alone in (i), (ii), (iii), or (iv), a regression on these variables would
give consistent, unbiased estimates of their influence on Y. But the textbook procedures
in commercial statistical packages will in all of these cases fail to identify {X1} or {X5} or
{X1, X5} as the appropriate subset of regressors.

It is easy to produce examples of the difficulty by simulation. Using structure (i),
twenty sets of values for the linear coefficients were generated, half positive and half
negative, each with absolute value greater than .5. For each system of coefficient values a
random sample of 5,000 units was generated by substituting those values for the
coefficients of structure (i) and using uncorrelated standard normal distributions for the
exogenous variables. Each sample was given to MINITAB, and in all cases MINITAB
found that {X1, X2, X3, X5} is the set of regressors with significant regression coefficients.
The STEPWISE procedure in MINITAB selected the same set in approximately half the
cases and in the others added X4 to boot; selection by the lowest value of Mallow’s Cp

 or
adjusted R2 gave results similar to the STEPWISE procedure.

The difficulty can be remedied if one measures all common causes of the outcome
variable and the candidate regressors, but unfortunately nothing in regression methods
informs one as to when that condition has been reached. And the addition of extra
candidate regressors may create the problem rather than remedy it; in structures (i) and
(ii), if X3 were not measured the regression estimate of X2 would be consistent and
unbiased.

The problem we have illustrated is quite general; it will lead to error in the estimate of
the influence of any regressor Xk that directly causes or has a common direct unmeasured
common cause with any regressor Xi such that Xi and Y have an unmeasured common
cause (or Xi is an effect of Y). Depending on the true structure and coefficient values the
error may be quite large. It is easy to construct cases in which a variable with no
influence on the outcome variable has a standardized regression coefficient larger than
any other single regressor. Completely parallel problems arise for categorical data. Recall
theorem 3.4:
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Figure 8.1

THEOREM 3.4: If P is faithful to some graph, then P is faithful to G if and only if (i) for
all vertices, X, Y of G, X and Y are adjacent if and only if X and Y are dependent
conditional on every set of vertices of G that does not include X or Y; and (ii) for all
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vertices X, Y, Z such that X is adjacent to Y and Y is adjacent to Z and X and Z are not
adjacent, X → Y ← Z is a subgraph of G if and only if X, Z are dependent conditional on
every set containing Y but not X or Z.

Consideration of the first part of this theorem explains why in structure (i) in figure 8.1
regression procedures incorrectly select X2 as a variable directly influencing Y: The
structure and distribution satisfy the Markov and Faithfulness conditions, but linear
regression takes a variable Xi to influence Y provided the partial correlation of Xi and Y
controlling for all of the other X variables does not vanish. Part (i) of theorem 3.4 shows
that the regression criterion is insufficient. It follows immediately from theorem 3.4 that,
assuming the Markov and Faithfulness Conditions, regression of Y on a set X of variables
will only yield an unbiased or consistent estimate of the influences of the X variables
provided in the true structure no X variable is the effect of Y or has a common
unmeasured cause with Y.

Since typical empirical data sets to which multiple regression methods are applied
have some correlated regressors, and in uncontrolled studies it is rare to know that
unmeasured common causes are not acting on both the outcome variable and the
regressors, the problem is endemic. One of the most common uses of statistical methods
thus appears to be little more than elaborate guessing.

8.2 A Solution and Its Application
Assuming the right variables have been measured, there is a straightforward solution to
these problems: apply the PC, FCI, or other reliable algorithm, and appropriate theorems
from the preceding chapters, to determine which X variables influence the outcome Y,
which do not, and for which the question cannot be answered from the measurements;
then estimate the dependencies by whatever methods seem appropriate and apply the
results of the previous chapter to obtain predictions of the effect of manipulating the X
variables. No extra theory is required. We will give a number of illustrations, both
empirical and simulated.

We begin by noting that for the twenty samples from structure (i), in every case our
implementation of the PC algorithm—which of course assumes there are no latent
variables—selects {X1, X5} as the variables that directly influence Y. Our implementation
of the FCI algorithm, which makes no such assumption, in every case says that X1

directly influences Y, that X5 may, and that the other variables do not.
In each of the other three structures in figure 8.1 with sufficiently large samples

multiple regression methods will make errors, always including X2 and X3 among the
“significant” or “best” or “important” variables. In contrast the FCI algorithm together
with theorems 6.5 through 6.8 give the following results:
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Structure Direct Influence No Direct Influence Undetermined
(ii) X1 X2, X3, X4 X5

(iii) X1 X4 X2, X3, X5

(iv) X1, X5 X4, X6, X7 X2, X3

In all of these cases the FCI procedure either determines definitely that X2 and X3 have no
direct influence on Y, or determines that it cannot be decided whether they have any
unconfounded direct influence.

8.2.1 Components of the Armed Forces Qualification Test
The AFQT is a test battery used by the United States armed forces. It has a number of
component tests, including those listed below:

Arithmetical Reasoning (AR)
Numerical Operations (NO)
Word Knowledge (WK)

In addition a number of other tests, including those listed below, are not part of the AFQT
but are correlated with it and with its components:

Mathematical Knowledge (MK)
Electronics Information (EI)
General Science (GS)
Mechanical Comprehension (MC)

Given scores for these 8 measures on 6224 armed forces personnel, a linear multiple
regression of AFQT on the other seven variables gives significant regression coefficients
to all except EI and MC and thus fails to distinguish the tests that are in fact linear
components of AFQT. The covariance matrix is shown below.

n = 6224
AFQT NO WK AR MK EI MC GS

253.9850
29.649051.7649
60.3604 6.2931 41.967
57.656614.5143 16.0226 40.9329
29.376318.2701 13.2055 20.6052 40.7386
36.2318 2.10733 22.6958 16.3664 12.1773 63.1039
35.8244 4.45539 17.4155 20.3952 16.459 35.1981 62.9647
38.2510 5.61516 27.1492 14.7402 14.8442 29.9095 26.6842 48.9300
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Given the prior information that AFQT is not a cause of any of the other variables, the PC
algorithm in TETRAD II correctly picks out {AR, NO, WK} as the only variables
adjacent to AFQT, and hence the only variables that can be components of AFQT.
(Spirtes, Glymour, Scheines, and Sorensen 1990).2

8.2.2 The Causes of Spartina Biomass
A recent textbook on regression (Rawlings 1988) skillfully illustrates regression
principles and techniques for a biological study in which it is reasonable to think there is
a causal process at work relating the variables. The question at issue is plainly causal:
among a set of 14 variables, which have the most influence on an outcome variable, the
weight of Spartina grass? Since the example is the principal application given for an
entire textbook on regression, the reader who reaches the 13th chapter may be surprised
to find that the methods yield almost no useful information about that question.

According to Rawlings, Linthurst (1979) obtained five samples of Spartina grass and
soil from each of nine sites on the Cape Fear Estuary of North Carolina. Besides the mass
of Spartina (BIO), fourteen variables were measured for each sample:

Free Sulfide (H2S)
Salinity (SAL)
Redox potentials at pH 7 (EH7)
Soil pH in water (PH)
Buffer acidity at pH 6.6 (BUF)
Phosphorus concentration (P)
Potassium concentration (K)
Calcium concentration (CA)
Magnesium concentration (MG)
Sodium concentration (NA)
Manganese concentration (MN)
Zinc concentration (ZN)
Copper concentration (CU)
Ammonium concentration (NH4)
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The correlation matrix is as follows3:

BIO H2S SAL EH7 PH BUF P K CA MG NA MN ZN CU NH4

1.0

.33 1.0

-.10 .10 1.0

.05 .40 .31 1.0

.77 .27 -.05  .09 1.0

-.73 -.37 -.01  -.15 -.95 1.0

-.35 -.12 -.19 -.31 -.40 .38 1.0

-.20 .07  -.02  .42  .02-.07 -.23 1.0

.64 .09 .09 -.04 .88 -.79 -.31 -.26 1.0

-.38 -.11  -.01 .30 -.18 .13  -.06 .86 -.42 1.0

-.27 .00 .16 .34 -.04-.06 -.16 .79 -.25 .90 1.0

-.35 .14 -.25 -.11 -.48 .42 .50 -.35 -.31 -.22 -.31 1.00

-.62 -.27 -.42 -.23 -.72 .71 .56 .07 -.70 .35 .12 .60 1.0

.09 .01 -.27 .09 .18-.14 -.05 .69 -.11 .71 .56 -.23 .21 1.0

-.63 -.43 -.16 -.24 -.75 .85 .49 -.12 -.58 .11 -.11 .53 .72 .01 1.0

The aim of the data analysis was to determine for a later experimental study which of
these variables most influenced the biomass of Spartina in the wild. Greenhouse
experiments would then try to estimate causal dependencies out of the wild. In the best
case one might hope that the statistical analyses of the observational study would
correctly select variables that influence the growth of Spartina in the greenhouse. In the
worst case, one supposes, the observational study would find the wrong causal structure,
or would find variables that influence growth in the wild (e.g., by inhibiting or promoting
growth of a competing species) but have no influence in the greenhouse.

Using the SAS statistical package, Rawlings analyzed the variable set with a multiple
regression and then with two stepwise regression procedures. A search through all
possible subsets of regressors was not carried out, presumably because the candidate set
of regressors is too large. The results were as follows:

(i) a multiple regression of BIO on all other variables gives only K and CU significant
regression coefficients;
(ii) two stepwise regression procedures4 both yield a model with PH, MG, CA, and CU as
the only regressors, and multiple regression on these variables alone gives them all
significant coefficients;
(iii) simple regressions one variable at a time give significant coefficients to PH, BUF,
CA, ZN, and NH4.
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What is one to think? Rawling’s reports that “None of the results was satisfying to the
biologist; the inconsistencies of the results were confusing and variables expected to be
biologically important were not showing significant effects” (p. 361). This analysis is
supplemented by a ridge regression, which increases the stability of the estimates of
coefficients, but the results for the point at issue—identifying the important variables—
are much the same as with least squares. Rawlings also provides a principal components
factor analysis and various geometrical plots of the components. These calculations
provide no information about which of the measured variables influence Spartina growth.

Noting that PH, for example, is highly correlated with BUF, and using BUF instead of
PH along with MG, CA and CU would also result in significant coefficients, Rawlings
effectively gives up on this use of the procedures his book is about:

Ordinary least squares regression tends either to indicate that none of the variables in a
correlated complex is important when all variables are in the model, or to arbitrarily
choose one of the variables to represent the complex when an automated variable
selection technique is used. A truly important variable may appear unimportant
because its contribution is being usurped by variables with which it is correlated.
Conversely, unimportant variables may appear important because of their associations
with the real causal factors. It is particularly dangerous in the presence of collinearity
to use the regression results to impart a “relative importance,” whether in a causal
sense or not, to the independent variables. (p. 362)

Rawling’s conclusion is correct about multiple regression and about conventional
methods for choosing regressors, but it is not true of more reliable inference procedures.
If we apply the PC algorithm to the Linthurst data then there is one robust conclusion: the
only variable that may directly influence biomass in this population5 is PH; PH is
distinguished from all other variables by the fact that the correlation of every other
variable (except MG) with BIO vanishes or vanishes when PH is controlled for.6 The
relation is not symmetric; the correlation of PH and BIO, for example, does not vanish
when BUF is controlled. The algorithm finds PH to be the only variable adjacent to BIO
no matter whether we use a significance level of .05 to test for vanishing partial
correlations, or a level of 0.1, or a level of 0.2. In all of these cases, the PC algorithm or
the FCI algorithm yield the result that PH and only PH can be directly connected with
BIO. If the system is linear normal and the Causal Markov Condition obtains, then in this
population any influence of the other regressors on BIO would be blocked if PH were
held constant. Of course, over a larger range of values of the variables there is little
reason to think that BIO depends linearly on the regressors, or that factors that have no
influence in producing variation within this sample would continue to have no influence.
Nor can the analysis determine whether the relationship between PH and BIO is
confounded by one or more unmeasured common causes, but the principles of the theory
in this case suggest otherwise. If PH and BIO have a common unmeasured cause T, say,
and any other variable, Z, among the 13 others either causes PH or has a common
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unmeasured cause with PH, then Z and BIO should be correlated conditional on PH,
which appears not to be the case.

The program and theory lead us to expect that if PH is forced to have values like those
in the sample—which are almost all either below PH 5 or above PH 7—then
manipulations of other variables within the ranges evidenced in the sample will have no
effect on the growth of Spartina. The inference is a little risky, since growing plants in a
greenhouse under controlled conditions may not be a direct manipulation of the variables
relevant to growth in the wild. If for example, in the wild variations in PH affect Spartina
growth chiefly through their influence on the growth of competing species not present in
the greenhouse, a greenhouse experiment will not be a direct manipulation of PH for the
system.

The fourth chapter of Linthurst’s thesis partly confirms the PC algorithm’s analysis. In
the experiment Linthurst describes, samples of Spartina were collected from a salt marsh
creekbank (presumably at a different site than those used in the observational study).
Using a 3 x 4 x 2 (PH x SAL x AERATION) randomized complete block design with four
blocks, after transplantation to a greenhouse the plants were given a common nutrient
solution with varying values PH and SAL and AERATION. The AERATION variable
turned out not to matter in this experiment. Acidity values were PH 4, 6 and 8. SAL for
the nutrient solutions was adjusted to 15, 25, 35 and 45 %.

Linthurst found that growth varied with SAL at PH 6 but not at the other PH values, 4
and 8, while growth varied with PH at all values of SAL (p. 104). Each variable was
correlated with plant mineral levels. Linthurst considered a variety of mechanisms by
which extreme PH values might control plant growth:

At pH 4 and 8, salinity had little effect on the performance of the species. The pH
appeared to be more dominant in determining the growth response. However, there
appears to be no evidence for any causal effects of high or low tissue concentrations
on plant performance unless the effects of pH and salinity are also accounted for. (p.
108)

The overall effect of pH at the two extremes is suggestive of damage to the root
directly, thereby modifying its membrane permeability and subsequently its capacity
for selective uptake. (p. 109)

A comparison of the observational and experimental data suggests that the PC Algorithm
result was essentially correct and can be extrapolated through the variation in the
populations sampled in the two procedures, but cannot be extrapolated through PH values
that approach neutrality. The result of the PC search was that in the non-experimental
sample, observed variations in aerial biomass were perhaps caused by variations in PH,
but were not caused by variations in other variables. In the observational data Rawlings
reports (p. 358) almost all SAL measurements are around 30—the extremes are 24 and 38.
Compared to the experimental study rather restricted variation was observed in the wild
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sample. The observed values of PH in the wild, however, are clustered at the two
extremes; only four observations are within half a PH unit of 6, and no observations at all
occurred at PH values between 5.6 and 7.1. For the observed values of PH and SAL, the
experimental results appear to be in very good agreement with our results from the
observational study: small variations in SAL have no effect on Spartina growth if the PH
value is extreme. The is further discussion of this case in chapter 12, section 5.10.

8.2.3 The Effects of Foreign Investment on Political Repression
Timberlake and Williams (1984) used regression to claim foreign investment in third-
world countries promotes dictatorship. They measured political exclusion (PO) (i.e.,
dictatorship), foreign investment penetration in 1973 (FI), energy development in 1975
(EN), and civil liberties (CV). Civil liberties was measured on an ordered scale from 1 to
7, with lower values indicating greater civil liberties. Their correlations for 72 “noncore”
countries are:

PO FI EN CV
1.0
-.175 1.0
-.480 .330 1.0
.868 -.391 -.430 1.0

Their inference is unwarranted. Their model and the model obtained from the SGS
algorithm using a .12 significance level to test for vanishing partial correlations) are
shown in figure 8.2.7
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The SGS Algorithm will not orient the FI-EN and EN-PO, edges, or determine
whether they are due to at least one unmeasured common cause. Maximum likelihood
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estimates of any of the SGS Algorithm models require that the influence of FI on PO (if
any) be negative, and the models easily pass a likelihood ratio test with the EQS program.
If one of the SGS Algorithm models is correct, Timberlake and William’s regression
model appears to be a case in which an effect of the outcome variable is taken as a
regressor, as in structure (i) of figure 8.1.

This analysis of the data assumes their are no unmeasured common causes. If we run
the correlations through the FCI algorithm using the same significance level, we obtain
the partially oriented inducing path graph shown in figure 8.3.

FI EN PO CVoo

Figure 8.3

The graph together with the required signs of the dependencies, says that foreign
investment and energy consumption have a common cause, as do foreign investment and
civil liberties, that energy development has no influence on political exclusion, but
political exclusion may have a negative effect on energy development, and that foreign
investment has no influence, direct or indirect, on political exclusion.

8.2.4 More Simulation Studies
In the following simulation study we used data generated from the graph of figure 8.4,
which illustrates some of the confusions that seem to be present in the regression
produced by Timberlake and Williams.
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Figure 8.4

For both the linear and the discrete cases with binary variables, one hundred trials
were run at each of sample sizes 2,000 and 10,000 using the SGS algorithm. A similar set

FI EN PO CVoo

X1

Y

X2

X4

X3



202 Chapter 8

was run using the PC algorithm for linear and ternary variables. (Each of these algorithms
assumes causal sufficiency.) Results were scored separately for errors concerning the
existence and the directions of edges, and for correct choice of regressors. Let us call the
pattern of the graph in figure 8.4 the true pattern. Recall that an edge existence error of
commission (Co) occurs when any pair of variables are adjacent in the output pattern but
not in the true pattern. An edge direction error of commission occurs when in an edge
occurring in both the true pattern and the output pattern there is an arrowhead in the
output pattern but not the true pattern. Errors of omission (Om) are defined analogously
in each case. The results are tabulated as the average over the trial distributions of the
ratio of the number of actual errors to the number of possible errors of each kind. The
proportion of trials in which both (Both) actual causes of Y were correctly identified (with
no incorrect causes), and in which one (One) but not both causes of Y were correctly
identified (again with no incorrect causes) were recorded for each sample size:

Variable

Type

#trials n %Edge Existence %Edge Direction %Both

Correct

%One

Correct

Co Om Co Om

SGS

Linear 100 2000 1.4 3.6 3.0 5.4 85.7 3.6

Linear 100 10000 1.6 1.0 2.7 2.2 90.0 7.0

Binary 100 2000 0.6 16.6 29.5 21.8 38.0 34.0

Binary 100 10000 1.2 7.4 30.0 9.1 60.0 25.0

PC

Linear 100 2000 6.0 2.0 1.0 6.2 80.0 15.0

Linear 100 10000 0.0 1.0 2.5 2.9 95.0 0.0

Ternary 100 2000 3.0 1.0 29.1 8.3 65.0 35.0

Ternary 100 10000 3.0 2.0 10.8 1.2 85.0 15.0

The differences in the results with the SGS and PC algorithms for discrete data are due to
the choice of binary variables in the former case and ternary variables in the latter case.
The tests for statistical independence with discrete variables appear to have more power
when variables can have more than two values.

For purposes of prediction and policy, the numbers in the last two columns suggest
that the procedure quite reliably finds real causes of the outcome variable when the
statistical assumptions of the simulations are met, the sample is large and a causal
structure like that in figure 8.4 obtains. Regression will in these cases find that all of the
regressors influence the outcome variable.
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8.3 Error Probabilities for Specification Searches
We have shown that various algorithms for specifying causal structure from the data are
correct if the requisite statistical decisions are correctly made, but we have given no
results about the probability of various sorts of errors in small and medium size samples.
The Neyman-Pearson account of testing has made popular two measures of error: the
probability of rejecting the null hypothesis when it is true (type I), and the probability of
not rejecting the null hypothesis when an alternative is true (type II). Correspondingly,
when a search procedure yields a model M from a sample, we can ask for the probability
that, were the model M true, the procedure would not find it on samples of that size, and
given an alternative M , we can ask for the probability that were M � ��
�� ���� ������
procedure would find M on samples of that size. We shall also refer to the error
probabilities for the outcomes of search procedures as probabilities of type I and type II
errors respectively. Especially in small samples, the significance levels and powers of the
tests used in deciding conditional independence may not be reliable indicators of the
probabilities of corresponding errors in the search procedure.

Error probabilities for search procedures are nearly impossible to obtain analytically,
and we have recommended that Monte Carlo methods be used instead. (A discussion of
assumptions under which confidence intervals for search do or do not exist is given in
chapter 12.) When a procedure yields M from a sample of size n, estimate M and use the
estimated model to generate a number of samples of size n, run the search procedure on
each and count the frequency with which something other than M is found. For plausible
or interesting alternative models M , estimate M , use the estimated model to generate a
number of samples of size n, run the search procedure on each and count the frequency
with which M is found. We will illustrate the determination of error probabilities for
specification searches with a case in which probability of type II error is quite high.

Weisberg (1985) illustrates a procedure for detecting outliers with an experimental
study for which regression produces anomalous results:

An experiment was conducted to investigate the amount of a particular drug present in
the liver of a rat. Nineteen rats were randomly selected, weighed, placed under light
ether anesthesia and given an oral dose of the drug. Because it was felt that large livers
would absorb more of a given dose than smaller liver, the actual dose an animal
received was approximately determined as 40 mg of the drug per kilogram of body
weight.

The experimental hypothesis was that, for the method of determining the dose,
there is no relationship between the percentage of the dose in the liver (Y) and the
body weight (X1), liver weight (X2), and relative dose (X3). (pp. 121–124)

Regressing Y on (X1, X2, X3) gives a result not in agreement with the hypothesis; the
coefficients of Y on body weight (X1) and dose (X3) are both significant, even though one
is determined by the other. We find the following regression values for Weisberg’s data
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(standard errors are parenthesized and below the coefficients, and t statistics are shown
just below the standard errors):

Y = –3.902*X1 + .197*X2 + 3.995*X3 + 
(1.345) (.218) (1.336)
–2.901 .903 2.989

A multiple regression not including X2 also yields significant regressors for X1 and X3 at
the .05 level. Yet, Weisberg observes that no individual regression of Y on any one of the
X variables is significant at that level. The results of the several statistical decisions are
therefore inconsistent; we have, for example, that ρX1Y = 0 , ρX2Y = 0 , ρX3Y = 0
but ρX1Y. X3 ≠ 0 . One might take any of several views about such inconsistencies. One
is that it is largely an artifact of the particular significance level used. If the .01 level were
used to reject hypotheses of vanishing correlations and partial correlations, the
correlations with Y would vanish and so would the partial correlations controlling for one
other variable. But the partial correlation of X1 with Y controlling for both of the other
regressors could not be rejected, and an inconsistency would remain. Another view is that
inconsistencies in the outcomes of sequential statistical decisions are to be expected,
especially in small samples, and where possible, inferences should be based on the
statistical decisions that are most reliable. In the case at hand the power of any of the
statistical tests is low because of the sample size, but the lower the order of the partial
correlation the greater the power. The rule of thumb is that to control for an extra variable
is to throw away a data point. Thus in this case the PC algorithm never considers the
partial correlations and concludes solely from the vanishing correlations that none of the
X variables cause the Y variable. Weisberg instead recommends excluding one of the 19
data points, after which a multiple regression using the remaining data gives no (.05)
significant regression coefficients.

From the experimental setup we can assume that body weight and liver weight are
causally prior to dose, which itself is prior to the outcome, that is, the amount of the drug
found in the rat’s liver. Applying the PC algorithm to the original data set with this
background knowledge, and using the .05 significance level in the program’s tests, we get
the pattern in figure 8.5.

The PC algorithm gives the supposed correct result in this case because no correlation
of an X variable with Y is significant, and that is all the program needs to decide absence
of influence. The regression of Y against each individual X variable alone is an essentially
equivalent test. To estimate the type I error of the PC search, we obtained a maximum
likelihood estimate (assuming normal distributions) of the model shown in figure 8.5 and
used it to generate 100 simulated data sets each of size 19. The PC algorithm was then
applied to each data set. In four of the 100 samples the procedure erroneously introduced
an edge between Y and one or another of the X variables.

A multiple regression not including X2 also yields significant regressors for X1 and X3 at
the .05 level. Yet, Weisberg observes that no individual regression of Y on any one of the
X variables is significant at that level. The results of the several statistical decisions are
therefo r e in con sistent; w e have, f or  ex am ple, th at q X1 Y  = 0, q X2 Y  = 0, q X3 Y  = 0 bu t q X1 Y .X3  = 0 .
One might take any of several views about such inconsistencies. One is that it is largely
an artifact of the particular significance level used. If the .01 level were used to reject
hypotheses of vanishing correlations and partial correlations, the correlations with Y
would vanish and so would the partial correlations controlling for one other variable. But
the partial correlation of X1 with Y controlling for both of the other regressors could not
be rejected, and an inconsistency would remain. Another view is that inconsistencies in
the outcomes of sequential statistical decisions are to be expected, especially in small
samples, and where possible, inferences should be based on the statistical decisions that
are most reliable. In the case at hand the power of any of the statistical tests is low
because of the sample size, but the lower the order of the partial correlation the greater
the power. The rule of thumb is that to control for an extra variable is to throw away a
data point. Thus in this case the PC algorithm never considers the partial correlations and
concludes solely from the vanishing correlations that none of the X variables cause the Y
variable. Weisberg instead recommends excluding one of the 19 data points, after which
a multiple regression using the remaining data gives no (.05) significant regression
coefficients.

1 32 1 3
≠
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To investigate the power of the procedure against alternatives, we consider three
models in which Y is connected to at least one X variable. The first is simply the
regression model with correlations among the regressors estimated from the sample. With
a correlation of about .99 between X1 and X3, the regression model with correlated errors
is nearly unfaithful, and we should expect the search to be liable not to find the structure.
We generated 100 samples at each of the sizes 19, 50, 100, and 1000. We then ran the PC
algorithm on each sample, counting the output as a type 2 error if it included no edge
between Y and some X variable. Figure 8.6 gives the results for the first three sample
sizes.
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In 100 trials at sample size 1,000 PC never makes a type 2 error against this
alternative.

The second alternative is an elaboration of the original PC output. We add an edge
from body weight to the outcome, giving the graph in figure 8.7.
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Figure 8.7

We estimated this model with the EQS program, which found a value of .228 for the
linear coefficient associated with the X1 → Y edge, and then used the estimated model to
again generate 100 samples at each of the four sample sizes. The results for the first three
sample sizes are shown in figure 8.8.
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Even at sample size 1,000 the search makes an error of type 2 against this alternative
in 55% of the cases. “Small” influences of body weight on Y cannot be detected. We
would expect the same to be true of dose.

In the third case we increased the linear coefficient connecting X1 and Y in the model
in figure 8.7 to 1.0.
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At sample size 1,000 the search makes an error against this alternative in 2% of the
cases.

For this problem at small sample sizes the search has little power against some
alternatives, and little power even at large sample sizes against alternatives that may not
be implausible.

8.4 Conclusion
In the absence of very strong prior causal knowledge, multiple regression should not be
used to select the variables that influence an outcome or criterion variable in data from
uncontrolled studies. So far as we can tell, the popular automatic regression search
procedures should not be used at all in contexts where causal inferences are at stake. Such
contexts require improved versions of algorithms like those described here to select those
variables whose influence on an outcome can be reliably estimated by regression. In
applications, the power of the specification searches against reasonable alternative
explanations of the data is easy to determine by simulation and ought to be investigated.

It should be noted that the present state of the algorithm is scarcely the last word on
selecting direct causes. There are cases in which a partially oriented inducing path graph
of a directed acyclic graph G over O contains a directed edge from X to Y even though X
is not a direct cause of Y relative to O (although of course there is a directed path from X
to Y in G). However, theorem 6.8 states a sufficient condition for a directed edge in a
partially oriented inducing path graph to entail that X is a direct cause of Y. In some cases
tests based on constraints such as Verma and Pearl’s, noted in section 6.9, would help
with the problem, but they have not been developed or implemented.





9 The Design of Empirical Studies

Simple extensions of the results of the preceding chapters are relevant to the design of
empirical studies. In this chapter we consider only a few fundamental issues. They
include a comparison of the powers of observational and experimental designs, some
implications for sampling and variable selection, and some considerations regarding
ethical experimental design. We conclude with a reconsideration from the present
perspective of the famous dispute over the causal conclusions that could legitimately be
drawn from epidemiological studies of smoking and health.

9.1 Observational or Experimental Study?
There are any number of practical issues about both experimental and non-experimental
studies that will not concern us here. Questions of the practical difficulty of obtaining an
adequate random sample aside, when can alternative possible causal structures be
distinguished without experiment and when only by experiment?

Suppose that one is interested in whether a treatment T causes an outcome O.
According to Fisher (1959) one important advantage of a randomized experiment is that
it eliminates from consideration several alternatives to the causal hypothesis to be tested.
If the value of T is assigned randomly, then the hypothesis that O causes T or that there is
an unmeasured common cause of O and T can be eliminated. Fisher argues that the
elimination of this alternative hypothesis greatly simplifies causal inference; the question
of whether T causes O is reduced to the question of whether T is statistically dependent
on O. (This assumes, of course, instances of the Markov and Faithfulness Conditions.)

Critics of randomized experiments, for example, Howson and Urbach (1989), have
correctly questioned whether randomization in all cases does eliminate this alternative
hypothesis. The treatments given to people are typically very complex and change the
values of many random variables. For example, suppose one is interested in the question
of whether inhaling tobacco smoke from cigarettes causes lung cancer. Imagine a
randomized experiment in which one group of people is randomly assigned to a control
group (not allowed to smoke) and another group is randomly assigned to a treatment
group (forced to smoke 20 cigarettes a day). Further imagine that the experimenter does
not know that an unrecorded feature of the cigarettes, such as the presence of a chemical
in some of the paper wrappings of the cigarettes, is the actual cause of lung cancer, and
inhaling tobacco smoke does not cause lung cancer. In that case lung cancer and inhaling
tobacco smoke from cigarettes are statistically dependent even though inhaling tobacco
smoke from cigarettes does not cause lung cancer. They are dependent because
assignment to the treatment group is a common cause of inhaling tobacco smoke from
cigarettes and of lung cancer.
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Fisher (1951, p. 20) suggests that “the random choice of the objects to be treated in
different ways would be a complete guarantee of the validity of the test of significance, if
these treatments were the last in time of the stages in the physical history of the objects
which might affect their experimental reaction.” But this does not explain how an
experimenter who does not even suspect that cigarette paper might be treated with some
cancer causing chemical could know that he had not eliminated all common causes of
lung cancer and inhaling tobacco smoke from cigarettes, even though he had randomized
assignment to the treatment group. This is an important and difficult question about
randomization, made more difficult by the fact that randomization often produces
deterministic relationships between such variables as drug dosage and treatment group,
producing violations of the Faithfulness Condition.

In this section we will put aside this question, and simply assume that an experimenter
has some method that correctly eliminates the possibility that O causes T or that there are
common causes of O and T. In general, causal inferences from experiments are based on
the principles described in chapters 6 and 7. The theory applies uniformly to inferences
from experimental and from non-experimental data. Inferences to causal structure are
often more informative when experimental data is available, not because causation is
somehow logically tied to experimental manipulations, but because the experimental
setup provides relevant background causal knowledge that is not available about non-
experimental data. (See Pearl and Verma 1991 for a similar point.)

There are, of course, besides the argument that randomization eliminates some
alternative causal hypotheses from consideration, a variety of other arguments that have
been given for randomization. It has been argued that it reduces observer bias; that it
warrants the experimenter assigning a probability distribution to features of the outcomes
conditional on the null (causal) hypothesis being true, thereby allowing him to perform a
statistical test and calculate the probability of type I error; that for discrete random
variables it can increase the power of a test by simulating continuity; and that by
bypassing ‘nuisance factors’ it provides a basis for precise confidence levels. We will not
address these arguments for randomization here; for a discussion of these arguments from
a Bayesian perspective see, for example, Kadane and Seidenfeld 1990.

Consider three alternative causal structures, and let us suppose for the moment that
they exhaust the possibilities and are mutually exclusive: (i) A causes C, (ii) some third
variable B causes both A and C, or (iii) C causes A. If by experimental manipulation we
can produce a known distribution on A not caused by B or C, and if we can produce a
known distribution on C not caused by A or B, we can distinguish these causal structures.
In the experiment, all of the edges into A in the causal graph of the non-experimental
population are broken, and replaced by an edge from U to A; furthermore there is no non-
empty undirected path between U and any other variable in the graph that does not
contain the edge from U to A. Any procedure in which A is caused only by a variable U
with these properties we will call a controlled experiment. In a controlled experiment
we know three useful facts about U: U causes A, there is no common cause of U and C,
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and if U causes C it does so by a mechanism that is blocked if A is held constant (i.e., in
the causal graph if there is a directed path from U to C it contains A.). As we noted in
chapter 7, U is not a policy variable and is not included in the combined, manipulated or
unmanipulated causal graphs.

The controlled experimental setups for the three alternative causal structures are
shown in figure 9.1, where an A-experiment represents a manipulation of A breaking the
edges into A, and a C-experiment represents a manipulation of C breaking edges into C.
If we do an A-experiment and find partially oriented inducing path graph (ia*) over
{A,C} then we know that A causes C because we know that we have broken all edges into
A. (We do not include U (or V) in the partially oriented inducing path graphs in figure 9.1
because including them does not strengthen the conclusions that can be drawn in this
case, but does complicate the analysis because of the possible deterministic relationships
between U and A.) Similarly, if we perform a C-experiment and find partially oriented
inducing path graph (iiic*) then we know that C causes A. If we perform an A-experiment
and get (iia*) and a C-experiment and get (iic*) then we know that there is a latent
common cause of A and C (assuming that A and C are dependent in the non-experimental
population.)
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Now suppose that in the non-experimental population there are variables U and V
known to bear the same relations to A and C respectively as in the experimental setup.
(We assume in the non-experimental population that A is not a deterministic function of
U, and C is not a deterministic function of V.) That is, U causes A, there is no common
cause of U and C, and if there is any directed path from U to C it contains A; also, V
causes C, there is no common cause of V and A, and if there is any directed path from V
to A it contains C. Can we still distinguish (i), (ii), and (iii) from each other without an
experiment? The answer is yes. In figure 9.2, (io*), (iio*), and (iiio*) are the partially
oriented inducing path graphs corresponding to (io), (iio), and (iiio) respectively. Suppose
the FCI algorithm constructs (io*). If it is known that U causes A, then from the fact that
the edge between U and A and the edge between A and C do not collide, we can conclude
that the edge between A and C is oriented as A → C in the inducing path graph. It follows
that A causes C. Similarly, if the FCI algorithm constructs (iiio*) ideally we can conclude
that C causes A. The partially oriented inducing path graph in (iio*) indicates by theorem
6.9 that there is a latent common cause of A and C, and by theorem 6.6 that A does not
cause C, and C does not cause A.
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Note that if we had measured variables such as W, U, V, and X in figure 9.3 then the
corresponding partially oriented inducing path graphs would enable us to distinguish (i),
(ii), and (iii) without experimentation and without the use of any prior knowledge about
the causal relations among the variables.
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Consider now the more complex cases in which the possibilities are (i) A causes C and
there is a latent common cause B of A and C, (ii) there is a latent common cause B of A
and C, and (iii) C causes A and there is a latent common cause B of A and C. Each of the
structures (i), (ii), and (iii) can be distinguished from the others by experimental
manipulations in which for a sample of systems we break the edges into A and impose a
distribution on A and for another sample we break the edges into C and impose a
distribution on C. The corresponding graphs are presented in figure 9.4, and the analysis
of the experiment is essentially the same as in the previous case.
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The analysis of the corresponding non-experimental case is more complicated.
Assume that there is a variable U and it is known that U causes A, there is no common
cause of U and A, and if there is any directed path from U to C it contains A, and that
there is a variable V and it is known that V causes C, there is no common cause of V and
A, and if there is any directed path from V to A it contains C. The directed acyclic graphs
and their corresponding partially oriented inducing path graphs are shown in figure 9.5.
Now suppose that the directed acyclic graphs are true of an observed non-experimental
population. Can we still distinguish (i), (ii), and (iii) from each other?
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Once again the answer is yes. For example, suppose that an application of the FCI
algorithm produces (io*). The existence of the U o→ C edge entails that either there is a
common cause of U and C or a directed path from U to C. By assumption, there is no
common cause of U and C, so there is a directed path from U to C. Also by assumption,
all directed paths from U to C contain A, so there is a directed path from A to C. Given
that there is an edge between U and C in the partially oriented inducing path graph, and
the same background knowledge, it also follows that there is a latent common cause of A
and C. (The proof is somewhat complex and we have placed it in an Appendix to this
chapter.) Similarly, if we obtain (iiio*) then we know that C causes A and there is a latent
common cause of A and C. If we obtain (iio*) then we know that A and C have a latent
common cause but that A does not cause C and C does not cause A. It is also possible to
distinguish (i), (ii), and (iii) from each other without any prior knowledge of particular
causal relations, but it requires a more complex pattern of measured variables, as shown
in figure 9.6. If we obtain (io**) then we know without using any such prior knowledge
about the causal relationships between the variables that A causes C and that there is a
latent common cause of A and C, and similarly for (iio**) and (iiio**).
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There is an important advantage to experimentation over passive observation in one of
these cases. By performing an experiment we can make a quantitative prediction about
the consequences of manipulating A in (i), (ii), and (iii). But if (i) is the correct causal
model, we cannot use the Prediction Algorithm to make a quantitative prediction of the
effects of manipulating A. (In the linear case, a prediction could be made because U
serves as an “instrumental variable.”)
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Suppose finally that we want to know whether there are two causal pathways that lead
from A to C. More specifically, suppose we want to distinguish which of (i), (ii), and (iii)
in figure 9.7 obtains, remembering again that B is unmeasured.

The question is fairly close to Blyth’s version of Simpson’s paradox. By experimental
manipulation that breaks the edges directing into A and imposes a distribution on A, we
can distinguish structures (i) and (iii) from structure (ii) but not from one another. Note
that in figure 9.7 the partially oriented inducing path graph (ia*) is identical to (iiia*) and
(ic*) is identical to (iiic*).
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Assume once again that in a non-experimental population it is known that U causes A,
there is no common cause of U and C, and if there is any path from U to C it contains A,
and V causes C, there is no common cause of V and A, and if there is any path from V to
A it contains C. The directed acyclic graphs and their corresponding partially oriented
inducing path graphs are shown in figure 9.8.
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Unlike the controlled experimental case, where (i) and (iii) cannot be distinguished, in
the non-experimental case they can be distinguished. Suppose we obtain (iiio*). We
know from the background knowledge that U causes A, and from (iiio*) that the edge
between U and A does not collide with the edge between A and C. Hence in the
corresponding inducing path graph there is an edge from A to C and in the corresponding
directed acyclic graph there is a path from A to C. (Of course we cannot tell how many
paths from A to C there are; (iiio*) is compatible with a graph like (iiio) but in which the
<A,B,C> path does not exist.) We also know that there is no latent common cause of A
and C because (iiio*) together with our background knowledge entails that there is no
path in the inducing path graph between A and C that is into A. Suppose on the other hand
that we obtain (io*). Recall that the background knowledge together with the partially
oriented inducing path graph entail that A is a cause of C and that there is a latent
common cause of A and C. (We have placed the proof in an appendix to this chapter.)
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Once again if more variables are measured, it is also possible to distinguish these three
cases without any background knowledge about the causal relationships among the
variables, as shown in figure 9.9.
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Thus all three structures can be distinguished without experimental manipulation or
prior knowledge.

It may seem extraordinary to claim that structure (i) in figure 9.7 cannot be
distinguished from structure (iii) by a controlled experiment, but can be distinguished
without experimental control if the structure is appropriately embedded in a larger
structure whose variables are measured. It runs against common sense to claim that when
A causes C, a controlled experiment cannot distinguish A and C also having an
unmeasured common cause from A also having a second mechanism through which it
effects B, but that observation without experiment sometimes can distinguish these
situations. But controlled experimental manipulation that forces a distribution on A
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breaks the dependency (in the experimental sample) of A on B in structure (i), and thus
information that is essential to distinguish the two structures is lost.

While a controlled experiment alone cannot distinguish (i) from (iii) in figure 9.7 the
combination of a simple observational study and controlled experimentation can
distinguish (i) from (iii). We can determine from an A-experiment that there is a path
from A to C, and hence no path from C to A. We know if P(C|A) is not invariant under
manipulation of A then there is a trek between C and A that is into A. Hence if P(C|A) is
different in the non-experimental population and the A-experimental population we can
conclude that there is a common cause of A and C. If P(C|A) is invariant under
manipulation of A then we know that either there is no common cause of A and C or the
particular parameter values of the model “coincidentally” produce the invariance. By
combining information from an observational study and an experimental study it is
sometimes possible to infer causal relations that cannot be inferred from either alone.
This is often done in an informal way. For example, suppose that in both an A-experiment
and a C-experiment A and C are independent. This indicates that there is no directed path
from A to C or C to A. But it does not distinguish between the case where there is no
common cause of A and C (i.e., there is no trek at all between A and C) and the case
where there is a common cause of A and C. Of course in practice these two models are
distinguished by determining whether A and C are independent in the non-experimental
population; assuming faithfulness, there is a trek between A and C if and only if A is not
independent of C.

In view of these facts the advantages of experimental procedures in identifying (as
distinct from measuring) causal relations need to be recast. There are, of course, well
known practical difficulties in obtaining adequate non-experimental random samples
without missing values but we are interested in issues of principle. One disadvantage of
non-experimental studies is that in order to make the distinctions in structure just
illustrated either one has to know something in advance about some of the causal
relations of some of the measured variables, or else one must be lucky in actually
measuring variables that stand in the right causal relations. The chief advantage of
experimentation is that we sometimes know how to create the appropriate causal
relations. A further advantage to experimental studies is in identifying causal structures in
mixed samples. In the experimental population the causal relation between a
manipulating variable and a manipulated variable is known to be common to every
system so treated. Mixing different causal structures acts like the introduction of a latent
variable, which makes inferences about other causal relations from a partially oriented
inducing path graph more difficult. Similar conclusions apply to cases in which
experimental and statistical controls are combined.

In the “controlled” experiments we have discussed thus far, we have assumed that the
experimental manipulation breaks all of the edges into A in the causal graph of the non-
experimental population, and that the variable U used to manipulate the value of A has no
common cause with C. However, it is possible to do informative experiments that satisfy
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neither of these assumptions. Suppose, for example, the causal graph of figure 9.10
describes a non-experimental population.

B

U

A                             C

Figure 9.10

Suppose that in an experiment in which we manipulate A, we force a distribution upon
P(A|U). In this case the causal graph of the experimental population is the same as the
causal graph of the non-experimental population, although of course the parametrization
of the graph is different in the two populations. This kind of experiment does not break
the edges into A. More generally, we assume that there is a set of variables U used to
influence the value of A such that any direct cause V of A that is not in U is connected to
some outcome variable C only by undirected paths that contain A as a definite
noncollider. (This may occur for example, if U is a proper subset of the variables used to
fix the value of A, and the other variables used to fix the value of A are directly connected
only to A.) These are just the conditions that we need in order to guarantee the invariance
of the distribution of a variable C given U and A, and hence allows the use of the
Prediction Algorithm. (A more extensive discussion of this kind of experiment is given in
section 9.4.) With an experiment of this kind, it is possible to distinguish model (i) from
model (iii) in figure 9.7. Of course, with the same background knowledge assumptions it
is also possible to distinguish (i) from (iii) in a non-experimental study in which the
distribution of P(A|U) is not changed. Indeed with this kind of experiment, the only
difference between the analysis of the experimental population and a non-experimental
population lies in the background knowledge employed.

9.2 Selecting Variables
The selection of variables is the part of inference that at present depends almost entirely
on human judgment. We have seen that poor variable selection will usually not of itself
lead to incorrect causal conclusions, but can very well result in a loss of information.
Discretizing continuous variables and using continuous approximations for discrete
variables both risk altering the results of statistical decisions about conditional
independence.

One fundamental new consideration in the selection of variables is that in the absence
of prior knowledge of the causal structure, empirical studies that aim to measure the
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influence, if any, of A on C or of C on A, should try to measure at least two variables
correlated with A that are thought to influence C, if at all, only through A, and likewise
for C. As the previous section illustrates, variables with these properties are especially
informative about whether A causes C, or C causes A, or neither causes the other but there
is a common cause of A and C.

The strategy of measuring every variable that might be a common cause of A and B
and conditioning on all such variables is hazardous. If one of the additional variables is in
fact an effect of B, or shares a common cause with A and a common cause with B,
conditioning on that variable will produce a spurious dependency between A and B. That
is not to say that extra variables should not be measured if it is thought that they may be
common causes; but if they are measured, they should be analyzed by the methods of
chapters 5 and 6 rather than by multiple regression.

Finally, if methods like those described in chapters 5, 6, and 7 are to be employed, we
offer the obvious but unusual suggestion that variables be selected for which good
conditional independence tests are available.

9.3 Sampling
We can view many sampling designs as procedures that specify a property S, which may
have two values or several, and from subpopulations with particular S values draw a
sample in which the distribution of values of the ith unit drawn is distributed
independently of and identically to the distribution of all other sample places from that
subpopulation. In the simplest case S can be viewed as a binary variable with the value 1
indicating that a unit has the sample property, which of course does not mean that the unit
occurs in any particular actual sample. We distinguish the sample property S from any
treatments that might be applied to members of the sample. In sampling according to a
property S we obtain information directly not about the general population but about the
segments of the population that have various values of S. Our general questions therefore
concern when conditioning on any value of S in the population leaves unaltered the
conditional probabilities or conditional independence relations for variables in the causal
graph G describing the causal structure of each unit in the population. That is, suppose
there is a population in which the causal structure of all units is described by a directed
graph G, and let the values of the variables be distributed as P, where P is faithful to G.
What are the causal and statistical constraints a sampling property S must satisfy in order
that a sub-population consisting of all units with a given value of S will accurately reflect
the conditional independence relations in P—and thus the causal structure G—and under
what conditions will the conditional probabilities for such sub-populations be as in P?
The answers to these questions bear on a number of familiar questions about sampling,
including the appropriateness of retrospective versus prospective sampling and of random
sampling as against other sampling arrangements. We will not consider questions about
the sampling distributions obtained by imposing various constraints on the distribution of
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values of S in a sample. Our discussion assumes that S (which may be identical to one of
the variables in G) is not determined by any subset of the other variables in G.

We assume in our discussion that S is defined in such a way that if the sampling
procedure necessarily excludes any part of the population from occurring in a sample,
then the excluded units have the same S value. For example, if a sample is to be drawn
from the sub-population of people over six feet tall, then we will assume that S = 0
corresponds to people six feet tall or under and S = 1 corresponds to people over 6 feet
tall.

The causal graph G relating the variables of interest can be expanded to a graph G(S)
that includes S and whatever causal relations S and the other variables realize. We assume
a distribution P(S) faithful to G(S) whose marginal distribution summing over S values
will of course be P. We suppose that the sampling distribution is determined by the
conditional distribution P( | S). Our questions are then, more precisely, when this
conditional distribution has the same conditional probabilities and conditional
independence relations as P. We require, moreover, that the answer be given in terms of
the properties of the graph G(S). The following theorem is obvious and will not be
proved.

THEOREM 9.1: If P(S) is faithful to G(S), and X and Y are sets of variables in G(S) not
containing S, then P(Y|X) = P(Y|X,S) if and only if X d-separates Y and S in G(S).

Our sampling property should not be the direct or indirect cause or effect of Y save
through a mechanism blocked by X, and X should not be the effect, direct or indirect of
both Y and the sampling property. (The second clause in effect guarantees that Simpson’s
paradox is avoided in a faithful distribution). The theorem is essentially the observation
that P(Y|X ∪ Z) = P(Y|X ∪ Z ∪ {S}) if and only if in P Y and S are independent
conditional on X ∪ Z. It entails, for example, that if we wish to estimate the conditional
probability of Y on X from a sample of units with an S property (say, S = 1), we should
try to ensure that there is

(i) no direct edge between any Y in Y and S,
(ii) no trek between any Y in Y and S that does not contain some X in X, and
(iii) no pair of directed paths from any Y in Y to an X in X and from S to X.

Figure 9.11 illustrates some of the ways estimation from the sampling property can bias
estimates of the conditional probability of Y given X and Z.

Cases (i) and (iii) are typical of retrospective designs. In case (ii) the sampling
property biases estimates of P(Y|X,Z) because Y and the sample property S are dependent
conditional on {X,Z}. Theorem 9.1 amounts to a (very) partial justification of the notion
that: “prospective” sampling is more reliable than “retrospective” sampling, if by the
former is meant a procedure that selects by a property that causes or is caused by Y, the
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effect, if at all only through X, the cause, and by the latter is meant a procedure that
selects by a property that causes or is caused by X only through Y. In a prospective
sampling design in which X is the only direct cause of S, and S does not cause any
variable, the estimate of P(Y|X,Z) is not biased. But case (ii) shows that under some
conditions prospective samples can bias estimates as well.

Similar conclusions should be drawn about random sampling. Suppose as before that
the goal is to estimate the conditional probability P(Y|X) in distribution P. In drawing a
random sample of units from P we attempt to sample according to a property S that is
entirely disconnected with the variables of interest in the system. If we succeed in doing
that then we ensure that S has no causal connections that can bias the estimate of the
conditional probability. Of course even a random sample may fail if the very property of
being selected for a study (a property, it should be noted, different from having some
particular value of S) affects the outcome, which is part of the reason for blinding
treatments. Further, any property that has the same causal disconnection will do as a basis
for sampling; there is nothing special in this respect about randomization, except that a
random S is believed to be causally disconnected from other variables.
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When the aim is only to determine the causal structure, and not to estimate the
distribution P or the conditional probabilities in P, the asymmetry between prospective
and retrospective sampling vanishes.

In model (iii) of figure 9.11, which is an example of retrospective design, for any three
disjoint sets of variables A, B, and C not containing S, A is d-separated from B given C if
and only if A is d-separated from B given C ∪ S. So these cases in which conditional
probability in P cannot be determined from S samples are nonetheless cases in which
conditional independence in P, and hence causal structure, can be determined from S
samples.

Theorem 9.2 states conditions under which the set of conditional independence
relations true in the population as a whole is different from the set of conditional
independence relations true in a subpopulation with a constant value of S. In theorem 9.2
let Z be any set of variables in G not including X and Y.

THEOREM 9.2: For a joint distribution P, faithful to graph G, exactly one of <Y  X|Z;

Y  X|Z ∪ {S}> is true in P if and only if the corresponding member and only that
member of <Z d-separates X,Y; Z ∪ {S} d-separates X, Y> is true in G.

Although theorem 9.2 is no more than a restatement of theorem 3.3, its consequences are
rather intricate. Suppose that X and Y are independent conditional on Z in distribution P.
When will sample property S make it appear that X and Y are instead dependent
conditional on Z? The answer is exactly when X, Y are dependent conditional on Z ∪ S
in P(S). This circumstance—conditional independence in P and conditional dependence
in P(S)—can occur for faithful distributions when and only when there exists an
undirected path U from X in X to Y in Y such that

i. no noncollider on U is in Z ∪ {S};
ii. every collider on U has a descendant in Z ∪ {S};
iii. some collider on U does not have a descendant in Z.

The converse error involves conditional dependence in P and conditional independence
in P(S). That can happen in a faithful distribution when and only when there exists an
undirected path U from X to Y such that
i. every collider on U has a descendant in Z;
ii. no noncollider in U is in Z;
and S is a noncollider on every such path. Again, asymptotically both of these errors can
be avoided by sampling randomly, or by any property S that is unconnected with the
variables of interest.

In experimental designs the aim is sometimes to sample from an ambient population,
apply a spectrum of treatments to the sampled units, and then infer from the outcome the
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effect a policy of treatment would have if applied to the general population. In the next
section we consider some relations between experimental design, policy prediction, and
causal reasoning.

9.4 Ethical Issues in Experimental Design
Clinical trials of alternative therapies have at least two ethical problems. (1) In the course
of the trials (or even beforehand) suspicion may grow to near certainty that some
treatments are better than others; is it ethical to assign people to treatments, or to continue
treatments, found to be less efficacious? (2) In clinical trials, whether randomized or
other, patients are generally assigned to treatment categories; if the patients were not part
of an experimental design, presumably they would be free to choose their treatment (free,
that is, if they could pay for it, or persuade their insurer to); is it ethical to ask or induce
patients to forego choosing? Suppose the answer one gives to each of these questions is
negative. Are there experimental designs for clinical trials that avoid or mitigate the
ethical problems but still permit reasonable predictions of the effects of treatment
throughout the population from which the experimental subjects are obtained?

Kadane and Sedransk (1980) describes a design (jointly proposed by Kadane,
Sedransk, and Seidenfeld) to meet the first problem. Their design has been used in trials
of drugs for post-operative heart patients and in other applications. The inferences
Kadane and Seidenfeld (1990) make in explaining the design are in accord with the
Markov Condition, and indeed follow from it, and the case nicely illustrates the role of
causal reasoning in experimental design. Furthermore, combining the Markov and
Faithfulness Conditions, and using the Manipulation Theorem and fheorem 7.1 leads to
two novel conclusions:

1. The efficacy of treatments in an experiment can be reliably assessed in an experimental
procedure that takes patient preference into account in allocating treatment, but except in
special cases the knowledge so acquired could not be used to predict the effects of a
general policy of treatment.

2. Perhaps of more practical interest, given comparatively weak causal knowledge on the
part of the experts, another design in which treatment allocation depends on patient
preference can be used to determine whether or not patient self-assignment in the
experiment will confound prediction of the outcome of a treatment policy in the general
population. When all influences are linear, the effects of treatment policy can be
predicted even if confounding occurs.

9.4.1 The Kadane/Sedransk/Seidenfeld Design
In the Kadane/Sedransk/Seidenfeld experimental design (described in Kadane and
Seidenfeld 1990), for each member of a panel of experts, degrees of belief are elicited
about the outcome O of each treatment T conditional on each profile of values of X1...Xn.
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The elicited judgments are used to specify some prior distribution over parameters in a
model of the treatment process. For each experimental subject, the panel of experts
receives information on the variables X1, ..., Xn. Nothing else about the patient is known
to the experts. Based on the values of X1, ..., Xn each expert i recommends a preferred
treatment pi(X) to the patient, and the patient is assigned to treatment by some rule T =
h(X, p1,...,pk) that is a function of the X values and the experts’ treatment preferences
(p1,...pk) for patients described by X, and perhaps some random factor. The rule
guarantees that no patient is given a treatment unless at least one expert recommends it
for patients with that profile. The model determines the likelihood, for each vector of
parameter values, of outcomes conditional on X and T values. As data are collected on
patients, the prior distribution over the parameters is updated by conditioning. If the
evidence reaches a stage at which all the experts agree that some treatment T for patients
with profile X is not the best treatment for the patient, then treatment T is suspended for
such patients. As evidence accrues, the experts’ degrees of belief about the parameter
values of the likelihood model should converge.

Let Xj be a vector of observed characteristics of the jth patient, “including those that are
used as a basis for deciding what treatment each patient is to receive, and possibly other
characteristics as well.” (We do not place Xj in boldface in order to match Kadane and
Seidenfeld’s notation.) Let Tj be the treatment assigned to patient j. Let Oj be the outcome
for patient j. Let Pj = (Oj, Tj, Xj, Oj–1, Tj–1, Xj–1, ..., X1) be the past evidence up to and
including what is known about patient j. Let  be a vector of the parameters of interest,
those that determine the probabilities of outcomes Oj for a patient j given characteristics
Xj and treatment Tj. For example, the degrees of belief of an expert might be represented
by a mixture of linear models parametrized by exogenous variances, means and linear
coefficients. A unique value of these parameters then “determines” the probability of an
outcome given X values. For reasons that will become clear, it is essential to the
definition of �that alternative values for the parameter not give alternative specifications
of the distribution of X variables.

The expression �  (PJ) represents the expert’s conditional degree of belief, given ,
that the total evidence is PJ. Kadane and Seidenfeld add that “It is part of the definition of
 as the parameter that

f θ (Oj |T j , Xj , Pj−1) = f θ (Oj |Tj , X j ) (1 ≤ j ≤ J ) (1)

What this means is that  contains all the information contained in Pj–1 that might be
useful for predicting Oj from Tj and Xj.” The factorization of degree of belief,

fh
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follows by the definition of conditional probability. The terms are marked 1, 2, and 3.
Kadane and Seidenfeld claim that term 3 does not depend on  if one believes that the
features, treatments and outcomes for earlier subjects in the experimental trial have no
influence on “the kinds of people” who subsequently become subjects. (Recall that
parameters relevant to the distribution of X1...Xn are not included in .). Kadane and
Seidenfeld also say that term 2 does not depend on  because there is a fixed rule for
treatment assignment as a function of X values and the history of the experimental
outcomes.

It follows from (1) that

f θ (Oj
j=1

J

∏ |T j , Xj , Pj−1) = f θ (Oj
j=1

J

∏ |T j , X j )

Kadane and Seidenfeld say the proportionality given by this term:

f θ (PJ ) ∝ fθ (Oj
j =1

J

∏ |T j , X j )

“is the form that we use to evaluate the results of a clinical trial of the kind considered
here.” That is for each value i of , multiplying f θi

(PJ )  by the prior density of i gives
a quantity proportional to the posterior density of i. The ratios of the posterior densities
of two values of i can therefore be found.

Now for a new case, each value of  determines a probability of treatment outcome
given an X profile and a treatment T, and so the posterior distribution of �yields, for any
one expert, degrees of belief in the outcomes of various treatment regimes to various
classes of patients. Although Kadane and Seidenfeld say nothing explicit about predicting
the effects of policies of treatment, these degrees of belief may be transformed into
expected values if outcome is somehow quantified. In any case, an expert who began
believing that a rule of treatment given by T = k(X) would most often result in a
successful outcome, may come instead to predict that a different rule of treatment, say T
= g(X) will more often be successful.

Why can’t the experiment let the subjects simply choose their own treatments, and
seek any advice that they want? Kadane and Seidenfeld give two reasons. One is that if
patients were to determine their own treatment, the argument that term 2 in the

here.” That is for each value hi of h, multiplying fhi
(PJ) by the prior density of hi gives

1 2 3
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factorization does not depend on �would no longer hold. The other is that “It would now
be necessary to explain statistically the behavior of patients in choosing their treatments,
and there might well be contamination between these choices and the effect of the
treatment itself.” We will consider the force of these considerations in the next
subsection.

9.4.2 Causal Reasoning in the Experimental Design
What is it that the experts believe that warrants this analysis of the experiment, or the
derivation of any predictions? The expert surely entertains the possibility that some
unknown common causes U may influence both the X features of a patient and the
outcome of the patient’s treatment. And yet the analysis assumes that in the expert’s
degrees of belief, treatment is independent of any such U conditional on X values. That is
implicit in the claim that term 2 in the factorization is independent of . Why should
treatment T and unknown causes U be conditionally independent given X? The reason,
clearly, is that in the experiment the only factors that influence the treatment a patient
receives are the X values for that patient and Pj–1; any such U, should it exist, has no
influence on T except through X. A causal fact is the basis for independence of
probabilities.

Aspects of the expert’s understanding of the experimental set-up are pictured in figure
9.12 (where we have made Xj a single variable.)
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Figure 9.12

The expert may not be at all sure that the edges with “?” correspond to real influences,
but she is sure there is no influence of the kind in figure 9.13 in boldface.

The experimental design, which makes treatment assignment a function of the X
variables and Pj–1 only, is contrived to exclude such influences. The expert’s thought
seems to be that if U influences T only through X, then U and T are independent
conditional on X. That thought is an instance of the Markov Condition. The probabilities
in the Markov Condition can be understood either objectively or subjectively. But in the
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Kadane/Sedransk/Seidenfeld design the probability in the Markov Condition cannot be
the expert’s unconditional degrees of belief, because those probabilities are mixtures over
 of distributions conditional on ��and mixtures of distributions satisfying the Markov

Condition do not always satisfy the Markov Condition. We will assume the distributions
conditional on  do so.
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Figure 9.13

Consider another feature of the idealized expert belief. An idealized expert in Kadane
and Seidenfeld’s experiment changes his probability distribution for a parameter whose
values specify a model of the experimental process. At the end of the experiment the
expert has a view not only about the outcome to be expected for a new patient with
profile X if that patient were assigned treatment according to the rule T = h(X,Pj–1) used in
the experiment, but also about the outcome to be expected for a new patient with profile
X if that patient were assigned treatment according to the rule T = g(X) that the expert
now, in light of the evidence, prefers. In principle, the expert’s probabilities for outcomes
if the new patient were treated by the experimental rule T = h(X,Pj–1) is easy to compute
because that probability is determinate for each value of , and we know the expert’s
posterior distribution of . But what determines the expert’s probability for outcomes if
the patient with profile X is now treated according the preferred rule, T = g(X)? Why
doesn’t changing the rule change the dependence of O on X and T? The sensible answer,
implicit in Kadane and Seidenfeld’s analysis, is that the outcome for any patient depends
on the X profile of the patient and the treatment given to the patient, but not on the “rule”
by which treatments are assigned. Changing the assignment rule changes the probability
of treatment T given profile X, but has no effect on other relevant conditional
probabilities; the probability O given T and X is unaltered. We can derive this more
formally in the following way.

If for a fixed value of  the distribution f  (Oj,Tj,Xj,Pj–1) satisfies the Markov condition
for graphs of the type in figure 9.12, then theorem 7.1 entails that f  (Oj|Tj,Xj) is invariant
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under a manipulation of Tj. According to theorem 7.1, in a distribution that satisfies the
Markov condition for graphs of the type in figure 9.12, f  (Oj|Tj,Xj) is invariant under a
manipulation of Tj if there is no path that d-connects Oj and Xj given Tj that is into Tj.
Every undirected path between Tj and Oj that contains some Xj variable satisfies this
condition because some member of Xj is a noncollider on such a path. There are no
undirected paths between Tj and Oj that contain Pj–1. Hence f  (Oj|Tj,Xj) is invariant under
manipulation of Tj.

But does the Markov condition reasonably apply in an experiment designed according
to the Kadane/Sedransk/Seidenfeld specifications in which f  (Oj,Tj,Xj,Pj–1) does not
represent frequencies but an expert’s opinions? We are concerned with the circumstance
in which the experiment is concluded, and the expert’s degrees of belief, we will suppose,
have converged so far as they will. The expert is uncertain as to whether there are
common causes of X and outcome, or how many there are, but all of the causal structures
she entertains are like figure 9.12 and none are like figure 9.13. Conditional on  and any
particular causal hypothesis we suppose the Markov condition is satisfied, but the
expert’s actual degrees of belief are some mixture over different causal structures. Should
f  (Oj|Tj,Xj) be invariant under manipulation of Tj in the opinion of the expert when her
distribution for a given value of  is a mixture of several different causal hypotheses? The
answer is yes, as the following argument shows.

Let us call the experimental (unmanipulated in the sense of chapter 7) population Exp,
and the hypothetical population subjected to some policy based on the results of the
experiment Pol. Let f ,Exp(Oj,Tj,Xj,Pj–1) represent the expert’s degrees of belief about Oj,
Tj, Xj, and Pj–1 conditional on  in the experimental population, and f ,Pol(Oj,Tj,Xj,Pj–1)
represent the expert’s degrees of belief about Oj, Tj, Xj, and Pj–1 conditional on  in the
hypothetical population subjected to some policy. Let CS be a random variable that
denotes a causal structure. We have already noted that it follows from theorem 7.1 that

f θ ,Exp (Oj |Tj , X j ,CS) = fθ ,Pol(Oj |T j , Xj ,CS)

Because  determines the density of Oj conditional on Tj and Xj,

f θ ,Exp (Oj |Tj , X j ,CS) = fθ ,Exp(Oj |Tj , X j )

f θ ,Pol(Oj |Tj , X j ,CS) = fθ ,Pol (Oj |Tj , X j )

Hence,

f θ ,Exp (Oj |Tj , X j ) = fθ ,Pol(Oj |T j , Xj )

Consider next the question of “bias” raised by Kadane and Seidenfeld. The very notion
requires us to consider not just degrees of belief but also some facts and some potential
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facts. We suppose there is really a correct (or nearly correct) value for the parameters in
the likelihood model, and the true values describe features of the process that go on in the
experiment. We suppose the expert converges to the truth, so that her posterior
distribution is concentrated around the true values. What the public that pays for these
experiments cares about is whether the expert’s views about the best treatment are
correct: Would a policy that puts in place the expert’s preferred rule of treatment, say T
= g(X), result in better outcomes than alternative policies under consideration? One way
to look at that question is to ask if the expert’s expected values for outcome conditional
on X profile and treatment roughly equal the population mean for outcome under these
conditions. If degrees of belief accord with population distributions, that is just to ask
when the frequency of O conditional on T and X that would result if every relevant person
in the population were treated on the basis of the experimental assignment rule T =
h(X,Pj–1) would be roughly the same as the frequency of O conditional on T and X for the
general population if a revised rule T = g(X) for assigning treatments were used. In other
words: Will the frequency of O conditional on T and X be invariant under a direct
manipulation of T?

As we have just seen for this case, the Markov Condition and theorem 7.1 entail that
for the graph in figure 9.12, and all others like it (those in which every trek whose source
is a common cause of Oj and Tj contains an Xj variable, Oj does not cause Tj, and every
common cause of an Xj variable and Tj is an Xj variable) the probability of Oj on Tj and Xj

is invariant under a direct manipulation of Tj. No other assumptions are required. The
example is a very special case of a general sufficient condition for the invariance of
conditional probabilities under a direct manipulation.

Consider next why the experimental design forbids that treatment assignment depend
directly on “unrecorded” features of the patients, such as Y. Suppose such assignments
were allowed; Kadane and Seidenfeld say the outcome might be “contaminated” which
we understand to mean that some unrecorded causes of the patient preference, and hence
of Tj, might also be causes of Oj. So that we have the causal picture in figure 9.14.

The question marks indicate that, we (or the expert), are uncertain about whether the
corresponding causal influences exist. Suppose the directed edges from Uj to Y and from
Uj to Oj exist. Then there is an undirected path between Oj and Tj that contains Y. In this
case the Markov condition entails that the probability of Oj conditional on Tj and the Xj

variables is not invariant under a direct manipulation of Tj except for “coincidental”
parameter values. So if unrecorded Y values were allowed to influence assignments then
for all we or the experts know, the expert’s prediction of the effects of his proposed rule T
= g(X) would be wrong.
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Let us now return to the question of why patient preference cannot be used to
influence treatment. The reason why patient preferences cannot be used to determine
treatment assignment in the experiment is not only because there may be, for all one
knows, a causal interaction between patient preference and treatment outcome. It is true
that if it were known that no such confounding occurs, then patient preference could be
used in treatment assignment, but why cannot such assignment be used even if there is
confounding? In order to make treatment assignments depend on patient preference (and
presumably also on other features, such as the Xj variables) the patients’ preferences must
be ascertained. If the preferences are known, why not conditionalize outcome on
Preference, T and the Xj variables, just as we have conditionalized outcome on T and the
Xj variables? The probability of Oj conditional on Preference, the Xj variables, and Tj has
no formally different role than the probability of Oj conditional on the Xj variables and Tj.
If in figure 9.14 we make Y = Preference, then according to the Markov condition and
theorem 7.1, the probability of Oj conditional on Tj, Xj and Preference is invariant under a
manipulation of Tj. Of course some precautions would have to be taken in the course of
an experiment that allows patient preference to influence treatment assignment. There is
not much point to allowing a patient to choose his or her treatment unless the choice is
informed. In the experimental setting, it would be necessary to standardize the
information and advice that each patient received.

Could this design actually be used to predict the effects of a policy of treatment? At
the end of the study the expert has a density function of outcomes given T, X, and
Preference; subsequent patients’ preferences for treatment would have to be recorded
(but not necessarily used in determining treatment). If the announced results of the study
alter Preference, the probability of outcome conditional on Preference, X and T depends
on whether influences represented by the edges adjacent to U in figure 9.12 exist. But if
patients are informed of the experimental results we must certainly expect in many cases
that their preferences will be changed, that is, announcing the result of the experiment is a
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direct manipulation of Preference. Reliable predictions could only be made if the
experimental outcome were kept secret!

The reason that patient preferences cannot be used for assigning treatment is therefore,
not just because their preferences might have complicated interactions with the outcome
of the treatment—so might the X variables. No analysis that does not also consider how a
policy changes variables that were relevant to outcome in an experimental study can give
a complete account of when predictions can be relied upon. As Kadane has pointed out,1

it is more likely that the causes of Preference in the experimental population are different
from the causes of Preference in the non-experimental population than it is that the
causes of X in the experimental population are different from the causes of X in the non-
experimental population. In the case we are considering, announcements of experimental
results (or of recommendations) about policies that use patient preferences for assigning
treatment can generally be expected to directly change those very preferences—whereas
policies that use the X variables for assigning treatment do not generally change the
values of the X variables for people in the population. (Of course, there may be instances
where the results of a study that does not base treatment on patient preference also
directly manipulates the distribution of the X variables, in which case the prediction of
outcome conditional on treatment and the X variables would also be unreliable. Suppose,
fancifully, in experimental trials that assign treatment as a function of cholesterol levels,
it were found that a certain drug is very effective against cancer for subjects with low
cholesterol.)

The Kadane/Sedransk/Seidenfeld design thus reveals an ethical conundrum that
conventional methodological prejudices against nonrandomized trials has hidden. There
is an obligation to find the most effective and cost effective treatments, and an obligation
to take into account in treatment the preferences of people who participate as subjects in
clinical trials. Both can be satisfied. But there is also an obligation fully to inform
patients about the relevant scientific results that bear on decisions about their treatment.
This obligation is incompatible with the others.

9.4.3 Toward Ethical Trials
Finally, we can use the causal analysis to obtain some more optimistic results about
patient selection of treatment in experimental trials. Suppose in an experiment treatment
assignment is a function T = h(Xj, Preference,Pj–1), and every undirected path between
Preference and Oj contains some member of Xj as a noncollider. (If this is the case then
we will say that Preference is not confounded with O.) Then it can be shown strictly as a
consequence of the Markov and Faithfulness Conditions that the probability of Oj

conditional on Tj and Xj is invariant under a direct manipulation of Tj; we may or may not
conditionalize on Preference, or take Preference into account in the treatment rule used
in policy, and in that case whether or not the announced experimental results changes the
distribution of preferences is irrelevant to the accuracy of predictions. Now in some cases
it may very well be that patient preference is not confounded with treatment outcome. If
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investigators could in fact discover that Preference is not confounded with O, then they
could let such preferences be a factor both in treatment assignments in the experimental
protocol and in the recommended policy. Kadane and Seidenfeld say that such
dependencies, if they exist, are undetectable. If the experts are completely ignorant about
what factors do not influence the outcome of treatment, Kadane and Seidenfeld are right;
but if the experts know something, anything, that varies with patients and that has no
effect on outcome except through treatment and has no common cause with outcome, we
disagree. The something could be the phase of the moon on the patient’s last birthday, the
angular separation of the sun and Jupiter on the celestial sphere on the day of the patient’s
mother’s day of birth, or simply the output of some randomizing device assigned to each
patient. How is that?

In any distribution faithful to the graph of figure 9.15, E and C are dependent
conditional on B. The relation is necessary in linear models, without assuming
faithfulness.

A

B

CD

E

Figure 9.15

Now, returning to our problem, let Z be any feature whatsoever that varies from
patient to patient, and that the experts agree in regarding as independent of patients’
preferences for treatments and as affecting outcome only through treatment. Adopt a rule
in the experiment that makes treatment a function of Preference, the patient’s X profile,
Pj–1, and the patient’s Z value. Then the expert view of the causal process in the
experiment looks something like figure 9.16.

If Oj and Zj are independent conditional on Tj and Xj then there is (assuming
faithfulness) no path d-connecting Preferencej and Oj given Xj that is into Preferencej. A
confounding relation between Preferencej and Oj, if it exists, can be discovered from the
experimental data. (Similarly, if Tj and Oj are dependent given Xj because the
experimental population consists of a mixture of causal structures, then Oj and Zj are
dependent conditional on Tj and Xj unless some particular set of parameter values
produces a “coincidental” independence.) Indeed, on the rather brave assumption that all
dependencies are linear, Zj is an instrumental variable (Bowden and Turkington 1984)
and the linear coefficient representing the influence of T conditional on O and X can be
calculated from the correlations and partial correlations.
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This suggests that it is possible to do a pilot study to determine whether Preference is
confounded with O in the experimental population. In the pilot study, Preference can be a
factor influencing, but not completely determining, T. If the results of the pilot study
indicate that Preference is not confounded with O in the experimental population, a larger
study in which Preference completely determines T can be done; otherwise, the
Kadane/Sedransk/Seidenfeld design can be employed.

The goal of a medical experiment might be to predict outcomes in a population where
a policy of assigning treatments without consulting patient preference is adopted. For
example, the question might be “What would the death rate be if only halothane were
used as a general anesthetic?” In this case, patient preference has little or nothing to do
with the assigned treatment. If patient preference is not used to assign treatment in the
policy population there is no reason to think that predictions of P(O|X,T) in the policy
population will be inaccurate when based upon experiments in which patients choose (or
at least influence) their treatment, and Preference and O are not confounded.

It might be, however, that the goal of the experiment is to predict P(O|X,T) in the
policy population, and to let the patients choose or at least influence the choice of the
treatment they receive. For example, in choosing between lumpectomy and mastectomy,
patient preference may be the deciding factor. In this case there are a number of reasons
to question the accuracy of a prediction of P(O|X,T) in the policy population based upon
the design we propose. But in this case every design meets the same difficulties, whether
or not patients have assigned themselves in experimental treatments. These are equally
good reasons for questioning the accuracy of a prediction of P(O|X,T) (interpreted as
frequencies or propensities and not as degrees of belief) in the policy population based
upon the Kadane/Sedransk/Seidenfeld or a classical randomized design. The fundamental
problem is that there are any number of plausible ways in which the causal relationships
among preference and other variables in the experimental population may be different
from the causal relationships in the policy population.2 For example, in the experimental
population the assignment of treatment will not depend on the patient’s income.
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However, in the actual population, the choice of treatment may very well depend upon
income. There could easily be a common causal pathway connecting income and
outcome that does not contain any variable in the patient’s X profile. Again, in the
experimental population the information and advice patients receive can be standardized.
We can also try and ensure that the advice given is a function only of the patient’s X
profile. In the policy population, however, the advice and information that patients
receive cannot be controlled in this way. If this is the case, the determination of
preference may be a mixture of different causal structures in the policy population.
Finally, the determination of patient preference in the policy population could easily be
unstable. There are fads and fashions among patients, and also fads and fashions among
doctors. New information could be released, or an intensive advertising campaign
introduced. Any of these might create a trek between Preference and O, and hence
between T and O, that does not contain any member of the X profile as a noncollider.

So even if in the experimental population Preference and O are not confounded, they
very well might be in the policy population. If they are confounded in the policy
population then P(O|X,T) will not be the same in the experimental and policy populations
(unless the parameters of the different causal structures coincidentally have values that
make them equal.) Note that the same is true of predictions of P(O|X,T) based on the
Kadane/Sedransk/Seidenfeld design or of a prediction of P(O|T) based upon a
randomized experiment. This does not mean that no useful predictions can be made in
situations where patient preference will be used to influence treatment in the policy
population. It is still possible to inform the patient what P(O|X,T) would be if a particular
treatment were given without patient choice The patient can use this information to help
make an informed decision. And with the design we have proposed, this (counterfactual)
prediction is accurate as long as Preference and O are not confounded in the experimental
population, regardless of how Preference is causally connected to O in the policy
population.

Suppose then that we are merely trying to predict P(O|X,T) in a population in which
everyone is assigned a treatment. Is the design we have suggested practical? One
potential problem is the obligation to give patients who are experimental subjects advice
and information about their treatments; if this were not done the experiment would be
unethical. If patients have access to advice from physicians, the advice is likely to be
based upon their X profile. Even if the only information subjects receive is that all of the
experts agree that they should not choose treatment T1, their X profile is a cause of their
preference. Will giving this advice and information make it unlikely that P(O|X,T) is
invariant under manipulation of T? It is true that the variables in the X profiles were
chosen to be variables thought to be causes of O or to have common causes with O.
Hence advice of this kind is very likely to create a common cause of Preference and O in
the experimental population. Hence, it is likely that in the experimental population there
will be a trek between T and O that is into T and contains Preference. However, such a
trek would not d-connect T and O given X because it would also contain some member of
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X as a noncollider. (See figure 9.17.) Hence such a trek does not invalidate the invariance
of P(O|X,T) under manipulation of T. Moreover, there is no problem with changing the
advice as the experiment progresses, under the assumption that Pj–1 is causally connected
to Oj only through Preferencej.
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X

Figure 9.17

Can we let patients choose their own treatment, or merely influence the choice of
treatment? As long as we are merely trying to predict P(O|X,T) in a population in which
everyone is assigned a treatment we can let patients choose their own treatment, as long
as this doesn’t result in all patients with a particular X profile always failing to choose
some treatment T1. In that case, P(O|X,T = T1) is undefined in the experimental
population and cannot be used to predict P(O|X,T = T1) in a population where that
quantity is defined.

In summary, so long as the goal is to predict P(O|X,T) in a population where everyone
is assigned a treatment, and there is enough variation of choice of treatments among the
patients, and the experimental population is not a mixture of causal structures, and
Preference and O are not confounded in the experimental population (an issue that must
be decided empirically) it is possible to make accurate predictions from an experimental
population in which informed patients choose their own treatment. If it is really important
to let patient preferences influence their treatment in experiments, then it is worth risking
some cost to realize that condition if it is possible to do so consistent with reliable
prediction. How much it is worth, either in money or in degradation in confidence about
the reliability of predictions, is not for us to say. But a simple modification of the
Kadane/Sedransk/Seidenfeld design which has initial trials base treatment assignment on
Xj, Pj–1, Zj, and Preferencej, and then allows patient self-assignment if Preferencej and Oj

are discovered to be unconfounded, would in some cases permit investigators to conduct
clinical trials that conform to ethical requirements of autonomy and informed consent.
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9.5 An Example: Smoking and Lung Cancer
The fascinating history of the debates over smoking and lung cancer illustrates the
difficulties of causal inference and prediction from policy studies, and also illustrates
some common mistakes. Perhaps no other hypothetical cause and effect relationship has
been so thoroughly studied by non-experimental methods or has so neatly divided the
professions of medicine and statistics into opposing camps. The theoretical results of this
and the preceding chapters provide some insight into the logic and fallacies of the
dispute.

The thumbnail sketch is as follows: In the 1950s a retrospective study by Doll and Hill
(1952) found a strong correlation between cigarette smoking and lung cancer. That initial
research prompted a number of other studies, both retrospective and prospective, in the
United States, the United Kingdom, and soon after in other nations, all of which found
strong correlations between cigarette smoking and lung cancer, and more generally
between cigarette smoking and cancer and between cigarette smoking and mortality. The
correlations prompted health activists and some of the medical press to conclude that
cigarette smoking causes death, cancer, and most particularly, lung cancer. Sir Ronald
Fisher took very strong exception to the inference, preferring a theory in which smoking
behavior and lung cancer are causally connected only through genetics. Fisher wrote
letters, essays, and eventually a book against the inference from the statistical
dependencies to the causal conclusion. Neyman ventured a criticism of the evidence from
retrospective studies. The heavyweights of the statistical profession were thus allied
against the methods of the medical community. A review of the evidence containing a
response to Fisher and Neyman was published in 1959 by Cornfield, Haenszel,
Hammond, Lilienfeld, Shimkin, and Wynder. The Cornfield paper became part of the
blueprint for the Report of the Surgeon General on Smoking and Health in 1964, which
effectively established that as a political fact smoking would be treated as an
unconfounded cause of lung cancer, and set in motion a public health campaign that is
with us still. Brownlee (1965) reviewed the 1964 report in the Journal of the American
Statistical Association and rejected its arguments as statistically unsound for many of the
reasons one can imagine Fisher would have given. In 1979, the Surgeon General
published a second report on smoking and health, repeating the arguments of the first
report but with more extensive data, but offering no serious response to Brownlee’s
criticisms. The report made strong claims from the evidence, in particular that cigarette
smoking was the largest preventable cause of death in the United States. The foreword to
the report, by Joseph Califano, was downright vicious, and claimed that any criticism of
the conclusions of the report was an attack on science itself. That did not stop P. Burch
(1983), a physicist turned theoretical biologist turned statistician, from publishing a
lengthy criticism of the second report, again on grounds that were detailed extensions of
Fisher’s criticisms, but buttressed as well by the first reports of randomized clinical trials
of the effects of smoking intervention, all of which were either null or actually suggested
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that intervention programs increased mortality. Burch’s remarks brought a reply by A.
Lilienfeld (1983), which began and ended with an ad hominem attack on Burch.

Fisher’s criticisms were directed against the claim that uncontrolled observations of a
correlation between smoking and cancer, no matter whether retrospective or prospective,
provided evidence that smoking causes lung cancer, as against the alternative hypothesis
that there are one or more common causes of smoking and lung cancer. His strong views
can be understood in the light of features of his career. Fisher had been largely
responsible for the introduction of randomized experimental designs, one of the very
points of which was to obtain statistical dependencies between a hypothetical cause and
effect that could not be explained by the action of unmeasured common causes. Another
point of randomization was to insure a well-defined distribution for tests of hypotheses,
something Fisher may have doubted was available in observational studies. Throughout
his adult life Fisher’s research interests had been in heredity, and he had been a strong
advocate of the eugenics movement. He was therefore disposed to believe in genetic
causes of very detailed features of human behavior and disease. Fisher thought a likely
explanation of the correlation of lung cancer and smoking was that a substantial fraction
of the population had a genetic predisposition both to smoke and to get lung cancer.

One of Fisher’s (1959, p. 8) fundamental criticisms of these epidemiological
arguments was that correlation underdetermines causation: besides smoking causing
cancer, wrote Fisher “there are two classes of alternative theories which any statistical
association, observed without the precautions of a definite experiment, always allows—
namely, (1) that the supposed effect is really the cause, or in this case that incipient
cancer, or a precancerous condition with chronic inflammation, is a factor in inducing the
smoking of cigarettes, or (2) that cigarette smoking and lung cancer, though not mutually
causative, are both influenced by a common cause, in this case the individual genotype.”
Not even Fisher took (1) seriously. To these must be added others Fisher did not mention,
for example that smoking and lung cancer have several distinct unmeasured common
causes, or that while smoking causes cancer, something unmeasured also causes both
smoking and cancer.

If we interpret “statistical association” as statistical dependence, Fisher is correct that
given observation only of a statistical dependence between smoking and lung cancer in
an uncontrolled study, the possibility that smoking does not cause lung cancer cannot be
ruled out. However, he does not mention the possibility that this hypothesis, if true, could
have been established without experimentation by finding a factor associated with
smoking but independent, or conditionally independent (on variables other than smoking)
of cancer. By the 1960s a number of personal and social factors associated with smoking
had been identified, and several causes of lung cancer (principally associated with
occupational hazards and radiation) potentially independent of smoking had been
identified, but their potential bearing on questions of common causes of smoking and
lung cancer seems to have gone unnoticed. The more difficult cases to distinguish are the
hypotheses that smoking is an unconfounded cause of lung cancer versus the joint
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hypotheses that smoking causes cancer and that there is also an unmeasured common
cause—or causes—of smoking and cancer.

Fisher’s hypothesis that genotype causes both smoking behavior and cancer was
speculative, but it wasn’t a will-o-the-wisp. Fisher obtained evidence that the smoking
behavior of monozygotic twins was more alike than the smoking behavior of dizygotic
twins. As his critics pointed out, the fact could be explained on the supposition that
monozygotic twins are more encouraged by everyone about them to do things alike than
are dizygotic twins, but Fisher was surely correct that it could also be explained by a
genetic disposition to smoke. On the other side, Fisher could refer to evidence that some
forms of cancer have genetic causes.

The paper by Cornfield et al. (including Lilienfeld) argued that while lung cancer may
well have other causes besides, cigarette smoking causes lung cancer. This view had
already been announced by official study groups in the United States and Great Britain.
Cornfield’s paper is of more scientific interest than the Surgeon General’s report five
years later, in part because the former is not primarily a political document. Cornfield et
al. claimed the existing data showed several things:

1. Carcinomas of the lung found at autopsy had systematically increased since 1900,
although different studies gave different rates of increase. Lung cancers are found to
increase monotonically with the amount of cigarette smoking and to be higher in current
than in former cigarette smokers. In large prospective studies diagnoses of lung cancer
may have an unknown error rate, but the total death rate also increases monotonically
with cigarette smoking.

2. Lung cancer mortality rates are higher in urban than in rural populations, and rural
people smoke less than city people, but in both populations smokers have higher death
rates from lung cancer than do nonsmokers.

3. Men have much higher death rates from lung cancer than women, especially among
persons over 55, but women smoked much less and as a class had taken up the habit
much later than men.

4. There are a host of causes of lung cancer, including a variety of industrial pollutants
and unknown circumstances associated with socioeconomic class, with the poorer and
less well off more likely than the better off to contract the disease, but no more likely to
smoke. Cornfield et al. emphasize that “The population exposed to established industrial
carcinogens is small, and these agents cannot account for the increasing lung-cancer risk
in the remainder of the population. Also, the effects associated with socioeconomic class
and related characteristics are smaller than those noted for smoking history, and the
smoking class differences cannot be accounted for in terms of these other effects” (p.
179). This passage states that the difference in cancer rates for smokers and nonsmokers
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could not be explained by socioeconomic differences. While this claim was very likely
true, no analysis was given in support of it, and the central question of whether smoking
and lung cancer were independent or nearly independent conditional on all subsets of the
known risk factors that are not effects of smoking and cancer—area of residence,
exposure to known carcinogens, socioeconomic class, and so on, was not considered.
Instead, Cornfield et al. note that different studies measured different variables and “The
important fact is that in all studies when other variables are held constant, cigarette
smoking retains its high association with lung cancer.”

5. Cigarette smoking is not associated with increased cancer of the upper respiratory
tract, the mouth tissues or the fingers. Carcinoma of the trachea, for example, is a rarity.
But, Cornfield et al. point out, “There is no a priori reason why a carcinogen that
produces bronchogenic cancer in man should also produce neoplastic changes in the
anspharynx or in other sites” (p. 186).

6. Experimental evidence shows that cigarette smoke inhibits the action of the cilia in
cows, rats and rabbits. Inhibition of the cilia interferes with the removal of foreign
material from the surface of the bronchia. Damage to ciliated cells is more frequent in
smokers than in nonsmokers.

7. Application of cigarette tar directly to the bronchia of dogs produced changes in the
cells, and in some but not other experiments applications of tobacco tar to the skin of
mice produced cancers. Exposure of mice to cigarette smoke for up to 200 days produced
cell changes but no cancers.

8. A number of aromatic polycyclic compounds have been isolated in tobacco smoke, and
one of them, the  form of benzopyrene, was known to be a carcinogen.

Perhaps the most original technical part of the argument was a kind of sensitivity analysis
of the hypothesis that smoking causes lung cancer. Cornfield et al. considered a single
hypothetical binary latent variable causing lung cancer and statistically dependent on
smoking behavior. They argued such a latent cause would have to be almost perfectly
associated with lung cancer and strongly associated with smoking to account for the
observed association. The argument neglected, however, the reasonable possibility of
multiple common causes of smoking and lung cancer, and had no clear bearing on the
hypothesis that the observed association of smoking and lung cancer is due both to a
direct influence and to common causes.

In sum, Cornfield et al. thought they could show a mechanism for smoking to cause
cancer, and claimed evidence from animal studies, although their position in that regard
tended to trip over itself (compare items 5 and 7). They didn’t put the statistical case
entirely clearly, but their position seems to have been that lung cancer is also caused by a

cells, and in some but not all other experiments applications of tobacco tar to the skin of
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number of measurable factors that are not plausibly regarded as effects of smoking but
which may cause smoking, and that smoking and cancer remain statistically dependent
conditional on these factors. Against Fisher they argued as follows:

The difficulties with the constitutional hypothesis include the following
considerations: (a) changes in lung-cancer mortality over the last half century; (b) the
carcinogenicity of tobacco tars for experimental animals; (c) the existence of a large
effect from pipe and cigar tobacco on cancer of the buccal cavity and larynx but not on
cancer of the lung; (d) the reduced lung-cancer mortality among discontinued cigarette
smokers. No one of these considerations is perhaps sufficient by itself to counter the
constitutional hypothesis, ad hoc modification of which can accommodate each
additional piece of evidence. A point is reached, however, when a continuously
modified hypothesis becomes difficult to entertain seriously. (p. 191)

Logically, Cornfield et al. visited every part of the map. The evidence was supposed to
be inconsistent with a common cause of smoking and lung cancer, but also consistent
with it. Objections that a study involved self-selection—as Fisher and company would
object to (d)—was counted as an “ad hoc modification” of the common cause hypothesis.
The same response was in effect given to the unstated but genuine objections that the
time series argument ignored the combined effects of dramatic improvements in
diagnosis of lung cancer, a tendency of physicians to bias diagnoses of lung cancer for
heavy smokers and to overlook such a diagnosis for light smokers, and the systematic
increase in the same period of other factors implicated in lung cancer, such as
urbanization. The rhetoric of Cornfield et al. converted reasonable demands for sound
study designs into ad hoc hypotheses. In fact none of the evidence adduced was
inconsistent with the “constitutional hypothesis.”

A reading of the Cornfield paper suggests that their real objection to a genetic
explanation was that it would require a very close correlation between genotypic
differences and differences in smoking behavior and liability to various forms of cancer.
Pipe and cigar smokers would have to differ genotypically from cigarette smokers; light
cigarette smokers would have to differ genotypically from heavy cigarette smokers; those
who quit cigarette smoking would have to differ genotypically from those who did not.
Later the Surgeon General would add that Mormons would have to differ genotypically
from non-Mormons and Seventh Day Adventists from nonseventh Day Adventists. The
physicians simply didn’t believe it. Their skepticism was in keeping with the spirit of a
time in which genetic explanations of behavioral differences were increasingly regarded
as politically and morally incorrect, and the moribund eugenics movement was coming to
be viewed in retrospect as an embarrassing bit of racism.

In 1964 the Surgeon General’s report reviewed many of the same studies and
arguments as had Cornfield, but it added a set of “Epidemiological Criteria for
Causality,” said to be sufficient for establishing a causal connection and claimed that
smoking and cancer met the criteria. The criteria were indefensible, and they did not



244 Chapter 9

promote any good scientific assessment of the case. The criteria were the “consistency”
of the association, the “strength” of the association, the “specificity” of the association,
the temporal relationship of the association and the “coherence” of the association.

All of these criteria were left quite vague, but no way of making them precise would
suffice for reliably discriminating causal from common causal structures. Consistency
meant that separate studies should give the “same” results, but in what respects results
should be the same was not specified. Different studies of the relative risk of cigarette
smoking gave very different multipliers depending on the gender, age and nationality of
the subjects. The results of most studies were the same in that they were all positive; they
were plainly not nearly the same in the seriousness of the risk. Why stronger associations
should be more likely to indicate causes than weaker associations was not made clear by
the report. Specificity meant the putative cause, smoking, should be associated almost
uniquely with the putative effect, lung cancer. Cornfield et al. had rejected this
requirement on causes for good reason, and it was palpably violated in the smoking data
presented by the Surgeon General’s report. “Coherence” in the jargon of the report meant
that no other explanation of the data was possible, a criterion the observational data did
not meet in this case. The temporal issue concerned the correlation between increase in
cigarette smoking and increase in lung cancer, with a lag of many years. Critics pointed
out that the time series were confounded with urbanization, diagnostic changes and other
factors, and that the very criterion Cornfield et al. had used to avoid the issue of the
unreliability of diagnoses, namely total mortality, was, when age-adjusted, uncorrelated
with cigarette consumption over the century.

Brownlee (1965) made many of these points in his review of the report in the Journal
of the American Statistical Association. His contempt for the level of argument in the
report was plain, and his conclusion was that Fisher’s alternative hypothesis had not been
eliminated or even very seriously addressed. In Brownlee’s view, the Surgeon General’s
report had only two arguments against a genetic common cause: (a) the genetic
hypothesis would allegedly have to be very complicated to explain the dose/response
data, and (b) the rapid historical rise in lung cancer following by about 20 years a rapid
historical rise in cigarette smoking. Brownlee did not address (a), but he argued strongly
that (b) is poor evidence because of changes in diagnostics, changes in other factors of
known and unknown relevance, and because of changes in the survival rate of weak
neonates whom, as adults, might be more prone to lung cancer.

One of the more interesting aspects of the review was Brownlee’s “very simplified”
proposal for a statistical analysis of “E2 causes E1” which was that E1 and E2 be
dependent conditional on every possible vector of values for all other variables of the
system. Brownlee realized, of course, that his condition did not separate “E2 causes E1”
from E1 causes E2,” but that was not a problem with smoking and cancer. But even
ignoring the direction of causation, Brownlee’s condition—perhaps suggested to him by
the fact that the same principle is used (erroneously) in regression—is quite wrong. It
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would be satisfied, for example, if, E1 and E2 had no causal connection whatsoever
provided some measured variable Ej were a direct effect of both E1 and E2.

Brownlee thought his way of considering the matter was important for prediction and
intervention:

If the inequality holds only for, say, one particular subset Ej,..., Ek, and for all other
subsets equality holds, and if the subset Ej,...,Ek occurs in the population with low
probability, then Pr{E1|E2}, while not strictly equal to Pr{E1|E2

c}, will be numerically
close to it, and then E2 as a cause of E1 may be of small practical importance. These
considerations are related to the Committee’s responsibility for assessment of the
magnitude of the health hazard (page 8). Further complexities arise when we
distinguish between cases in which one of the required secondary conditions Ej,...,Ek

is, on the one hand, presumably controllable by the individual, e.g., the eating of
parsnips, or uncontrollable, e.g., the presence of some genetic property. In the latter
case, it further makes a difference whether the genetic property is identifiable or non-
identifiable: for example it could be brown eyes which is the significant subsidiary
condition Ej, and we could tell everybody with not-brown eyes it was safe for them to
smoke. (p. 725)

No one seems to have given any better thought than this to the question of how to predict
the effects of public policy intervention against smoking. Brownlee regretted that the
Surgeon General’s report made no explicit attempt to estimate the expected increase in
life expectancy from not smoking or from quitting after various histories.

Fifteen years later, in 1979, the second Surgeon General’s Report on Smoking and
Health was able to report studies that showed a monotonic increase in mortality rates with
virtually every feature of smoking practice that increased smoke in the lungs: number of
cigarettes smoked per day, number of years of smoking, inhaling versus not inhaling, low
tar and nicotine versus high tar and nicotine, length of cigarette habitually left unsmoked.
The monotonic increase in mortality rates with cigarette smoking had been shown in
England, the continental United States, Hawaii, Japan, Scandinavia and elsewhere, for
whites and blacks, for men and women. The report dismissed Fisher’s hypothesis in a
single paragraph by citing a Scandinavian study (Cederlof, Friberg, and Lundman 1977)
that included monozygotic and dizygotic twins:

When smokers and nonsmokers among the dizygotic pairs were compared, a mortality
ratio of 1.45 for males and 1.21 for females was observed. Corresponding mortality
ratios for the monozygotic pairs were 1.5 for males and 1.222 for females.
Commenting on the constitutional hypothesis and lung cancer, the authors observed
that “the constitutional hypothesis as advanced by Fisher and still supported by a few,
has here been tested in twin studies. The results from the Swedish monozygotic twin
series speak strongly against the constitutional hypothesis.”
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The second Surgeon General’s report claimed that tobacco smoking is responsible for
30% of all cancer deaths; cigarette smoking is responsible for 85% of all lung cancer
deaths.

A year before the report appeared, in a paper for the British Statistical Association P.
Burch (1978) had used the example of smoking and lung cancer to illustrate the problems
of distinguishing causes from common causes without experiment. In 1982 he published
a full fledged assault on the second Surgeon General’s report. The criticisms of the
argument of the report were similar to Brownlee’s criticisms of the 1964 report, but
Burch was less restrained and his objections more pointed. His first criticism was that
while all of the studies showed a increase in risk of mortality with cigarette smoking, the
degree of increase varied widely from study to study. In some studies the age adjusted
multiple regression of mortality on cigarettes, beer, wine and liquor consumption gave a
smaller partial correlation with cigarettes than with beer drinking. Burch gave no
explanation of why the regression model should be an even approximately correct
account of the causal relations. Burch thought the fact that the apparent dose/response
curve for various culturally, geographically, and ethnically distinct groups were very
different indicated that the effect of cigarettes was significantly confounded with
environmental or genetic causes. He wanted the Surgeon General to produce a unified
theory of the causes of lung cancer, with confidence intervals for any relevant parameter
estimates: Where, he asked, did the 85% figure come from?

Burch pointed out, correctly, that the cohort of 1487 dizygotic and 572 monozygotic
twins in the Scandinavian study born between 1901 and 1925 gave no support at all to the
claim that the constitutional explanation of the connection between smoking and lung
cancer had been refuted, despite the announcements of the authors of that study. The
study showed that of the dizygotes exactly 2 nonsmokers or infrequent smokers had died
of lung cancer and 10 heavy smokers had died of lung cancer; of the monozygotes, 2 low
non smokers and 2 heavy smokers had died of the disease. The numbers were useless, but
if they suggested anything, it was that if genetic variation was controlled there is no
difference in lung cancer rates between smokers and nonsmokers. The Surgeon General’s
report of the conclusion of the Scandinavian study was accurate, but not the less
misleading for that.

Burch also gave a novel discussion of the time series data, arguing that it virtually
refuted the causal hypothesis. The Surgeon General and others had used the time series in
a direct way. In the U.K. for example, male cigarette consumption per capita had
increased roughly a hundredfold between 1890 and 1960, with a slight decrease
thereafter. The age-standardized male death rate from lung cancer began to increase
steeply about 1920, suggesting a thirty-year lag, consistent with the fact that people often
begin smoking in their twenties and typically present lung cancer in their fifties.
According to Burch’s data, the onset of cigarette smoking for women lagged behind
males by some years, and did not begin until the 1920s. The Surgeon General’s report
noted that the death rate from lung cancer for women had also increased dramatically
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between 1920 and 1980. Burch pointed out that the autocorrelations for the male series
and female series didn’t mesh: there was no lag in death rates for the women. Using U.K.
data, Burch plotted the percentage change in the age-standardized death rate from lung
cancer for both men and women from 1900 to 1980. The curves matched perfectly until
1960. Burch’s conclusion is that whatever caused the increase in death rates from lung
cancer affected both men and women at the same time, from the beginning of the century
on, although whatever it is had a smaller absolute effect on women than on men. But then
the whatever-it-was could not have been cigarette smoking, since increases in women’s
consumption of cigarettes lagged twenty to thirty years behind male increases.

Burch was relentless. The Surgeon General’s report had cited the low occurrence of
lung cancer among Mormons. Burch pointed out that Mormon’s in Utah not only have
lower age-adjusted incidences of cancer than the general population, but also have higher
incidences than non-Mormon nonsmokers in Utah. Evidently their lower lung cancer
rates could not be simply attributed to their smoking habits.

Abraham Lilienfeld, who only shortly before had written a textbook on epidemiology
and who had been involved with the smoking and cancer issue for more than twenty
years, published a reply to Burch that is of some interest. Lilienfeld gives the impression
of being at once defensive and disdainful. His defense of the Surgeon General’s report
began with an ad hominem attack, suggesting that Burch was so out of fashion as to be a
crank, and ended with another ad hominem, demanding that if Burch wanted to criticize
others’ inferences from their data he go get his own. The most substantive reply
Lilienfeld offered is that the detailed correlation of lung cancer with smoking habits in
one subpopulation after another makes it seem very implausible that the association is
due to a common cause. Lilienfeld said, citing himself, that the conclusion that 85% of
lung cancer deaths are due to cigarettes is based on the relative risk for cigarette smokers
and the frequency of cigarette smoking in the population, predicting, in effect, that if
cigarette smoking ceased the death rate from lung cancer would decline by that
percentage. (The prediction would only be correct, Burch pointed out in response,
provided cigarette smoking is a completely unconfounded cause of lung cancer.)
Lilienfeld challenged the source of Burch’s data on female cigarette consumption early in
the century, which Burch subsequently admitted were estimates.

Both Burch and Lilienfeld discussed a then recent report by Rose et al. (1982) on a
ten-year randomized smoking intervention study. The Rose study, and another that
appeared at nearly the same time with virtually the same results, illustrates the hazards of
prediction. Middle-aged male smokers were assigned randomly to a treatment or
nontreatment group. The treatment group was encouraged to quit smoking and given
counseling and support to that end. By self-report, a large proportion of the treatment
group either quit or reduced cigarette smoking. The difference in self-reported smoking
levels between the treatment and nontreatment groups was thus considerable, although
the difference declined toward the end of the ten-year study. To most everyone’s dismay,
Rose found that there was no statistically significant difference in lung cancer between
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the two groups after ten years (or after five), but there was a difference in overall
mortality—the group that had been encouraged to quit smoking, and had in part done so,
suffered higher mortality.

Fully ignoring their own evidence, the authors of the Rose study concluded
nonetheless that smokers should be encouraged to give up smoking, which makes one
wonder why they bothered with a randomized trial. Burch found the Rose report
unsurprising; Lilienfeld claimed the numbers of lung cancer deaths in the sample are too
small to be reliable, although he did not fault the Surgeon General’s report for using the
Scandinavian data, where the numbers are even smaller, and he simply quoted the
conclusion of the report, which seems almost disingenuous. To Burch’s evident delight,
as Lilienfeld’s defense of the Surgeon General appeared so did yet further experimental
evidence that intervening in smoker’s behavior has no benign effect on lung cancer rates.
The Multiple Risk Factor Intervention Trial Research Group (1982) reported the results
after six years of a much larger randomized experimental intervention study producing
roughly three times the number of lung cancer deaths as in the Rose study. But the
intervention group showed more lung cancer deaths than the usual care group! The
absolute numbers were small in both studies but there could be no doubt that nothing like
the results expected by the epidemiological community had materialized.

The results of the controlled intervention trials illustrate how naive it is to think that
experimentation always produces unambiguous results, or frees one from requirements of
prior knowledge. One possible explanation for the null effects of intervention on lung
cancer, for example, is that the reduced smoking produced by intervention was
concentrated among those whose lungs were already in poor health and who were most
likely to get lung cancer in any case. (Rose et al. gave insufficient information for an
analysis of the correlation of smoking behavior and lung cancer within the intervention
group.) This possibility could have been tested by experiments using blocks more finely
selected by health of the subjects.

In retrospect the general lines of the dispute were fairly simple. The statistical
community focused on the want of a good scientific argument against a hypothesis given
prestige by one of their own; the medical community acted like Bayesians who gave the
“constitutional” hypothesis necessary to account for the dose/response data so low a prior
that it did not merit serious consideration. Neither side understood what uncontrolled
studies could and could not determine about causal relations and the effects of
interventions. The statisticians pretended to an understanding of causality and correlation
they did not have; the epidemiologists resorted to informal and often irrelevant criteria,
appeals to plausibility, and in the worst case to ad hominem.

Fisher’s prestige as well as his arguments set the line for statisticians, and the line was
that uncontrolled observations cannot distinguish among three cases: smoking causes
cancer, something causes smoking and cancer, or something causes smoking and cancer
and smoking causes cancer. The most likely candidate for the “something” was genotype.
Fisher was wrong about the logic of the matter, but the issue never was satisfactorily
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clarified, even though some statisticians, notably Brownlee and Burch, tried
unsuccessfully to characterize more precisely the connection between probability and
causality. While the statisticians didn’t get the connection between causality and
probability right, the Surgeon General’s “epidemiological criteria for causality” were an
intellectual disgrace, and the level of argument in defense of the conclusions of the
Surgeon General’s Report was sometimes more worthy of literary critics than scientists.
The real view of the medical community seems to have been that it was just too
implausible to suppose that genotype strongly influenced how much one smoked,
whether one smoked at all, whether one smoked cigarettes as against a cigar or pipe,
whether one was a Mormon or a Seventh day Adventist, and whether one quit smoking or
not. After Cornfield’s survey the medical and public health communities gave the
common cause hypothesis more invective than serious consideration. And, finally, in
contrast to Burch, who was an outsider and maverick, leading epidemiologists, such as
Lilienfeld, seem simply not to have understood that if the relation between smoking and
cancer is confounded by one or more common causes, the effects of abolishing smoking
cannot be predicted from the “risk ratios,” that is, from sample conditional probabilities.
The subsequent controlled smoking intervention studies gave evidence of how very bad
were the expectations based on uncontrolled observation of the relative risks of lung
cancer in those who quit smoking compared to those who did not.

U A Co o Voo o
o

(io*)

Figure 9.18

9.6 Appendix
We will prove that the partially oriented inducing path graph (io*) in figure 9.18, together
with the assumptions that U causes A, that there is no common cause of U and C, and that
every directed path from U to C contains A, entail that A causes C and that there is a
latent common cause of A and C. We assume that A is not a deterministic function of U.

Let O = {A,C,U,V}, and G be the directed acyclic graph that generated (io*). The U
o→ C edge in (io*) entails that in the inducing path graph of G either U → C or U ↔ C.
If there is a U ↔ C edge, then there is a latent common cause of U and C, contrary to our
assumption. Hence the inducing path graph contains a U → C edge. It follows that in G
there is a directed path from U to C. Because every directed path from U to C contains A,
there is a directed path from A to C in G. Hence A causes C.
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clarified, even though some statisticians, notably Brownlee and Burch, tried unsuccess-
fully to characterize more precisely the connection between probability and causality.
While the statisticians didn’t get the connection between causality and probability right,
the Surgeon General’s “epidemiological criteria for causality” were inadequate and argu-
ments in defense of the conclusions of the Surgeon General’s Report were flawed. The
real view of the medical community seems to have been that it was just too implausible to
suppose that genotype strongly influenced how much one smoked, whether one smoked
at all, whether one smoked cigarettes as against a cigar or pipe, whether one was a
Mormon or a Seventh day Adventist, and whether one quit smoking or not. After Corn-
field’s survey the medical and public health communities gave the common cause
hypothesis more invective than serious consideration. And, finally, in contrast to Burch,
who was an outsider and maverick, leading epidemiologists, such as Lilienfeld, seem
simply not to have understood that if the relation between smoking and cancer is con-
founded by one or more common causes, the effects of abolishing smoking cannot be
predicted from the “risk ratios,” that is, from sample conditional probabilities. The subse-
quent controlled smoking intervention studies gave evidence of how very bad were the
expectations based on uncontrolled observation of the relative risks of lung cancer in
those who quit smoking compared to those who did not.
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The U → C edge in the inducing path graph of G entails that there is an inducing path
Z relative to O that is out of U and into C in G. If Z does not contain a collider then Z is a
directed path from U to C and hence it contains A. But then A is a noncollider on Z, and Z
is not an inducing path relative to O (because Z contains a member of O, namely A, that
is a noncollider on Z) contrary to our assumption. Hence Z contains a collider.

We will now show that no collider on Z is an ancestor of U. Suppose, on the contrary
that there is a collider on Z that is an ancestor of U; let M be the closest such collider on Z
to C. No directed path from M to U contains C, because there is a directed path from U to
C, and hence no directed path from C to U. There are two cases.

Suppose first that there is no collider between M and C. Then there is a variable Q on
Z, such that Z(Q,C) is a directed path from Q to C and Z(Q,M) is a directed path from Q
to M. (As in the proofs in chapter 13, we adopt the convention that on an acyclic path Z
containing Q and C, Z(Q,C) represents the subpath of Z between Q and C.) U ≠ M
because M is a collider on Z and U is not. U does not lie on Z(Q,C) or Z(Q,M) because Z
is acyclic. The concatenation of Z(Q,M) and a directed path from M to U contains a
directed path from Q to U that does not contain C. Z(Q,C) is a directed path from Q to C
that does not contain U. Q is a noncollider on Z, and because Z is an inducing path
relative to O, Q is not in O. Hence Q is a latent common cause of U and C, contrary to
our assumption.

Suppose next that there is a collider between M and C, and N is the collider on Z
closest to M and between M and C. Then there is a variable Q on Z, such that Z(Q,N) is a
directed path from Q to N and Z(Q,M) is a directed path from Q to M. U ≠ M because M
is a collider on Z and U is not. U does not lie on Z(Q,N) or Z(Q,M) because Z is acyclic.
The concatenation of Z(Q,M) and a directed path from M to U contains a directed path
from Q to U that does not contain C. There is a directed path from N to C, and by
hypothesis no such directed path contains U. The concatenation of Z(Q,N) and a directed
path from N to C contains a directed path from Q to C that does not contain U. Q is a
noncollider on Z, and because Z is an inducing path relative to O, Q is not in O. Hence Q
is a latent common cause of U and C, contrary to our assumption.

It follows that no collider on Z is an ancestor of U.
Let X be the collider on Z closest to U. There is a directed path from X to C. Z(U,X) is

a directed path from U to X. The concatenation of Z(U,X) and a directed path from X to C
contains a directed path from U to C. By assumption, such a path contains A. A does not
lie between U and X on Z, because every vertex between U and X on Z is a noncollider,
and if A occurs on Z it is a collider on Z. Hence A lies on every directed path from X to C.
Hence there exists a collider on Z that is the source of a directed path to C that contains A.
Let R be the collider on Z closest to C such that there is a directed path D from R to C that
contains A. There are again two cases.

If there is no collider between R and C on Z, then there is a vertex Q on Z such that
Z(Q,C) is a directed path from Q to C and Z(Q,R) is a directed path from Q to R. A does
not lie on Z(Q,C) because no vertex on Z(Q,C) is a collider on Z. C does not lie on
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D(R,A) because the directed graph is acyclic. C ≠ Q because Z has an edge into C but not
Q. C ≠ R because R is a collider on Z and C is not. Hence, C does not lie on Z(Q,R)
because Z is acyclic. The concatenation of Z(Q,R) and D(R,A) contains a directed path
from Q to A that does not contain C. Q is not a collider on Z, so it not in O. Hence Q is a
latent common cause of A and C.

Suppose next that there is a collider between R and C on Z, and N is the closest such
collider to R on Z. Then there is a vertex Q on Z such that Z(Q,N) is a directed path from
Q to N and Z(Q,R) is a directed path from Q to R. Q ≠ N because by hypothesis there is a
path from N to C that does not contain A. A does not lie on Z(Q,N) because no vertex on
Z(Q,N) except N is a collider on Z. There is a directed path from N to C, but it does not
contain A by hypothesis. Hence the concatenation of Z(Q,N) and a directed path from N
to C contains a directed path that does not contain A. C does not lie on D(R,A) because
the directed graph is acyclic. C ≠ Q because Z has an edge into C but not Q. C ≠ R
because R is a collider on Z and C is not. Hence, C does not lie on Z(Q,R) because Z is
acyclic. The concatenation of Z(Q,R) and D(R,A) contains a directed path from Q to A
that does not contain C. Q is not a collider on Z, so it not in O. Hence Q is a latent
common cause of A and C.

Hence in either case, A and C have a latent common cause in G.





10 The Structure of the Unobserved

10.1 Introduction
Many theories suppose there are variables that have not been measured but that influence
measured variables. In studies in econometrics, psychometrics, sociology and elsewhere
the principal aim may be to uncover the causal relations among such “latent” variables. In
such cases it is usually assumed that one knows that the measured variables (e.g.,
responses to questionnaire items) are not themselves causes of unmeasured variables of
interest (e.g., attitude), and the measuring instruments are often designed with fairly
definite ideas as to which measured items are caused by which unmeasured variables.
Survey questionnaires may involve hundreds of items, and the very number of variables
is ordinarily an impediment to drawing useful conclusions about structure. Although
there are a number of procedures commonly used for such problems, their reliability is
doubtful. A common practice, for example, is to form aggregated scales by averaging
measures of variables that are held to be proxies for the same unmeasured variable, and
then to study the correlations of the scales. The correlations thus obtained have no simple
systematic connection with causal relations among the unmeasured variables.

What can a mixture of substantive knowledge about the measured indicators and
statistical observations of those indicators reveal about the causal structure of the
unobserved variables? And under what assumptions about distributions, linearity, etc.?
This chapter begins to address these questions. The procedures for forming scales, or
“pure measurement models,” that we will describe in this chapter have found empirical
application in the study of large psychometric data sets (Callahan and Sorensen 1992).

10.2 An Outline of the Algorithm
Consider the problem of determining the causal structure among a set of unmeasured
variables of interest in linear pseudoindeterministic models, commonly called “structural
equation models with latent variables.” Assume the distributions are linearly faithful.
Structural equation models with latent variables are sometimes presented in two parts: the
“measurement model,” and the “structural model” (see figure 10.1). The structural model
involves only the causal connections among the latent variables; the remainder is the
measurement model. From a mathematical point of view, the distinction marks only a
difference in the investigator’s interests and access and not any distinction in formal
properties. The same principles connecting graphs, probabilities and causes apply to the
measurement model as to the structural model. In figure 10.1 we give an example of a
latent variable model in which the measured variables (Q1-Q12) might be answers to
survey questions.

Let T be a set of latent variables and V a set of measured variables. We will assume
that T is causally sufficient, although that is clearly not the general case. We let C denote
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the set of “nuisance” latent common causes, that is, unobserved common causes, not in T,
of two or more variables in T ∪ V. Call a subgraph of G that contains all of the edges in
G except for edges between members of T a measurement model of G.
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Figure 10.1

In actual research the set V is often chosen so that for each Ti in T, a subset of V is
intended to measure Ti. In Kohn’s (1969) study of class and attitude in America, for
example, various questionnaire items where chosen with the intent of measuring the same
attitude; factor analysis of the data largely agreed with the clustering one might expect on
intuitive grounds. Accordingly, we suppose the investigator can partition V into V(Ti),
such that for each i the variables in V(Ti) are direct effects of Ti. We then seek to
eliminate those members of V(Ti) that are impure measures of Ti, either because they are
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also the effects of some other unmeasured variable in T, because they are also causes or
effects of some other measured variable, or because they share an unmeasured common
cause in C with another measured variable.

In the class of models we are considering, a measured variable can be an impure
measure for four reasons, which are exhaustive:

(i) If there is a directed edge from some Ti in T to some V in V(Ti) but also a trek between
V and Tj that does not contain Ti or any member of V except V then V is latent-measured
impure.
(ii) If there is a trek between a pair of measured variables V1, V2 from the same cluster
V(Ti) that does not contain any member of T then V1 and V2 are intra-construct impure.
(iii) If there is a trek between a pair of measured variables V1, V2 from distinct clusters
V(Ti) and V(Tj) that does not contain any member of T then we say V1 and V2 are cross-
construct impure. (iv) If there is a variable in C that is the source of a trek between Ti

and some member V of V(Ti) we say V is common cause impure.

In figure 10.2, for example, if V(T1) = {X1,X2,X3} and V(T2) = {X4,X5,X6} then X4 is
latent-measured impure, X1 and X2 are intra-construct impure, X2 and X5 are cross-
construct impure, and X6 is common cause impure. Only X3 is a pure measure of T1.

X 1 X 2 X 3 X 4

T
1

X 6X 5

T2 C

Figure 10.2

We say that a measurement model is almost pure if the only kind of impurities among
the measured variables are common cause impurities. An almost pure latent variable
graph is a directed acyclic graph with an almost pure measurement model. In an almost
pure latent variable graph we continue to refer throughout the rest of this chapter to the
set of measured variables as V, a subset of the latent variables as T, and the “nuisance”
latent variables that are common causes of members of T and V as C.

The strategy that we employ has three steps:

(i) Eliminate measured variables until the variables that remain form the largest almost
pure measurement model with at least two indicators for each latent variable.

X1 X3 X4 X5 X6X2

T1 T2 C
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(ii) Use vanishing tetrad differences among variables in the measurement model from (i)
to determine the zero and first order independence relations among the variables in T.
(iii) Use the PC algorithm to construct a pattern from the zero and first order
independence relations among the variables in T.

The next section describes a procedure for identifying the appropriate measured
variables. The details are rather intricate; the reader should bear in mind that the
procedures have all been automated, that they work very well in simulation tests, and
they all derive from fundamental structural principles. Given the population correlations
the inference techniques would be reliable (in large samples) for any conditions under
which the Tetrad Representation Theorem holds. The statistical decisions involve a
substantial number of joint tests, and no doubt could be improved. We occasionally resort
to heuristics for cases in which each latent variable has a large number of measured
indicators.

10.3 Finding Almost Pure Measurement Models
If G is the true model over V ∪ T ∪ C with measurement model GM, then our task in this
section is to find a subset P of V (the larger the better) such that the sub-model of GM on
vertex set P ∪ T ∪ C is an almost pure measurement model, if one exists with at least
two indicators per latent variable. Our strategy is to use different types of foursomes of
variables to sequentially eliminate impure measures.

As in figure 10.3, we call four measured variables an intra-construct foursome if all
four are in V(Ti) for some Ti in T; otherwise call it a cross-construct foursome.

10.3.1 Intra-Construct Foursomes
In this section we discuss what can be learned about the measurement model for Ti from
V(Ti) alone. We take advantage of the following principle, which is a consequence of the
Tetrad Representation Theorem.

(P–1) If a directed acyclic graph linearly implies all tetrad differences among the
variables in V(Ti) vanish, then no pair of variables in V(Ti) is intra-construct impure.

Figure 10.3

Figure 10.3

Intra-Construct Cross-Construct

            

x1 x2 x3

T1

x4 x1 x2 x3 x4

T1 T2
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So given a set, V(Ti), of variables that measure Ti, we seek the largest subset, P(Ti), of
V(Ti) such that all tetrad differences are judged to vanish among P(Ti). The number of
subsets of V(Ti) is 2

V (Ti )
, so it is not generally feasible to examine each of them.

Further, in realistic samples we won’t find a sizable subset in which all tetrad differences
are judged to vanish. A more feasible strategy is to prune the set iteratively, removing at
each stage the variable that improves the performance of the remaining set P(Ti) on easily
computable heuristic criteria derived from principle P–1. In practice, if the set V(Ti) is
large, some small subset of V(Ti) may by chance do well on these two criteria. For
example, if V(Ti) has 12 variables, then there are 495 subsets of size 4, each of which has
only 3 possible vanishing tetrad differences. There are 792 subsets of size 5, but there are
15 possible tetrad differences that must all be judged to vanish among each set instead of
3. Because the larger the size of P(Ti) the more unlikely it is that all tetrad differences
among P(Ti) will be judged to vanish by chance, and because we might eliminate
variables from P(Ti) later in the process, we want P(Ti) to be as large as possible. On the
other hand, no matter how well a set P(Ti) does on the first criterion above, some subset
of it will do at least as well or better. Thus, in order to avoid always choosing the smallest
possible subsets we have to penalize smaller sets.

We use the following simple algorithm. We initialize P(Ti) to V(Ti). If the set of tetrad
differences among variables in P(Ti) passes a statistical test, we exit. (We count a set of n
tetrad differences as passing a statistical test at a given significance level Sig if each
individual tetrad difference passes a statistical test at significance level Sig/n. The details
of the statistical tests that we employ on individual tetrad differences are described in
chapter 11.) If the set does not pass a statistical test, we look for a variable to eliminate
from P(Ti). We score each measured variable X in the following way. For each tetrad
difference t among variables in P(Ti) in which X appears we give X credit if t passes a
statistical test, and discredit if t fails a statistical test. We then eliminate the variable with
the lowest score from P(Ti). We repeat this process until we arrive at a set P(Ti) that
passes the statistical test, or we run out of variables.

10.3.2 Cross-Construct Foursomes
Having found, for each latent variable Ti, a subset P(Ti) of V(Ti) in which no variables are
intra-construct impure, we form a subset P of V such that

��

P = P(Ti )
Ti ∈T
� .

We next eliminate members of P that are cross-construct impure.
2x2 foursomes involve two measured variables from P(Ti) and two from P(Tj), where

i and j are distinct. A 2x2 foursome in a pure latent variable model linearly implies
exactly one tetrad equation, regardless of the nature of the causal connection between Ti

and Tj in the structural model. For example, the graph in figure 10.4 linearly implies the
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vanishing tetrad difference XY WZ - XW YZ = 0. Graphs in which Tj causes Ti and graphs
in which Ti and Tj are not causally connected (i.e., there is no trek between them) also
linearly imply XY WZ - XW YZ = 0.

T i T j

X Z Y W

Figure 10.4

If one variable in V(Ti) is latent-measured impure because of a trek containing Tj, and
one variable in V(Tj) is latent-measured impure because of a trek containing Ti, then the
tetrad differences among the foursome are not linearly implied to vanish by the graph. If
Ti and Tj are connected by some trek and a pair of variables in V(Ti) and V(Tj)
respectively are cross-construct impure then again the tetrad difference is not linearly
implied to vanish by the graph. (The case where Ti and Tj are not connected by some trek
is considered below.) In figure 10.5, for example, model (i) implies the tetrad equation

XY WZ = XW YZ but models (ii) and (iii) do not.
So if we test a 2x2 foursome F1 and the hypothesis that the appropriate tetrad

difference vanishes can be rejected, then we know that in at least one of the four pairs in
which there is a measured variable from each construct, both members of the pair are
impure. We don’t yet know which pair. We can find out by testing other 2x2 foursomes
that share variables with F1. Suppose the largest subgraph of the true model containing
P(T1) and P(T2) is the graph in figure 10.6.

Ti T j

X Z Y W

T i Tj

X Z Y W

Ti T j

X Z Y W

(i) (ii)

(iii)

Figure 10.5

Ti Tj

ZX WY

X Z Y W X Z Y W

Ti

Ti

Tj

Tj Ti Tj

X Z Y W

(i) (ii)

(iii)
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T
1 T 2

X ZYWU V

Figure 10.6

Only 2x2 foursomes involving the pair <W,Y> will be recognizably impure. When we
test vanishing tetrad differences in the foursome F1 = <X,W,Y,Z>, we won’t know which
of the pairs <W,Z>, <X,Y>, <X,Z>, <W,Y> is impure. When we test the foursome F2 =
<X,W,Z,V>, however, we find that no pair among <X,Z>, <X,V>, <W,Z>, or <W,V> is
impure. We know therefore that the pairs <X,Z> and <W,Z> are not impure in F1. By
testing the foursome F3 = <U,X,Y,Z> we find that <X,Y> is not impure, entailing <W,Y>
is impure in F1. If there are at least two pure indicators within each construct, then we can
detect exactly which of the other indicators are impure in this way.

By testing all the 2x2 foursomes in P, we can in principle eliminate all variables that
are cross-construct impure. We cannot yet eliminate all the variables that are latent-
measured impure, because if there is only one such variable it is undetectable from 2x2
foursomes.

Foursomes that involve three measured variables from P(Ti) and one from P(Tj),
where i and j are distinct, are called 3x1 foursomes. All 3x1 foursomes in a pure
measurement model linearly imply all three possible vanishing tetrad differences (see
model (i) in figure 10.7 for example), no matter what the causal connection between Ti

and Tj. If the variable from P(Tj) in a 3x1 foursome is impure because it measures both
latents (model (ii) in figure 10.7), then Ti is still a choke point and all three equations are
linearly implied. If a variable Z from P(Ti) is impure because it measures both latents
(model (iii) in figure 10.7), however, then the latent variable model does not linearly
imply that the tetrad differences containing the pair <Z,W> vanish. This entails that a
nonvanishing tetrad differences among the variables in a 3x1 foursome can identify a
unique measured variable as latent-measured impure.

T1 T2

X ZYWU V
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Ti Tj

X ZY W

(i)

(ii)

Ti T j

X ZY W

Ti Tj

X ZY W

(iii)

Figure 10.7

Also if Ti and Tj are not trek-connected and a pair of variables V1 and V2 in P(Ti) and
P(Tj) respectively are cross-construct impure, then the correlation between V1 and V2 does
not vanish, and a tetrad difference among a 3x1 foursome that contains V1 and V2 is not
linearly implied to vanish; hence the impure member of P(Tj) will be recognized.

If there are least three variables in P(Ti) for each i, then when we finish examining all
3x1 foursomes we will have a subset P of V such that the sub-model of the true
measurement model over P (which we call GP) is an almost pure measurement model.

10.4 Facts about the Unobserved Determined by the Observed
In an almost pure latent variable model constraints on the correlation matrix among the
measured variables determine
 (i) for each pair A, B, of latent variables, whether A, B are uncorrelated,
(ii) for each triple A, B, C of latent variables, whether A and B are d-separated given {C}.

Part (i) is obvious: two measured variables are uncorrelated in an almost pure latent
variable model if and only if they are effects of distinct unmeasured variables that are not
trek connected (i.e., there is no trek between them) and hence are d-separated given the
empty set of variables. Part (ii) is less obvious, but in fact certain d-separation facts are
determined by vanishing tetrad differences among the measured variables.

Theorem 10.1 is a consequence of the Tetrad Representation Theorem:

THEOREM 10.1: If G is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, and each latent variable in T has at least two measured indicators,

X ZY W

(i)

(ii)

X ZY W X ZY W

(iii)

Ti

Ti

Tj

Tj Ti Tj
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then latent variables T1 and T3, whose measured indicators include J and L respectively,
are d-separated given latent variable T2, whose measured indicators include I and K, if
and only if G linearly implies JI LK =� JL KI =� JK IL.

For example, in the model in figure 10.8, the fact that T1 and T3 are d-separated given T2

is entailed by the fact that for all m, n, o, and p between 1 and 3, where o and p are
distinct:

ρAm Dn
ρBoBp

= ρ Am Bo
ρDnBp

= ρAmBp
ρDnBo

By testing for such vanishing tetrad differences we can test for first order d-
separability relations among the unmeasured variables in an almost pure latent variable
model. (If A and B are d-separated given D, we call the number of variables in D the
order of the d-separability relation.) These zero and first order d-separation relations can
then be used as input to the PC algorithm, or to some other procedure, to obtain
information about the causal structure among the latent variables. In the ideal case, the
pattern among the latents that is output will always contain the pattern that would result
from applying the PC algorithm directly to d-separation facts among the latents, but it
may contain extra edges and fewer orientations.

T1
T2 T3

A 1 A 2 A 3 B 1 B 2 B 3
D1 D2 D 3

C

Figure 10.8

10.5 Unifying the Pieces
Suppose the true but unknown graph is shown in figure 10.9.

C T1
T2 T3

A1 A2 A3 B3 D3D2D1B2B1
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T1 T2

T3 T4

X 1 2X 3X X 4 X 5
X 6 X 7 8X

X 9
X 10 X 11

X 12 X 13 X 14

Figure 10.9. True causal structure

We assume that a researcher can accurately cluster the variables in the specified
measurement model, for example, figure 10.10.

T1 T2

T3 T4

X 1 2X 3X X 4 X 5
X 6 X 7 8X

X 9
X 10 X 11

X 12 X 13 X 14

Figure 10.10. Specified measurement model

The actual measurement model is then the graph in figure 10.11.

X9

X1 X2 X3 X4 X5
X6 X7 X8

X10 X11

T3

T1 T2

T4

X12 X13 X14

X9

X1 X2 X3 X4 X5
X6 X7 X8

X10 X11

T3

T1 T2

T4

X12 X13 X14

Figure 10.10. Specifi ed measurement model

The actual measurement model is then the graph in fi gure 10.11.
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T1 T2

T3 T4

X 1 2X 3X X 4 X 5
X 6 X 7 8X

X 9
X 10 X 11

X 12 X 13 X 14

Figure 10.11. Actual measurement model

Figure 10.12 shows a subset of the variables in G (one that leaves out X1, X6, and X14)
that do form an almost pure measurement model.

T1 T2

T3 T4

2 3X X 4 X 5
X 7 8X

X 9
X 10 X 11

X 12 X 13

X

Figure 10.12. Almost pure measurement model

Assuming the sequence of vanishing tetrad difference tests finds such an almost pure
measurement model, a sequence of tests of 1x2x1 vanishing tetrad difference tests then

X9

X1 X2 X3 X4 X5
X6 X7 X8

X10 X11

T3

T1 T2

T4

X12 X13 X14

X9

X2 X3 X4 X5 X7 X8

X10 X11

T3

T1 T2

T4

X12 X13
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decides some d-separability facts for the PC or other algorithm through theorem 10.1.
Since in figure 10.12 there are many 1x2x1 tetrad tests with measured variables drawn
respectively from the clusters for T1, T2 and T3, the results of the tests must somehow be
aggregated. For each 1x2x1 tetrad difference among variables in V(T1), V(T2), and V(T3)
we give credit if the tetrad difference passes a significance test and discredit if it fails a
significance test; if the final score is greater than 0, we judge that T1 and T3 are d-
separated by T2.

With two slight modifications, the PC algorithm can be applied to the zero and first
order d-separation relations determined by the vanishing tetrad differences. The first
modification is of course that the algorithm never tries to test any d-separation relation of
order greater than 1 (i.e., in the loop in step B) of the PC Algorithm the maximum value
of n is 1.) The second is that in step D) of the PC algorithm we do not orient edges to
avoid cycles.

Without all of the d-separability facts available, the PC algorithm may not find the
correct pattern of the graph. It may include extra edges and fail to orient some edges.
However, it is possible to recognize from the pattern that some edges are definitely in the
graph that generated the pattern, while others may or may not be. We add the following
step to the PC algorithm to label with a “?” edges that may or may not be in the graph. Y
is a definite noncollider on an undirected path U in pattern  if and only if either X *-*
Y → Z, or X ← Y *-* Z are subpaths of U, or X and Z are not adjacent and not X → Y ← Z
on U.

E.) Let P be the set of all undirected paths in  between X and Y of length ≥ 2. If X and Y
are adjacent in , then mark the edge between X and Y with a “?” unless either

(i) no paths are in P, or
(ii) every path in P contains a collider, or
(iii) there exists a vertex Z such that Z is a definite noncollider on every path in P, or
(iv) every path in P contains the same subpath <A,B,C>.

We refer to the combined procedure as the Multiple Indicator Model Building
(MIMBuild) Algorithm.

THEOREM 10.2: If G is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, each variable in T has at least two measured indicators, the input to
MIMBuild is a list of all vanishing zero and first order correlations among the latent
variables linearly implied by G, and  is the output of the MIMBuild Algorithm then:

A–1) If X and Y are not adjacent in , then they are not adjacent in G.
A–2) If X and Y are adjacent in  and the edge is not labeled with a “?,” then X and Y are
adjacent in G.
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O–1) If X → Y is in , then every trek in G between X and Y is into Y.
O–2) If X → Y is in  and the edge between X and Y is not labeled with a “?,” then X →
Y is in G.

The algorithm’s complexity is bounded by the number of tetrad differences it must test,
which in turn is bounded by the number of foursomes of measured variables. If there are
n measured variables the number of foursomes is O(n4). We do not test each possible
foursome, however, and the actual complexity depends on the number of latent variables
and how many variables measure each latent. If there are m latent variables and s
measured variables for each, then the number of foursomes is O(m3 × s4). Since m ×  s =
n, this is O(n3 × s).

10.6 Simulation Tests
The procedure we have sketched has been fully automated in the TETRAD II program,
with sensible but rather arbitrary weighting principles where required. To test the
behavior of the procedure we generated data from the causal graph in figure 10.13, which
has 11 impure indicators.

The distribution for the exogenous variables is standard normal. For each sample, the
linear coefficients were chosen randomly between .5 and 1.5.

We conducted 20 trials each at sample sizes of 100, 500, and 2000. We counted errors
of commission and errors of omission for detecting uncorrelated latents (0-order d-
separation) and for detecting 1st-order d-separation. In each case we counted how many
errors the procedure could have made and how many it actually made. We also give the
number of samples in which the algorithm identified the d-separations perfectly. The
results are shown in table 10.1, where the proportions in each case indicate the number of
errors of a given kind over all samples divided by the number of possible errors of that
kind over all samples.

Extensive simulation tests with a variety of latent topologies for as many as six latent
variables, and 60 normally distributed measured variables, show that for a given sample
size the reliability of the procedure is determined by the number of indicators of each
latent and the proportion of indicators that are confounded. Increased numbers of almost
pure indicators make decisions about d-separability more reliable, but increased
proportions of confounded variables makes identifying the almost pure indicators more
difficult. For large samples with ten indicators per latent the procedure gives good results
until more than half of the indicators are confounded.



266 Chapter 10

T3
T4

X 1 2X 3X X 4 X5 X 6 X 7 8X X 9 X 10 X 11 X 12 X13 X 14 X 15 X 16

T1 T2

X 17 X18 X 19 X 20 X 21 X 22 X 23 X 24 X 25 X 26 X 27 X 28
X 29 X 30 X 31 X 32

Z

Figure 10.13. Impure Indicators =
{X1, X2, X4, X10, X12, X14, X18, X23, X25, X27, X30}

Sample Size
0-order 

Commission
0-order 

Omission
1st-Order 

Commission
1st-Order 
Omission Perfect 

100 
 
500 
 

2000

2.50%                   0.00%              3.20%              5.00%          65.00% 

1.25%                   0.00%              0.90%              0.00%          95.00% 

0.00%                   0.00%              0.00%              0.00%         100.00% 

Table 10.1

10.7 Conclusion
Alternative strategies are available. One could, for example, purify the measurement sets,
and specify a “theoretical model” in which each pair of latent variables is directly
correlated. A maximum likelihood estimate of this structure will then give an estimate of
the correlation matrix for the latents. The correlation matrix could then be used as input
to the PC or FCI algorithms. The strategy has two apparent disadvantages. One is that
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these estimates typically depend on an assumption of normality. The other is that in
preliminary simulation studies with normal variates and using LISREL to estimate the
latent correlations, we have found the strategy less reliable than the procedure described
in this chapter. Decisions about d-separation facts among latent variables seem to be
more reliable if they are founded on a weighted average of a number of decisions about
vanishing tetrad differences based on measured correlations than if they are founded on
decisions about vanishing partial correlations based on estimated correlations.

The MIMBuild algorithm assumes T is causally sufficient; an interesting open
question is whether there are reliable algorithms that do not make this assumption. In
addition, although the algorithm is correct, it is incomplete in a number of distinct ways.
There is further orientation information linearly implied by the zero and first order
vanishing partial correlations. Further, we do not know whether there is further
information about which edges definitely exist (i.e., should not be marked with a “?”) that
is linearly implied by the vanishing zero and first order partial correlations. Moreover, it
is sometimes the case that for each edge labeled with a “?” in the MIMBuild output there
exists a pattern compatible with the vanishing zero and first order partial correlations that
does not contain that edge, but no pattern compatible with the vanishing zero and first
order partial correlations that does not contain two or more of the edges so labeled.

Finally, and most importantly, the strategy we have described is not very informative
about latent structures that have multiple causal pathways among variables. An extension
of the strategy might be more informative and merits investigation. In addition to tetrad
differences, one could test for higher-order constraints on measured correlations (e.g.,
algebraic combinations of five or more correlations) and use the resulting decisions to
determine higher-order d-separation relations among the latent variables. The necessary
theory has not been developed.





11 Elaborating Linear Theories with Unmeasured Variables1

11.1 Introduction
In many cases investigators have a causal theory in which they place some confidence,
but they are unsure whether the model contains all important causal connections, or they
believe it to be incomplete but don’t know which dependencies are missing. How can
further unknown causal connections be discovered? The same sort of question arises for
the output of the PC or FCI algorithms when, for example, two correlated variables are
disconnected in the pattern; in that case we may think that some mechanism not
represented in the pattern accounts for the dependency, and the pattern needs to be
elaborated. In this chapter we consider a special case of the “elaboration problem,”
confined to linear theories with unmeasured common causes each having one or more
measured indicators. The general strategy we develop for addressing the elaboration
problem can be adapted to models without latent variables, and also to models for
discrete variables. Other strategies than those we consider here are also promising; the
Bayesian methods of Cooper and Herskovits, in particular, could be adapted to the
elaboration problem.

The problem of elaborating incomplete “structural equation models” has been
addressed in at least two commercial computer packages, the LISREL program (Joreskog
and Sorbom 1984) and the EQS program (Bentler 1985). We will describe detailed tests
of the reliabilities of the automated search procedures in these packages. Generally
speaking, we find them to be very unreliable, but not quite useless, and the analysis of
why they fail when other methods succeed suggests an important general lesson about
computerized search in statistics: in specification search computation matters, and in
large search spaces it matters far more than does using tests that would, were
computation free, be optimal.

We will compare the EQS and LISREL searches with a search procedure based on
tests of vanishing tetrad differences. In principle, the collection of tetrad tests is less
informative than maximum likelihood tests of an entire model used by the LISREL and
EQS searches. In practice, this disadvantage is overwhelmed by the computational
advantages of the tetrad procedure. Under some general assumptions, the procedure we
describe gives correct (but not necessarily fully informative) answers if correct decisions
are made about vanishing tetrad differences in the population. We demonstrate that for
many problems the procedure obtains very reliable conclusions from samples of realistic
sizes.

11.2. The Procedure
The procedure we will describe is implemented in the TETRAD II program. It takes as
input:
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(i) a sample size,
(ii) a correlation or covariance matrix, and
(iii) the directed acyclic graph of an initial linear structural equation model.

A number of specifications of internal parameters can also be input. The graph is given to
the program simply by specifying a list of paired causes and effects. The algorithm can be
divided into two parts, a scoring procedure and a search procedure.

11.2.1 Scoring
The procedure uses the following methodological principles.

Falsification Principle: Other things being equal, prefer models that do not linearly imply
constraints that are judged not to hold in the population.

Explanatory Principle: Other things being equal, prefer models that linearly imply
constraints that are judged to hold in the population.

Simplicity Principle: Other things being equal, prefer simpler models.

The intuition behind the Explanatory Principle is that an explanation of a constraint based
on the causal structure of a model is superior to an explanation that depends upon special
values of the free parameters of a model. This intuition has been widely shared in the
natural sciences; it was used to argue for the Copernican theory of the solar system, the
General Theory of Relativity, and the atomic hypothesis. A more complete discussion of
the Explanatory Principle can be found in Glymour et al. 1987, Scheines 1988, and
Glymour 1983. As with vanishing partial correlations, the set of values of linear
coefficients associated with the edges of a graph that generate a vanishing tetrad
difference not linearly implied by the graph has Lebesgue measure zero.

Unfortunately, the principles can conflict. Suppose, for example, that model M � is a
modification of model M, formed by adding an extra edge to M. Suppose further that M
linearly implies fewer constraints that are judged to hold in the population, but also
linearly implies fewer constraints that are judged not to hold in the population. Then M �is
superior to M with respect to the Falsification Principle, but inferior to M with respect to
the Simplicity and Explanatory Principles. The procedure we use introduces a heuristic
scoring function that balances these dimensions.2

In order to calculate the Tetrad-score we first calculate the associated probability
P(t) of a vanishing tetrad difference, which is the probability of obtaining a tetrad
difference as large or larger than the one actually observed in the sample, under the
assumption that the tetrad difference vanishes in the population. Assuming normal
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variates, Wishart (1928) showed that the variance of the sampling distribution of the
vanishing tetrad difference IJ KL − IL JK is equal to

D12D34 N +1( )
N −1( ) N − 2( ) − D

where D is the determinant of the population correlation matrix of the four variables I, J,
K, and L, D12 is the determinant of the two-dimensional upper left-corner submatrix, D34

is the determinant of the lower right-corner submatrix and I, J, K, and L, have a joint
normal distribution. In calculating P(t) we substitute the sample covariances for the
corresponding population covariances in the formula. P(t) is determined by lookup in a
chart for the standard normal distribution. An asymptotically distribution free test has
been described by Bollen (1990).

Among any four distinct measured variables I, J, K, and L we compute three tetrad
differences:

t1 = IJ KL – IL JK

t2 = IL JK – IK JL

t3 = IK JL – IJ KL

and their associated probabilities P(ti) on the hypothesis that the tetrad difference
vanishes. If P(ti) is larger than the given significance level, the procedure takes the tetrad
difference to vanish in the population. If P(ti) is smaller than the significance level, but
the other two tetrad differences have associated probabilities higher than the significance
level, then ti is ignored. Otherwise, if P(ti) is smaller than the significance level, the tetrad
difference is judged not to vanish in the population.

Let ImpliedH be the set of vanishing tetrads linearly implied by a model M that are
judged to hold in the population and Implied~H be the set of vanishing tetrads linearly
implied by M that are judged not to hold in the population. Let Tetrad-score be the score
of model M for a given significance level assigned by the algorithm, and let weight be a
parameter (whose significance is explained below). Then we define

T = P(t)
t∈ImpliedH

∑ − weight∗ 1 − P(t)( )
t∈Implied~H

∑

The first term implements the explanatory principle while the second term implements
the falsification principle. The simplicity principle is implemented by preferring, among
models with identical Tetrad-scores, those with fewer free parameters—which amounts
to preferring graphs with fewer edges. The weight determines how conflicts between the



272 Chapter 11

explanatory and falsification principles are resolved by determining the relative
importance of explanation relative to residual reduction.

The scoring function is controlled by two parameters. The significance level is used to
judge when a given tetrad difference is zero in the population. The weight is used to
determine the relative importance of the Explanatory and Falsification Principles. The
scoring function has several desirable asymptotic properties, but we do not know whether
the particular value for weight we use is optimal.

11.2.2 Search
The TETRAD II procedure searches a tree of elaborations of an initial model. The search
is comparatively fast because there is an easy algorithm for determining the vanishing
tetrad differences linearly implied by a graph (using the Tetrad Representation Theorem),
because most of the computational work required to evaluate a model can be stored and
reused to evaluate elaborations, and because the scoring function is such that if a model
can be conclusively eliminated from consideration because of a poor score, so can any
elaboration of it.

The search generates each possible one-edge elaboration of the initial model, orders
them by the tetrad score, and eliminates any that score poorly. It then repeats this process
recursively on each model generated, until no improvements can be made to a model.

The search is guided by a quantity called T-maxscore, which for a given model M
represents the maximum Tetrad-score that could possibly be obtained by any elaboration
of M. T-maxscore is equal to:

T − maxscore = P(t )
t∈ImpliedH

∑

The use we make of this quantity is justified by the following theorem.

THEOREM 11.1. If G is a subgraph of directed acyclic graph G , than the set of tetrad
equations among variables of G that are linearly implied by G  is a subset of those
linearly implied by G.

In order to keep the following example small, suppose that there are just 4 edges, e1,
e2, e3, or e4 which could be added to the initial model. The example illustrates the search
procedure in a case where each possible elaboration of the initial model is considered.
Node 1 in figure 11.1 represents the initial model. Each node in the graph represents the
model generated by adding the edge next to the node to its parent. For example, node 2
represents the initial model + e1; node 7 represents node 2 + e4, which is the initial model
+ e1 + e4. We will say that a program visits a node when it creates the model M
corresponding to the node and then determines whether any elaboration of M has a higher
Tetrad-score than M. (Note that the algorithm can generate a model M without visiting M
if it generates M but does not determine whether any elaboration of M has a higher

T–maxscore =
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Tetrad-score than M.) The numbers inside each node indicate the order in which the
models are visited. Thus for example, when the algorithm visits node 2, it first generates
all possible one edge additions of the initial model + e1, and orders them according to
their T-maxscore. It then first visits the one with the highest T-maxscore (in this case,
node 3 that represents the initial model + e1 + e2). Note that the program does not visit the
initial model + e2 (node 10) until after it has visited all elaborations of the initial model +
e1.
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Figure 11.1

In practice, this kind of complete search could not possibly be carried out in a
reasonable amount of time. Fortunately we are able to eliminate many models from
consideration without actually visiting them. Addition of edges to a graph may defeat the
linear implication of tetrad equations, but in view of theorem 11.1 will never cause more
tetrad equations to be linearly implied by the resulting graph. If the T-maxscore of a
model M is less than the Tetrad-score of some model M ������������������������&���
that neither M nor any elaboration of M has a Tetrad-score as high as that of M . Hence
we need never visit M or any of its elaborations. This is illustrated in figure 11.2. If we
find that T-maxscore of the initial model + e4 is lower than the Tetrad-score of the initial
model + e1, we can eliminate from the search all models that contain the edge e4.
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In some cases in the simulation study described later, the procedure described here is
too slow to be practical. In those cases the time spent on a search is limited by restricting
the depth of search. (We made sure that in every case the depth restriction was large
enough that the program had a chance to err by overfitting.) The program adjusts the
search to a depth that can be searched in a reasonable amount of time; in many of the
Monte Carlo simulation cases no restriction on depth was necessary.3

11.3. The LISREL and EQS Procedures
LISREL VI and EQS are computer programs that perform a variety of functions, such as
providing maximum likelihood estimates of the free parameters in a structural equation
model. The feature we will consider automatically suggests modifications to
underspecified models.

11.3.1 Input and Output
Both programs take as input:

(i) a sample size,
(ii) a sample covariance matrix,
(iii) initial estimates of the variances of independent variables,
(iv) initial estimates of the linear coefficients,
(v) an initial causal model (specified by fixing at zero the linear coefficient of A in the
equation for B if and only if A is not a direct cause of B), in the form of equations (EQS)
or a system of matrices (LISREL VI)
(vi) a list of parameters not to be freed during the course of the search,
(vii) a significance level, and
(viii) a bound on the number of iterations in the estimation of parameters.
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The output of both programs includes a single estimated model that is an elaboration of
the initial causal model, various diagnostic information as well as a 2 value for the
suggested revision, and the associated probability of the 2 measure.

11.3.2 Scoring
LISREL VI and EQS provide maximum likelihood estimates of the free parameters in a
structural equation model. More precisely, the estimates are chosen to minimize the
fitting function

F = log Σ + tr SΣ−1( )− log S − t

where S is the sample covariance matrix, Σ is the predicted covariance matrix, t is the
total number of indicators, and if A is a square matrix then |A| is the determinant of A and
tr (A) is the trace of A. In the limit, the parameters that minimize the fitting function F
also maximize the likelihood of the covariance matrix for the given causal structure.

After estimating the parameters in a given model, LISREL VI and EQS test the null
hypothesis that Σ is of the form implied by the model against the hypothesis that Σ is
unconstrained. If the associated probability is greater than the chosen significance level,
the null hypothesis is accepted, and the discrepancy is attributed to sample error; if the
probability is less than the significance level, the null hypothesis is rejected, and the
discrepancy is attributed to the falsity of M. For a “nested” series of models M1,...,Mk in
which for all models Mi in the sequence the free parameters of Mi are a subset of the free
parameters of Mi+1, asymptotically, the difference between the 2 values of two nested
models also has a 2 distribution, with degrees of freedom equal to the difference between
the degrees of freedom of the two nested models.

11.3.3 The LISREL VI Search4

The LISREL VI search is guided by the “modification indices” of the fixed parameters.
Each modification index is a function of the derivatives of the fitting function with
respect to a given fixed parameter. More precisely, the modification index of a given
fixed parameter is defined to be N/2 times the ratio between the squared first-order
derivative and the second-order derivative (where N is the sample size). Each
modification index provides a lower bound on the decrease in the 2 obtained if that
parameter is freed and all previously estimated parameters are kept at their previously
estimated values.5 (Note that if the coefficient for variable A in the linear equation for B
is fixed at zero, then freeing that coefficient amounts to adding an edge from A to B to the
graph of the model.) LISREL VI first makes the starting model the current best model in
its search. It then calculates the modification indices for all of the fixed parameters6 in the
starting model. If LISREL VI estimates that the difference between the 2 statistics of M,
the current best model, and M , the model obtained from M by freeing the parameter with
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the largest modification index, is not significant, then the search ends, and LISREL VI
suggests model M. Otherwise, it makes M ������
�����������������������	���������	�������

11.3.4 The EQS Search
EQS computes a Lagrange Multiplier statistic, which is asymptotically distributed as 2

.
7

EQS performs univariate Lagrange Multiplier tests to determine the approximate separate
effects on the 2 statistic of freeing each fixed parameter in a set specified by the user. It
frees the parameter that it estimates will result in the largest decrease in the 2 value. The
program repeats this procedure until it estimates that there are no parameters that will
significantly decrease the 2. Unlike LISREL VI, when EQS frees a parameter it does not
reestimate the model.8

It should be noted that both LISREL VI and EQS are by now quite complicated
programs. An understanding of their flexibility and limitations can only be obtained
through experimentation with the programs.

11.4. The Primary Study
Eighty data sets, forty with a sample size of 200 and forty with a sample size of 2,000,
were generated by Monte Carlo methods from each of nine different structural equation
models with latent variables. The models were chosen because they involve the kinds of
causal structures that are often thought to arise in social and psychological scientific
work. In each case part of the model used to generate the data was omitted and the
remainder, together in turn with each of the data sets for that model, was given to the
LISREL VI, EQS, and TETRAD II programs. A variety of specification errors are
represented in the nine cases. Linear coefficient values used in the true models were
generated at random to avoid biasing the tests in favor of one or another of the
procedures. In addition, a number of ancillary studies were suggested by the primary
studies and bear on the reliability of the three programs.

11.4.1 The Design of Comparative Simulation Studies
To study the reliability of automatic respecification procedure under conditions in which
the general structural equation modeling assumptions are met, the following factors
should be varied independently:
(i) the causal structure of the true model;
(ii) the magnitudes and signs of the parameters of the true model;
(iii) how the starting model is misspecified;
(iv) the sample size.

In addition, an ideal study should:

(i) Compare fully algorithmic procedures, rather than procedures that require judgment
on the part of the user. Procedures that require judgment can only adequately be tested by
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carefully blinding the user to the true model; further, results obtained by one user may not
transfer to other users. With fully algorithmic procedures, neither of these problems
arises.
(ii) Examine causal structures that are of a kind postulated in empirical research, or that
there are substantive reasons to think occur in real domains.
(iii) Generate coefficients in the models randomly. Costner and Herting showed that the
size of the parameters affects LISREL’s performance. Further, the reliability of TETRAD
II depends on whether vanishing tetrad differences hold in a sample because of the
particular numerical values of the coefficients rather than because of the causal structure,
and it is important not to bias the study either for or against this possibility.
(iv) Ensure insofar as possible that all programs compared must search the same space of
alternative models.

11.4.2 Study Design
11.4.2.1 Selection of Causal Structures
The nine causal structures studied are illustrated in figures 3, 4, and 5. For simplicity of
depiction we have omitted uncorrelated error terms in the figures, but such terms were
included in the linear models. The heavier directed or undirected lines in each figure
represent relationships that were included in the model used to generate simulated data,
but were omitted from the models given to the three programs; that is, they represent the
dependencies that the programs were to attempt to recover. The starting models are
shown in figure 11.6. The models studied include a one factor model with five measured
variables, seven multiple indicator models each with eight measured variables and two
latent variables, and one multiple indicator model with three latent variables and eight
measured variables.

One factor models commonly arise in psychometric and personality studies (see Kohn
1969); two latent factor models are common in longitudinal studies in which the same
measures are taken at different times (see McPherson et al. 1977), and also arise in
psychometric studies; the triangular arrangement of latent variables is a typical geometry
(see Wheaton et al. 1977).

The set of alternative structures determines the search space. Each program was forced
to search the same space of alternative elaborations of the initial model, and the set of
alternatives was chosen to be as large as possible consistent with that requirement.
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Figure 11.4
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1.4.2.2 Selection of Connections to Be Recovered
The connections to be recovered include:

(i) Directed edges from latent variables to latent variables; relations of this kind are often
the principal point of empirical research. See Maruyama and McGarvey (1980) for an
example.
(ii) Edges from latent variables to measured variables; connections of this kind may arise
when measures are impure, and in other contexts. See Costner and Schoenberg (1973) for
an example.
(iii) Correlated errors between measured variables; relationships of this kind are perhaps
the most frequent form of respecification.
(iv) Directed edges from measured variables to measured variables. Such relations cannot
obtain, for example, between social indices, but they may very well obtain between
responses to survey or psychometric instruments (see Campbell et al. 1966), and of
course between measured variables such as interest rates and housing sales.

We have not included cases that we know beforehand cannot be recovered by one or
another of the programs. Details are given in a later section.

11.4.2.3 Selection of Starting Models
Only three starting models were used in the nine cases. The starting models are, in causal
modeling terms, pure factor models or pure multiple indicator models. In graph theoretic
terms they are trees.

11.4.2.4 Selection of Parameters
In the figures showing the true models the numbers next to directed edges represent the
values given to the associated linear coefficients. The numbers next to undirected lines
represent the values of specified covariances. In all cases, save for models 1 and 5, the
coefficients were chosen by random selection from a uniform distribution between .5 and
2.5. The value obtained was then randomly given a sign, positive or negative.

In model 1, all linear coefficients were made positive. The values of the causal
connections between indicators were specified nonrandomly. The case was constructed to
simulate a psychometric or other study in which the loadings on the latent factor are
known to be positive, and in which the direct interactions between measured variables are
comparatively small.

Model 5 was chosen to provide a comparison with model 3 in which the coefficients
of the measured-measured edges were deliberately chosen to be large relative to those in
model 3.

trees.
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11.4.2.5 Generation of Data
For each of the nine cases, twenty data sets with sample size 200 and twenty data sets
with sample 2,000 were generated by Monte Carlo simulation methods.

Pseudorandom samples were generated by the method described in chapter 5. In order
to optimize the performance of each of the programs, we assumed that all of the
exogenous variables had a standard normal distribution. This assumption made it possible
to fix a value for each exogenous variable for each unit in the population by pseudo
random sampling from a standard normal distribution. Correlated errors were obtained in
the simulation by introducing a new exogenous common cause of the variables associated
with the error terms.

11.4.2.6 Data Conditioning
The entire study we discuss here was performed twice. In the original study, we gave
LISREL VI and EQS positive starting values for all parameters. If either program had
difficulty estimating the starting model, we reran the case with the initial values set to the
correct sign.

LISREL and EQS employ iterative procedures to estimate the free parameters of a
model. These procedures are sensitive to “poorly conditioned” variables and will not
perform optimally unless the data are transformed. For example, it is a rule of thumb with
these procedures that no two variances should vary by more than an order of magnitude
in the measured variables. After generating data in the way we describe above, a small
but significant percentage of our covariance matrices were ill conditioned in this way.

To check the possibility that the low reliability we obtained in the first study for the
LISREL VI and EQS procedures was due to “ill-conditioned” data, the entire study was
repeated. Sample covariances were transformed into sample correlations by dividing each
cell [I,J] in the covariance matrix by sIsJ, where sI is the sample standard deviation of I.
To avoid sample variances of widely varying magnitudes, we transformed each cell [I,J]
in the sample covariance matrix by dividing it by I J where I is the population standard
deviation of I9. We call the result of this transformation the pseudocorrelation matrix.
The transformation makes all of the variances of the measured variables almost equal,
without using a data-dependent transformation. Of course in empirical research, this
transformation could not be performed, since the population parameters would not be
known.

In practice, we found that conditioning the data and giving the population parameters
as starting values did little to change the performance of LISREL VI or EQS. The
performance of the TETRAD II procedure was essentially the same in both cases.
Conditioning the data improved LISREL VI’s reliability very slightly for small samples,
and degraded it slightly for large samples.
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11.4.2.7 Starting Values for the Parameters
We selected the linear coefficients for our models randomly, allowing some to be
negative and some to be positive. Models with negative parameters actually represent a
harder case for the TETRAD procedures. If a model implies a vanishing tetrad difference
then the signs of its parameters make no difference. If a model does not imply that a
tetrad difference vanishes, however, but instead implies that the tetrad difference is equal
to the sum of two or more terms, then it is possible, if not all of the model’s parameters
are positive, that these terms sum to zero. Thus, in data generated by a model with
negative parameters, we are more likely to observe vanishing tetrad differences that are
not linearly implied by the model.

The iterative estimation procedures for LISREL and EQS begin with a vector of
parameters . They update this vector until the likelihood function converges to a local
maximum. Inevitably, the iterative procedures are sensitive to starting values. Given the
same model and data, but two different starting vectors i and � j, the procedures might
converge for one but not for the other. This is especially true when the parameters are of
mixed signs. To give LISREL and EQS the best chance possible in the second study, we
set the starting values of each parameter to its actual value whenever possible. For the
linear coefficients that correspond to edges in the generating model left out of the starting
model, we assigned a starting value of 0. For all other parameters, however, we started
LISREL and EQS with the exact value in the population.10

11.4.2.8 Significance Levels
EQS and LISREL VI continue to free parameters as long as the associated probability of
���� ��������� �� 2 exceeds the user-specified significance level. For both LISREL and
EQS, we set the significance level to .01. (This is the default value for LISREL; the
default value for EQS is .05.) The lower the significance level, the fewer the parameters
that each program tends to set free. Since both LISREL and EQS both tend to overfit
even at .01, we did not attempt to set the significance level any higher. (It may appear in
our results that LISREL VI and EQS both underfit more than they overfit, but almost all
of the “underfitting” was due to aborted searches that did not employ the normal stopping
criterion.)

11.4.2.9 Number of Iterations
The default number of maximum iterations for estimating parameters for LISREL VI on
a personal computer is 250. We set the number of maximum iterations to 250 for both our
LISREL VI and EQS tests.

11.4.2.10 Specifying Starting Models in LISREL VI
LISREL VI, like previous editions of the program, requires the user to put variables into
distinct matrices according to whether they are exogenous, endogenous but unmeasured,
measured but dependent on exogenous latent, measured but dependent on endogenous
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latent, and so forth. Variables in certain of these categories cannot have effects on
variables in other categories. When formulated as recommended in the LISREL manual,
LISREL VI would be in principle unable to detect many of the effects considered in this
study. However, these restrictions can in most cases be overcome by a system of
substitutions of phantom variables in which measured variables are actually represented
as endogenous latent variables.11 In the current study, we were not able to get LISREL VI
�������	���������� ���������������������.�����
�����������������  variables, which are
endogenous and latent. This had the unfortunate effect that LISREL would not consider
adding any edges into T1����	����������������  variable). To ensure a comparable search
problem, we restricted TETRAD II and EQS in the same way.

11.4.2.11 Implementation
The LISREL VI runs were performed with the personal computer version of the program,
run on a Compaq 386 computer with a math coprocessor. EQS runs were performed on
an IBM XT clone with a math coprocessor. All TETRAD II runs were performed on Sun
3/50 workstations. For TETRAD II, which also runs on IBM clones, the processing time
for the Compaq 386 and the Sun 3/50 are roughly the same.

11.4.2.12 Specification of TETRAD II Parameters
TETRAD II requires that the user set a value of the weight parameter, a value for the
significance level used in the test for vanishing tetrad differences, and a value for a
percentage parameter that bounds the search. In all cases we set the significance level at
0.05. At sample size 2000, we set the weight to .1 and the percentage to 0.95.

At smaller sample size the estimates of the population covariances are less reliable,
and more tetrad differences are incorrectly judged to vanish in the population. This makes
judgments about the Explanatory Principle less reliable. For this reason, at sample size
200, we set the weight to 1, in order to place greater importance upon the Falsification
Principle. Less reliable judgments about the Explanatory Principle also make lowering
the percentage for small sample sizes helpful. At sample size 200, we set the percentage
to 0.90. We do not know if these parameter settings are optimal.

11.5 Results
For each data set and initial model, TETRAD II produces a set of best alternative
elaborations. In some cases that set consists of a single model; typically it consists of two
or three alternatives. EQS and LISREL VI, when run in their automatic search mode,
produce as output a single model elaborating the initial model. The information provided
by each program is scored “correct” when the output contains the true model. But it is
important to see how the various programs err when their output is not correct, and we
have provided a more detailed classification of various kinds of error. We have classified
the output of TETRAD II as follows (where a model is in TETRAD’s top group if and
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only if it is tied for the highest Tetrad score, and no model with the same Tetrad-score
has fewer edges):

Correct—the true model is in TETRAD’s top group.
Width—the average number of alternatives in TETRAD’s top group.

Errors:
Overfit—TETRAD’s top group does not contain the true model but contains a model that
is an elaboration of the true model.
Underfit—TETRAD’s top group does not contain the true model but does contain a
model of which the true model is an elaboration.
Other—none of the previous categories apply to the output.

We have scored the output of the LISREL VI and EQS programs as follows:

Correct—the true model is recommended by the program.

Errors:
In TETRAD’s Top Group—the recommended model is not correct, but is among the best
alternatives suggested by the TETRAD II program for the same data.
Overfit—the recommended model is an elaboration of the true model.
Underfit—the true model is an elaboration of the recommended model.
Right Variable Pairs—the recommended model is not in any of the previous categories,
but it does connect the same pairs of variables as were connected in the omitted parts of
the true model.
Other—none of the previous categories apply to the output.

In most cases no estimation problems occurred for either LISREL VI or EQS. In a
number of data sets for cases 3 and 5, LISREL VI and EQS either issued warnings about
estimation problems or aborted the search due to computational problems. Since our
input files were built to minimize convergence problems, we ignored such warnings in
our tabulation of the results. If either program recommended freeing a parameter, we
counted that parameter as freed regardless of what warnings or estimation problems
occurred before or after freeing it. If either program failed to recommend freeing any
parameters because of estimation problems in the starting model, we counted it as an
underfit. The results are shown in the next table and figure.

For a sample size of 2000, TETRAD II’s set included the correct respecification in
95% of the cases. LISREL VI found the right model 18.8% of the time and EQS 13.3%.
For a sample size of 200, TETRAD II’s set included the correct respecification 52.2% of
the time, while LISREL VI corrected the misspecification 15.0% of the time, and EQS
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corrected the misspecification 10.0 % of the time. A more detailed characterization of the
errors is given in figure 11.8.

Width, n=2000

Case 1 2 3 4 5 6 7 8 9

LISREL VI 1 1 1 1 1 1 1 1 1

EQS 1 1 1 1 1 1 1 1 1

TETRAD 4 2.1 2 1 1.1 3 7.1 11.3 2.9

Width, n=200

Case 1 2 3 4 5 6 7 8 9

LISREL VI 1 1 1 1 1 1 1 1 1

EQS 1 1 1 1 1 1 1 1 1

TETRAD 1.9 3.5 1.5 1 1 3.2 5.9 8.4  3
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11.6 Reliability and Informativeness
There are two criteria by which the suggestions of each of these programs can be judged.
The first is reliability. Let the reliability of a program be defined as the probability that
its set of suggested models includes the correct one. In these cases, the TETRAD search
procedures are clearly more reliable than either LISREL VI and EQS. One can achieve
higher reliability simply by increasing the number of guesses. A program that outputs the
top million models might be quite reliable, but its suggestions would be uninformative.
Thus we call the second criterion boldness. Let the boldness of a program’s suggestions
be the reciprocal of the number of models suggested. On this measure, our procedure
does worse than LISREL VI or EQS in seven of the nine cases considered.

Since neither our procedure nor the modification index procedures dominate on both
of these criteria, it is natural to ask whether the greater reliability of the former is due
simply to reduced boldness. This question can be interpreted in at least two ways:

(i) If TETRAD II were to increase its boldness to match LISREL VI and EQS, that is., if
it were to output a single model, would it be more or less reliable than LISREL VI or
EQS?
(ii) If LISREL VI or EQS were to decrease their boldness to match TETRAD II, that is,
were they to output a set of models as large as does TETRAD II, would they be more or
less reliable than TETRAD II?

If we have no reason to believe that any one model in the TETRAD II output is more
likely than any other to be correct, we could simply choose a model at random. We can
calculate the expected single model reliability of our procedure in the following way.
We assume that when TETRAD II outputs a list of n models for a given covariance
matrix, the probability of selecting any particular one of the models as the best guess is
1/n. So instead of counting a list of length n that contains the correct model as a single
correct answer, we would count it as 1/n correct answers.12 Then simply divide the
expected number of correct answers by the number of trial runs.

Were TETRAD II to be as bold as LISREL VI or EQS, its single model reliability at
sample size 2000 would drop from 95% to about 42.3%. On our data, LISREL VI has a
reliability of 18.8% and EQS has a reliability of 13.3%. At sample size 200 the TETRAD
II single model reliability is 30.2% LISREL has a reliability of 15.0% for sample size 200
and EQS 10.0%. In a more realistic setting one might have substantive reasons to prefer
one model over another. If substantive knowledge is worth anything, and we use it to
select a single model M, then M is more likely to be true than a model selected at random
from TETRAD II’s set of suggested models. Thus, in a sense the numbers given in the
paragraph above are worst case.

An alternative strategy is to cut down the size of the set before one picks a model. We
can often eliminate some of the TETRAD II suggestions by running them through EQS
or LISREL VI and discarding those that were not tied for the highest associated



290 Chapter 11

probability. There is little effect. We raise the (worst case) single model reliability of
TETRAD II at sample size 2000 from 42.3% to about 46%, and at sample size 200 from
30.2 to approximately 32%.

There are a number of good reasons to want a list of equally good suggestions rather
than a single guess. All have to do with the reliability and informativeness of the output.

First, it is important for the user of a program to have a good idea of how reliable the
output of a program is. At sample size 2000, in the range of cases that we considered, the
reliability of the TETRAD II output was very stable, ranging from a low of 90% to a high
of 100%. For reasons explained below, the single model output by LISREL VI and EQS
is at best in effect a random selection from a list of models that contains all of the models
whose associated probabilities are equal to that of the true model (and possibly others of
lower associated probabilities as well). Unfortunately, the size of the list from which the
suggested model is randomly selected varies a great deal depending on the structure of
the model, and is not known to the user. Thus, even ignoring the cases where LISREL VI
had substantial computational difficulties, the reliability of LISREL VI’s output at sample
size 2000 ranged from 0 out of 20 to 11 out of 20. So it is rather difficult for a user of
LISREL VI or EQS to know how much confidence to have in the suggested models.

Second, more than one model in a suggested set might lead to the same conclusion.
For example, many of the models suggested by TETRAD II might overlap, that is, they
might agree on a substantial number of the causal connections. If one’s research concerns
are located within those parts of the models that agree, then choosing a single model is
not necessary. In this case one need not sacrifice reliability by increasing boldness,
because all competitors agree.

Finally, having a well-defined list of plausible alternatives is more useful than a single
less reliable suggestion for guiding further research. In designing experiments and in
gathering more data it is useful to know exactly what competing models have to be
eliminated in order to establish a conclusive result. For example, consider case 3. The
correct model contains edges from X1 to X5 and X5 to X6. TETRAD II suggests the correct
model, as well as a model containing edges from X1 to X5 and X1 to X6. An experiment
which varied X1, and examined the effect on X6 would not distinguish between these two
alternatives (since both predict that varying X1 would cause X6 to change), but an
experiment which varied X5 and examined the effect on X6 would distinguish between
these alternatives. Only by knowing the plausible alternatives can we decide which of
these experiments is more useful.

If LISREL VI or EQS were to output a set of models as large as does our procedure,
would they be as reliable? The answer depends upon how the rest of the models in the set
were chosen. In many cases LISREL VI and EQS find several parameters tied, or almost
tied, for the highest modification index. Currently both programs select one, and only
one, of these parameters to free, on the basis of an arbitrary ordering of parameters. For
example, if after evaluating the initial model it found that X3 → X5 and X3 C X5

13 were
tied for the highest modification indices, LISREL VI or EQS would choose one of them



Elaborating Linear Theories with Unmeasured Variables 291

(say X3 → X5) and continue until the search found no more parameters to free. Then they
would suggest the single model that had the highest associated probability. If LISREL VI
or EQS searched all branches corresponding to tied modification indices, instead of
arbitrarily choosing one, their reliability would undoubtedly increase substantially. For
example, after freeing X3 → X5 and then freeing parameters until no more should be
freed, LISREL VI or EQS could return to the initial model, free X3 C X5, and again
continue freeing parameters until no more should be freed. They could then suggest all of
the models tied for the highest associated probability. This is essentially the search
strategy followed by the TETRAD II program.

If the LISREL VI search were expanded in this way on case 1 at sample size 2000, it
would increase the number of correct outputs from 3 to 16 out of 20. In other cases, this
strategy would not improve the performance of LISREL VI or EQS much at all. For
example, in case 5 at sample size 2000, LISREL VI was incorrect on every sample in part
because of a variety of convergence and computational problems, while TETRAD II was
correct in every case. In case 4 at sample size 2000, LISREL VI missed the correct
answer on nine samples (while TETRAD II missed the correct answer on only two
samples) for reasons having nothing to do with the method of breaking ties.

LISREL VI and EQS would pay a substantial price for expanding their searches; their
processing time would increase dramatically. A branching procedure that retained three
alternatives at each stage and which stopped on all branches after freeing two parameters
in the initial model, would increase the time required by about a factor of 7. In general,
the time required for a branching search increases exponentially as the number of
alternatives considered at each stage. Could such a search be run in a reasonable amount
of time? Without a math coprocessor, a typical LISREL VI run on a Compaq 386 took
roughly 20 minutes; with a math coprocessor it took about 4 minutes. EQS runs were
done on a LEADING EDGE (an IBM XT clone that is considerably slower than the
COMPAQ 386) with a math coprocessor and the average EQS run was about 5 minutes.
This suggests that a branching strategy is possible for LISREL VI even for medium-sized
models only on relatively fast machines; a branching search is practical on slower
machines for the faster, but less reliable EQS search.

11.7 Using LISREL and EQS as Adjuncts to Search
There are two ways in which the sort of search TETRAD II illustrates can profitably be
used in conjunction with LISREL VI or EQS. A procedure such as ours can be used to
generate a list of alternative revisions of an initial model, which can then be estimated by
LISREL or EQS, discarding those alternatives that have very low, or comparatively low
associated probabilities.14 We found that in only three cases could the associated
probabilities distinguish among models suggested by TETRAD II. In case 6, one of the
three models suggested by TETRAD II had a lower associated probability that the other
two. In case 7, one of the six models suggested by TETRAD II had a lower associated
probability that the other five. The largest reduction in TETRAD II’s suggestions came in
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case 8, where 8 of the 12 models suggested by TETRAD II had associated probabilities
lower than the top four. These results were obtained when LISREL VI was given the
correct starting values for all of the edges in the true model, and a starting value of zero
for edges not in the true model; in previous tests when LISREL VI was not given the true
parameters as initial values, it often suffered convergence problems.

It is also instructive to run the both the automatic searches of TETRAD II and LISREL
VI or EQS together. When LISREL VI and TETRAD II agree (that is when the model
suggested by LISREL VI is in TETRAD II’s top group) both programs are correct a
higher percentage of times than their respective averages; conversely when they disagree,
both programs are wrong a higher percentage of times than their average. The same holds
true of EQS when used in conjunction with TETRAD II. Indeed, at sample size 2000,
neither EQS nor LISREL VI was ever correct when it disagreed with TETRAD II. In
contrast, at sample size 2000 LISREL VI was correct 61.8% of the time when it agreed
with TETRAD II, and EQS was correct 53.3% of the time when it agreed with TETRAD
II. Again, at sample size 2000, TETRAD II was always correct when it agreed with either
LISREL VI or EQS. At sample size 200, while TETRAD II was correct on average
52.2% of the time, when it agreed with LISREL VI it was correct 75.7% of the time, and
when it agreed with EQS it was correct 75.0% of the time. These results are summarized
below:

Sample size 2000:

P(TETRAD correct) 95.0
P(LISREL VI correct) 18.8
P(EQS correct) 13.3
P(TETRAD correct | LISREL VI agree)  100.0
P(TETRAD correct | LISREL VI disagree) 92.1
P(TETRAD correct | EQS agree) 100 0
P(TETRAD correct | EQS disagree) 92.6
P(LISREL VI correct | TETRAD II agree) 61.8
P(LISREL VI correct | TETRAD II disagree) 0.0
P(EQS correct | TETRAD II agree) 53.3
P(EQS correct | TETRAD II disagree) 0.0

Sample size 200:

P(TETRAD correct) 52.2
P(LISREL VI correct) 15.0
P(EQS correct) 10.0
P(TETRAD correct | LISREL VI agree) 75.7
P(TETRAD correct | LISREL VI disagree) 46.9
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P(TETRAD correct | EQS agree) 75.0
P(TETRAD correct | EQS disagree) 47.2
P(LISREL VI correct | TETRAD II agree) 39.4
P(LISREL VI correct | TETRAD II disagree) 9.5
P(EQS correct | TETRAD II agree) 43.7
P(EQS correct | TETRAD II disagree) 2.7

11.8 Limitations of the TETRAD II Elaboration Search
The TETRAD II procedure cannot find the correct model if there are a large number of
vanishing TETRAD differences that are not linearly implied by the true model, but hold
because of coincidental values of the free parameters. Our study indicates that this
occurrence is unusual, at least given the uniform distribution that we placed on the linear
coefficients in the models that generated our data, but it certainly does occur. The same
results can be expected for any other “natural” distribution on the parameters. Further, the
search does not guarantee that it will find all of the models that have the highest Tetrad-
score. But in many cases, depending upon the size of the model, the amount of
background knowledge, the structure of the model, and the sample size, the search space
is so large that a search that guarantees finding the models with the highest Tetrad-score
is not practical. One way the procedure limits search is through the application of the
simplicity principle. This is a substantive assumption that may be false. The simplicity
assumption is not needed for some small models, but in many problems with more
variables there may be a large number of models that have maximal scores but contain
many redundant edges that do not contribute to the score. Without the use of the
simplicity principle, it is often difficult to search this space of models and if it is
searched, there may be so many models tied for the highest score that the output is
uninformative. If a model with “redundant” edges is correct, then our procedure will not
find it. Typically these structures are underidentified, and so they could not be found by
either LISREL VI or EQS.

The search procedure we have described here is practical for no more than several
dozen variables. However, for larger numbers of variables, the MIMBuild algorithm
described in chapter 10 may be applicable.

Finally, there exist many latent variable models that cannot be distinguished by the
vanishing tetrad differences they imply, but are nonetheless in principle statistically
distinguishable. More reliable versions of the LISREL or EQS procedures might succeed
in discovering such structures when the TETRAD procedures fail.

11.9 Some Morals for Statistical Search
There were three reasons why the TETRAD II procedure proved more reliable over the
problems considered here than either of the other search procedures.
(i) TETRAD II, unlike LISREL VI or EQS, does not need to estimate any parameters in
order to conduct its search. Because the parameter estimation must be performed on an
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initial model that is wrong, LISREL VI and EQS often failed to converge, or calculated
highly ina accurate parameter estimates. This in turn, led to problems in their respective
searches.
(ii) In the TETRAD II search, when the scores of several different models are tied, the
program considers elaborations of each model. In contrast, LISREL VI and EQS
arbitrarily chose a single model to elaborate.
(iii) Both LISREL VI and EQS are less reliable than TETRAD II in deciding when to
stop adding edges.

The morals for statistical search are evident: avoid iterative numerical procedures
wherever possible; structure search so that it is feasible to branch when alternative steps
seem equally good; find structural properties that permit reliable pruning of the search
tree; for computational efficiency use local properties whenever possible; don’t rely on
statistical tests as stopping criteria without good evidence that they are reliable in that
role.

Statistical searches cannot be adequately evaluated without clarity about the goals of
search. We think in the social, medical and psychological uses of statistics the goals are
often to find and estimate causal influence. The final moral for search is simple: once the
goals are clearly and candidly given, if theoretical justifications of reliability are
unavailable for the short run or even the long run, the computer offers the opportunity to
subject the procedures to experimental tests of reliability under controlled conditions.

highly inaccurate parameter estimates. This in turn, led to problems in their respective
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12.1 Graphical Representations, Independence, and Data Generating Processes
A variety of graphical objects have been introduced to represent both constraints on prob-
ability distributions and aspects of data generating processes. Each family of objects is
accompanied by one or more principles relating graphical structure to conditional inde-
pendence properties, just as undirected graphs are paired with separability and directed
acyclic graphs are paired with the Markov Condition or with d-separation. Lauritzen et al.
(1990) describe various Markov properties for different kinds of graphical models, and the
relationships between the Markov properties. In their terminology, the Markov Condition
of chapter 2 is a “local” Markov property, while d-separation is a “global” Markov prop-
erty. Graphical objects consist of vertices, edges, and marks on edges or edge pairs (chap-
ter 2), and families of such objects may restrict the possibilities in various ways. For
example, undirected graphs (chapter 2, section 4) contain only undirected edges, and the
natural global undirected Markov property for such objects specifies that if disjoint sets X,
Y, Z are such that Y separates X and Z, in the sense that every path connecting a member
of X with a member of Z contains a member of Y, then X Z |Y.

In some cases—directed cyclic graphs for example—the representations have been in
use for many years, without any general articulation either of the principle that relates
graphical structure to independence properties, or of the data generating processes such
structures describe. In this section we will consider directed acyclic graphs (DAGs),
directed cyclic graphs (DCGs), partial ancestral graphs (PAGs), mixed ancestral graphs
(MAGs), and chain graphs (CGs). The set of directed graphs (DGs) is the union of DAGs
and DCGs. These representations are studied not merely because they represent one or
another family of conditional independence relations, but because they describe the rela-
tions between causal hypotheses and conditional independence relations in a variety of
models commonly used in applied statistics. For a discussion of these and other structures,
as well as other distributional families representable by graphs, see Lauritzen 1996, Shafer
1996, and Edwards 1995. For a discussion of causal inference from graphical models see
Lauritzen 2000.

12.1.1 Markov Conditions
As presented in chapter 3, the Causal Markov Condition gives a causal interpretation to a
formal condition usually known as the local Markov property. The Causal Markov
Condition is necessarily true of any system representable by a DAG in which the exoge-
nous variables—those represented by vertices of zero indegree—are independently dis-
tributed, and each variable is any (measurable, deterministic) function of its parents 
(direct causes) and unique, jointly independent noises or “errors.” It is also necessarily
true of the subgraph and marginal probability distribution obtained by eliminating any
subset of vertices with zero indegree and unit outdegree, and marginalizing accordingly.
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It is a matter of some debate whether it applies to quantum mechanical systems (chapter
3 and Maudlin 1994). The Causal Markov Condition does not apply to systems of vari-
ables in which some variables are defined in terms of other variables, nor to systems with
interunit causation (e.g., epidemics, where the units are people), although if the units are
redefined so there is no interunit causation, it will apply (e.g., in an epidemic among a
group of people, the group can be taken as a single unit). As we emphasized in chapter 6,
even when it is true of the population described by some data-generating process, it may
not characterize the conditional independence relations found for measured variables in a
sample due to: 

1. sampling error;
2. causal relations between the sampling mechanism and the observed variables (chapter

9, section 12.1.3);
3. lack of causal sufficiency among the measured variables (chapter 6); 
4. aggregation of variable values (chapter 3, for example, representing blood pressure by

“low,” “medium,” or “high,” instead of two real numbers);
5. when one variable is a function of another variable by definition (e.g., X and X 2);
6. samples in which for some units A causes B and for other units B causes A;
7. reversible systems.

Sober (1987) criticized a consequence of the Causal Markov Condition on the grounds
that two time series, such as the price of bread in England and the sea level in Venice may
both be rising, and hence correlated, even though there is no causal connection between
them. However, in this example it is not clear what the units are, and what the variables
are. If the variables are bread price and sea level, then the units are years, and there is
interunit causation (since the sea level at one year affects the sea level at another year). If
one removes the interunit causation by taking differences of bread prices and differences
of sea levels, there is no reason to believe the differences are correlated. On the other hand,
if sea levels in different years are distinct variables, and bread prices in different years are
distinct variables, then there is only one unit, and hence no correlation.

The Causal Markov Condition may not apply to samples from feedback systems (sec-
tion 12.1.2) which are generated by time series, because depending upon what the process
is and what the units are taken to be, there is interunit causation, or mixing units for which
A causes B and units for which B causes A, or aggregation of variable values (e.g., by time
averaging.)

The constituent implications of causal claims have been carefully analyzed by
Hausman (1998) and the Causal Markov Condition has been defended at length in an
interesting essay by Hausman and Woodward (in press) which emphasizes the close con-
nections between the condition and the relations between interventions and mechanisms.
The condition or its consequences have also been criticized (even for systems not in the list
of exceptions noted above) by several writers (Lemmer 1996, Cartwright 1993, Artzenius
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1992 Humphreys and Freedman 1996, which also criticizes some of the models in Chapter
5); replies to these criticisms are in Hausman and Woodward (in press), Spirtes et al. 1997,
and Korb and Wallace 1997. A qualitative version of the Causal Markov Condition (not
using probabilities) has been proposed in Goldszmidt and Pearl 1992. 

12.1.2 Directed Cyclic Graphs
The models that we called pseudoindeterministic causal structures in chapters 2 and 3 are
special cases of what are generally called structural equation models (SEMs). The vari-
ables in a SEM can be divided into two sets, the “error variables” or “error terms,” and the
substantive variables. Corresponding to each substantive variable Xi is an equation with Xi

on the left hand side of the equation, and the direct substantive causes of Xi plus the error
term ei on the right hand side of the equation, where ei represents the combined effect of
all of causes other than the substantive ones. (We write the equation “Xi = ei” for an exoge-
nous substantive variable Xi; this is nonstandard but serves to give the error terms a uni-
fied and special status as providing all the exogenous source of stochastic variation for the
system.) Associated with each SEM is a graph (“path diagram” in the SEM literature.)
There is a directed edge from Xi to Xj in the associated path diagram if and only if Xj is a
function of Xi in the corresponding structural equation. Directed cycles are allowed in path
diagrams. A distribution is associated with a SEM by assigning a probability distribution
to the exogenous variables (which in turn determines the joint distribution over all of the
variables.) An error term is generally not included in the path diagram of a SEM unless
the error term is dependent upon some other error term. If two error terms are dependent,
then they are included in the path diagram, and they are connected by a double-headed
edge (“↔“). In other words, all error terms are assumed independent unless they are
explicitly connected by double-headed edges in the path diagram. A SEM in which each
vertex is a linear function of its associated error term and its parents in the associated path
diagram is a linear SEM. (See figure 12.1 for an example of a linear SEM and its associ-
ated path diagram.) A good introduction to SEMs is Bollen 1989.

X = eX Y = a × X + b × Z + eY

W = eW  Z = c × W + d × Y + eZ

eX, eY, eZ, eW are jointly independent standard Gaussians

Figure 12.1

The distribution associated with the DCG in figure 12.1 does not in general satisfy
the natural extension of the local Markov property to DCGs. It follows from the linear
equations associated with this DCG, and from the assumed joint independence of the
exogenous variables, that X W and X W |{Y, Z}, but, contrary to the natural exten-
sion of the local Markov property to DCGs, X is not independent of Z conditional on
{Y, W}, the set of parents of Z. There is however a straightforward extension of the 

Prequels and Sequels 297

X Y

W Z



d-separation relation to cyclic directed graphs; the definition for d-separation in DAGs can
be carried over unchanged. Spirtes (1994, 1995), and separately, Koster (1995, 1996),
show that if X and Z are d-separated given Y in the DCG corresponding to a linear SEM,
then the linear SEM entails that X Z |Y. Spirtes (1995) shows that if a linear SEM
(without dependent errors) entails that X Z |Y for all values of the free parameters then
X and Z are d-separated given Y in the corresponding DCG. Spirtes (1994) also provides
a sufficient condition for entailed conditional independence in nonlinear SEMs. For linear
SEMs with dependent errors, Spirtes et al. (1998) proved that if each double-headed arrow
between dependent errors is replaced with an independent latent common cause of the
errors, the conditional independence relations among the substantive variables are still
characterized by d-separation. Thus d-separation characterizes the independence relations
entailed by path diagrams associated with linear SEMs generally (which is also shown in
Koster forthcoming). Koster (1996) also generalizes chain graphs to include cycles. 

Naive attempts to extend factorization conditions for DAGs (where the joint distri-
bution is equal to the product over the vertices of the distribution of each vertex condi-
tional on its parents) to DCGs can lead to absurdities. For example, with binary
variables one might try to represent distributions for the graph in figure 12.2 by the fac-
torization P(Y,Z) = P(Y |Z)P(Z |Y). However, the factorization implies that Y and Z are
independent.

Figure 12.2

Pearl and Dechter (1996) have shown that in structual equation models of discrete vari-
ables in which (i) the exogenous variables (including the error terms) are jointly inde-
pendent, and (ii) the values of the exogenous variables uniquely determine the values of
the endogenous variables, if X and Z are d-separated given Y then X Z |Y even if the
associated path diagram is cyclic. It is not always the case, however, that if a graph is
cyclic, and each vertex is a function of its parents in the graph and its associated error
term, that the non-error term variables are functions of the error terms alone. Neal (2000)
shows that in order to derive their result, Pearl and Dechter actually need the stronger
assumption that each variable is a function of its ancestral error terms.

The data generating processes that are appropriately described by DCGs are still not
well understood. Consider a population composed of two subpopulations, one with the
causal DAG (i) of figure 12.3, and the other with the causal DAG (ii).
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Assume the joint distribution of X, W is the same in both sub-populations. Then the
independencies and the causal structure in the combined population can be represented by
the DG in figure 12.3 (iii). For each unit in the sample, the value of � codes which path-
way, Y → Z , or Z ← Y obtains.

Certain DCGs can describe aspects of the causal structure and conditional indepen-
dencies in corresponding feedback systems represented by time series, but there does not
exist a recipe for writing an interesting time series for an arbitrary DCG, or vice-versa.
Particular cases are known (Fisher 1970, Richardson 1996a, Wermuth et al. 1999). 

A theory of intervention for linear simultaneous equation models was given by Strotz
and Wold (1960), and consists in simply replacing a manipulated variable in an equation
by the value given it by an intervention. This account fits nicely with Fisher’s time series
model. There is not a developed theory of intervention for DCGs whose variables take a
finite set of values. The importance of such a theory depends largely on whether there is
an interesting class of data generating processes described by such DCGs.

12.1.3 Partial Ancestral Graphs
Any graphical model inevitably leaves out interesting aspects of the causal system it tries
to describe. A DAG, for example, may specify X → Y , but the mechanism referred to by
X → Y is unspecified; it might, for example, contain a feedback loop in unrecorded vari-
ables, or it might not. Nor do DAGs or DCGs say anything about the time required for a
variation in a cause to result in a variation in an effect, a feature that is often important in
understanding dynamical systems. 

Similarly, patterns can be viewed as descriptions of a class of causal processes
described by various DAGs, or as an incomplete description of the process represented by
some specific DAG. Again, partially ordered inducing path graphs, described in chapter 6,
represent both a (generally infinite) class of DAGs or, alternatively, incompletely describe
a particular DAG. 

Search is often based on data from a marginal distribution that omits causally relevant
variables. Variables that are not observed for any unit in a sample we will call latent or
hidden variables; otherwise they are observed. Observational data is often obtained by
conditioning on some variable (e.g., we do observations on hospitalized pneumonia
patients). We associate with each measured variable X in a DAG a selection variable SX

that has the value 1 for each unit in the sample for which the value of X has been meas-
ured, and 0 otherwise. We do not place restrictions on how the selection variables are
causally related to each other or to the other variables. Selection bias occurs when a selec-
tion variable is causally related to the observed (nonselection) variables. For a given DG
G and a partition of the variable set V of G into observed (O), selection (S), and latent (L)
variables, we will write G(O,S,L). When every selection variables equals 1 (S = 1) for a
given unit there is no missing data for the measured variables for that unit. If X, Y, and Z
are included in O, and X Z|(Y ∪ (S = 1)), then we say it is an observed conditional
independence relation. 
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Recall that in chapter 4 we said that two DAGs G1 and G2 are faithfully indistinguish-
able when the set of distributions that satisfied the Markov and Faithfulness conditions for
G1 was the same set of distributions that satisfied the Markov and Faithfulness conditions
for G2. This is equivalent to saying that G1 and G2 have the same set of d-separation rela-
tions. Faithful indistinguishability is more commonly called Markov equivalence now, 
so henceforth we will adopt that terminology. Markov equivalence extends straightfor-
wardly to DGs as well as DAGs. We now extend the concept of Markov equivalence to
DGs that may have latent variables or selection bias. Say that two graphs G1(O,S,L) and
G2(O,S,L’) are O-Markov equivalent if and only if for X, Y, and Z ⊆ O, G1(O,S,L) entails
that X Z|(Y ∪ (S = 1)) if and only if G2(O,S,L’) entails that X Z|(Y ∪ (S = 1)). 

Richardson (1996a, 1996b) introduces a class of objects, Partial Ancestral Graphs
(PAGs), which represents features common to Markov equivalence classes of DGs (that is
DGs without selection bias or latent variables.) Spirtes et al. (1996, 1998, 1999) and
Scheines et al. (1998) extend the structure to represent O-Markov equivalence classes of
DAGs with latent variables and selection bias. One important feature of PAGs is that they
give an uniform representation to the Markov equivalence classes of DGs and the O-
Markov equivalence class of DAGs. 

PAGs may contain directed edges (→), double-headed edges (↔), semidirected edges
with an “o” symbol at the tail (o→), or undirected edges with “o” symbols at both ends
(oo). The symbol “*” does not occur in PAGs, but we use it as a meta-symbol to stand
for any kind of endpoint (i.e., “o,” “<,” or “.”) For example, “*→” stands for “o→,” or
“↔,” or “→.” Let D be a subset of an O-Markov equivalence class. 

DEFINITION 12.1.1: Γ is a partial ancestral graph (PAG) that represents class ∆ if and
only if

(1) Every vertex in Γ is in O. 
(2) If A and B are in O, there is an edge between A and B in Γ if and only if for every W
⊆ O\{A,B}, A and B are d-connected given W ∪ S in every graph in ∆.
(3) If there is an edge in Γ, A –* B, out of A (not necessarily into B), then in every graph
in ∆, A is an ancestor of B or S.
(4) If there is an edge in Γ, A *→ B, into B, then in every graph in ∆, B is not an ancestor
of A or of S. 
(5) If there is an underlining A *–*B *–*C in Γ then B is an ancestor of (at least one of)
A or C or S in every graph in ∆.
(6) If there are edges in Γ, from A to B and from C to B, (A → B ← C), then the arrow
heads at B are joined by dotted underlining (A → B ← C), only if in every graph in ∆, B
is not a descendant of a common child of A and C.
(7) Any edge endpoint not marked in one of the above ways is left with a small circle thus
o–*
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If a DG G(O,S,L) is in the class ∆ represented by a PAG Γ, we also say that the PAG rep-
resents G(O,S,L). When the output of the FCI algorithm is interpreted as a PAG that rep-
resents an O-Markov equivalence class of DAGs, assuming a zero probability for
unfaithful distributions, and an extension of the Causal Markov Condition to cases where
there may be selection bias, in the large sample limit the algorithm is correct with proba-
bility 1 even when there are latent variables and selection bias (Spirtes et al. 1995, 1999).
A PAG output by the FCI algorithm has enough orientations to represent a unique O-
Markov equivalence class of DAGs with latent variables and selection bias. Similarly, the
output of the cyclic discovery algorithm described in Richardson (1996a, 1996b) is a PAG
with respect to the Markov equivalence class of DGs (without latent variables or selection
bias), and represents a unique Markov equivalence class.

For example, there is a Markov equivalence class of DGs that contains only G1 and G2

of figure 12.4, and which is represented by the PAG in figure 12.4. The undirected edge
between X and Y in the PAG indicates that X is an ancestor of Y, and Y is an ancestor of 
X in every member of the Markov equivalence class represented by the PAG, and hence
no DAG has the same set of d-separation relations as G1 and G2. 

As with POIPGs, a graph may have several PAGs, all sharing the same adjacencies but
some with more orientation information than others. Not every graphical object written
with the marks and underlinings of PAGs is a PAG that represents an O-Markov equiva-
lence class of DAGs. While there are consistency tests, there is no available direct algo-
rithm for determining whether, for an arbitrary PAG-like structure, there exists an
O-Markov equivalence class of DAGs represented by the PAG-like structure. Applications
of PAGs are given in section 12.5.7.

Figure 12.4

12.1.4 Mixed Ancestral Graphs
Mixed ancestral graphs were introduced in Spirtes and Richardson 1996 and investigated
in Spirtes, Richardson, and Meek 1996 for two technical reasons connected with search.
First, mixed ancestral graphs provide a direct means to decide whether any two DAGs
imply (by the local Markov property) the same conditional independencies in any distri-
bution obtained by marginalizing latent variables and conditioning on selection variables.
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Second, DAGs with latent variables imply nonindependence constraints, illustrated by
Verma’s example in chapter 6. Other constraints of this sort have been investigated in
Desjardins 1999, Settimi and Smith 1999, and Geiger et al. 1996. Nonindependence con-
straints make it difficult to determine the dimensionality of the marginal distribution over
the observed variables of a latent variable model. Indeed, the marginal of a latent variable
model often has no well defined dimension (Geiger et al. 1999). The dimension is a
parameter that is used in many methods (BIC, AIC, MDL) of assigning data based scores
to models. (For a description of the BIC and MDL scores, see section 12.5.5.2.) Since
scores for models are desirable for several reasons (section 12.5), it is important to find an
appropriate representation for scoring models with latent variables from data with selec-
tion bias. MAGs describe aspects of the causal relations of such structures, but they imply
only independence and conditional independence constraints on the observed variables,
and have a well defined dimension that in the Gaussian case can be easily calculated. 

MAGs may contain directed edges (→), double-headed edges (↔), semidirected edges
with an “o” symbol at the tail (o→), or undirected edges with “o” symbols at both ends
(oo). The symbol “*” does not occur in MAGs, but we use it as a meta-symbol to indi-
cate any kind of endpoint (i.e., “o,” “<,” or “−.”) For example “*→“ stands for “o→,” or
“↔,” or “→”).

DEFINITION 12.1.2: MAG Γ represents DAG G(O,S.L) if and only if:

1. If A and B are in O, there is an edge between A and B in Γ if and only if for any subset
W ⊆ O\{A,B}, A and B are d-connected given W ∪ S in G(O,S, L).

2. There is an edge A → B in Γ if and only if A is an ancestor of B but not of S in G(O,S, L).
3. There is an edge A ←* B in Γ if and only if A is not an ancestor of B or S in G(O,S, L).
4. There is an edge A o—* B in Γ if and only if A is an ancestor of S in G(O,S, L).(Note

that “o” has a different meaning in PAGS.)

There is a natural extension of d-separation to MAGs which is called m-separation. The
definition requires extending the notions of collider and directed path to graphs with selec-
tion bias and latent variables. A path from X1 to Xn in MAG M is a sequence of distinct
vertices <X1,…Xn> such that for every i < n, there is an edge (of any kind) between Xi and
Xi+1 in M. A directed path from X1 to Xn in MAG M is a sequence of distinct vertices
<X1,…Xn> such that for every i < n, there is a directed edge from Xi to Xi+1 in M. A ver-
tex V is an ancestor of Xi if and only if V=Xi, or there is a directed path from V to Xi. Xi

is a collider on a path U in M, if there are edges Xi–1*→ Xi ←* Xi+1 on U. For disjoint sets
of vertices X, Y, and Z in MAG M, X is m-connected to Y if there is a path U between
some X ∈ X and some Y ∈ Y such that every collider on U is an ancestor of a member of
Z, and no noncollider on U is in Z; otherwise X is m-separated from Y given Z. This
entails that m-separation (m-connection) when applied to a DAG is identical to d-separa-
tion (d-connection). Applications of MAGs are given in section 12.5.7.
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The problem of representing DAGs that may have latent variables and selection bias
in a graphical structure that contains only observed variables was posed by Wermuth et al.
(1994, 1998). The representation they propose is called a summary graph. Several differ-
ences between MAGs and summary graphs are (1) in MAGs, but not in summary graphs,
a missing edge entails a conditional independence relation; (2) in summary graphs, but not
in MAGs, there can be multiple edges between a pair of observed variables; (3) a Gaussian
MAG is always identifiable, but a Gaussian summary graph is not always identifiable (4)
a MAG entails only conditional independence constraints, while a summary graph may
entail nonconditional independence constraints (which means a summary graph may con-
tain more information about the DAGs it represents than a MAG does.) For further details
see Cox and Wermuth et al. 1994. 

12.1.5 Chain Graphs
Chain graphs are a much-studied (see Cox and Wermuth 1996, Lauritzen 1996) class of
graphical objects introduced to represent situations in which there are “symmetric associ-
ations” between variables. Chain graphs may contain both directed and undirected edges,
but may not contain partially directed cycles, that is, they do not contain a sequence of n
distinct edges with endpoints X1, Xn+1, such that X1 = Xn+1 and for all i, 1 ≤ i < n+1, either
Xi — Xi+1 or Xi → Xi+1, and for some j, 1 ≤ j < n+1, Xj → Xj+1.

Two different Markov Conditions have been proposed for chain graphs, one by
Lauritzen, Wermuth and Frydenberg (Lauritzen and Wermuth 1989; Frydenberg 1990),
and another by Andersson, Madigan, and Perlman (1996). The conditions are not equiva-
lent to one another, although for undirected graphs both reduce to separation and for
DAGs both reduce to d-separation. The respective Markov properties determine whether
a conditional independence relation X Z|Y is entailed by a chain graph in a two step
process. First, they associate a chain graph with an undirected graph. Second, X Z|Y is
entailed by the chain graph if X is separated from Z by Y in the associated undirected
graph. But the undirected graphs constructed by the two methods differ in their separation
properties. The following summary is based on Richardson 1998.

A vertex V in a chain graph is anterior to a set W of vertices if there is a path P from
V to some W in W and for all directed edges X → Y on P, Y is between X and W. Ant(W)
is the set of vertices anterior to W. For chain graph CG, with vertex set V and W ⊆ V, the
induced subgraph CG(W) is obtained by removing all vertices in V\W and all edges with
an endpoint in V\W. A complex is an induced subgraph of the form: X → V1 — … — Vn

← Y, n ≥ 1. Moral(CG) is the undirected graph obtained by connecting X, Y with an undi-
rected edge if they are the endpoints of a complex, and then replacing each directed edge
with an undirected edge. The Lauritzen-Wermuth-Frydenberg (LWF) global Markov
Property says that CG entails X Z|Y if X is separated from Z by Y in the undirected
graph Moral(CG(Ant(Z ∪ Y ∪ X)). 

The Andersson-Madigan-Perlman chain graph global Markov property is defined as
follows. In a chain graph CG, vertices V and W are connected if there is a path between
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V and W containing only undirected edges. Con(W) = {V | V is connected to some W ∈
W}. Ext(CG,W) contains the vertex set Con(W), and all the directed edges in CG(W),
and all undirected edges in CG(Con(W)). V is an ancestor of W if there is a path from V
to W ∈ W such that all edges on the path are directed (X → Y) and are such that Y is
between X and W on the path. Anc(W) = {V | V is an ancestor of some W ∈ W}. A triple
of vertices <X, Y, Z> is a triplex if CG({X,Y,Z}) is either X → Y  Z, X → Y ← Z, or 
X  Y ← Z. A triplex is augmented by adding the X  Z edge. Four vertices <X, A, B, Y>
form a bi-flag if the edges X → A, Y → B, and A  B occur in the induced subgraph over
{X, A, B, Y}. A bi-flag is augmented by adding an X  Y edge. Aug(CG) is the undirected
graph that is formed by augmenting all triplexes and bi-flags in CG, and replacing all of
the directed edges with undirected edges. Let Aug[CG; X, Y, Z] = Aug(Ext(CG,Anc
(X ∪ Y ∪ Z))). The Andersson-Madigan-Perlman (AMP) global Markov property is that
CG entails that X Z|Y if X is separated from Z by Y in the undirected graph Aug[CG;
X,Y,Z].

An interesting discussion has developed about what data generating processes are
explained by the extra structure allowed by chain graph Markov properties. For example,
two simple chain graphs among four variables are shown in figure 12.5.

Figure 12.5

Richardson (1998) shows that the local Lauritzen-Wermuth-Frydenberg Markov
Property applied to CG1 implies a different set of independence and conditional inde-
pendence relations than do any of the known ways of producing symmetrical associations
by causal processes (marginalizing out a latent common cause, conditioning on a common
effect, feedback) representable by DGs, and similarly for CG2 and the AMP Markov prop-
erty. (The set of conditional independencies entailed by the LWF intepretation of CG1 is
{A B, A Y|{B,X}, B X|{A,Y}}; the set of conditional independencies entailed by
the AMP interpretation of CG2 is{A B, A B|{Y}, A Y, A Y|{B}, B Y|{A, X}}.)

In as yet unpublished work, Lauritzen has proposed that chain graph models (with the
LWF global Markov property) such as CG1 give the independencies and conditional inde-
pendencies in the limiting distribution of certain dynamical systems. The procedure is as
follows: Specify P(A), P(B), P(X|A,Y) and P(Y|X,B). For each unit in a population, at t =
0 draw a value A0 of A from P(A) and a value B0 of B from P(B). Pick an arbitrary start-
ing value for Y, say Y0. Now draw X1 from P(X|Y0, A0) and draw Y1 from P(Y|X1,B0). Repeat
many times, drawing Xi+1 from P(X|Yi,A0) and Yi+1 from P(Y|Xi+1,B0). After sufficiently

304 Chapter 12

A AX

B B XY Y

CG2CG1



long, (A0, B0, Xn, Yn) is, with some further restrictions, a sample from a distribution that
satisfies the LWF global Markov property for CG1 above. The further restrictions are
required because X and Y are treated asymmetrically, which implies that some restriction
on the transition probabilities is required to generate a distribution that satisfies the LWF
global Markov property.1

Cox and Wermuth (1999), and Wermuth, Cox, Richardson, and Glonek (1999) also
consider what data-generating processes might lead to distributions represented by chain
graphs.

12.2 Equivalence
Equivalence of models is always with respect to some selected set of variables, represent-
ing either a set O of observed variables, or a set S of selection variables, or both, and fea-
tures of distributions obtained by conditioning on the selection variables and
marginalizing out the variables that are unobserved. The distributional features in question
may be the independence and conditional independence relations in the conditional mar-
ginal distributions, or other constraints such as vanishing tetrad differences, or, most gen-
erally, the entire conditional marginal distributions. Say that P(O|S=1) is an observed
distribution that satisfies the Markov condition for G(O,S,L) if it is formed by condi-
tionalization and marginalization from a distribution P(O,S,L) that satisfies the Markov
condition for G(O,S,L). Two DAGs G1 and G2 with vertex set V are distribution equiv-
alent if and only if P(V) satisfies the local Markov property for G1 if and only if P(V) sat-
isfies the local Markov property for G2. Two DAGs G1(O,S,L) and G2(O,S,L′ ) are
O-distribution equivalent when an observed distribution P(O|S=1) satisfies the local
Markov property for G1(O,S,L) if and only if P(O|S=1) satisfies the local Markov property
for G2(O,S,L′ ). Distribution equivalence and O-distribution equivalence can be defined
similarly for restricted families of distributions (e.g., Gaussian, or multinomial.) Similar
notions apply to DGs and to chain graphs. 

If the family of distributions represented by the DAG is multivariate Gaussian, multin-
omial, or unrestricted, two DAGs without latent variables or selection bias are O-distribu-
tion equivalent if and only if they are O-Markov equivalent That relation does not,
however, obtain in general if the DAGs contain latent variables or if there is sample selec-
tion bias. 

The equivalence relation with respect to a data feature essentially characterizes a limit
of resolution for search procedures that exclusively use estimates of that feature from the
data. For example, O-Markov equivalence characterizes the limits of algorithms such as
FCI that depend on conditional independence relations. From a Bayesian perspective,
equivalence results are of less theoretical interest, since even asymptotically, O-Markov
equivalent models need not have the same posterior probabilities. However, for searches
such as those discussed in section 12.5, Bayesian search procedures that attempt to dis-
tinguish between latent variable models that are O-Markov equivalent face some difficult
theoretical and computational problems. 
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Using the following result, Spirtes and Verma (1992) showed there is a more or less
feasible (depending on the structure of the graphs) decision procedure for the equivalence
of two DAGS which may contain unobserved (latent) variables, but no selection bias. Say
that FCI uses a DAG G with vertices V as an O-oracle when it only tests d-separation rela-
tions among variables in O ⊆ V, and uses the d-separation relations in G among the vari-
ables in O to decide questions of d-separation. 

THEOREM 12.2.1: (Spirtes and Verma): Two DAGs G, H, entail the same independence and
conditional independence relations among variables in a common subset O of variables in
G and H if and only if the output of the FCI algorithm using G as an O-oracle is equal to
the output of the FCI algorithm using H as an O-oracle. 

Using MAGs, Spirtes and Richardson (1996) provides a polynomial time decision proce-
dure for O-Markov equivalence of models with latent variables and selection variables.
Richardson (1996c) shows there is a polynomial time algorithm (O(n5)), where n is the
number of vertices) for deciding the Markov equivalence of DGs (without selection bias
or latent variables.)

Geiger and Meek (1999) have obtained theoretically fascinating, but as yet impractical,
results about distributional equivalence and other “structural” features of graphical mod-
els, such as the identification problem—the problem of deciding whether a model param-
eter can be uniquely estimated from the marginal probability distribution over observed
variables. Their results show a remarkable sequence of connections between mathemati-
cal logic, probability theory, and methodology. 

Tarski axiomatized ordinary real algebra—the theory of real closed fields, RCF—and
proved that the theory is complete, hence decidable, and admits elimination of quantifiers.
That is, for every formula F in the language of RCF there is a formula H without quanti-
fiers such that RCF F ⇔ H. One can use the theory to test distributional equivalence
of two linear, Gaussian structural equation models M and N as follows. The variance/
covariance matrix of the observed variables in Model M can be written as polynomial
functions of the model parameters, which are real variables. Model M asserts that there
exist values of the parameters such that each covariance of the observed variables equals
the specified function of the parameters. That claim is a sentence SM of a simple extension
of RCF, for which Tarski’s theorem holds. Hence there is a sentence QM without quantifi-
cation over the model parameters and without names of values of the model parameters
such that RCF QM ⇔ SM. For model N with the same observables there is likewise a
sentence SN asserting the existence of values of parameters in N such that covariances of
observed variables are specified functions of the parameters, and likewise an equivalent
sentence QN without quantifiers. Models M and N are therefore distribution equivalent if
and only if RCF QM ⇔ QN.

Since RCF is decidable, there is an algorithm to decide distribution equivalence in lin-
ear Gaussian structural equation models—no matter whether acyclic (“recursive”) or
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cyclic (“nonrecursive”), and with or without latent variables. Identification problems are
solvable by a similar strategy, since the identifiability of a parameter corresponds to an
RCF formula saying that if two values of a parameter result in equal values of the poly-
nomial functions for the covariances, then the two values are identical. Quantifier elimi-
nation then results in a sentence, using only the vocabulary for observable correlations,
which is a theorem of RCF if and only if the parameter is identifiable. 

The same argument works for any family of distributions whose marginal distribution
over observables can be described by a finite set of polynomial functions of real valued
model parameters. Graphical models with categorical variables can therefore be treated in
the same way, since the marginal distributions over measured variables are sums of prod-
ucts of conditional probabilities, and the latter are real valued variables with a restricted
range. 

But the solution is not yet practical. Tarski’s decision procedure is hyper-exponential.
Although faster algorithms have since been found, they are still hyper-exponential, and
Geiger and Meek are able to work out an example for only three variables. Even for these
faster algorithms, a problem with six variables is hopeless. Since, however, decisions
about equivalence, identifiability, and bounding of parameter values require deciding only
formulas of special logical forms, there is still hope that more efficient algorithms may be
possible for these special cases.

12.3 Prediction and Manipulation
12.3.1 Causation and Subjunctives
The Rubin approach to making predictions about manipulations of causal models (dis-
cussed in chapter 7) introduces subjunctive variables, such as YX=0, to represent the value
that Y would have if X were manipulated to have the value 0. Rubin’s approach also uses
judgments about the conditional independence of subjunctive variables from occurent
variables. Two problems arise with this approach; interpreting what it means to have a joint
distribution over subjunctive and occurrent variables, and whether people can make judg-
ments about the independence of subjunctive and occurrent variables (especially in light
of the fact that that without using graphical methods people are poor at making judgments
about conditional independence even for occurrent variables alone.) 

In contrast, in chapter 7, we used DAGs to make predictions from causal models.
Instead of introducing a new subjunctive variable to represent the value that Y would have
if X were manipulated to 0, we added a policy variable and an edge from the policy vari-
able to X, and took the value that Y would have if X were manipulated to 0 to be the value
of Y conditional on the policy variable equaling 1 (i.e., the manipulation had occurred).
Two advantages of the DAG approach are that it does not require a joint probability dis-
tribution over subjunctive and occurrent random variables (since we always condition on
a value of the policy variable in all of our calculations), and it uses causal DAGs to cal-
culate conditional independence relations. This approach led to theorem 7.1 (equivalent 
to what Pearl later called the “Calculus of Interventions” in Pearl 1995) which gives 
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sufficient graphical conditions for conditional probabilities to remain invariant under a
manipulation. It is not known whether the conditions of theorem 7.1 are also necessary.
This theorem has interesting applications discussed in section 12.3.2. 

While the DAG supplemented with policy variables does not require joint distributions
of subjunctive and occurent variables, it also does not allow representation of a joint dis-
tribution over subjunctive and occurent variables, or a joint distribution over subjunctive
variables corresponding to different manipulations, which in some cases is desirable. For
example, suppose a patient who is not on drug treatment presents with high blood pres-
sure. The physician believes the causal relations are those shown in figure 12.6. 

Suppose that Drug therapy = 1 represents being given drug therapy, and Arterial dis-
ease = 1 represents the occurrence of arterial disease. Consider the probability that a
patient would have Arterial disease if Drug therapy were to be manipulated to be present
(a subjunctive variable) conditional on the patient’s actual Blood pressure. Here Blood
pressure is actually measured (without intervention on the causal process), but Drug ther-
apy and Arterial disease are subjunctive variables in this case, that is they are features that
are actual only if the intervention subsequently occurs. This is in general not equal to the
probability a patient would have Arterial disease if Drug therapy were manipulated to 1
(a subjunctive variable) conditional on the Blood pressure a patient would have if Drug
therapy were manipulated to 1 (another subjunctive variable). In the language of chapter
7 the latter probability is PMan(Drug) (Arterial disease|Blood pressure), and can be calculated
from theorem 7.1. There is no way in the language of chapter 7 to express the former prob-
ability and it cannot be directly calculated by an application of Theorem 7.1. In this sec-
tion we consider how Balke and Pearl (1994), Pearl (1999), and Galles and Pearl (1998a)
use structural equation semantics to clarify the meaning of a joint distribution over sub-
junctive and occurent variables, and use DAGs to calculate the required conditional inde-
pendence relations between subjunctive and occurent variables. 

Figure 12.6

For the sake of illustration, suppose that the statistical model associated with the DAG
in figure 12.6 is a linear structural equation model. Suppose the structural equation for
Blood pressure is of the following form:

Blood pressure = a × Drug therapy + b × Arterial disease + 100 + εbp
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Assume that Arterial disease is binary (1 representing having the disease) and Drug ther-
apy is binary (1 representing being given the drug), that the probabilities of Arterial 
disease and Drug therapy are given, εbp follows a standard Gaussian distribution, and
Arterial disease, Drug therapy, and εbp are mutually independent.

We need a notation to express the probability Arterial disease would have if Drug ther-
apy were to be manipulated to the value 1, conditional on the actual value of Blood pres-
sure. In order to do that we (following Rubin as in chapter 7, Balke and Pearl 1994, and
Pearl 1999) split Drug therapy, and all its descendants into two variables, one variable rep-
resenting the value that would occur if Drug therapy were manipulated to the value 1, and
the other variable representing the unmanipulated value of Drug therapy. In this example
there is Drug therapyMan(Drug) and Drug therapyUnman, and Blood pressureMan(Drug) and
Blood pressureUnman. Note that because Arterial disease and εbp are not descendants of
Drug therapy and hence (by the Manipulation Theorem) are unaffected by the manipula-
tion, the manipulated and unmanipulated values of Arterial disease and εbp have the same
distribution, so we do not need to split these variables. Using the structural equation
model, we can write:

Blood pressureMan(Drug) = a × Drug therapyMan(Drug) + b × Arterial disease + 100 + εbp

Blood pressureUnman = a × Drug therapyUnman + b × Arterial disease + 100 + εbp

If the assumption is made that the manipulated value of Drug therapy does not depend on
the unmanipulated value of Drug therapy, then by the Causal Markov Condition Drug
therapyUnman and Drug therapyMan(Drug) are independent of each other. The joint distribu-
tion over the subjunctive and occurent variables then follows from this assumption, the
joint distribution over the exogenous occurrent variables, and the structural equations.
(Balke and Pearl [1994], and Pearl [1999] use a DAG with latent variables rather than dou-
ble-headed arrows. Madigan [1999] also considers graphical representations of subjunc-
tive variables.)

Figure 12.7

When we make the modifications to the causal DAG in figure 12.6, the result is the
MAG in figure 12.7. There is a correlated error between Blood pressureMan(Drug) and Blood
pressureUnman because εbp is a cause of both, as seen in their respective equations. Blood
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pressureUnman is not caused by Drug therapyMan(Drug) according to its structural equation.
Now m-separation applied to the causal MAG of figure 12.7 shows that P(Arterial 

disease|Blood pressureUnman, Drug therapyMan(Drug)) = P(Arterial disease|Blood pres-
sureUnman), that is the drug has no effect among a group of people with a given actual
Blood pressure.

There are equality constraints among the parameters in the causal MAG (e.g., the dis-
tribution of Blood pressureMan(Drug) conditional on its parents Drug therapyMan(Drug) and
Arterial disease equals the distribution of Blood pressureUnman conditional on its parents
Drug therapyUnman and Arterial disease). Hence there may be an equality between a con-
ditional probability among the unmanipulated variables (e.g., P(Blood pressureMan(Drug)|
Arterial disease,Drug therapyMan(Drug)) and the corresponding conditional probability
among the manipulated variables (e.g., P(Blood pressureUnman|Arterial disease,Drug
therapyUnman), an equality that is not entailed by the m-separation relations in the causal
MAG, but is entailed by d-separation in the causal DAG representation of chapter 7 using
policy variables. So there are advantages to using the causal DAG representation of chap-
ter 7 as long as the quantities of interest are not mixtures of subjunctive and occurrent vari-
ables. 

Graphs similar in structure to figure 12.7 can also be used to represent Drug therapy at
different times, instead of unmanipulated and manipulated Drug therapy, where the vari-
ables are indexed by time, instead of whether or not Drug therapy has been manipulated.
Theorem 7.1 can be applied directly to such temporal graphs. See Boyen et al. (1999) for
one representation of dynamic systems.

It is also possible to use (a minor modification of) the Balke-Pearl graphical represen-
tation (using MAGs instead of DAGs) to calculate some conditional probabilities of sub-
junctive and occurent variables in the following special case that is of particular interest
for reasons described below. A special case of a manipulation arises when the manipulated
variable is set to a constant value. Interpreting the causal DAG as a structural equation
model gives an especially clear interpretation to subjunctive variables in this case. (This
view also seems implicit in the use of subjunctives by some analyses based on Rubin’s
subjunctive variables). Suppose Drug therapy is manipulated to have the value 1 in all
cases (i.e., everyone is given the drug.) Using the structural equation model, we can write:

Blood pressureMan(Drug Therapy = 1) = a + b × Arterial disease + 100 + εbp

setting Drug therapy to the constant 1. (This is the approach to manipulation taken in
Strotz and Wold 1960.) All of the subjunctive variables are now simple functions of
occurent variables, so the joint distribution over the subjunctive and occurent variables 
follows from the distribution over the exogenous occurrent variables and the structural
equations.
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Figure 12.8

More generally if one wants a joint probability distribution on the values of B, C, and
D, and E when A is manipulated to 0, and the unmanipulated variables A, B, C, and D, and
E, then split each of the descendants of A into the unmanipulated and manipulated ver-
sions (in the case of figure 12.9, B, C, and D on the one hand, and BMan(A = 0), CMan(A = 0),
and DMan(A = 0) on the other hand), add double-headed edges between each new variable
and its counterpart, and an edge between two of the new variables if and only if there is
an edge between their counterparts. Then apply m-separation. (See figure 12.9.) (AMan(A = 0)

just has the constant value 0, so we do not include it in the MAG.)
Part of the price that is paid for the structural equation interpretation of subjunctive

variables is that it posits the existence of a deterministic world with independent error
terms. Dawid (1997) questions the existence of such independent error terms, and at the
microscopic level, determinism is not compatible with the standard interpretation of quan-
tum mechanics. The method of representation described here does not allow for arbitrary
causal DAGs or MAGs among subjunctive and occurrent variables.

Figure 12.9

Joint distributions over subjunctive and occurent variables play an important role in
Pearl’s (2000) analysis of several different notions of causation. In Pearl’s notation, Yx(u)
is the response of variable Y to manipulating X to value x, when the exogenous variables
take on value u (in Pearl’s structural equation semantics of causal DAGs, the response of
variable Y to manipulating X is a function of U). Let X and Y be binary variables, where x
is the proposition that X takes the value true and x' is the proposition that X takes the value
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false. yx is the proposition that Y takes the value true if X were manipulated to true, and
y'x is the proposition that Y takes the value false if X were manipulated to true. PS (the
probability of sufficiency) is equal to P(yx|x', y'), PN (the probability of necessity) is
P(y'x' |x,y), and PNS (the probability of necessary and sufficient causation) is P(yx, y'x').
(In the notation of chapter 7 P(yx) is PMan(X = true)(Y = true), P(y'x) is PMan(X = true) (Y = false),
P(yx') is PMan(X = false)(Y = true), and P(y'x') is PMan(X = false)(Y = false). However, there is
no way in that notation to express P(yx, y'x'), P(y'x’|x, y), or P(yx|x', y' ), which mix
occurrent and subjunctive variables, or subjunctive variables corresponding to different
manipulations.)

There are several assumptions relevant to the conditions under which PN, PS, and PNS
are identifiable. X is exogenous with respect to Y when there is no common cause of X
and Y. X is stochastically monotonic with respect to Y when the probability of Y = true
given X is manipulated to true is greater than the probability of Y = true given X is manip-
ulated to false. X is monotonic with respect to Y when y'x ∧ yx' is false. Robins and
Greenland (1989) showed that even under the assumptions of exogenity of X with respect
to Y and stochastic monotonicity of X with respect to Y, PN is not identifiable; however
they do calculate bounds for PN. Pearl (2000) showed that under the stronger assumptions
of exogenity of X with respect to Y and monotonicity of X with respect to Y, then PN, PS,
and PNS are all identifiable. Pearl also showed that under the assumption of monotonic-
ity, PN, PS, and PNS are all identifiable whenever P(yx) is identifiable. 

In chapter 3, we discussed the relationship between causal DAGs and the Rubin (1978)
subjunctive variable approach. Robins (1986, 1987) extended Rubin’s theory to deal with
time-varying treatments, outcomes, and covariates. Robins (1995) showed that causal
DAGs can always be interpreted as subjunctive variable models. Galles and Pearl (1998)
showed that for acyclic graphs, all of the conjunctive subjunctives derivable in structural
equation semantics are entailed by the following two features of structural equation
semantics:

• Composition: For any two singleton variables Y and W, and any set of variables X in a
causal model, if Wx(u) = w then Yxw(u) = Yx(u). 

• Effectiveness: For all variables X and W, Xxw(u) = x.

(According to Galles and Pearl [1998] Robins suggested composition to Pearl in a per-
sonal communication.) Halpern (1997) found a complete set of axioms for the case of
structural equation models represented by cyclic directed graphs.

12.3.2 Calculating the Effects of Interventions
Strotz and Wold (1960) pointed out that the effects of manipulating a variable X in struc-
tural equation models could be calculated by replacing the equation for X by an equation
that set X to its manipulated value; this is the basic idea behind the Manipulation Theorem
and Pearl’s structural equation semantics. Robins (1986) derived the G-computation 
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formula, which is equivalent to the Manipulation Theorem, though not formulated 
graphically. 

An important special case of calculability (synonymous with “identifiability”) is the
case of sequential randomized trials, where the covariates may be affected by earlier treat-
ments, and each treatment is a function of all of the earlier treatments. This has been stud-
ied since Robins (1986) under the name “G-computation algorithm formula.” The theory
has been translated into graphical terms in Pearl and Robins 1995. The formula expresses
the probability of an outcome under a sequential randomized manipulation in terms of a
sum and product of probabilities involving only the observed occurrent variables and the
values the treatments were manipulated to. This formula can also be extended to the case
in which there is a vector of outcomes included in the covariates, and the assumption that
each treatment is a function of all earlier treatments can be relaxed. Robins (1986, 1987)
also considers the extension to the case where the value that a treatment is manipulated to
is a function of the preceding covariates. 

One problem with the direct application of the G-computation formula is that standard
parametric models of the conditional distributions that appear in it lead to a parameteri-
zation that will make the direct effect and total effect null hypotheses be rejected even
when the null hypothesis of no direct effect is true. Robins (1993, 1994, 1997, 1998)
develops the theory of structural nested models, which do not suffer from this defect. The
only parametric models needed to test the no-direct effect hypothesis or estimate the size
of the effect are parametric models of the probabilities of treatment. 

Pearl (1995) proposes three rules, which he calls the “Calculus of Interventions.” For
disjoint sets X, Y, Z, W of variables, it states rules for when various conditional probabil-
ities containing manipulated quantities are equal to conditional probabilities that have
fewer manipulated quantities. The rules are sound and all follow from Theorem 7.1.
Theorem 7.1 and the Calculus of interventions are both equivalent to P(Y|Z) being invari-
ant under manipulation when the policy variables are d-separated from Y given Z.

In chapter 7 we defined a conditional manipulated probability as calculable if it was a
function of the unmanipulated distribution, and of the manipulation. In chapter 7, the
Prediction Algorithm (i) takes data as input, (ii) constructs a POIPG from the data, and
(iii) uses consequences of theorem 7.1 to search for a way to express the manipulated
quantity of interest in terms of other quantities, involving only observed variables, that,
given the POIPG, are known to be invariant under manipulation. Pearl (1995) takes this
method a step further, and shows how to use the Calculus of Interventions to write a
manipulated conditional probability in terms of quantities which are not themselves
invariant, but which are calculable, and hence ultimately functions of unmanipulated dis-
tributions. In contrast to our procedure, Pearl (1995) starts not with data but with a DAG
that may contain latent variables, and searches for a way to express the manipulated quan-
tity of interest in terms of other quantities involving only observed variables that, given
the DAG, are known to be identifiable under manipulation. Galles and Pearl (1995)
describe a set of rules for determining when a manipulated quantity is identifiable from
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applications of the Calculus of Interventions, and show that the identification of the causal
effect between two variables (and a formula for calculating the quantity) can be estab-
lished in a time polynomial in the number of variables in the graph.

The extension of predictions from interventions to circumstances where causal rela-
tions are reversible has also been investigated. Consider a bicycle with gears, so arranged
that changing the speed the pedals rotate and the value of the gear setting influences the
speed with which the rear wheel rotates, while changing the speed with which the rear
wheel rotates (e.g., by pushing it by hand) changes the speed with which the pedals rotate
but does not change the gear setting. One might try to represent the system by the cyclic
graph of figure 12.10. Alternatively, one can introduce the kind of graph shown in figure
12.3 (iii). The predictions for each kind of intervention can be analyzed via the
Manipulation Theorem. See also Richardson 1996a and Shafer 1996.

Figure 12.10

Further research is needed in this area, because neither procedure fully captures the
dependencies in a simple dynamical system; for example, they do not tell us the speed of
either the wheel or the pedal when countervailing forces are applied, although we have no
difficulty making that calculation from elementary physical principles. 

12.4 Consistency2

What assumptions guarantee the existence of “reliable” procedure for drawing causal con-
clusions from observational data, by any agent that has unlimited resources for search and
computation? In this section, we will answer this question for several increasingly strong
senses of “reliable.” First we will consider what assumptions are needed to guarantee
Bayes consistency, then what (stronger) assumptions are needed to guarantee the stronger
condition of pointwise consistency, and finally what (still stronger) assumptions are
needed to guarantee the still stronger condition of uniform consistency. (In every case we
will assume the Causal Markov Condition and that causal relations for a population can
be represented by a DAG.) We will then discuss the plausibility of the assumptions. We
emphasize that the negative results described in this section apply to any method, not just
the methods described in this book. We will consider what conclusions should be drawn
by someone unwilling to make the assumptions required for the existence of reliable 
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procedures for causal inference. The notation in this section, the negative results about the
existence of uniformly consistent tests under some sets of assumptions, and some of the
implications of the negative results, are based on Robins, Scheines, Spirtes, and
Wasserman 1999.

As an illustration, consider the linear structural equation models in figure 12.11. We
assume background knowledge gives a time order (B precedes C) and rules out selection
bias, but does not rule out the possibility of latent common causes. In all three models εA,
εB, and εC are independent Gaussians, A, B, and C are standard Gaussians, A is a latent
variable, and B and C are observed. ρ (B,C) is the correlation between B and C. In those
cases in which several different population probability distributions are being discussed,
ρP(B,C) represents the correlation between B and C in the population with distribution P.
Because the variables are standardized, x in Model M and in Model Q is a real valued vari-
able that represents a linear coefficient in the structural equations which has values that
range between –1 and 1. In Model N and Model Q, z is fixed at 0. (In Model M there is
one other independent constraint on x, y, and z, namely that var(C) = var(εC) + y2 + z2 +
2x × y × z = 1, and hence y2 + z2 + 2x × y × z ≤ 1.) In Model M, ρ (B,C) = (x × y) + z, in
Model N ρ (B,C) = 0, and in Model Q ρ (B,C) = x × y. In order to make Models M, N, and
Q disjoint, z = 0 is not a legitimate parameter value in Model M, and x = y = 0 are not
legitimate parameter values of Model Q. 

Figure 12.11. Model M, Model N, and Model Q

Model M and Model N entail the same observable population distribution (ρ(B,C) = 0)
whenever (x × y) + z = 0 in Model M. Model N and Model Q never entail the same popu-
lation distribution. Call the ratio of a consequent change in C to a manipulated change in 
B the treatment effect of B on C. In Model N and Model Q, the treatment effect of B on

Prequels and Sequels 315

A

B C

A

B C

A = eA

B = xA + eB

C = yA + zB + eC

A = eA

B = xA + eB

C = yA + eC

A = eA

B = eB

C = eC

x y

z

A

B C

x y

Model M: Graph GM

Model Q: Graph GQ

Model N: Graph GN



C is 0, while in Model M it is equal to z. Hence, Model M disagrees with Model N and
Model Q on the treatment effect of B on C. In Model M, all of the legitimate values of x,
y, and z that produce ρ(B,C) = 0 are unfaithful to DAG GM. We will call these “unfaith-
ful” parameter values for Model M and say that a distribution corresponding to an unfaith-
ful parameter value is unfaithful to GM. 

Suppose that the sample estimate of ρ(B,C) is zero. In that case, many methods for
drawing causal conclusions from observational data would conclude that there is no treat-
ment effect of B on C. For example, in many studies, a variable B is eliminated from con-
sideration when the regression coefficient of B on the outcome variable is not significant.
In this example, the regression coefficient of B for C is zero when ρ(B,C) is zero. In addi-
tion, in the large sample limit, with probability 1, the BIC score of Model N is infinitely
larger than the BIC score of Model M or Model Q. When ρ(B,C) = 0, for any prior which
places a non-zero probability on Model N, and for which the distribution over the param-
eters is absolutely continuous with Lebesgue measure, in the large sample limit, the ratio
of the posterior of Model N to the posterior of Model M or to Model Q approaches infin-
ity. Also, the FCI algorithm (and the PC algorithm as well), concludes that the treatment
effect of B on C is zero. Hence, in the large sample limit with probability 1, both the con-
straint based algorithms and various Bayesian scores prefer Model N to Model M or
Model Q when ρ(B,C) = 0. If the true model is Model M with unfaithful parameter values
so z ≠ 0 then even in the large sample limit all of these search models will prefer Model
N, and be incorrect; otherwise in the large sample limit they are all correct. 

Figure 12.12. The set of unfaithful parameters for model M
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Figure 12.12 shows the z = 0 plane and part of the surface of parameters for which in
Model M ρ(B,C) = (x × y) + z = 0. The two lines x = 0 and y = 0 in the z = 0 plane are also
shown in figure 12.12. Henceforth, we will refer to the ρ(B,C) = 0 surface, excluding the
non-legitimate parameter values z = 0, as the surface of unfaithful parameter values.
(There are other unfaithful parameter values in the model, but only those shown lead to
distributions that are unfaithful in the observed margin.) There are three important fea-
tures of the surface of unfaithful parameter values. The first feature is that the surface is 2
dimensional, while the parameter space of Model M is higher dimensional. Hence the
Lebesgue measure of the surface of unfaithful parameter values is 0.

The second feature is that in Model M any legitimate value of z is compatible with
ρ(B,C) = 0 (because each value of z occurs somewhere on the surface of unfaithful param-
eter values.) For example, the four (x, y, z) points (1, 1,–1), (–1, –1,–1), (1, –1,1) and
(–1,1,1) all occur on the surface of unfaithful parameters values. (The point (–1, –1,–1) is
hidden by the z = 0 plane in figure 12.12.) So in Model M the treatment effects (1 or –1)
of B on C are both compatible with ρ(B,C) = 0, as well as with every other value.

The third feature is that for every value of z, there are points that are not on the surface
of unfaithful parameter values that are arbitrarily close to the surface of unfaithfulness
parameter values.

These three features of the surface of unfaithful parameter values are behind all of the
various results about the possibility or impossibility of “reliably” discovering causal rela-
tions from observational data, in various senses of “reliability,” under a variety of differ-
ent assumptions. 

12.4.1 Bayes Consistency
Let the set of vertices associated with DAG G be VG. Let Γ be a set of DAGs, such that
for each G ∈ Γ, for a set of “observed” variables O, O ⊆ VG. Let ΒG be the set of legiti-
mate parameter values for the parameters of G. Let ΠG be the set of distributions over VG

that satisfy the Markov condition for G. Let γ be a function that maps (BG,G) onto ΠG. In
the examples of Model M, N, and Q of figure 12.11, γ is the usual function mapping lin-
ear structural equation model parameters (x, y, z) into Gaussian distributions. In the case
of Model N, γ maps the parameters into a Gaussian distribution with a correlation matrix
that is the identity matrix. In the case of Model M, γ maps (x, y, z) into a Gaussian distri-
bution with correlation matrix 
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In the case of Model Q, γ maps (x, y) into a Gaussian distribution with correlation matrix 

Let ΠΓ = Let On = O × … × O where O is the range of the random variables in
O. Assume we have a random sample On = (O1,…,On) from some P(O) ∈ ΠΓ(O). Pn is
the n-fold product measure of P on On Let θ map ΒΓ = (β,G) into the reals,
i.e. θ is a parameter that for the moment we leave unspecified (e.g. the treatment effect of

B on C in Model M in figure 12.11). Let 

Intuitively � Γ0 is the set of distributions compatible with θ = θ0, and � Γ1 is the set of dis-
tributions compatible with θ ≠ θ0. Note that there may be a P1 ∈ � �0 and a P2 ∈ � �1 such
that P1(O) = P2(O).

Suppose that there is a prior density Pr(ΒΓ), such that for (β,G) ∈ ΒΓ, Pr(β,G) =
Pr(G)Pr(β|G). This prior, together with γ induces a prior Pr over (ΒΓ,O). Suppose that we
test H0: θ = θ0 versus H1: θ ≠ θ0. For our purposes, a test is a function un: O

n → {0,1,2},
where φn(O

n) = 0 means “choose H0”, φn(O
n) = 1 means “choose H1”, and φn(O

n) = 2
means “don’t know”. We specify a test φn for each sample size n. In what follows all lim-
its refer to the sample size n tending to ∞. Let Prn(On|ΒΓ) be the n-fold product measure
of Pr(O|ΒΓ)). A test that always returns “don’t know” is trivially always correct, so we will
eliminate such tests from consideration. A test is non-trivial if either

(i) for some 

(ii) for some

We will henceforth consider only non-trivial tests. 

Definition 12.1: A test φ is Bayes consistent with respect to a prior Pr(ΒΓ) and a mapping
γ which induces a prior Pr over (ΒΓ,O) if 
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Intuitively, a test is Bayes consistent with respect to a prior when in the large sample limit
the test is incorrect on a set of measure 0 under the prior. One trivial way to guarantee
Bayes consistency is to have a prior that places all of its mass on a single point. The results
in this section are more interesting, however, because we will consider diffuse priors. In
the following theorem, GM, GN, and GQ refer to the models in figure 12.11. Although it is
non-standard to allow a test to return “don’t know”, we have allowed this for the follow-
ing reason. An algorithm such as the FCI algorithm performs a statistical test of zero cor-
relation, and returns 0 when the correlation is judged to be zero, and returns 2 (“don’t
know”) when the correlation is judged to be non-zero. This is because a zero correlation
entails a zero treatment effect except when there is a violation of faithfulness (which is of
Lebesgue measure 0), but a non-zero correlation is compatible with either a direct effect
of B on C (Model M), or with no direct effect and a common cause of of B and C (Model
Q). (Although for the sake of simplicity, in the following discussion we do not consider
all of the alternative models when B and C are the only variables measured, including the
other models would not substantially change any of the arguments or conclusions.)

Theorem 12.1: If Γ = {GM,GN,GQ}, θ = z, and θ0 = 0, then there is a Bayes consistent test
of θ = θ0 against θ ≠ θ0 with respect to any prior Pr such that 

are absolutely continuous with respect to Lebesgue measure. 

Proof. There is a pointwise consistent test η (see section 12.4.2) of zero correlations
against non-zero correlations. Let φ return 0 when η returns 0, and return 2 otherwise.
Because φ never returns 1, 

Because η is pointwise consistent, for every P for which ρP(B,C) ≠ 0, 

Hence 

ρP(B,C) = 0 is incompatible with Model Q, and in Model M, ρP(B,C) = 0 only when 
z = –x × y ≠ 0. Because is absolutely continuous with respect to Lebesgue

measure, Pr(z = –x × y = 0 | Gm) = 0. If 
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Otherwise, if 

In addition to Bayesian statistical tests, there are Bayesian versions of confidence intervals
and estimators for a zero treatment effect of B on C.

The prior plays an important role in determining the existence of Bayesian consistent
tests of θ = θ0 versus θ ≠ θ0. Whenever ρ(B,C) = 0 there are two different kinds of theo-
ries that explain this: either z = 0 (Model N), or z = –x × y ≠ 0 (Model M). Because both
of these theories make exactly the same prediction about the marginal population distri-
bution over B and C, no sample from the marginal population distribution can ever dis-
tinguish between them. Whatever the ratio of the probability of z = 0 to the probability of
z = –x × y ≠ 0 was prior to seeing the sample, it remains exactly the same after seeing the
sample. So the choice between the faithful explanation and the unfaithful explanation is
entirely based on the prior, and not on the evidence. The prior in this example assigned a
zero probability to z = –x × y ≠ 0, so Bayes consistent tests exist for the example. For a
different prior which assigned a non-zero prior probability to z = –x × y ≠ 0, there is no
Bayes consistent test of θ = θ0 versus θ ≠ θ0 with respect to that prior. 

More generally, with a prior over the parameters for each DAG that assigns zero prob-
ability to unfaithful distributions, there are Bayes consistent tests of whether or not the
DAG that generated a given sample is a member of a given O-Markov equivalence class.
Theorem 12.2 is a slight variation of results proved in Robins and Wasserman (1999). 

Theorem 12.2: Let Γ be a countable set of DAGs each of which contains at least the vari-
ables in O, and F an O-Markov equivalence class of DAGs that intersects Γ. Let H0 be “G
is a member of F ”, H1 be “G is not a member of F ”, and ΒG,U be the set of parameters β
such that γ (β,G) is unfaithful to G. If in ΠΓ, there are pointwise consistent tests of each
conditional independence relation among the variables in O, and for each G ∈ Γ,
Pr(ΒG,U|G) = 0, then there is a test φ of H0 against H1 that is Bayes consistent with respect
to Pr. 

Proof. Suppose there are pointwise consistent tests (see section 12.4.2) of conditional
independence relations among the observed variables. Then there is a pointwise consistent
test of a finite set of conditional independence relations, and hence a pointwise consistent
test φ of membership in F. (Each O-Markov equivalence class of DAGs entails a finite
unique set of conditional independence relations among the variables in O.) By reasoning
analogous to the proof of Theorem 12.4.1, in the large sample limit, the output of φ is
wrong in the large sample limit about membership in F only when the distribution gener-
ated by the true DAG is unfaithful to that DAG. But this has probability 0 by hypothesis.
Q.E.D.

Pr Pr Pr ( n( ) lim ( ) ( ) )H H H
n

n
n1 1 10 0 0= = =
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For both multinomial distributions, and Gaussian distributions, the Lebesgue measure
of the usual parameterizations that produce unfaithful distributions conditional on a given
G is 0. Hence for these distribution families and the usual priors (described in section
12.5.3) there is a Bayes consistent test. However, for a stronger sense of Bayes consistency
which requires stronger assumptions for success, see Robins and Wasserman 1999.

12.4.2 Pointwise Consistency

Definition 12.2: A test φ is pointwise consistent over a set of distributions ΠΓ0, ΠΓ1 if 
(i) for every P ∈ ΠΓ0, limn→ ∞

Pn(φn(O
n) = 1) = 0, and

(ii) for every P ∈ ΠΓ1, limn→ ∞
Pn(φn(O

n) = 0) = 0.

In constrast to Bayes consistency, this definition requires that with probability 1 the test
does not fail in the large sample limit over all pairs (β,G) ∈ ΒΓ. Failing on a non-trivial set
of measure 0 of pairs (β,G) ∈ ΒΓ is enough to rule out pointwise consistency. Suppose now
that Γ = {GM,GN,GQ} from figure 12.11, θ = z, θ0 = 0, and we test θ = θ0 against θ ≠ θ0.

Theorem 12.3: If Γ = {GM,GN,GQ} from figure 12.11, θ = z, and θ0 = 0, then there is no
pointwise consistent test of θ = θ0 against θ ≠ θ0 with respect to ΠΓ0 and ΠΓ1.

Proof. For every P ∈ ΠΓ0 with margin P(O) (from Model N or Model Q) there is a P' ∈
ΠΓ1 (from Model M) such that P(O) = P' (O), and vice-versa. Because any test φ depend
only on the marginal distribution, it follows that there is no pointwise consistent test of θ
= θ0 against θ ≠ θ0. Q.E.D.

However, if the intersection of ΠΓ0 and ΠΓ1 in the observed margin are distributions
where q (B,C) = 0, there is a pointwise consistent test of θ = θ0 against θ ≠ θ0. Since 
the distributions in ΠΓ1 with q (B,C) = 0 in the observed margin are just those corre-
sponding to the surface of unfaithful parameter values in Model M, if those distributions
are removed, there is a pointwise consistent test of test of θ = θ0 against θ ≠ θ0. Let ΩG be
the set of distributions that satisfy the Markov condition for G and are faithful to G. Let
ΩΓ = Let 

Theorem 12.4: If Γ = {GM,GN,GQ}, there is a pointwise consistent test of θ = θ0 against
θ ≠ θ0 with respect to ΩΓ0, ΩΓ1. 
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Proof. There is a pointwise consistent test η of zero correlation against non-zero correla-
tions. Let φ return 0 when η returns 0, and otherwise φ returns 2. Since φ never returns 1,
for every P ∈ ΩΓ0, P

n(φn(O
n) = 1) = 0. Under the assumption of faithfulness, ΩΓ1 contains

only distributions for which ρP(B,C) ≠ 0. Since for every P ∈ ΩΓ1, limn→∞ 
Pn(ηn(O

n) = 0) =
0, it follows that lim

n→∞ 
Pn(φn(O

n) = 0) = 0. Q.E.D.

Theorem 12.5: Let Γ be a countable set of DAGs each of which contains at least the vari-
ables in O, and F an O-Markov equivalence class of DAGs that intersects Γ. Let H0 be
“G is a member of F ”, and H1 be “G is not a member of F ”. If in ΩΓ, there are point-
wise consistent tests of each conditional independence relation among the variables in O,
there is a pointwise consistent test φ of H0 against H1 with respect to a set of distributions
ΩΓ0, ΩΓ1.

Proof. Under the assumption of faithfulness, a distribution P is compatible with a DAG 
G in O-Markov equivalence class F if and only if it satisfies a certain finite set of condi-
tional independence relations in the margin. No distribution from a DAG that is not in F
satisfies the same set of conditional independence relations in the margin. If there are
pointwise consistent tests of each conditional independence relation among the variables
in O, then there is a pointwise consistent test of the set of conditional independence rela-
tions that F entails, and hence a pointwise consistent test of membership in F. Q.E.D.

In the case of both multivariate Gaussian and multinomial distributions, there are point-
wise consistent tests of conditional independence, and hence pointwise consistent tests of
membership in an O-Markov equivalence class.

12.4.3 Uniform Consistency

,

that is the set of distributions in ΠΓ compatible with being more than δ away from θ0. (The
‘0’ in the subscript of ΠΓδ 0 refers to θ0, and the ‘δ ’ refers to the distance from θ0.)

Definition 12.3: A test φ of θ = θ0 against θ ≠ θ0 is uniformly consistent over a set of dis-
tributions ΠΓ0 and ΠΓδ0 if

Suppose for the moment that Γ = {GM,GN} from figure 12.11, θ0 is z = 0, and we test θ
= θ0 against θ ≠ θ0. Consider for the moment a φ that either returns 0 or 1. Since φ is a
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lim sup ( ( ) )

, lim sup ( ( ) )

n P

n
n

n

n P

n
n

n

P

P

→∞ ∈

→∞ ∈

= =

∀ > = =
Π

Π

Γ

Γ

0

0

1 0

0 0 0

φ

δ φ
δ

O

O

Let BΠ ΠΓ Γδ β θ θ δ γ β0 =    >{ : , | | & , }P G PGG G∈ ∃ ∈ − ( ) =∈U 0

322 Chapter 12



function of the observed data, at each sample size it divides samples into those judged to
come from H0, those judged to come from H1. For a test of a null hypothesis of inde-
pendence, those samples judged to come from H1 are in the rejection region, and those
judged to come from H0 are in the acceptance region. If φ is pointwise consistent, then for
any δ > 0, for any P ∈ ΩΓδ0 it is possible to find an n such that a sample of size n drawn
from P is very likely to fall into the rejection region for φn where n depends upon P.
However, uniform consistency is stronger than pointwise consistency because the defini-
tion requires that for every δ > 0, it is possible to find a single minimal n such that a sam-
ple of size n drawn from any P ∈ ΩΓδ0 is very likely to fall into the rejection region for φn.
The same idea generalizes to tests which allow “don’t know” as an answer.

If no uniformly consistent test of θ = θ0 exists, then there are no uniformly consistent
non-trivial confidence intervals around θ, and no uniformly consistent estimators of θ.
Uniform consistency is required in order to bound the error on θ (in the worst case over
all models.)

Robins, Scheines, Spirtes, and Wasserman (1999) show that even when the unfaithful
distributions are removed, for parameterizations of Γ = {GM,GN} in which A, B and C are
discrete, there is no non-trivial uniformly consistent test of θ = θ0 against θ ≠ θ0. The orig-
inal proof in Robins, Scheines, Spirtes, and Wasserman (1999) assumed that a test is non-
trivial in the stronger sense that in the limit it does not return “don’t know” for all of the
distributions in the null hypothesis, or all of the distributions in the alternative. The proof
has since been extended to cover the weaker sense of non-triviality proposed here. 

Even if the unfaithful distributions are ruled out by assumption, for Γ = {GM,GN,GQ},
there is no uniformly consistent test of θ = θ0 against θ ≠ θ0. Informally, there is no uni-
formly consistent test because even after the surface of unfaithful parameter values have
been removed from ΠΓ0, for any δ > 0, it is still possible to find a P ∈ ΩΓδ0 for which
ρP(B,C) is arbitrarily close to 0. Consider the sequence of rejection regions for a test φ that
is pointwise consistent with respect to ΩΓ0 ∪ ΩΓ1. For any given P ∈ ΩΓδ0, no matter how
close ρP(B,C) is to zero, as long as it is not equal to 0, it is possible to find an n such that
it is likely that a sample of size n falls into the rejection regions for φn. But there is always
some other P' ∈ ΩΓδ0 with ρP'(B,C) even closer to zero, such that it is not likely that a sam-
ple of size n from P' will fall into the rejection region for φn. Let 

Theorem 12.6: If Γ = {GM,GN,GQ}, θ = z, and θ0 = 0, there is no uniformly consistent test
of θ = θ0 against θ ≠ θ0 with respect to ΩΓ0 and ΩΓδ0.

Proof. Suppose that on the contrary there is a uniformly consistent test φ of θ = θ0 against
θ ≠ θ0. Because φ is non-trivial, either 
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(i) for some P ∈ ΩΓ lim
n→∞ 

Pn (ϕn(On) = 0) = 1, or

(ii) for some P ∈ ΩΓ lim
n→∞ 

Pn (ϕn(On) = 1) = 1. 

Suppose that (ii) is the case. If P is in ΩΓ0, ϕ is not uniformly consistent. Suppose then
that P is in ΩΓδ0. For every distribution P in ΩΓδ0 (from Model M) there is a distribution
D in ΩΓ0 (from Model Q) with the same marginal over O. Because φ is a function of just
the margin over O, Pn(φn(O

n) = 1) = Dn(φn(O
n) = 1). Hence in the large sample limit there

is a D ∈ ΩΓ0 such that Dn(φn(O
n) = 1) = 1, and φ is not uniformly consistent. 

Suppose now that (i) is the case. If P is in ΩΓδ 0, u is not uniformly consistent. Suppose
then that P is in ΩΓ0. It follows that P is compatible with z = 0. Consider first the case
where ρP(B,C) = r ≠ 0 (i.e. if z = 0, P is compatible with Model Q but not Model N). There
is a δ > 0 and some distribution D ∈ ΩΓδ0, such that ρD(B,C) = r, but D is compatible with
|z| > δ, (i.e. D is compatible with Model M, and has the same margin over B and C as P.)
Because φ is a function of just the margin over B and C, Pn(φn(O

n) = 0) = Dn(φn(O
n) = 0).

Hence there is a D ∈ ΩΓδ0 such that in the large sample limit Dn(φn(O
n) = 0) = 1, and hence

φ is not uniformly consistent. 
Consider finally the case where z = 0 and ρP(B,C) = 0 (i.e. P is from Model N.) There

is a δ > 0, and a distribution D ∈ ΠΓδ0 (compatible with Model M with a z value of z1,
where | z 1 | >δ ) and the same marginal as P over B and C. However, D is not faithful to
Model M, and hence not a member of ΩΓδ 0. But there is an interval around zero such that
for every value r in the interval, except for r = 0, there is some Dn ∈ ΩΓδ 0 compatible with
Model M and z = z1 such that ρDn(B,C ) = r. The Kullback-Liebler distance I(D̃ ; D̃n) equals
−1/2 log(1 – r 2), which is a continuous function of r (where D̃ is the marginal of D over
B and C ). Hence I(D̃n; D̃n

n) equals – n/2 log(1 – r2). For every event A in the sample space, 

By choosing r small enough, there are distributions in ΩΓδ 0 with marginals that are arbi-
trarily close to D̃ and compatible with Model M and z = z1. Hence for all n, and all ε/2,
there is a distribution Dn ∈ ΩΓδ 0 (and hence faithful to Model M with z = z1) such that
|D̃n(φn(O

n) = 0) – D̃n
n (φn(O

n) = 0)| < ε/2.
Because φ is a function of just the margin over B and C, Pn(φn(O

n) = 0) = P̃n(φn(O
n) = 0)

= D̃n(φn(O
n) = 0) ≤ D̃n

n (φn(O
n) = 0) + ε/2 = Dn

n (φn(O
n) = 0) + ε/2. Because Pn(φn(O

n) = 0)
converges to It follows then that
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Since each Dn ∈ ΠΩδ0, it follows that 

and hence φ is not uniformly consistent. Q.E.D. 

However if instead of assuming only that there are no unfaithful parameter values of
Model M, suppose we assume that there are no “close to unfaithful” parameter values of
M (and hence that there are no “close to unfaithful” distributions to M.) For example, in
Model M, for any given fixed j > 0, one could allow only those parameters such that |z +
(x × y)| > j|z|, i.e. those parameter values for which the correlation is greater than a fixed
percentage of the size of the treatment effect of B on C. If j were 0.001, the assumption
means that the correlation is a least 1/1000 the size of the treatment effect of B on C. For
a fixed j, call the set of parameter values such that |z + (x × y)| < j|z| “close to unfaith-
ful”. The assumption that parameter values are not close to unfaithful is the assumption
that small population correlations guarantee small treatment effects.

Let HG be the set of distributions that satisfy the Markov condition for G and are not
close to unfaithful to G, for some fixed j, and 

and

(i.e. H��0 is the set of distributions that satisfy the Markov Condition, are not close to
unfaithful to G, and for which h is more than d from h0.

Theorem 12.7: If Γ = {GM,GN,GQ}, there is a uniformly consistent test of θ = θ0 against
θ ≠ θ0 with respect to HΓ0 and HΓδ0.

Proof. There is a uniformly consistent test η of ρ(B,C) = 0 against ρ(B,C) ≠ 0. Let φ re-
turn 0 when η returns 0, and let φ return 2 otherwise. Because φ never returns 1, for all
P ∈ ΓΓ0, P

n(un(O
n) = 1) = 0. Let ΤΓδ0 = .{ ( , ) | }P B CGG P∈∈ ΠΓ : |  >U ρ δ
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By the assumption of no “close to unfaithful” parameter values, if the absolute value of
the treatment effect of B on C is greater than δ then the absolute value of the correlation
of B and C is greater than κδ. For every distribution P in HΓδ0, P is in ΤΓ(κδ)0. Because
φn(O

n) = 0 if and only if ηn(O
n) = 0, it follows that

)0

0

0, lim sup ( ( ) 0) 0

0, lim sup ( ( ) 0) 0

n n
n

n P

n n
n

n P

P

P

κδ

δ

κδ η

δ φ
Γ(

Γ

→∞ ∈Τ

→∞ ∈Γ

∀ > = = ⇒

∀ > = =

O

O

The antecedent is true because η is a uniformly consistent test of zero correlation. Hence
φ is a uniformly consistent test of θ = θ0 against θ ≠ θ0 with respect to HΓ0 and HΓδ0.
Q.E.D.

A zero treatment effect of B on C is a special case of a treatment effect that can in some
cases be calculated from the Prediction Algorithm. Extending results about the existence
of uniformly consistent tests of the size of treatment effects to all treatment effects that
can be calculated from the Prediction Algorithm would require generalizing the concept
of “close to unfaithful parameters” and generalizing the distance metric used in theorem
12.4.2. We conjecture that there are natural generalizations such that there is a uniformly
consistent test of every treatment effect that can be calculated from the Prediction
Algorithm, under the assumption of no “close to unfaithful” distributions. Similarly,
extending results about uniform consistency to tests of membership in a given O-Markov
equivalence class requires generalizing the concept of “close to unfaithful” to conditional
independencies, and a metric measuring the distance between a pair (β,G) and an O-
Markov equivalence class. We conjecture that there is a natural generalization of “close
to unfaithful” and a natural metric under which there is a uniformly consistent test of
membership in a given O-Markov equivalence class.

12.4.3 Interval Testing
Returning to Model M of figure 12.11, for a fixed ε > 0 let H0 be “|z| ≤ ε”, and H1 be “|z| >
ε”. If Pr(ΒΓ) is a prior that assigns measure 0 to the close to unfaithful parameter values,
then there is a test of H0 against H1 that is Bayes consistent with respect to Pr. Similarly,
there are tests that are pointwise consistent tests with respect to respect to HΓ0 ∪ HΓ1

(where HΓ0 is the set of distributions in HΓ compatible with H0, and HΓ1 is the set of
distributions in HΓ compatible with H1), and uniformly consistent with respect to HΓ0 and
HΓδ0 (where HΓδ0 is the set of distributions in HΓ at least a distance δ from the null
hypothesis.) The proof of the existence of the uniformly consistent test is analogous to
the proof of Error! Reference source not found. and the existence of the pointwise
consistent test and the Bayes consistent test follow from the existence of the uniformly
consistent tests
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12.4.5 Other Kinds of Background Knowledge
In the examples of figure 12.11, the background knowledge fixed a time order, but there
was a possibility of unmeasured common causes. Consistency questions analogous to the
ones considered in the previous sections can be raised for other kinds of background
knowledge. For example, one kind of background knowledge is that there is no given
time order, and also no unmeasured common causes; another is that there is a given time
order but there are no unmeasured common causes. We conjecture that there is in general
no non-trivial uniformly consistent test of membership in a Markov equivalence class,
given that there are no latents, but not given a time. We conjecture that given a time
order, no latent variables, and no determinism, that there is a non-trivial uniformly
consistent test of membership in a Markov equivalence class.

12.4.6 Conclusions to Be Drawn from the Negative Results
We emphasize once more that the negative results described in this section apply to any
method, not just the methods described in this book. Even given time order, without
assuming faithfulness, or additional background knowledge such as that available for
randomized clinical trials, there are no pointwise or uniformly consistent tests of zero
treatment effect of B on C. It follows that there is no (non-trivial) uniformly consistent
confidence interval for the size of the treatment effect of B on C, and no uniformly
consistent estimator of the size of the treatment effect. No kind of search (constraint-
based, greedy, Monte Carlo, simulated annealing, genetic, etc.), no kind of model
selection based on any kind of score (posterior probabilities, BIC, AIC, MDL, etc.), no
kind of model averaging, and no kind of test (χ2 test, Fisher’s exact test, t-tests, z-
transformations), can get around these basic limitations. Nor can any informal method
(using human judgements or “insight”) escape these basic limitations.

What conclusions should we draw from the negative results? There are typically four
strategies to follow when it is shown that no method can solve a given problem in a given
sense of reliability (Kelly 1996): (i) strengthen the evidence; (ii) strengthen the
background assumptions; (iii) weaken the sense of success required; or (iv) give up. We
will discuss each of these strategies in turn.

One way of adding to the evidence is to provide the results of randomized trials.
Certainly this is preferable when possible, but in most human studies and in psychology,
randomized trials are not possible for practical, ethical, or theoretical reasons.

We have already seen several ways in which adding background assumptions can lead
to success. Thus, if one adds the background assumption that there are no almost
unfaithful distributions there are uniformly consistent tests of zero treatment effects.

We have also seen several ways of weakening the sense of success required, e.g.
settling for Bayes consistency instead of pointwise consistency, or pointwise consistency
instead of uniform consistency.

Another way of weakening the sense of success is to provide tests that are conditional
on the strength of the association owing to unmeasured common causes. (See, e.g.,
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Rosenbaum 1995. This method also applies to many cases where some of the algorithms
proposed in this book simply say “don’t know.”) There are good reasons to carry out such
sensitivity analyses; for example, the analysis clearly separates what are the assumptions
and what role the data is playing in the analysis. But while this method makes clear what
assumptions about the strength of confounding are needed for particular conclusions
about the size of the treatment effect, if one is not willing to make these assumptions,
then conclusions about the size of the treatment effect cannot be drawn. Without
endorsing one or another of these additional background assumptions, a decision maker
cannot make decisions that are uniformly consistent on the basis of such sensitivity
analyses.

A third way of weakening the sense of success required is to calculate bounds on the
size of the treatment effect (see Manski 1995). We have already seen however, that in the
example of figure 12.11, if ρ(B,C) = 0, then there are no (non-trivial) bounds on the size
of the treatment effect z. However, if ρ(B,C) = a where a is positive, then there are non-
trivial bounds on how negative the treatment effect might be. Unfortunately, without
further assumptions, regardless of how large ρ(B,C) might be, the bounds always include
zero as a possibility, and if the correlation is not 1, the bounds will always include some
negative treatment effects. Although there are interesting and useful bounds that can be
obtained under a variety of assumptions, without these further assumptions, the bounds
are generally not tight enough to be useful in practical decision making.

If someone insists on uniformly consistent tests as the minimally acceptable sense of
success, is unwilling to accept the assumption that there are no nearly unfaithful
distributions, and is unable to provide appropriate randomized trials, then that person
should give up on the enterprise of inferring causal relations from observational data.
“Giving up” does not mean substituting informal methods, or “human judgement” for
automated techniques. Informal methods and “human judgement” are equally as subject
to the limitations of the negative results as are formal or automated methods. “Giving up”
means one should simply stop collecting data for such purposes, and stop looking at data
in an attempt to make such inferences. This would involve halting most causal studies in
epidemiology, sociology, psychology, and economics.

Is “giving up” the right policy? We still have to make decisions regarding health
policy, social policy, economic policy, and so on. The question is whether, because we
cannot obtain uniformly consistent tests without making an assumption such as “no
nearly unfaithful distributions”, we are better off giving up collecting evidence all
together, or applying methods that do not satisfy strong consistency requirements, but do
satisfy weaker consistency requirements. We believe the latter.

This argument is not intended to show that any of the automated search algorithms
that we have described are ultimately going to turn out to be useful tools. That question
depends upon their performance on real data sets at real sample sizes, where the
assumptions made are not going to hold exactly. It is intended to suggest however, that
the non-existence of algorithms that satisfy strong consistency requirements making only
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weak assumptions about background knowledge is not by itself good reason to give up all
attempts to draw causal inferences from observational data.

12.5 Search
Sections 12.5.1 through 12.5.6 originally appeared in a slightly altered form in
Heckerman, Meek, and Cooper 1999, which contains some additional details.1 Sections
12.5.1 and 12.5.2 review the Bayesian approach to model averaging and model selection
and its applications to the discovery of causal DAG models. Section 12.5.3 discusses
methods for assigning priors to model structures and their parameters. Section 12.5.4
compares the Bayesian and constraint-based methods for causal discovery with complete
data, highlighting some of the advantages of the Bayesian approach. Section 12.5.5 notes
computational difficulties associated with the Bayesian approach when data sets are
incomplete—for example, when some variables are hidden—and discusses more efficient
approximation methods including Monte-Carlo and asymptotic approximations. Section
12.5.6 discusses open problems in searching over models with latent variables, section
12.5.7 discusses search over equivalence classes of latent variable models, and section
12.5.8 discusses search over cyclic directed graphs. Section 12.5.9 describes some other
recent approaches to search, and section 12.5.10 discusses what attitude should be
adopted toward the output of a causal search algorithm. Other overviews of learning in
Bayesian networks include Heckerman 1998, Buntine 1996, and Jordan 1998.

12.5.1 The Bayesian Approach
In a constraint-based approach to the discovery of causal DAG models, we2 use data to
make categorical decisions about whether or not particular conditional-independence
constraints hold. We then piece these decisions together by looking for those sets of
causal structures that are consistent with the constraints. To do so, we use the Causal
Markov condition (discussed in chapter 3) to link lack of cause with conditional
independence.

In the Bayesian approach, we also use the Causal Markov condition to look for
structures that fit conditional-independence constraints. In contrast to constraint-based
methods, however, we use data to make probabilistic inferences about conditional-
independence constraints. For example, rather than conclude categorically that, given
data, variables X and Y are independent, we conclude that these variables are independent
with some probability. This probability encodes our uncertainty about the presence or
absence of independence. Furthermore, because the Bayesian approach uses a
probabilistic framework, we no longer need to make decisions about individual
independence facts. Rather, we compute the probability that the independencies
associated with an entire causal structure are true. Then, using such probabilities, we can
average a particular hypothesis of interest—such as, “Does X cause Y?’“—over all
possible causal structures.
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Let us examine the Bayesian approach in some detail. Suppose our problem domain
consists of variables X = {X1,…,Xn}. In addition, suppose that we have some data D =
{x1,…,xN}, which is a random sample from some unknown probability distribution for X.
For the moment, we assume that each case x in D consists of an observation of all the
variables in X. We assume that the unknown probability distribution can be encoded by
some causal model with structure m. We assume that the structure of this causal model is
a DAG that encodes conditional independencies via the Causal Markov condition. We are
uncertain about the structure and parameters of the model; and—using the Bayesian
approach—we encode this uncertainty using probability. In particular, we define a
discrete variable M whose states m correspond to the possible true models, and encode
our uncertainty about M with the probability distribution p(m). In addition, for each
model structure m������������������
�
������������
����������� m, whose values m

������	���� ��� ����	������� ��
��	�����������/����������
��
���������� ���
�� m using
the (smooth) probability density function p( m|m). The assumption that p( m|m) is a
smooth probability density function entails (measure 1) the assumption of faithfulness
employed in constraint-based methods for causal discovery (Meek 1995).

Given random sample D, we compute the posterior distributions for each m and m

using Bayes’s rule:

'
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θ θθ (12.2)

where

( ) ( | , ) ( | )m m mp D p D p d= ∫| m m mθ θ θ (12.3)

is called the marginal likelihood. Given some hypothesis of interest, h, we determine the
probability that h is true given data D by averaging over all possible models and their
parameters:

( | ) ( | ) ( | , )
m

p h D p D p h D= ∑ m m (12.4)

( | , ) ( | , ) ( | , )m m mp h D p h p D d= ∫m m mθ θ θ (12.5)

For example, h may be the event that the next case XN+1 is observed in configuration xN+1.
In this situation, we obtain
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1 1( | ) ( | ) ( | , ) ( | , )N N m m m
m

p D p D p p D d+ += ∑ ∫x m x m mθ θ θ (12.6)

where 
1( | , )N mp +x mθ  is the likelihood for the model. As another example, h may be the

hypothesis that “X causes Y.” We consider such a situation in detail in section 12.5.4.
Under certain assumptions, these computations can be done efficiently and in closed

form. One assumption is that the likelihood term ( | , )mp x mθ  factors as follows:

1

( | , ) ( | , , )
n

m i i i
i

p p x
=

= ∏x m pa mθ θ (12.7)

where each local likelihood ( | , , )i i ip x pa mθ  is in the exponential family. In this
expression, pai denotes the configuration of the variables corresponding to parents of
node xi, and i denotes the set of parameters associated with the local likelihood for
variable xi. One example of such a factorization occurs when each variable Xi ∈ X is
discrete, having ri possible values and each local likelihood is a collection of
multinomial distributions, one distribution for each configuration of Pai —that is,

( | , , ) 0k j
i i i ijkp x θ= >pa mθ (12.8)
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pa pa  denote the configurations of Pai and
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are the parameters. The parameter ij1 is given by

2
1 ir

ijkk
θ

=
− ∑

We shall use this example to illustrate many of the concepts in this paper. For
convenience, we define the vector of parameters 

2( ,..., )
iij ij ijrθ θ θ= for all i and j. A second

assumption for efficient computation is that the parameters are mutually independent. For
example, given the discrete-multinomial likelihoods, we assume that the parameter
vectors ij are mutually independent.

Let us examine the consequences of these assumptions for our multinomial example.
Given a random sample D that contains no missing observations, the parameters remain
independent:

1 1

( , ) ( | , )
iqn

m ij
i j

p D p Dθ
= =

= ∏∏| m mθ  (12.9)
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Thus, we can update each vector of parameters ij independently. Assuming each vector

ij has a conjugate prior3—namely, a Dirichlet distribution Dir( ij| ij1,…,
iijrα )—we obtain

the posterior distribution for the parameters

1 1( , ) Dir( | ,..., )
i iij ij ij ij ijr ijrp D N Nα α= + +| mθ θ (12.10)

where Nijk is the number of cases in D in which Xi = and j
i i=Pa pa . Note that the

collection of counts Nijk are sufficient statistics of the data for the model m. In addition,
we obtain the marginal likelihood (derived in Cooper and Herskovits 1992):

1 1 1

( ) ( )
( | )

( ) ( )

i iq rn
ij ijk ijk

i j kij ij ijk

N
p D

N

α α
α α= = =

Γ Γ +
=

Γ + Γ∏∏ ∏m (12.11)

where

1 1

and
i ir r

ij ijk ij ijk
k k

N Nα α
= =

= =∑ ∑

We then use equation (12.1) and equation (12.11) to compute the posterior probabilities
p(m|D). Cooper and Yoo (1999) show that equation (12.11) also applies to a mixture of
experimental and observational data, if Nijk counts only those cases where Xi has not been
experimentally manipulated.

As a simple illustration of these ideas, suppose our hypothesis of interest is the
outcome of XN+1, the next case to be seen after D. Also suppose that, for each possible
outcome xN+1 of XN+1, the value of Xi is k

ix  and the configuration of Pai is , where k
and j depend on i. To compute p(xN+1|D), we first average over our uncertainty about the
parameters. Using equations (12.2), (12.7.), and (12.8), we obtain

1
1

( | , ) ( | , )
n

N ijk m m
i

p D p D dθ+
=

 =  
 
∏∫x m mθ θ

Because parameters remain independent given D, we get

1
1

( | , ) ( | , )
n

N ijk ij ij
i

p D p D dθ+
=

= ∏∫x m mθ θ

Because each integral in this product is the expectation of a Dirichlet distribution, we
have

1
1

( | , )
n

ijk ijk
N

i ij ij

N
p D

N

α
α+

=

+
=

+∏x m (12.12)

( | , )m mD dmθ θ
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Finally, we average this expression for p(xN+1|D,m) over the possible models using
equation (12.5) to obtain p(xN+1|D).

12.5.2 Model Selection and Search
The full Bayesian approach is often impractical, even under the simplifying assumptions
that we have described. One computation bottleneck in the full Bayesian approach is
averaging over all models in equation (12.4). If we consider causal models with n
variables, the number of possible structure hypotheses is at least exponential in n.
Consequently, in situations where we can not exclude almost all of these hypotheses, the
approach is intractable. Statisticians, who have been confronted by this problem for
decades in the context of other types of models, use two approaches to address this
problem: model selection and selective model averaging. The former approach is to select
a “good” model (i.e., structure hypothesis) from among all possible models, and use that
model as if it were the correct model. The latter approach is to select a manageable
number of good models from among all possible models and pretend that these models
are exhaustive. These related approaches raise several important questions. In particular,
do these approaches yield accurate results when applied to causal structures? If so, how
do we search for good models?

The question of accuracy is difficult to answer in theory. Nonetheless, several
researchers have shown experimentally that the selection of a single model that is likely a
posteriori often yields accurate predictions (Cooper and Herskovits 1992; Aliferis and
Cooper 1994; Heckerman et al. 1995) and that selective model averaging using Monte-
Carlo methods can sometimes be efficient and yield even better predictions (Herskovits
1991; Madigan et al. 1996).

Chickering (1996a) has shown that for certain classes of prior distributions the
problem of finding the model with the highest posterior is NP-Complete. However, a
number of researchers have demonstrated that greedy search methods over a search space
of DAGs work well. Also, constraint-based methods have been used as a first-step
heuristic search for the most likely causal model (Singh and Valtorta 1993; Spirtes and
Meek 1995). In addition, performing greedy searches in a space where Markov
equivalent models (see definition below) are represented by a single model has improved
performance (Spirtes and Meek 1995; Chickering 1996).

12.5.3 Priors
To compute the relative posterior probability of a model structure, we must assess the
structure prior p(m) and the parameter priors p( m|m). Unfortunately, when many model
structures are possible, these assessments will be intractable. Nonetheless, under certain
assumptions, we can derive the structure and parameter priors for many model structures
from a manageable number of direct assessments.
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12.5.3.1 Priors for Model Parameters
First, let us consider the assessment of priors for the parameters of model structures. We
consider the approach of Heckerman et al. (1995) who address the case where the local
likelihoods are multinomial distributions and the assumption of parameter independence
holds.

Their approach is based on two key concepts: Markov equivalence and distribution
equivalence. Recall that two model structures for X are Markov equivalent
(synonymous with faithfully indistinguishable) if they can represent the same set of
conditional-independence assertions for X (Verma and Pearl 1990). For example, given
X = {X,Y,Z}, the model structures X → Y → Z, X ← Y → Z, and X ← Y ← Z, represent
only the independence assertion that X and Z are conditionally independent given Y.
Consequently, these model structures are equivalent. Another example of Markov
equivalence is the set of complete model structures on X; a complete model is one that
has no missing edge and which encodes no assertion of conditional independence. When
X contains n variables, there are n! possible complete model structures; one model
structure for each possible ordering of the variables. All complete model structures for
p(x) are Markov equivalent. In general, two model structures are Markov equivalent if
and only if they have the same structure ignoring arc directions and the same unshielded
colliders (Verma and Pearl 1990; also see chapter 4).

The concept of distribution equivalence is closely related to that of Markov
equivalence. Suppose that all causal models for X under consideration have local
likelihoods in the family �. This is not a restriction, per se, because � can be a large
family. We say that two model structures m1 and m2 for X are distribution equivalent
with respect to (wrt) � if they represent the same joint probability distributions for X—
that is, if, for every m1, there exists a m2 such that p(x| m1,m1) = p(x| m2,m2), and vice
versa. (This is a special case of O-distribution equivalence defined in section 12.2, where
O is the entire set of variables in the DAG.)

Distribution equivalence wrt some � implies Markov equivalence, but the converse
does not hold. For example, when � is the family of generalized linear-regression
models, the complete model structures for n ≥ 3 variables do not represent the same sets
of distributions. Nonetheless, there are families �—for example, multinomial
distributions and linear-regression models with Gaussian noise—where Markov
equivalence implies distribution equivalence wrt � (Heckerman and Geiger 1996). The
notion of distribution equivalence is important, because if two model structures m1 and
m2 are distribution equivalent wrt to a given �, then it is often reasonable to expect that
data can not help to discriminate them. That is, we expect p(D|m1) = p(D|m2) for any data
set D. Heckerman et al. (1995) call this property likelihood equivalence. Note that the
constraint-based approach also does not discriminate among Markov equivalent
structures.

Now let us return to the main issue of this section: the derivation of priors from a
manageable number of assessments. Geiger and Heckerman (1995) show that the
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assumptions of parameter independence and likelihood equivalence imply that the
parameters for any complete model structure mc must have a Dirichlet distribution with
constraints on the hyperparameters given by

( , | )k j
ijk i i cp xα α= pa m (12.13)

where  is the user’s equivalent sample size,4 and

( , | )k j
i i cp x pa m

is computed from the user’s joint probability distribution p(x| mc). This result is rather
remarkable, as the two assumptions leading to the constrained Dirichlet solution are
qualitative.

To determine the priors for parameters of incomplete model structures, Heckerman et
al. (1995) use the assumption of parameter modularity, which says that if Xi has the same
parents in model structures m1 and m2, then

1 2( | ) ( | )ij ijp pθ θ=m m

for j = 1,…,qi. They call this property parameter modularity, because it says that the
distributions for parameters ij depend only on the structure of the model that is local to
variable Xi—namely, Xi and its parents.

Given the assumptions of parameter modularity and parameter independence, it is a
simple matter to construct priors for the parameters of an arbitrary model structure given
the priors on complete model structures. In particular, given parameter independence, we
construct the priors for the parameters of each node separately. Furthermore, if node Xi

has parents Pai in the given model structure, we identify a complete model structure
where Xi has these parents, and use equation (12.13) and parameter modularity to
determine the priors for this node. The result is that all terms ijk for all model structures
are determined by equation (12.13). Thus, from the assessments α and p(x| mc), we can
derive the parameter priors for all possible model structures. We can assess p(x| mc) by
constructing a causal model called a prior model, that encodes this joint distribution.
Heckerman et al. (1995) discuss the construction of this model.

12.5.3.2 Priors for Model Structures
Now, let us consider the assessment of priors on model structures. The simplest approach
for assigning priors to model structures is to assume that every structure is equally likely.
Of course, this assumption is typically inaccurate and used only for the sake of con-
venience. A simple refinement of this approach is to ask the user to exclude various struc-
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tures (perhaps based on judgments of cause and effect), and then impose a uniform prior
on the remaining structures.

Buntine (1991) describes a set of assumptions that leads to a richer yet efficient
approach for assigning priors. The first assumption is that the variables can be ordered
(e.g., through a knowledge of time precedence). The second assumption is that the
presence or absence of possible arcs are mutually independent. Given these assumptions,
n(n–1)/2 probability assessments (one for each possible arc in an ordering) determines the
prior probability of every possible model structures. One extension to this approach is to
allow for multiple possible orderings. One simplification is to assume that the probability
that an arc is absent or present is independent of the specific arc in question. In this case,
only one probability assessment is required.

An alternative approach, described by Heckerman et al. (1995) uses a prior model.
The basic idea is to penalize the prior probability of any structure according to some
measure of deviation between that structure and the prior model. Heckerman et al. (1995)
suggest one reasonable measure of deviation.

Madigan et al. (1995) give yet another approach that makes use of imaginary data
from a domain expert. In their approach, a computer program helps the user create a
hypothetical set of complete data. Then, using techniques such as those in section 12.5.1,
they compute the posterior probabilities of model structures given this data, assuming the
prior probabilities of structures are uniform. Finally, they use these posterior probabilities
as priors for the analysis of the real data.

12.5.4 Example
In this section, we provide a simple example that applies Bayesian model averaging and
Bayesian model selection to the problem of causal discovery. In addition, we compare
these methods with a constraint-based approach.

Let us consider a simple domain containing three binary variables X, Y, and Z. Let h
denote the hypothesis that variable X causally influences variable Z. For brevity, we will
sometimes state h as “X causes Z.”

First, let us consider Bayesian model averaging. In this approach, we use equation
(12.4) to compute the probability that h is true given data D. Because our models are
causal, the expression p(D|m) reduces to an index function that is true when m contains
an arc from node X to node Z. Thus, the right-hand-side of equation 12.4 reduces to

''

( '' | )
m

p D∑ m

where the sum is taken over all causal models m  that contain an arc from X to Z. For our
three-variable domain, there are 25 possible causal models and, of these, there are eight
models containing an arc from X to Z.

To compute p(m|D), we apply equation (12.1), where the sum over m  is taken over
the 25 models just mentioned. We assume a uniform prior distribution over the 25
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possible models, so that p(m ) = 1/25 for every m . We use equation (12.11) to compute
the marginal likelihood p(D |m). In applying equation (12.11), we use the prior given by

ijk = 1/riqi, which we obtain from equation (12.13) using a uniform distribution for p(x|
mc) and an equivalent sample α = 1. Because this equivalent sample size is small, the
data strongly influences the posterior probabilities for h that we derive
.

Figure 12.13. A causal model used to generate data

To generate data, we first selected the model structure X → Z ← Y and randomly
sampled its probabilities from a uniform distribution. The resulting model is shown in
figure 12.13. Next, we sampled data from the model according to its joint distribution. As
we sampled the data, we kept a running total of the number cases seen in each possible
configuration of {X,Y,Z}. These counts are sufficient statistics of the data for any causal
model m. These statistics are shown in table 12.1 for the first 150, 250, 500, 1000, and
2000 cases in the data set.

Number of                                     Sufficient Statistics
cases

xyz

150 5 36 38 15 7 16 23 10

250 10 60 51 27 15 25 41 21

500 23 121 103 67 19 44 79 44

1000 44 242 222 152 51 80 134 75

2000 88 476 431 311 105 180 264 145

Table 12.1

X Y

Z

p (X = true) = 0.34

p (Y = true) = 0.57

p (Z = true | X = true, Y = true) = 0.36

p (Z = true | X = true, Y = false) = 0.64

p (Z = true | X = false, Y = true) = 0.42

p (Z = true | X = false, Y = false) = 0.81

xyzxyzxyzxyzxyzxyzxyz xyz
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number
of cases

p(“X causes Z”|D) output of Bayesian
model selection

output of PC
algorithm

150 0.036 X and Z unrelated X and Z unrelated

250 0.123 X and Z unrelated X causes Z

500 0.141 X causes  Z or Z causes X

X and  Z unrelated
(with inconsistency)

1000 0.593 X causes Z X causes Z

2000 0.926 X causes Z X causes Z

Table 12.2

The second column in table 12.2 shows the results of applying equation (12.4) under
the assumptions stated above for the first N cases in the data set. When N = 0, the data set
is empty, in which case probability of hypothesis h is just the prior probability of “X
causes Z”: 8/25=0.32. Table 12.2 shows that as the number of cases in the database
increases, the probability that “X causes Z” increases monotonically as the number of
cases increases. Although not shown, the probability increases toward 1 as the number of
cases increases beyond 2000. Column 3 in table 12.2 shows the results of applying
Bayesian model selection. Here, we list the causal relationship(s) between X and Z found
in the model or models with the highest posterior probability p(m|D). For example, when
N = 500, there are three models that have the highest posterior probability. Two of the
models have Z as a cause of X; and one has X as a cause of Z.

Column 4 in table 12.2 shows the results of applying the PC constraint-based causal
discovery algorithm, which is part of the Tetrad II system (Scheines et al. 1994). PC is
designed to discover causal relationships that are expressed using DAGs.5 We applied PC
using its default settings, which include a statistical significance level of 0.05. Note that,
for N = 500, the PC algorithm detected an inconsistency. In particular, the independence
tests yielded (1) X and Z are dependent, (2) Y and Z are dependent, (3) X and Y are
independent given Z, and (4) X and Z are independent given Y. These relationships are
not consistent with the assumption underlying the PC algorithm that the only
independence facts found to hold in the sample are those entailed by the Causal Markov
condition applied to the generating model. In general, inconsistencies may arise due to
the use of thresholds in the independence tests.

There are several weaknesses of the Bayesian-model-selection and constraint-
based approaches illustrated by our results. One is that the output is categorical—there is
no indication of the strength of the conclusion. Another is that the conclusions may be
incorrect in that they disagree with the generative model. Model averaging (column 2)
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does not suffer from these weaknesses, because it indicates the strength of a causal
hypothesis.

Although not illustrated here, another weakness of constraint-based approaches is that
their output depends on the threshold used in independence tests. For causal conclusions
to be correct asymptotically, the threshold must be adjusted as a function of sample size
(N). In practice, however, it is unclear what this function should be.

Finally, we note that there are practical problems with model averaging. In particular,
the domain can be so large that there are too many models over which to average. In such
situations, the exact probabilities of causal hypotheses can not be calculated. However,
we can use selective model averaging to derive approximate posterior probabilities, and
consequently give some indication of the strength of causal hypotheses.

12.5.5 Methods for Incomplete Data and Hidden Variables
Among the assumptions that we described in section 12.5.1, the one that is most often
violated is the assumption that all variables are observed in every case. In this section, we
examine Bayesian methods for relaxing this assumption.

An important distinction for this discussion is that of hidden versus observable
variable. A hidden variable is one that is unknown in all cases. An observable variable is
one that is known in some (but not necessarily all) of the cases. We note that constraint-
based and Bayesian methods differ significantly in the way that they represent missing
data. Whereas constraint-based methods typically throw out cases that contain an
observable variable with a missing value, Bayesian methods do not.

Another important distinction concerning missing data is whether or not the absence
of an observation is dependent on the actual states of the variables. For example, a
missing datum in a drug study may indicate that a patient became too sick—perhaps due
to the side effects of the drug—to continue in the study. In contrast, if a variable is
hidden, then the absence of this data is independent of state. Although Bayesian methods
and graphical models are suited to the analysis of both situations, methods for handling
missing data where absence is independent of state are simpler than those where absence
and state are dependent. Here, we concentrate on the simpler situation. Readers interested
in the more complicated case should see Rubin 1978, Robins 1986, Cooper 1995, and
Spirtes et al. 1995, 1999.

Continuing with our example using discrete-multinomial likelihoods, suppose we
observe a single incomplete case. Let Y ⊂ X and Z =X\Y denote the observed and
unobserved variables in the case, respectively. Under the assumption of parameter
independence, we can compute the posterior distribution of ij for model structure m as
follows:

Y ⊂ X and Z = X \Y
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(12.14)

(See Spiegelhalter and Lauritzen 1990, for a derivation.) Each term

( | , , )k j
ij i ip x pa mθ

in equation (12.14) is a Dirichlet distribution. Thus, unless both Xi and all the variables in
Pai are observed in case Y, the posterior distribution of ij will be a linear combination of
Dirichlet distributions—that is, a Dirichlet mixture with mixing coefficients

(1 ( | , )) and ( , | , ), 1,...,j k j
i i i ip p x k r− =pa y m pa y m

When we observe a second incomplete case, some or all of the Dirichlet components in
equation (12.14) will again split into Dirichlet mixtures. That is, the posterior distribution
for ij will become a mixture of Dirichlet mixtures. As we continue to observe incomplete
cases, each missing values for Z, the posterior distribution for ij will contain a number of
components that is exponential in the number of cases. In general, for any interesting set
of local likelihoods and priors, the exact computation of the posterior distribution for m

will be intractable. Thus, we require an approximation for incomplete data.

12.5.5.1 Monte-Carlo Methods
One class of approximations is based on Monte-Carlo or sampling methods. These
approximations can be extremely accurate, provided one is willing to wait long enough
for the computations to converge.

In this section, we discuss one of many Monte-Carlo methods known as Gibbs
sampling, introduced by Geman and Geman (1984). Given variables X = {X1,…,Xn} with
some joint distribution p(x), we can use a Gibbs sampler to approximate the expectation
of a function f(x), with respect to p(x), as follows. First, we choose an initial state for
each of the variables in X somehow (e.g., at random). Next, we pick some variable Xi,
unassign its current state, and compute its probability distribution given the states of the
other n–1 variables. Then, we sample a state for Xi based on this probability distribution,
and compute f(x). Finally, we iterate the previous two steps, keeping track of the average
value of f(x). In the limit, as the number of cases approach infinity, this average is equal
to Ep(x)(f(x)) provided two conditions are met. First, the Gibbs sampler must be
irreducible. That is, the probability distribution p(x) must be such that we can eventually
sample any possible configuration of X given any possible initial configuration of X. For
example, if p(x) contains no zero probabilities, then the Gibbs sampler will be

m

( | , , )k j
ij i ip x pa mθ
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irreducible. Second, each Xi must be chosen infinitely often. In practice, an algorithm for
deterministically rotating through the variables is typically used. Introductions to Gibbs
sampling and other Monte-Carlo methods—including methods for initialization and a
discussion of convergence—are given by Neal (1993) and Madigan and York (1995).

To illustrate Gibbs sampling, let us approximate the probability density p( m|D,m) for
some particular configuration of m, given an incomplete data set D = {y1,…,yN) and a
causal model for discrete variables with independent Dirichlet priors. To approximate
p( m|D,m), we first initialize the states of the unobserved variables in each case
somehow. As a result, we have a complete random sample Dc. Second, we choose some
variable Xil (variable Xi in case l) that is not observed in the original random sample D,
and reassign its state according to the probability distribution

''

( ' , \ | )
( ’ | \ , )

( ’’ , \ | )
il

il c il
il c il

il c il
x

p x D x
p x D x

p x D x
=

∑
m

m
m

where Dc\xil denotes the data set Dc with observation xil removed, and the sum in the
denominator runs over all states of variable Xil. As we have seen, the terms in the
numerator and denominator can be computed efficiently (see equation (12.11)). Third, we
repeat this reassignment for all unobserved variables in D, producing a new complete
random sample D c. Fourth, we compute the posterior density p( m|D c,m) as described in
equations (12.9) and (12.10). Finally, we iterate the previous three steps, and use the
average of p( m|D c,m) as our approximation.

Monte-Carlo approximations are also useful for computing the marginal
likelihood given incomplete data. One Monte-Carlo approach, described by Chib (1995)
and Raftery (1996), uses Bayes’s theorem:

( ) ( | , )
( )

( , )
m m

m

p p D
p D

p D
= | m m

| m
| m

θ θ
θ

(12.15)

For any configuration of m, the prior term in the numerator can be evaluated directly. In
addition, the likelihood term in the numerator can be computed using causal-model
inference (Jensen et al. 1990). Finally, the posterior term in the denominator can be
computed using Gibbs sampling, as we have just described. Other, more sophisticated
Monte-Carlo methods are described by DiCiccio et al. (1995).

12.5.5.2 The Gaussian Approximation
Monte-Carlo methods yield accurate results, but they are often intractable—for example,
when the sample size is large. Another approximation that is more efficient than Monte-
Carlo methods and often accurate for relatively large samples is the Gaussian
approximation (e.g., Kass et al. 1988; Kass and Raftery 1995).
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The idea behind this approximation is that, for large amounts of data, p( m|D,m) ∝
p(D| m,m) × p( m|m) can often be approximated as a multivariate-Gaussian distribution.
In particular, let

( ) log( ( | , ) ( | ))m m mg p D p≡ ×m mθ θ θ (12.16)

Also, define mθ  to be the configuration of m that maximizes g( m). This configuration

also maximizes p( m|D,m), and is known as the maximum a posteriori (MAP)

configuration of m. Using a second degree Taylor polynomial of g( m) about the m
−θ  to

approximate g( m), we obtain

1
( ) ( ) ( ) ( )

2
t

m m m m m mg g A≈ − − −θ θ θ θ θ θ
(12.17)

where ( )t
m m−θ θ  is the transpose of row vector ( )m m−θ θ , and A is the negative Hessian

of g( m) evaluated at 
mθ . Raising g( m) to the power of e and using equation (12.16), we

obtain

( , ) ( | , ) ( )

1
( | , ) ( ) exp ( ) ( )

2

m m m

t
m m m m m m

p D p D p

p D p A

∝

 ≈ − − − 
 

| m m | m

m | m

θ θ θ

θ θ θ θ θ θ
(12.18)

Hence, the approximation for p( m|D,m) is Gaussian.
To compute the Gaussian approximation, we must compute 

mθ  as well as the negative
Hessian of g( m) evaluated at 

mθ . In the following section, we discuss methods for
finding mθ . Meng and Rubin (1991) describe a numerical technique for computing the
second derivatives. Raftery (1995) shows how to approximate the Hessian using
likelihood-ratio tests that are available in many statistical packages. Thiesson (1995)
demonstrates that, for multinomial distributions, the second derivatives can be computed
using causal-model inference.

Using the Gaussian approximation, we can also approximate the marginal likelihood.
Substituting equation (12.18) into equation (12.3), integrating, and taking the logarithm
of the result, we obtain the approximation:

1
log ( | ) log ( | , ) log ( | ) log(2 ) log

2 2m m

d
p D p D p Aπ≈ + + −m m mθ θ  (12.19)

where d is the dimension of g( m). For a causal model with multinomial distributions, this
dimension is typically given by
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q r
=

−∏

Sometimes, when there are hidden variables, this dimension is lower. See Geiger et al.
(1996) for a discussion of this point. This approximation technique for integration is
known as Laplace’s method, and we refer to equation (12.19) as the Laplace
approximation. Kass et al. (1988) have shown that, under certain regularity conditions,
the relative error of this approximation is Op(1/N), where N is the number of cases in D.
Thus, the Laplace approximation can be extremely accurate. For more detailed
discussions of this approximation, see, for example, Kass et al. (1988) and Kass and
Raftery (1995).

Although Laplace’s approximation is efficient relative to Monte-Carlo approaches, the
computation of |A| is nevertheless intensive for large-dimension models. One
simplification is to approximate |A| using only the diagonal elements of the Hessian A.
Although in so doing, we incorrectly impose independencies among the parameters,
researchers have shown that the approximation can be accurate in some circumstances
(see, e.g., Becker and Le Cun 1989, and Chickering and Heckerman 1997). Another
efficient variant of Laplace’s approximation is described by Cheeseman and Stutz (1995)
and Chickering and Heckerman (1997).

We obtain a very efficient (but less accurate) approximation by retaining only those
terms in equation (12.19) that increase with N: log ( | , )mp D mθ , which increases linearly
with N, and log |A|, which increases as d logN. Also, for large N, 

mθ  can be approximated
by ˆ

mθ , the maximum likelihood configuration of m (see the following section). Thus, we
obtain

ˆlog ( | ) log ( | , ) log( )
2m

d
p D p D N≈ −m mθ (12.20)

This approximation is called the Bayesian information criterion (BIC). Schwarz (1978)
has shown that the relative error of this approximation is Op(1) for a limited class of
models. Haughton (1988) has extended this result to curved exponential models.

The BIC approximation is interesting in several respects. First, roughly speaking,
it does not depend on the prior. Consequently, we can use the approximation without
assessing a prior.6 Second, the approximation is quite intuitive. Namely, it contains a
term measuring how well the parameterized model predicts the data ˆlog ( | , )mp D mθ  and a

term that punishes the complexity of the model (d/2 log(N)). Third, the BIC
approximation is exactly minus the Minimum Description Length (MDL) criterion
described by Rissanen (1987).

â
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12.5.5.3 The MAP and ML Approximations and the Algorithm
As the sample size of the data increases, the Gaussian peak will become sharper, tending
to a delta function at the MAP configuration

mθ . In this limit, we can replace the integral
over m in equation (12.5) with ( | , )mp h mθ . A further approximation is based on the
observation that, as the sample size increases, the effect of the prior ( | )mp mθ  diminishes.
Thus, we can approximate mθ  by the maximum likelihood (ML) configuration of m:

ˆ arg max ( | , )
m

m mp D= m
θ

θ θ

One class of techniques for finding a ML or MAP is gradient-based optimization. For
example, we can use gradient ascent, where we follow the derivatives of g( m) or the
likelihood ( | , )mp D mθ to a local maximum. Russell et al. (1995) and Thiesson (1995)
show how to compute the derivatives of the likelihood for a causal model with
multinomial distributions. Buntine (1994) discusses the more general case where the
likelihood comes from the exponential family. Of course, these gradient-based methods
find only local maxima.

Another technique for finding a local ML or MAP is the expectation—maximization
(EM) algorithm (Dempster et al. 1977). To find a local MAP or ML, we begin by
assigning a configuration to m somehow (e.g., at random). Next, we compute the
expected sufficient statistics for a complete data set, where expectation is taken with
respect to the joint distribution for X conditioned on the assigned configuration of m and
the known data D. In our discrete example, we compute

( | , , )
1

( ) ( , | , , )
s

N
k j

p x D ijk i i l m
l

E N p xθ
=

= ∑m pa y mθ (12.21)

where yl is the possibly incomplete lth case in D. When Xi and all the variables in Pai are
observed in case xl, the term for this case requires a trivial computation: it is either zero
or one. Otherwise, we can use any causal-model inference algorithm to evaluate the term.
This computation is called the expectation step of the EM algorithm.

Next, we use the expected sufficient statistics as if they were actual sufficient statistics
from a complete random sample Dc. If we are doing an ML calculation, then we
determine the configuration of m that maximizes p(Dc| m,m). In our discrete example,
we have

( | , , )

( | , , )
1
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i
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E N

E N

θ

=

=
∑

m

m

θ

θ

â

hm

hm hm

p(hm |m)

hm

hm

344  Chapter 12

p(h|hm, m).
hm

hm

p(D |hm, m)

x h
,

x h

x h

In our discrete example9



If we are doing a MAP calculation, then we determine the configuration of m that
maximizes p( m|Dc,m). In our discrete example, we have7

( )
( | , , )

( | , , )
1

( )
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i

s

ijk p x D ijk
ijk r

ijk p x D ijk
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E N

E N
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α
=

+
=

+∑
m

m

θ

θ

This assignment is called the maximization step of the EM algorithm. Under certain
regularity conditions, iteration of the expectation and maximization steps will converge to
a local maximum. The EM algorithm is typically applied when sufficient statistics exist
(i.e., when local likelihoods are in the exponential family), although generalizations of
the EM algorithm have been used for more complicated local distributions (see, e.g.,
McLachlan and Krishnan 1997).

12.5.6 Open Problems in Latent Variable Search
The Bayesian framework gives us a conceptually simple framework for learning causal
models. Nonetheless, the Bayesian solution often comes with a high computational cost.
For example, when we learn causal models containing hidden variables, both the exact
computation of marginal likelihood and model averaging/selection can be intractable.
Although the approximations described in section 12.5.5 can be applied to address the
difficulties associated with the computation of the marginal likelihood, model averaging
and model selection remain difficult. The number of possible models with hidden
variables is significantly larger than the number of possible DAGs over a fixed set of
variables. Without constraining the set of possible models with hidden variables—for
instance, by restricting the number of hidden variables—the number of possible models is
infinite. On a positive note, the FCI algorithm has shown that constraint-based methods
under suitable assumptions can sometimes indicate the existence of a hidden common
cause between two variables. Thus, it may be possible to use the constraint-based
methods to suggest an initial set of plausible models containing hidden variables that can
then be subjected to a Bayesian analysis.

Another problem associated with learning causal models containing hidden variables
is the assessment of parameter priors. The approach in section 12.5.5 can be applied in
such situations, although the assessment of a joint distribution p(x|mc) in which x
includes hidden variables can be difficult. Another approach may be to employ a property
called strong likelihood equivalence (Heckerman 1995). According to this property, data
should not help to discriminate among two models that are distribution equivalent with
respect to the nonhidden variables. Heckerman (1995) showed that any method that uses
this property will yield priors that differ from those obtained using a prior network.8

One possibility for avoiding this problem with hidden-variable models, when the
sample size is sufficiently large, is to use BIC-like approximations. Such approximations
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are commonly used (Crawford 1994; Raftery 1995). Nonetheless, the regularity
conditions that guarantee Op(1) or better accuracy do not typically hold when choosing
among causal models with hidden variables. Additional work is needed to obtain accurate
approximations for the marginal likelihood of these models.

Even in models without hidden variables there are many interesting issues to be
addressed. In this section we discussed only discrete variables having one type of local
likelihood: the multinomial. Thiesson (1995) discusses a class of local likelihoods for
discrete variables that use fewer parameters. Geiger and Heckerman (1994) and Buntine
(1994) discuss simple linear local likelihoods for continuous nodes that have continuous
and discrete variables. Buntine (1994) also discusses a general class of local likelihoods
from the exponential family for nodes having no parents. Nonetheless, alternative
likelihoods for discrete and continuous variables are desired. Local likelihoods with
fewer parameters might allow for the selection of correct models with less data. In
addition, local likelihoods that express more accurately the data generating process would
allow for easier interpretation of the resulting models.

12.5.7 MAG Search and PAG Search
Searching over latent variable DAG models faces several important computational and
theoretical difficulties. Structuring the search can be difficult, because in addition to
introducing, removing, or orienting edges, it requires deciding when to introduce latent
variables. The exact calculation of a posterior distribution is typically computationally
intractable. In the Gaussian and discrete cases, it is not known whether the BIC score is
an Op(1) approximation to the posterior in the case of latent variable models (Geiger et al.
1999). In addition, the calculation of the dimension of a latent variable model is
computationally expensive (Geiger et al. 1996) And none of this even begins to consider
the problem of selection bias.

Some of the search difficulties can be overcome by searching the space of MAGs,
rather than the space of latent variable DAGs. First, because every variable in a MAG is
observed, a search over MAGs never requires the introduction of latent variables.
Second, a MAG represents the conditional independence relations entailed by a DAG
with both latent variables and selection bias. Third, in the Gaussian case, it is known how
to parameterize MAGs (indeed each Gaussian MAG is a special case of a linear structural
equation model—see Richardson and Spirtes 1999) in such a way that the only
constraints imposed on the distributions are the conditional independence relations
entailed by m-separation. In addition, in the case of a Gaussian MAG model it is known
that the BIC score is an Op(1) approximation to the posterior. Assuming the Causal
Markov Condition and a prior over the parameters which assigns zero probability to
unfaithful parameter values, in the large sample limit, with probability 1, one of the
MAGs with the highest BIC score (there may be several O-Markov equivalent MAGs
with the same score) represents the true causal DAG with latent variables and selection
bias. Moreover, calculating the dimension of a Gaussian MAG model is trivial (Spirtes et
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al. 1997). Standard structural equation model estimation techniques, available in such
programs as EQS (Bentler 1985) and LISREL (Joreskog and Sorbom 1984) can be used
to perform maximum likelihood estimates of the parameters. Examples of MAG search
applied to actual data are given in Richardson and Spirtes 1999 and Richardson et al.
1999.

It is not currently known how to parameterize a MAG with discrete variables in such a
way that the only constraints it imposes (other than the distributional family) are the
conditional independence relations entailed by m-separation. However, Richardson
(1999) has worked out a local Markov property of MAGs that is equivalent to m-
separation, which may provide some guidance in devising a parameterization.

The limitations of searching over the space of MAGs, rather than the space of latent
variable DAGs, is that a MAG gives only partial information about the DAGs it
represents. Hence, even given the correct MAG, it may not be possible to predict the
effects of some manipulations. Furthermore, latent variable DAGs that have very
different posterior distributions might be represented by the same MAG; hence a latent
variable DAG search, if it were feasible to carry out, could be more informative than a
MAG search. And at small samples sizes, the MAG selected as the best may not
represent the latent variable DAG that would be selected as the best, if the search over
latent variable DAGs were feasible. However, the output of a MAG search could be used
as the starting point of a DAG search.

PAGs were introduced as a representation of O-Markov equivalence class of DAGs.
They can also be interpreted as a representation of an O-Markov equivalence class of
MAGs. And just as searching over the space of patterns has some advantages over
searching over the space of DAGs, searching over the space of PAGs has some
advantages over the space of MAGs. However, a BIC (AIC, MDL) score based search
over the space of PAGs is still difficult, because the different DAGs represented by a
given PAG impose different nonindependence constraints on the margin, and hence
receive different BIC (AIC, MDL) scores on the same data. In contrast, every MAG
represented by a given PAG has the same BIC score for a given data set (because MAGs
impose no nonindependence constraints on the margin.) Hence one can score a PAG by
turning it into an arbitrary MAG that is represented by the PAG, scoring the MAG, and
assigning that score to the PAG. The PAG score is not necessarily the highest BIC score
among all of the DAGs represented by the PAG, but assuming the Causal Markov
Condition and a prior over the parameters which assigns zero probability to unfaithful
parameter values, in the large sample limit with probability 1, the PAG representing the
true causal graph will have the highest score. Given a score for PAGs, it is possible to do
a hill-climbing score-based search over the space of PAGs. A score-based PAG search of
this kind is described in more detail in Spirtes et al. 1996.
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12.5.8 Search over Cyclic Directed Graphs
Richardson (1996a, 1996b) describes constraint based methods of search over cyclic
directed graphs, where it is assumed that the natural extension of d-separation to cyclic
directed graphs characterizes the conditional independence constraints entailed by the
graph. The input to Richardson’s algorithm is a data set generated by an unknown cyclic
directed graph G, which is used to test d-separation relations in G by performing tests of
conditional independence. The output is a PAG with respect to a Markov equivalence
class of directed graphs. The algorithm is polynomial in the number of variables if the
maximum number of adjacencies of a vertex in all graphs is constant. The algorithm is
correct with probability 1 in the large sample limit, assuming the Causal Markov and
Faithfulness Conditions. For example, if the data is generated by the directed cyclic graph
in figure 12.1, in the large sample limit with probability 1 the output of the algorithm is
the PAG with respect to the Markov equivalence class of figure 12.1, which is shown in
figure 12.4.

Score-based searches over cyclic directed graphs face some of the same problems that
score-based searches over latent variable models face. Linear models represented by
cyclic directed graphs entail nonconditional independence constraints. It is not known
whether cyclic directed graphs represent curved exponential families, or whether the
conditions under which BIC is an Op(1) approximation to the posterior distribution
obtain.

12.5.9 Other Approaches to Search
One of the major obstacles to searching the space of DAGs is the problem of local
maxima. There are several kinds of algorithms which can be used to overcome the
problem of local maxima. For example, a Bayesian network search tecnhique which uses
both genetic algorithms and simulated annealing is given in De Campos and Huete
(1999).

Genetic algorithms are intended to mimic natural selection. Each individual is a
potential solution to a problem, the set of individuals is a population, and there is a
function which measures the fitness of each individual. An initial population is created,
and then the most fit individuals are combined to get new individuals (crossover).
Individuals can also spontaneously change (mutation) in order to get out of local maxima.
The new individuals are added to the population, and the process is repeated for a fixed
number of generations. The most fit individuals are then selected.

In a simulated annealing algorithm, there is a system of N variables and an “energy” E
which is a function of the configuration ci of the N variables, and which is to be
minimized. In one step of the algorithm, a new configuration is generated by randomly
perturbing the previous configuration. If the perturbation decreases the energy, the
change is accepted. If the perturbation increases the energy it is accepted with probability
�.	� E/T), where T is a “temperature” parameter that is systematically decreased as the
number of iterations increases. This allows the algorithm to get out of local maxima.
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Stopping criteria can be functions of the energy, the temperature, or the number of
iterations.

Wedelin (1996) describes a search based on MDL (Minimum Description Length).
The search proceeds in two steps. First, the algorithm searches for an undirected graph
(representing a random Markov field), and then the undirected graph is oriented, if
possible. The original set of variables is transformed, and then the search starts by
looking for first order interactions among the transformed variables. Search for higher
order interactions is based on the heuristic that if there are k–1 order interactions among
Z1 and Z2, and Z = Z1 ∪ Z2, then a k order interaction among the variables in Z is tested.
If the k order interaction is found, then Z is made in to an undirected clique. Once the
undirected graph is found, the algorithm takes all cliques of size greater than or equal to
3, and tests each possible ordering of the variables. If the test eliminates all but one of the
directions, add those orientations are added to the undirected graph.

Wallace et al. (1996) and Dai et al. (1997) describe a search over linear structural
equation DAG models that is based on a minimum message length score, where message
length is a joint encoding of the sample data and the causal model. The total message
length can be expressed as the sum of the message length for data given the causal model
plus the message length of the causal model; the latter in turn can be broken into the
message length encoding the DAG, and the message length encoding the DAG
parameters. (For larger models, they are not able to calculate the exact score.) In their
encoding, Markov equivalent DAGs can receive different minimum message length
scores. They report that when the edges in a DAG are weak, that at small sample sizes an
MML based search out-performs the PC algorithm when the signficance level is set to
0.05, although they do not test whether the difference is statistically significant. (We
generally have found that PC works better at small sample sizes when the significance
level is set to higher than 0.05.)

Friedman (1997) considers the case where data are missing or there are hidden
variables, and bases a search on a modification of the EM algorithm described in section
12.5.5.3. The structural EM algorithm maintains a current Bayesian network candidate,
and at each iteration of the EM algorithm it estimates the sufficient statistics that are
needed to evaluate alternative networks. Since the evaluation is done from complete data,
Bayesian networks search techniques designed for no missing data can be used can be
used at this point to look for improved structures. Thus the search for structure is
interleaved into steps of the EM algorithm. In Boyer et al. 1999 the structural EM
algorithm is applied to learning Bayesian networks representing dynamic systems.
Ramoni (1996) also describes a Bayesian network search when there is missing data.

Friedman et al. (1999c) propose a class of algorithms called “sparse candidate”
searches for searches over Bayesian networks without hidden variables. First, the set of
possible parents of each vertex is restricted to a small number of candidates. Then, the
procedure searches for the best Bayesian network that satisfies the candidate constraints.
The best Bayesian network found is then used to generate a new set of possible
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candidates for each vertex. For example, if X and Y are selected as the initial candidate
parents of Z, but X is not a parent of Z in the best Bayesian network with this restriction,
at the next stage, another variable with a weaker connection to Z can replace X as a
candidate parent.

Discretization of continuous variables can be considered a kind of nonparametric
estimation technique. One problem with discretization is that continuous variables which
are conditionally independent may have discretized counterparts that are not
conditionally independent; preserving at least approximate conditional independence is
important if the discretized variables are to be used to construct a Bayesian network that
approximates the Bayesian network among the underlying continuous variables. So
choosing a discretization policy that takes into account the interactions of the variables is
important for Bayesian network search. Friedman and Goldszmidt (1996) propose a
discretization policy that is based on MDL. Monti and Cooper (1998) represent
discretization as a process that is itself represented in a Bayesian network BD that is a
modification of a Bayesian network B among the underlying continuous variables. Hence
different discretization policies corresponding to different parameterization of BD can be
evaluated by the posterior probability of the network. However, this also implies that
during search, when an alternative Bayesian network B  among the underlying continuous
variables is considered, the Bayesian network B D representing the discretization process
also changes, and the discretization policy has to be re-evaluated.

12.5.10 Attitude toward the Output of Search Algorithms
Some of the algorithms we have described are known (assuming the Causal Markov and
Faithfulness Conditions) to pointwise converge to the truth in the large sample limit,
while others are not. In either case, in practice, some of the assumptions made by the
search algorithm applied will typically be only approximately true, and the sample size
will not be infinite. What attitude should one have toward the output of causal search
algorithms in these circumstances? First we will consider constraint based searches, and
then we will consider Bayesian searches.

12.5.10.1 Constraint Based Search Algorithms
The power of the constraint based search algorithms against alternative models is an
unknown and extremely complex function of the power of the statistical tests that the
algorithm employs, and the distribution over the models tested. For that reason, the best
answer that we can give about the reliability of these algorithm is based upon simulation
studies, and actual cases (chapter 5, chapter 8, section 12.8). We, and others, have
provided the results of a variety of simulation tests. The simulation studies should be
interpreted as an upper bound on the reliability of the particular algorithm used, because
in general the distributional assumptions are exactly satisfied in the simulations, and if a
causal connection exists between variables in a study, we have limited how weak that
causal connection can be. These studies suggest that one should be skeptical about the
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output at very small sample sizes, or when in the output there are variables with a large
number of parents.

In general, the correctness of the output of a constraint based search depends upon
nine factors:

1. The correctness of the background knowledge input to the algorithm (e.g., an initial
starting model or no feedback.)
2. How closely the Causal Markov Condition holds (e.g., no interunit causation, no
mixtures of subpopulations in which causal connections are in opposite directions).
3. How closely the Faithfulness Condition holds (e.g., no deterministic relations, no
attempt to detect very small causal effects).
4. Whether the distributional assumptions made by the statistical tests hold (e.g., joint
normality.)
5. The power of the statistical tests against alternatives.
6. The significance level used in the statistical tests.
7. The sample size.
8. The sampling method.
9. The sparseness of the true graphical model.

We do not have a formal mechanism for combining these factors into a score for the
reliability of the output. However, there are some steps that can be taken to evaluate the
output of the searches we have discussed.

Some of the factors that affect the reliability of the results can be judged from
background knowledge. For example, the output may contain an edge which is known on
substantive grounds not to exist (because e.g., it points from an earlier event to a later
event.) Or the output may indicate that a distributional assumption has been violated. For
example, in the education and fertility example of chapter 5 (Rindfuss et al. 1980), the
variables of interest (education and age at which first child is born) can both be treated as
continuous), but other variables, such as race and whether or not one lived on a farm, can
not. The PC algorithm was run under the assumption of linearity. The edges of interest in
that case point into education and age at first child, and are compatible with the
assumption of linearity. However, other edges in the output pointed from continuous
variables to binary variables, and hence are problematic because they indicate a violation
of the assumption of linearity that the algorithm was run under.

In addition, the output may be very sensitive to the significance level chosen. Thus in
the Spatina biomass example of chapter 8 (Rawlings 1988), the pH → BIO (where BIO
represents the biomass of the grass) edge was quite robust over different significance
levels, but the edges that appeared among the other variables changed at different
significance levels.

It is also possible to test the output by various kinds of cross-validation. In chapter 8
we recommended performing a kind of parametric bootstrapping in which the search
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algorithm is run on a sample, the output of the search algorithm is turned into a DAG, the
parameters of the DAG model are estimated, and Monte Carlo simulation techniques are
used on the resulting parameterized DAG models to generate further samples. The search
algorithm is then run on the additional samples, and the percentage of the time the search
algorithm finds some feature of interest is calculated. We performed such a parametric
bootstrap on the Weisberg (1985) rat liver data. In nonparametric bootstrapping, repeated
subsamples of size N are drawn with replacement from the original sample, the search
algorithm is run on each of the subsamples of size N, and the percentage of the time the
search algorithm finds some feature of interest is calculated. Shipley (1997) applied
nonparametric bootstrapping to search algorithms on small sample sizes. Friedman et al.
(1999a and 1999b) also discuss the application of parametric and nonparametric
bootstrapping to Bayesian network search.

In some cases the output of our search methods can be turned into a model on which a
statistical test can be performed (as in the case of linear models.) In such cases, if there is
a particular feature of interest, such as the existence of an edge from X to Y, a search can
be run twice, once with the feature required, and once with the feature forbidden, and the
two results compared; for example, one might pass a statistical test, while the other might
fail a test. Alternatively the p-values can be used as a kind of informal score for the two
models.

12.5.10.2 Score based Search Algorithms
For a Bayesian who can calculate the posterior of each causal model from a prior that
represents his degrees of belief before seeing the data, it is clear how much confidence to
put in each causal model. However, in practice, Bayesian searches cannot calculate
posterior probabilities of causal models, they can only calculate the ratios of posteriors of
different causal models, and priors are heavily influenced by mathematical convenience
rather than conviction. This still leaves the question of how much confidence one should
put in the output of a Bayesian (or other score-based) search algorithms.

Most of the same considerations that were used to judge the output of constraint based
searches can also be used to judge the output of score-based searches. However, score-
based searches have the major advantage that any two models in the space searched can
be compared, and the investigator can get a sense of whether one model is
overwhelmingly preferred to every other model visited during the search, or only slightly
better than some alternatives.

12.6 Finite Samples
The question we consider here is the following: given a choice between the models of
figure 12.11, what are the qualitative features of a prior distribution that, conditional on a
small sample correlation between B and C, has a resulting posterior that places a high
probability on the treatment effect of B on C being small? Since the FCI algorithm draws
the conclusion that the treatment effect of B on C is zero when the sample correlation is
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small enough, this is related to the question of what qualitative features of prior
distributions would make the output of the FCI algorithm (as typically employed)9 a good
approximation of Bayesian updating.

Note that for “approximate agreement” between the FCI algorithm we do not demand
that the posterior place a high probability on the Markov equivalence class output by the
FCI algorithm. This is because in many cases, concluding that a treatment effect is zero
when it is actually very small is of no practical significance. (However, there may be
cases, especially in the medical domain where very small effects are important.) In
addition, note that “approximate agreement” is defined here only for the kind of simple
cases considered in figure 12.11. We leave it as an open problem to generalize this
concept to more complex cases.

The prior over BΓ has two distinct parts, the prior over the parameters given a DAG
and the prior over the DAGs. We will discuss each of these in turn. Because the
plausibility of a prior depends upon both the prior over the parameters and the prior over
the DAGs, we will comment on the plausibility of various combinations of DAG priors
and DAG parameter priors after we have pointed out the properties of the priors over the
parameters.

There are three basic qualitative results that will be described in the following
sections. First, the geometry of the parameter space favors small values of |z| conditional
on (B,C) = 0 (that is even given a uniform distribution over the parameters, conditioning
on (B,C) = 0 increases the probability of small values of |z|.) Second, while there is one
superficially plausible kind of prior probability P that leads to a high prior on “close to
unfaithful” distributions, this prior also has the unintuitive consequence that there is
almost certainly no significant confounding due to hidden variables. And finally, an
obvious modification of P which avoids the unintuitive consequence that there is almost
certainly no significant confounding due to hidden variables, is also a prior which gives a
high posterior probability of a small value of |z| conditional on a small value of (B,C).

12.6.1 The Prior over the Parameters10

In Model M, when (B,C) is zero, z ranges anywhere between –1 and 1. However, the z =
0 plane intersects (B,C) = 0 in two lines, x = 0 and y = 0. In contrast, the z = 1 and z = –1
planes each intersect (B,C) = 0 in a single point. This suggests that even with a uniform
prior over the legal parameter values of x, y, and z, (B,C) = 0 favors small values of |z|.
In order to calculate f(z| (B,C) = 0), where f is a uniform density over x, y, z, the variables
x, y, z can be transformed to r1, r2, and r3 in the following way:

r1 = z + x × y x = (r1 − r3)/ r2

r2 = y y = r2

r3 = z z = r3

r1 is equal to (B,C). Let |J| be the absolute value of the Jacobian of the transformation.

r1 = z + x × y x = (r1 − r3)/ r2

r2 = y y = r2

r3 = z z = r3

r1 is equal to (B,C). Let |J| be the absolute value of the Jacobian of the transformation.

r1 = z + x × y
r2 = y
r3 = z 
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The uniform cumulative distribution of |z| conditional on (B,C) = 0 is shown in figure
12.14. Notice that conditional on (B,C) = 0, the uniform measure tends to favor smaller
values of |z|. For example, the probability of |z| < 0.2 is approximately 0.5. In figure 12.15
we compare the marginal distribution of |z| and the distribution of |z| conditional on
(B,C) = 0 for the uniform prior.

Priors that have less mass in the corners of the x, y, z cube where (B,C) = 0 than a
uniform measure does, tend to increase the concentration of the posterior around |z| = 0
when (B,C) = 0. This is also illustrated in figure 12.14. In each case, the prior over the
parameters are truncated independent Gaussians of variance (prior to truncation) of 10, 1,
and 0.1 respectively.11 The truncated Gaussian of variance 10 is very similar to the
uniform measure. For the truncated Gaussian of variance 0.1, the probability of |z| < 0.1 is
over 80%. (Note that this analysis assumes Model M is true; placing positive probability
on Model N being true greatly increases the probability of |z| < 0.1, as one would expect.)
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When q(B,C) = 0, z = –x × y. Because of the constraints on the variances, x varies from 
–1 to 1, and it follows that for a given value of z, y varies from |z| to √z2 + 1, and from –|z| 
to –√z2 + 1. Also, when q(B,C) = 0, z varies from –∞ to ∞. Hence, when r1 = 0, for a given 
value of r3, r2 varies from |r3| to √r3

2 + 1, and from –|r3| to –√r3
2 + 1; and when r1 = 0, r3 

varies from –∞ to ∞. For a uniform density, f (x, y, z) is a constant c. In the transformed 
variables, f (r1, r2, r3) = |c /r2|. Hence one natural version of the conditional density is 

z

f (z | q(B,C) = 0) = f (r3 | r1 = 0) =

values of |z|. For example, the probability of |z| < 0.2 is approximately 0.33. In fi gure 12.15

Note that the probability of |z| being larger than 1 is approximately .28, and that while 
conditioning on q(B,C) = 0 substantially increases the probability of |z| being less than 
0.5, it does not substantially change the probability of |z| being less than 1. Priors that put 
less mass on large values of x, y, z where q(B,C) = 0 than a uniform measure does, tend 
to increase the concentration of the posterior around |z| = 0 when q(B,C) = 0. When |z| 
is large, the constraints on the variances of the observed variables also imply that |y| is 
large, and the |x| is near 1. Hence any prior which makes a large value of |y|, or a value 
of |x| near 1 unlikely also makes the probability of a large value of |z| unlikely. (Note that 
this analysis assumes Model M is true; placing positive probability on Model N being 
true greatly increases the probability of |z| being small, as one would expect.)
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Figure 12.14. Cumulative distribution over |z| conditional on q(B,C) = 0

Figure 12.15. Comparing marginals and conditionals



12.6.2 The Prior over the Parameters of a Variable with Many Parents
Suppose that B and C are two time-ordered measured variables, and that B and C have k
exogenous common causes U1 through Uk, where each Ui has an independent standard
Gaussian distribution with

0 0
1 1

k k

i i B i i C
i i

B U C Uβ β ε δ δ ε
= =

= + = +∑ ∑

It follows that if B and C have mean 0,

We will examine the consequences of several different kinds of prior distributions over
the linear coefficients.

1. Independent Standard Gaussians
If the prior over the  and �parameters are independent standard Gaussian distributions,
then the prior distributions over var(B) and var(C(����� 2 distributions with k + 1 degrees
of freedom. It follows that in the prior over var(B) and var(C) the mean of var(B) and
var(C) is k + 1, and the variance of var(B) and var(C) is 2(k + 1). Hence, both the mean
and the variance of var(B) and var(C) approach ∞ as k approaches ∞. Also, it follows that
the mean of cov(B,C) is zero, and the variance of cov(B,C) approaches ∞ as k approaches
∞. However, simulations (see figure 12.16) show that while the mean of (B,C) is zero,
the variance of (B,C) ≈ 1/k. Thus, the distribution over the correlation is quite different
than the distribution over the covariances, because the variance of (B,C) approaches
zero as k approaches ∞. This means that the prior probability of significant confounding
conditional on large k is small. The consequences of this kind of prior in combination
with a prior over DAGs will be discussed in section 12.6.3.

2. Independent Gaussians with Variance 1/(k + 1)2

Suppose that the prior distributions over  and� �are independent Gaussians with mean 0
and variance 1/(k+1)2, where k is the number of latent variables. (This is equivalent to
drawing each  and � from a standard Gaussian, and multiplying the value drawn by
1/(k+1). This multiplication decreases the sample mean by a factor of 1/(k+1), and the
sample variance by 1/(k+1)2.) Hence the mean of var(B) and var(C) is 1, regardless of k.
However, the variance of var(B) and var(C) approaches zero as k approaches ∞. In
addition, the mean of (B,C) is zero, and the variance of (B,C) ≈ 1/k, so the variance of
(B,C) approaches zero as k approaches ∞. These facts are summarized in table 12.3.

This implies that the prior probability of significant confounding conditional on large k
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exogenous common causes U1 through Uk, where each Ui and eb and ec has an indepen-
dent standard Gaussian distribution with



(i.e., many parents) is small. The consequences of this kind of prior in combination with a
prior over DAGs will be discussed in section 12.6.3.

3. Place Prior Directly Over Mean and Variance
If the parents of a pair of observed variable are unobserved, it is possible to directly
specify a prior over the variances and correlations of the observed variables, instead of
deriving such a prior from a prior distribution over DAGs and DAG parameters. This
represents the combined effect of all of the different latents as a single latent. However, if
the parents are themselves observed, it is necessary to have a prior distribution over the
DAGs and the DAG parameters.

4. Correlated Standard Gaussians
If the linear coefficients are correlated, there exist induced prior distributions over the
variances of variables with many parents that have neither very high mean nor very low
variance, unlike the priors discussed in 1 and 2. For example, a prior could require that if
5 linear coefficients are large, then all of the others are almost certainly very much
smaller. (If instead of placing a prior over linear coefficients, the prior is placed over
standardized linear coefficients, then the prior necessarily correlates some coefficients
being large with other coefficients being small, since the variance of each measured
variable is 1.) If an edge coefficient in a model M1 is very close to zero, M1 can be
approximated by a model M2 in which the edge coefficient is zero (i.e., in which the edge
is actually removed from the corresponding DAG.) Hence, a prior in which the linear
coefficients are correlated in such a way that the probability is very large that the vast
majority of edges from confounding latents have almost zero coefficients is
approximately the same as a prior distribution in which probability is very large that the
vast majority of edges from confounding latents have exactly zero coefficients. (This
assumes that the coefficients are small enough that even the combined effect of a large
number of them is negligible.) But the latter prior is a prior which places a high
probability on there not being many confounders. So there are priors in which the linear
coefficients are correlated in such a way that the prior approximates a prior over DAGs
which places a high probability on there being few confounders; we will call these
“approximately simple correlated priors”.
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Figure 12.16. Variance of (B,C)

Prior over Linear Coefficients

N(0,1) N(0,1/(k+1)2)

mean variance mean variance

var(B) ∞ ∞ 1 0

var(C) ∞ ∞ 1 0

cov(B,C) 0 ∞ 0 0

�(B,C) 0 0 0 0

Table 12.3

A prior with correlated coefficients also places a lower probability on some
combinations of parameters that are almost unfaithful than does a corresponding prior
that does not correlate the values of x, y, and z. For example in Model M, an almost
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A prior with correlated coeffi cients can also place a lower probability on some

q(B,C)



unfaithful set of parameters occurs when |z| is large and (B,C) is small; this occurs when
|x| and |y| are also large. Hence a prior that correlates low values of |x| and |y| with large
values of |z|, has a smaller probability of almost unfaithful sets of parameters than does a
corresponding prior that does not correlate x, y, and z.

12.6.3 Prior Over DAGs
In this section, we will examine how the different priors over the DAG parameters
described in section 12.6.1 interact with different priors over the DAGs.

1. Equal Probabilities For DAGs
The FCI algorithm outputs a Markov equivalence class of DAGs, rather than a single
DAG. Let FM be the Markov equivalence class of Model M, and FN be the Markov
equivalence class of Model N of figure 12.11. Any prior P such that the posterior
probability of FN (conditioned on a small sample correlation) is extremely small
compared to the posterior probability of FM (conditional on a small sample correlation),
will not approximate the behavior of the FCI algorithm. However, as Robins and
Wasserman (1999) point out, for a fixed number of possible unmeasured common causes,
there are many more DAGs in the Markov equivalence class of Model M than there are in
the Markov equivalence class of Model N.12 Consider the following simplified extension
of Model M. Suppose there are k exogenous standardized latent variables U1,…,Un, as
well as the observed variables B and C. (Because the Ui are exogenous, there are no edges
between them, simplifying the calculations.) Then for each latent variable Ui, there are
four possible cases: (i) there are edges from Ui to B and C, or (ii) there is no edge from Ui

to B but an edge from Ui to C, or (iii) there is no edge from Ui to C but an edge from Ui to
B, or (iv) there are no edges out of Ui. In order to belong to the Markov equivalence class
of Model N, there is no edge from B to C, and for each Ui, one of cases (ii), (iii), or (iv)
holds. So there are 3k DAGs in the Markov equivalence class of Model N. There are 2 ×
4k DAGs total (because each combination of latents can either have the edge from B to C
or not). Hence a prior that puts equal weight on each DAG, places a prior on a DAG
being in the Markov equivalence class of Model N of 1/2 × (3/4)k. With this prior, even
though an observed small correlation might boost the probability of the Markov
equivalence class of Model N a great deal, it will not make it more probable than the
Markov equivalence class of Model M, except at very large sample sizes. In other words,
given a prior that places approximately equal weight on each DAG, the sample size not
only has to be large in order for this prior to approximate the results of the FCI algorithm,
it has to be large relative to the number of possible confounders.

One problem with placing equal probability over DAGs is that the prior places a high
probability on the true DAG being complex (i.e., with many edges.) Thus the marginal
prior (over all of the DAGs) approximates the prior conditional on a complex DAG. But
if the DAG is complex, and there are independent standard Gaussians over the
coefficients of parents of B, then the variance and the mean of var(B) both approach ∞.
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On the other hand, if there are independent Gaussians with variances 1/k2 over the
coefficients of parents of B, then the variance of var(B) approaches 0. Neither of these
alternatives seems plausible. Approximately simple correlated priors avoids both these
problems, but then has the consequence that the prior probability that the actual
distribution can be closely approximated by a simple DAG is high. While such a prior
places very low probability on the output of the FCI algorithm being exactly correct, it
can also place a high probability on the output of the FCI algorithm (in terms of the
treatment effect of B on C) being approximately correct.

2. Equal Probabilities for Structural Classes of DAGs
In some cases, it makes sense to consider the number of distinct alternative causal
structures to be less than the number of distinct DAGs. Suppose there are two un-
measured common causes U1 and U2. In DAG G1 there are edges from U1 to both B and
C while there are no edges out of U2. In DAG G2 there are edges from U2 to both B and C
while there are no edges out of U1. Are these two graphs really describing different facts,
or should G2 simply be considered a relabeling of G1? If the list of possible unmeasured
common causes is a list of actual variables such as Intelligence or Socio-Economic Status
then clearly G1 and G2 are describing different possible facts. If however, someone has no
particular unmeasured common causes in mind, then G2 is simply a relabeling of G1 and
they should not count as two distinct DAGs. So we should consider alternatives to the
priors that put equal probability on each DAG.

Given a set of k exogenous unmeasured variables, and two time ordered measured
variables B and C, say that two DAGs are in the same structural class if they have the
same number of unmeasured variables which are parents of both B and C, the same
number of unmeasured variables which are parents of B but not C, the same number of
unmeasured variables which are parents of C and not B, the same number of unmeasured
variables which are parents of neither B nor C, and the same number of edges (0 or 1)
from B to C. The total number of different structural classes with no latent confounding
and no edge from B to C (i.e., in the same Markov equivalence class as Model N) is equal
to
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n
n r

=

+ 
− + =  

 
∑

This is because if there is no latent confounding, each latent variable falls into one of
three classes (is a parent of B but not C, a parent of C but not B, or is a parent of neither).
If there are r latent variables in the first class, then the remaining n – r latents can be
divided among the two remaining classes in n – r + 1 different ways.
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On the other hand, if there are independent Gaussians with variances 1(k+1)2 over the 
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The total number of structural classes is

The reasoning is similar to the previous case. The factor of 2 occurs because each possible 
structural class of latent variables may be combined either with an edge from B to C or no 
edge from B to C.

The ratio of the number of structural classes in the Markov equivalence class of Model 
N to the total number of structural classed is

For a given k, the prior that places equal probability on each structural class puts a much 
higher probability on the Markov equivalence class of Model N than does the prior which 
places equal probability on each DAG. Nevertheless, for very large n, the prior that places 
equal probability on each structural class still places a relatively low probability on the 
Markov equivalence class of Model N.

3. Higher probability on Simple DAGs
A prior that places higher probability on simpler DAGs than complex DAGs (i.e., with 
many edges) more closely approximates the behavior of the FCI algorithm, because it 
makes up for the greater number of DAGs that occur in a Markov equivalence class with 
many edges, by making those greater number of DAGs less probable. Such a prior also 
implies that while the induced prior distribution over the variances and correlations of 
observed variables conditional on a DAG G in which the observed variables have many 
parents has very low variance (assuming the linear coeffi cients are uncorrelated). How-
ever, the marginal induced prior (over all of the DAGs) over the variances and correla-
tions of observed variables does not necessarily have either very low variance or very high 
variance.

12.7 Structural Equation Models
There have been many developments in SEM theory since 1993, most of which we 
cannot cover here. We will focus on work that extends the ideas in chapter 10. The 
MIMbuild procedure described in chapter 10 uses vanishing tetrad differences to test 0 
and 1st order independence among the latent variables of a SEM with a pure measurement 
model. Spirtes (1996) generalized MIMbuild so that it can now test independence  
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relations of any order among the latent variables of a SEM with a pure measurement
model. This allows, in effect, the PC or FCI algorithm to be applied to the latent variables
in a SEM. The procedure has been tested on simulated data, and performs well at large
sample sizes with data generated by models that satisfy the assumptions required by the
algorithm (Spirtes 1996). In another development, Scheines, Boomsma, and Hoijtink
(1999) applied Markov Chain Monte Carlo methods in order to do Bayesian estimation of
SEMs, and the technique has been used to make inferences about the effect of Lead
exposure on IQ in children (Scheines 1997).

12.7.1 Generalizing MIMbuild
In a “pure” measurement model, each indicator variable measures exactly one latent
variable, and is d-separated from every other variable in the model by its associated
latent. This corresponds to the Local Independence Assumption in IRT models, Latent
Class models, and other Factor Analytic models. Anderson and Gerbing (1982)
recommend a two-step model search in which the first step detects whether a
measurement model is “uni-dimensional” (or in the terminology of chapter 10 “pure”),
and then if the measurement model is pure, conducts a search over connections between
latent variables. They stated necessary but not sufficient conditions for purity. In chapter
10, and in Scheines 1993, we describe necessary and sufficient conditions for there being
at least three pure indicators for each latent variable in a linear SEM model, and describe
a search for finding a pure measurement model that is a sub-model of the original
measurement model, if one exists.

For example, figure 12.17 (A) shows a pure measurement model and (B) shows an
impure one. The novelty of the Purify procedure is that in the multivariate Gaussian case
it allows an initially specified measurement model to be modified until it can be
confirmed by the data to be pure without making any assumptions about the causal
structure among the latent variables. The General MIMbuild procedure begins with a
pure measurement model, and constructs test models to investigate independence of any
order among the latents.

10, and in Scheines 1993, we describe (assuming faithfulness) necessary and suffi cient 
conditions for there being at least three pure indicators for each latent variable in a linear 
SEM model, and describe a search for fi nding a pure measurement model that is a sub-
model of the original measurement model, if one exists.
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Figure 12.17. Pure and impure measurement models

Suppose that we have a pure measurement model with latents L = {L1 … Lk}. This
means that for each latent Li, there is a a set of pure indicators I(Li) = {Xi1...Xim}. Suppose
that we wish to test Li Lj |Q, where Q ⊆ L and contains neither Li nor Lj. The strategy
is to construct two nested SEMs containing Li, Lj, Q, and their measurement models, such
that testing one model against the other is a test of the constraint Li Lj |Q.

x2 x3 x4x1 x6 x7 x8x5 x10 x11 x12x9
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Figure 12.18. Model M0 for testing Li  Lj |Q. 
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The simpler model M0 is constructed so that there is a complete graph among the
variables in Q (it does not matter which complete graph) and there is an edge from each
variable in Q both to Li and to Lj, but no edge from Li to Lj. (See figure 12.18.) The model
M1 is the same as M0, except that it also includes the edge Li → Lj. The models can be
���	����������������������������� 2��������������������������
������� 2 distribution
with one degree of freedom (Bollen 1989). Alternatively, one can simply estimate model
M1 and perform a significance test on the parameter associated with the edge Li → Lj.

12.7.2 Bayesian Estimation of SEM
Maximum Likelihood (ML) estimation for Structural Equation Models has been available
since the 1970s, and is now standard with statistical programs like LISREL, EQS,
AMOS, and SAS Proc-Calis. Programs like LISREL (Jöreskog and Sörbom 1993)
calculate the ML estimate ML as well as estimates of the asymptotic standard errors of
each parameter estimate. Because it relies on asymptotic theory, appropriate statistical
inferences for the ML estimates require a large sample size. Several robustness studies
show that SEM estimators behave badly at small n, see for instance Bearden, Sharma,
and Teel 1982; Boomsma 1982, 1983; Baldwin 1986; Chou, Bentler, and Satorra 1991;
Hu, Bentler, and Kano 1992;Yung and Bentler 1994; and Hoogland and Boomsma 1998.
Further, the distribution of likelihood-ratio fit statistics is not known for small N. These
problems hold for other estimation methods as well, like generalized least squares (GLS)
and weighted least squares (WLS).

Given a prior distribution over the parameters of a SEM, p( ), if the likelihood
function is known then joint and marginal posterior distributions, p( ) and p( |S) (where
S is the sample covariance matrix) can be numerically approximated to arbitrary
precision, for any finite sample size n, with Markov Chain Monte Carlo (MCMC)
methods, and in particular with a single-component Metropolis-Hastings algorithm, a
specific case of which is the Gibbs sampler (Geman and Geman 1984; Chib and
Greenberg 1995). Given a sample covariance matrix S, and the assumption that the
variables are distributed as multivariate normal, the log-likelihood for a SEM is:

log L( |S) = – (n–1)/2 {log|Σ( )| + tr[SΣ–1( )]} ,

where Σ( ) is the covariance matrix implied by the model as a function of its parameters
.

The Gibbs sampler (section 12.5.5.1) is an iterative procedure that, after it has
converged, renders a dependent sample from the posterior p( |S). In each iteration m =
1,...,M, each parameter is sampled from its posterior conditional on the current values of
the other parameters, any constraints appropriate for the parameter at hand, and the
sample covariance matrix S. An accessible but detailed introduction to the Gibbs sampler
can be found in Casella and George 1992, and more elaborate discussions are in Gelfand
and Smith 1990, Tierney 1994, and Smith and Roberts 1993. BUGS is a general purpose

;
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Gibbs sampling program developed by Spiegelhalter, Thomas, Best, and Gilks that can
be applied to graphical models and can be obtained from <http://www.iph.cam.ac.uk/
bugs/mainpage.html>.

Scheines, Hoijtink, and Boomsma (1999) implemented a Gibbs Sampler for linear
SEM in TETRAD III, and used it to estimate the effect of low levels of Lead Exposure on
the cognitive capacities (IQ) of children (Scheines 1997), and to show that the likelihood
surface for SEMs with latent variables is not only nonnormal at small N, but actually
multimodal (Scheines, Hoijtink, and Boomsma 1997). Here we briefly describe the Lead-
IQ case and the problem of multimodality in the likelihood surface.

12.7.3 Lead and IQ
The description of this case is based on Scheines, Hoijtink, and Boomsma (1999), which
contains additional details. In a 1985 article in Science, Needleman, Geiger, and Frank
reanalyzed data they had previously collected on the effect of lead exposure on the verbal
IQ score of 221 suburban children. After eliminating approximately 35 potential
confounders with backward stepwise regression, they settled on regressing child’s IQ on
measured lead exposure, controlling for measures of genetic factors, environmental
stimulation, and physical factors that might compromise the child’s cognitive
endowment. Using the Build Module in TETRAD II (Scheines et al. 1994), Scheines,
Hoijtink, and Boomsma were able to eliminate all the physical factor variables with
almost no predictive loss.13 The final set of variables they used are as follows:

ciq the child’s verbal IQ score
lead the measured concentration of lead in the child’s baby teeth
med the mother’s level of education, in years
piq the parent’s IQ scores

Standardizing all the measured variables (which we do throughout this analysis), the
regression solution is as follows, with t-statistics in parentheses:

cîq = − .177 lead + .251 med + .253 piq .
(2.89)        (3.50)          (3.59)

All coefficients are significant at 0.05, R2 = .243, and the estimates are very close to those
obtained by including the physical factor variables (see Scheines 1997).

As Klepper (1988) points out, however, the measured regressor variables are really
proxies that almost surely contain substantial measurement error. Although an errors-in-
all-variables SEM explicitly modeling the regressor variables as latents as in figure 12.19
seems a more reasonable specification, unless the amount of measurement error for each
regressor is known precisely, this model is underidentified.
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Several strategies have been discussed for handling models of this type and
underidentified models in general. One is instrumental variable estimation (Bollen 1989),
another is a sensitivity analysis (Greene and Ernhart 1993) and still another is to bound
parameters rather than produce a point estimate for them (Klepper and Leamer 1984). An
additional strategy, made possible by the Gibbs sampler, is Bayesian estimation.

Actual Lead
Exposure

Environmental
Stimulation

ciq

lead β
3

β
2

11
1

β
1

εciq

εlead
εmed

med

εpiq

piq

Genetic
factors

Figure 12.19 An errors-in-variables model for the lead exposure and IQ

If we standardize the measured variables in the model shown in figure 12.19, then the
amount of measurement error for lead, which measures Actual Lead Exposure, and for
med, which measures Environmental Stimulation, and for piq, which measures Genetic
factors, is parameterized by var( lead), var( med), and var( piq), respectively. Since the
model implies that var(lead) = var(Actual Lead Exposure) + var( lead), for example, and
we are constraining var(lead) to unity, then if we were to set var( lead) = 0.25, we would
be asserting that 25% of the variance of measured lead comes from measurement error,
while 75% comes from Actual Lead Exposure. In this case, and many others like it, there
is reasonable prior information about the amount of measurement error present, but it is
not specific enough to assign a unique value to the parameters associated with
measurement error. Needleman pioneered a technique of inferring cumulative lead
exposure from measures of the accumulated lead in a child’s baby teeth. In Needleman’s
view,14 between 0% and 40% of the variance in Needleman’s proxy is probably from
measurement error, with 20% a conservative best guess. For the measures of
environmental stimulation and genetic factors, he is less confident, so guesses that
between 0% and 60% of the variance in med and piq is from measurement error, with
30% his best guess.

Using a normal prior distribution truncated by removing below 0 values for the
measurement error parameters, and flat prior elsewhere, Scheines, Hoijtink, and
Boomsma produced 50,000 iterations with the Gibbs sampler in TETRAD III as a sample
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from the posterior. The histogram in figure 12.20 shows the shape of the marginal
posterior over 1, the crucial coefficient representing the influence of Actual Lead
Exposure on children’s IQ.

The results support Needleman’s original conclusion, but do not require the unrealistic
assumption of zero measurement error. The Bayesian point estimate of the effect of
Actual Lead Exposure on IQ, 

1,
ˆ

EAPβ  is –0.215, and since the central 95% region of its

marginal posterior lies between –0.420 and –0.038, we conclude that exposure to
environmental lead is indeed deleterious conditional on this model and our prior
uncertainty as specified.

Figure 12.20. Marginal posterior of the causal effect of actual lead exposure on IQ

12.8 Applications
The practical value of the methods of search and prediction we have described comes
from their use in applied sciences for classification, for forecasting, for predicting the
effects of interventions, and for reconstructing causal relations independently known by
other means. Chapter 5, chapter 8, and section 12.7.3 give some examples, and in this
final section we will review a number of other studies conducted since 1993. We do not
consider applications of Bayesian networks which are not generated by search, nor do we
consider any nonconstraint-based search applications.

12.8.1 College Dropouts
Druzdzel and Glymour (1999) used the U.S. News and World Report database on
American colleges and universities for 1992 and 1993 to investigate policies for lowering
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uncertainty as specified.
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dropout rates. Using the TETRAD II program, they found that the average percentile
score of the freshman class on ACT or SAT examinations is a “controlling” variable,
analogous to the role of pH in the study of Spartina grass in chapter 8. That is, other
variables in the database are independent of dropout rate conditional on average test
scores of the entering class. The independence held quite closely in 1992, and less closely
in 1993. (Regression predicted that other variables in the database directly influence
dropout rate in both years.) Of course, this relation is not causal—SAT scores are a proxy
for whatever background, resources and skills enable students to find their first year of
college to be satisfactory.

The study was conducted at the request of the provost of Carnegie Mellon
University, an institution with a history of high dropout rates in its freshman classes in
the 1980s and early 1990s. Glymour and Druzdzel reported that the university could
reduce its dropout rate by increasing the average SAT scores of the freshman class, but
proposed no mechanism to do so. Beginning with the class of 1994, the university
changed its formula for awarding scholarships, and received a larger number of
applicants allowing for more selectivity, and there was a resulting increase in mean SAT
scores of the entering class in that year and every succeeding one. In every year except
one (1997) the dropout rate of the freshman class declined from the rate in the preceding
year. The direction of the change is in accordance with the predictions of the Glymour
and Druzdzel model, but they did not compare the quantitative prediction of the model
with subsequent events at Carnegie Mellon University. Other unknown factors may also
have affected the dropout rate.

12.8.2 In Flight Recalibration of a Mass Spectrometer Aboard an Earth Satellite
The Swedish Freja satellite carried a number of instruments to study the composition of
the lower magnetosphere and upper ionosphere. One of these instruments, a three
dimensional ion composition spectrometer (TICS) is essentially a mass spectrometer
designed to measure hydrogen and oxygen ions and the two ions of helium. The
instrument had 32 distinct detection channels, and calibration required matching signals
at a particular channel with particular ion species. The correct matching depends on the
incident energy of the ions, which varies within and between orbits. Unfortunately, the
instrument was miscalibrated before launch, and two kinds of errors resulted: TICS
values for the relative frequencies of the various species differed widely from their
relative frequencies calculated theoretically from data from another instrument (a plasma
detector); and the densities of ions according to TICS were a quarter to a fifth of the
densities calculated from the plasma detector. Working at the University of Umea and the
Swedish Institute for Space Physics, Waldemark and Norqvist (1999) recalibrated the
instrument after launch using TETRAD II, principal components, and neural networks
with backpropagation.

Ideally, different ions would be recorded at different channels, and there would be no
leakage of signal from one channel to others spatially close to it. The correct causal
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description would then have four latent variables, one for each species, with directed
edges from each latent into a set of channels for that species. If the sources are
uncorrelated, in that ideal case, an analysis of the correlations of the 32 channel signals
should yield four cliques, one for each distinct ion source. A TETRAD II analysis instead
found two clusters of channels, with a few channels connected to both clusters. Principal
components also gave a two factor model. The physical significance is that, at most
orbits, the instrument cannot distinguish between helium and hydrogen ions (although for
data from special orbits TETRAD II found a distinct cluster of channels for helium)
because there is leakage between channels and because of instrument errors in
determining physical locations on the detector. The clusterings differed with different
energy levels.

Waldemark and Norqvist then used backpropagation in a neural network to find the
channels that worked best for hydrogen and helium ions as against oxygen ions over a
range of energies. The differences between the recalibrated TICS relative frequencies and
those theoretically calculated from the plasma detector were reduced by half and the
sensitivity of the instrument was increased considerably.

12.8.3 Economic Analysis and Forecasting
Bessler and his collaborators (Guven and Bessler 1997; Akleman and Bessler 1998;
Akleman et al. 1998; Loper and Bessler 1999) have applied the PC and FCI algorithms
and modifications of them to a number of econometric data sets. In a study of the
dependency of corn exports on exchange rates, Akleman et al. found that graphical
methods produced better forecasts than did a search procedure (Hsiao search) widely
used in econometric forecasting. They have also used the techniques to study the relation
between farm and retail meat prices, and, most recently, Loper and Bessler have used the
methods on international data on GNP increases and the size of the agricultural sector in
developing nations.

12.8.4 Comparing Machine and Expert Causal Judgment in Medicine
Ideal tests of the usefulness of search algorithms in domains such as medicine and
epidemiology would compare predictions obtained by applying the algorithms to well
designed observational databases with the outcomes of randomized clinical trials.
Unfortunately, because of the rarity of adequate observational data sets paired with
appropriate randomized clinical trials, and the inaccessibility of data, to our knowledge
no such comparisons have been made. A second best alternative is to compare predictions
from observational data with human expert judgment. Cooper and Spirtes (1998)
compared predictions from a simplified (but correct) algorithm applied to a database on
hospitalized pneumonia patients with the judgments of physicians. There studies shows
some of the difficulties of this sort of test, not least because of the considerable variation
in expert medical judgment of causal relations, and because of the difficulty of
appropriate controls.

12.8.4 Comparing Machine and Expert Causal Judgment in Medicine
Ideal tests of the usefulness of search algorithms in domains such as medicine and
epidemiology would compare predictions obtained by applying the algorithms to well
designed observational databases with the outcomes of randomized clinical trials.
Unfortunately, because of the rarity of adequate observational data sets paired with
appropriate randomized clinical trials, and the inaccessibility of data, to our knowledge
no such comparisons have been made. A second best alternative is to compare predictions
from observational data with human expert judgment. Cooper and Spirtes (1998)
compared predictions from a simplified (but correct) algorithm applied to a database on
hospitalized pneumonia patients with the judgments of physicians. There studies shows
some of the difficulties of this sort of test, not least because of the considerable variation
in expert medical judgment of causal relations, and because of the difficulty of
appropriate controls.
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Recall that a measured variable V is exogenous in a causal DAG if there is no arrow
directed into it. Assume that there is no causal relation between the sampling mechanism
and the measured variables (i.e., there is no selection bias). Then the following theorem
follows simply from Cooper (1997) and Spirtes et al. (1995).

THEOREM 12.8.1: Assuming the Causal Markov Condition, if

• E is exogenous, and
• each causal DAG containing the variables <E,A,B> in which E is exogenous has a
nonzero prior probability,
• the prior probability of the parameters of each DAG is absolutely continuous with the
BDe metric (Heckerman et al. 1994),
• E → A → B has the highest posterior probability among all DAGs containing the
variables <E,A,B> in which E is exogenous,

then with probability 1 in the large sample limit, in the true causal DAG, A is an ancestor
of B (i.e., A is a cause of B) and there are no latent causes (i.e., unmeasured confounders)
of A and B.

This result justifies a simple algorithm for causal inference with background
knowledge, the Instrumental Variable (IV) algorithm. The IV algorithm takes as input
background knowledge about which variables are exogenous, and a database consisting
of patient records. An exogenous variable is also called an instrumental variable. The
algorithm outputs a list of causal conclusions of the form “A causes B.” The algorithm
consists of the following steps:

1. Select a subset of variables E that are known to be exogenous. In the case of the
pneumonia data (see below), the exogenous variables we used were race, age, and
gender.
2. For each vertex E in E, search for measured variables A and B such that A is highly
dependent on E, B is highly dependent on A, and E is independent of B given A. In the
case of the data, we defined “highly dependent” to mean that the p value of the g2 statistic
measuring the dependence of discrete variables was less than 0.01, and “E is independent
of B given A” means that the p value of the g2 statistic measuring the conditional
dependence of E and B given A is greater than 0.5.
3. For each triple of vertices <E,A,B> selected in step 2, for each DAG G that can be
constructed out of the triple in which E is exogenous, calculate the posterior probability
of G. If no DAG has a higher posterior probability than the DAG E → A → B then output
“A causes B.”

Cooper and Spirtes assume each DAG compatible with the exogeneity of E has an equal
prior probability. For each DAG, the prior probability over the parameters is the BDe
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prior described in Heckerman et al. 1994. The IV algorithm was tested on a pneumonia
database of community acquired pneumonia patients (see Fine 1997 for details), which is
called the pneumonia PORT database. Based on chart review, hundreds of data items
were collected for each of the 2287 patients in the database. The causal conclusions of the
IV algorithm applied to the database are shown in table 12.4.

A physician familiar with the pneumonia database but not with the algorithm was
presented with a set of pairs of variables, some output by the algorithm as bearing a
cause-effect relation to each other, and some chosen at random; the order of the pairs of
variables was listed randomly. The physician was asked to classify each pair of variables
into one of three classes: “Confident that A does cause B,” “Don’t know whether A causes
B,” or “Confident that A does not cause B.” The results were that for all 10 pairs of
variables suggested by the IV algorithm, the physician judge was confident that the
relationship was cause and effect. For the randomly chosen pairs of variables, he was
confident that the relationship between 5 of the 22 pairs was cause and effect; he was
confident that 10 were not cause and effect; and in 7 cases he was not sure. The
hypothesis that the algorithm’s decision that a relationship is causal is independent of the
physician’s is rejected by Fisher’s exact test (p = .0002).

A second test used five physicians who regularly see pneumonia patients as part of
their practice. Given a series of variable pairs and asked to judge whether the pairs were
causally related, the physicians showed poor agreement across raters. To control as much
as possible for the fact that the pairs selected by the IV algorithm were very highly
correlated, the variable pairs selected by the IV algorithm were interspersed with other
variable pairs that were also highly correlated. When the pooled judgments of the
physicians were used in a test similar to the first, the hypothesis of independence (of the
algorithm’s causal claims and the pooled physician’s claims) could not be rejected.

However, the results obtained did suggest some obvious improvements to the IV
algorithm. Among the pairs selected by the IV algorithm, the 5 pairs that the physicians
were most dubious about all involved current employment status as a cause. There are a
number of obviously relevant features that the more dubious pairs output by the IV
algorithm have in common.
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age current employment status
prior hospitalization within
30 days 4.87

age current employment status
a history of chronic
obstructive pulmonary
disease requiring prior ICU
admission

4.42

age current employment status
days since last hospital
discharge 0.56

Table 12.4

• 4 of the 5 dubious causal relations have the 4 lowest scores.
• If the Bayes Information Criterion were used to score the models rather than the
posterior probability, 2 of the dubious causal relations (the 2 with the lowest scores)
would not have been suggested by the algorithm at all.
• All of the dubious effects contained categories with relatively few members, in
contrast with the effects chosen by the IV algorithm that the doctors agreed with.
• When conducting statistical tests of the association of the cause with the effect, on
four of the five dubious effects the statistical program we used issued a warning that the
chi-squared test of independence may not be appropriate because the expected value of
some cells was less than 5. It did not issue this warning on any of the 4 nondubious
effects.

Instrument Cause Effect Score

age coronary artery disease myocardial infarction 18.41

age current employment status
intravenous drug use (non-
prescribed) 14.52

age nausea vomiting 9.28

gender # of comorbid conditions
dire outcome (i.e., mortality
or serious complications 8.47

gender sputum cough 7.99

age current employment status
chronic obstructive
pulmonary disease 7.55
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These features suggest that the performance of the IV algorithm could be improved by
eliminating pairs of variables for which the test of independence is dubious because some
expected cell sizes are less than 5, and/or by raising the score threshold of what is
considered a positive result for the algorithm.

12.8.5 Infant Mortality
Mani and Cooper (1999) used an algorithm related to the IV algorithm to look for causal
relations in a random sample of size 41,155 form the U.S. Linked Birth/Infant Death
database. They selected a set of 85 clinically interesting, nonredundant variables to
examine. The LCD2 algorithm searches for triples of variables with causal relations W →
X → Y, where W is known from background knowledge to be exogenous. Given a set of
exogenous variables W, the algorithm outputs “X causes Y” if there is an exogenous
variable W such that W and Y are dependent, W and X are dependent, W and X are
dependent given Y, X and Y are dependent, X and Y are dependent given W, and W and Y
are independent given X. Assuming Causal Markov, Causal Faithfulness, the correctness
of the independence tests, and the exogeneity of W, it can be shown that the algorithm is
correct. It is not complete because there are cases where, using higher order conditional
independence tests, it may be possible to determine that X causes Y, but the X → Y pair
will not be in the algorithm’s output. However, it has advantages both in terms of
reliability at small sample sizes and speed over more complete searches.

The exogenous variables were race of the mother and child gender. The algorithm
found 9 causal relations: Maternal education → Delivery conductor, Maternal education
→ Maternal age, Marital status mother → Delivery conductor, Marital status mother →
Maternal age, Prenatal care start → Delivery facility, Prenatal care start → Delivery
conductor, Prenatal care adequacy → Prenatal care start, Birth weight → Infant
outcome one year, Birth weight → Delivery conductor. In all 9 cases, the exogenous
variable was Maternal race. The meanings of the variables are described in table 12.5.

The relationship between Prenatal care adequacy and Prenatal care start is actually
definitional, because Prenatal care adequacy is defined (in part) in terms of Prenatal
care start. The other 8 causal relations all appear plausible. Maternal education →
Delivery conductor is plausible because education can have an important effect on access
to health care. Birth weight → Infant outcome one year is a well-documented causal
relationship. The authors plan to ask OB/GYN clinicians to judge the plausibility of each
member of a list of causal relations, including the 9 suggested by the algorithm
intermixed with randomly generated variable pairs.
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Variable Name Variable meaning

Maternal education Years of education of the mother

Delivery conductor Care giver conducting delivery

Maternal age Age of mother at delivery

Marital status mother Marital status of the mother

Prenatal care start Trimester prental care began

Delivery facility Place or facility of delivery

Prenatal care adequacy Adequacy of care

Birth weight Weight of infant at birth

Infant outcome one year If the child was alive on first birthday

Table 12.5

12.8.6 Biological Applications
Experimental research is difficult in ecology, and explanations founded on observational
data are common, although sample sizes are often quite small. Shipley has applied
directed graph search techniques, with a number of innovations, to ecological studies and
to plant physiology. Shipley (1995) and his collaborators (Pyankov et al. 1999) have
applied the techniques to study the causes of variation in leaf mass and area among
related species, and causes of variation in relative growth between species (McKenna and
Shipley 1999) He has developed a number of new search methods, including a
bootstrapping technique for small samples (Shipley 1997) that generalizes the
bootstrapping idea in the Weisberg example of chapter 8, and is discussed in section
12.5.10 (see also Friedman 1999b), and performs much better on small samples than the
PC algorithm. Shipley (1999) has also provided an algorithm for obtaining, from any
directed acyclic graph without latent variables, a set of independent partial correlation
constraints; the output of the procedure can be used to test entire models by chi-square.
He is preparing a monograph on structural equation models and search methods for
causal explanations in biology.
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12.8.7 Automated Mineral Identification from Near Infra-red Spectra
For many reasons, including power demands and limits on available antenna time, it
would be valuable to have extra-planetary robots do some scientific analysis
autonomously, on-board, rather than transmit all data to Earth for analysis. Visible and
near infrared spectrometry has long been a standard tool in the identification of chemical
species and minerals, and very light weight instruments have recently become available.
An issue is whether fast computational procedures can be found that can identify
minerals from rock and soil targets in situ from reflectance spectra, with a reliability
comparable to that of expert human geophysical spectroscopists. The identification of
water, hydrates and carbonates is of particular interest. In recent work for NASA on
carbonate recognition, DeFazio et al. (1999) compared a simplified version of the PC
algorithm with regression, with an expert system, and with a human expert.

Samples of spectra from rocks and soils in situ near Silver Lake, California were
obtained from NASA field trials of a robot in the winter of 1999. Paul Gazis of NASA
Ames Research Center provided an automated test for excess noise (owing to instrument
error or atmospheric effects), and after that test was applied, 21 samples suitable for
analysis were obtained. Each sample was examined in the field by expert geologists, and
many of the samples were tested chemically and by analysis of transmitted light through
thin slices. 13 of the samples were judged to be carbonates and eight were judged to be
non-carbonates

The spectra were then given to a simplified version of the PC algorithm (essentially
the PC algorithm in this book, but ignoring associations among causes), a regression
algorithm from MiniTab, and an expert system modeled on a human expert
spectroscopist. The PC algorithm and regression used a reference library of spectra from
the Jet Propulsion Laboratory. Each procedure was tuned to give the best possible
separation of carbonates from noncarbonates. Thirteen of the samples actually contained
carbonates, according to the field geologists. The PC algorithm identified 12 of the 13
carbonates, and misidentified no non-carbonates. Regression identified 11 of the
carbonate samples, and misidentified 4 noncarbonates. The expert system identified 9 of
the carbonates and misidentified no noncarbonates.

As a further test, the PC algorithm, regression and the human expert (rather than the
program simulating him) attempted to identify samples with carbonate composiiton from
a library of spectra from Johns Hopkins University of 192 rock and soil samples, 91 of
which actually contained some carbonate minerals. In addition, a commercial program,
Model 1, was given the same task. The tuning of the PC algorithm and regression was the
same as that used in the previous experiment. The PC algorithm identified 38 samples
with carbonates, and misclassified 3 non-carbonate samples; the human expert correctly
identified 24 carbonate samples and misidentified 1; regression claimed 154 of the
samples contained carbonate, including 75 of the samples actually with carbonate and 79
of the samples without carbonate. The Model 1 program found 27 actual carbonate
samples of 41 samples it claimed were carbonates.
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Properly tuned, the simplified PC algorithm performs considerably better at this task
than does regression, a human expert, and a commercial program, and requires minimal
computational resources.

12.9 Foundational Issues and Relations to Other Disciplines
There is a voluminous literature on such questions as whether counterfactual conditionals
have truth values (or merely acceptability conditions), what the truth conditions are,
whether they can be meaningfully nested, etc. (e.g., Lewis 1973). Various representative
attempts at definitions of causality, and the relationship between causation and
counterfactuals, are explored in Sosa and Tooley (1993). Heckerman and Shachter (1995)
attempt to define causal relations in terms of decision theory. Shafer (1996) explicates
various related concepts of causality in terms of event trees.

There have been several attempts to find models of belief change which, like
deductive logic are qualitative and deductively closed, but like probability can be held
with varying degrees of firmness and can be retracted. Alchourrón et al. (1985) propose a
set of axioms appropriate for revising a data-base in the face of new evidence (belief
revision), while Katsumo and Mendelson (1991) propose a system for revising a data-
base in the face of an external intervention (belief update). Goldszmidt and Pearl (1992)
propose a system Z+ for both belief revision and belief update that incorporates a
qualitative version of the Causal Markov Condition. Formal learning theory also studies
learning without probabilities. Kelly (1996) considers the problem of learning causes in
the long run without using probabilities.

Iwasaki and Simon (1994) describe graphical representations of dynamic equations
that are expressed as differential equations, and hence often involve both a variable and
its differential. They do not relate the graphical representation to any conditional
independence relations or statistical model.

Matuš and Studený have shown that there are 18300 sets of conditional independence
relations among four variables that can be realized by some probability distribution,
which is far larger than the number of different subsets of conditional independence
relations that can be represented by graphical models. Matuš and Studený (1995) and
Matuš (1995) investigate properties common to all of the realizeable sets of conditional
independence relations among four variables. Studený (1992) shows that there is no finite
complete characterization of probabilistic conditional independence.
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13 Proofs of Theorems

We will adopt the following notational conventions. “w.l.g.” abbreviates “without loss of
generality,” “r.h.s.” abbreviates “right hand side,” and “l.h.s.” abbreviates “left hand
side.” Any sum over the empty set is equal to 0 and any product over the empty set is 1.
R(I,J) represents a directed path from I to J. If U is an undirected path from A to B, and X
and Y occur on U, then we will denote the subpath of U between X and Y as U(X,Y).
T(I,J) represents a trek in T(I,J). The definitions of all technical terms in this chapter that
a1have not been defined in chapters 2 or 3 have been placed in a glossary following the
chapter.

13.1 Theorem 2.1

THEOREM 2.1: If P(V) is a positive distribution, then for any ordering of the variables in
V, P satisfies the Markov and Minimality conditions for the directed independence graph
of P(V) for that ordering.

Proof. See Pearl 1988.

13.2 Theorem 3.1

THEOREM 3.1: If S is an LCT, and S  is a random coefficient LCT with the same directed
acyclic graph, the same set of noncoefficient random variables, the same variances for
each noncoefficient exogenous variable, and for each random coefficient a IJ in S , E(a IJ)
= aIJ in S, then a partial correlation is equal to zero in S if and only if it is equal to 0 in S .

Let a linear causal theory be (LCT) be <<R,M,E>, ( ,f,P), EQ,L,Err> where

(i) ( ,f,P) is a probability space, where  is the sample space, f is a sigma-field over ,
and P is a probability distribution over f.
(ii) <R,M,E> is a directed acyclic graph. R is a set of random variables over ( ,f,P).
(iii) The variables in R have a joint distribution. Every variable in R has a nonzero
variance. E is a set of directed edges between variables in R. (M is the set of marks that
occur in a directed graph, that is, {EM, >}.
(iv) EQ is a consistent set of independent homogeneous linear equations in random
variables in R. For each Xi in R of positive indegree there is an equation in EQ of the
form

Xi = aij
Xj ∈Parents(Xi )

∑ Xj
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where each aij is a nonzero real number and each Xi is in R. This implies that each vertex
Xi in R of positive indegree can be expressed as a linear function of all and only its
parents. There are no other equations in EQ. A nonzero value of aij is the equation
coefficient of Xj in the equation for Xi.
(v) If vertices (random variables) Xi and Xj are exogenous, then Xi and Xj are pairwise
statistically independent.
(vi) L is a function with domain E such that for each e in E, L(e) = aij iff head(e) = Xj and
tail(e) = Xj. L(e) will be called the label of e. By extension, the product of labels of edges
in any acyclic undirected path U will be denoted by L(U), and L(U) will be called the
label of U. The label of an empty path is fixed at 1.
(vii) There is a subset of S of R called the error variables, each of indegree 0 and
outdegree 1. For every Xi in R of indegree ≠ 0 there is exactly one error variable with an
edge into Xi. We assume that the partial correlations of all orders involving only non-
error variables are defined.

Note that the variance of any endogenous variable I conditional on any set of variables
that does not contain the error variable of I is not equal to zero.

The definition of a random coefficient linear causal theory is the same as that of a
linear causal theory except that each linear coefficient is a random variable independent
of the set of all other random variables in the model.

A linear causal form is an unestimated LCT in which the linear coefficients and the
variances of the exogenous variables are real variables instead of constants. This entails
that an edge label in an LCF is a real variable instead of a constant (except that the label
of an edge from an error variable is fixed at one.) More formally, let a linear causal form
(LCF) be <<R,M,E>, C, V, EQ,L,Err> where

(i) <R,M,E> is a directed acyclic graph. Err is a subset of R called the error variables.
Each error variable is of indegree 0 and outdegree 1. For every Xi in R of indegree ≠ 0
there is exactly one error variable with an edge into Xi.
(ii) cij is a unique real variable associated with an edge from Xj to Xi, and C is the set of
cij.V is the set of variables σ i

2
, where Xi is an exogenous variable in <R,M,E> and σ i

2
 is

a variable that ranges over the positive real numbers.
(iii) L is a function with domain E such that for each e in E, L(e) = cij iff head(e) = Xj and
tail(e) = Xi. L(e) will be called the label of e. By extension, the product of labels of edges
in any acyclic undirected path U will be denoted by L(U), and L(U) will be called the
label of U. The label of an empty path is fixed at 1.
iv. EQ is a consistent set of independent homogeneous linear equationals in variables in
R. For each Xi in R of positive indegree there is an equation in EQ of the form

Xi = cij
Xj ∈Parents(Xi )

∑ Xj
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where each cij is a real variable in C and each Xi is in R. There are no other equations in
EQ. cij is the equation coefficient of Xj in the equation for Xi.

An LCT S is an instance of an LCF F if and only if the directed acyclic graph of S is
isomorphic to the directed acyclic graph of F. In an LCF, a quantity (e.g., a covariance) X
is equivalent to a polynomial in the coefficients and variances of exogenous variables
if and only if for each LCF F = <<R,M,E>, C, V, EQ,L,Err> and in every LCT S =
<<R ,M ,E >, ( ,f,P), EQ ,L’,Err’> that is an instance of F, there is a polynomial in the
variables in C and V such that X is equal to the result of substituting the linear
coefficients of S in as values for the corresponding variables in C, and the variances of
the exogenous variables in S as values for the corresponding variables in V.

In an LCT or LCF S , a variable Xi is independent iff Xi has zero indegree (i.e., there
are no edges directed into it); otherwise it is dependent. Note that the property of
independence is completely distinct from the relation of statistical independence. The
context will make clear in which of these senses the term is used. For a directed acyclic
graph G, Ind is the set of independent variables in G. Given a directed acyclic graph G,
D(Xi, Xj) is the set of all directed paths from Xi to Xj. In an LCF <<R,M,E>, C, V,
EQ,L,S> an equation is an independent equational for a dependent variable Xj if and
only if it is implied by EQ and the variables in R which appear on the r.h.s. are
independent and occur at most once. IndaIJ is the coefficient of J in the independent
equational for I.

LEMMA 3.1.1: In an LCF S, if J is an independent variable, then

IndaIJ = L(U )
U∈D( J,I )

∑

Proof. This is a special case of Mason’s rule for calculating the “total effect” of a variable
J on a variable I. See Glymour et al. 1987. ∴

The following two lemmas show how to calculate the variance of random variables and
covariances between random variables in terms of the covariances between other random
variables. The proofs of these lemmas can be found in Freund and Walpole 1980. We
denote the covariance of I and J by IJ, the variance of I by �2

I, the correlation of I and J
by IJ, the partial correlation of I and J given the set H by IJ.H, and the partial covariance
of I and J given H by IJ.H. The correlation of two subscripted variables such as Xi and Xj

we will write as ij for legibility, and similarly for partial correlations, etc.

LEMMA 3.1.2: If Q is a set of random variables with a joint probability distribution and
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Y = aYII
I∈Q
∑

and

Z = aZJJ
J ∈Q
∑

then

γ YZ = aYIaZJ
J∈Q
∑

I∈Q
∑ γ IJ

Lemmas 3.1.3, 3.1.5, and 3.1.7 are not used in the proof of theorem 3.1, but they are used
in later theorems, and we include them here because they follow easily from the other
lemmas in this section.

LEMMA 3.1.3: If Q is a set of random variables with a joint probability distribution and

Y = aYII
I∈Q
∑

then

σY
2 = aYIaYJ

J ∈Q
∑

I ∈Q
∑ γ IJ

In an LCF S, UX is the set of all independent variables that are the source of a directed
path to X. (Note that if X is independent then X ∈ UX since there is an empty path from
every vertex to itself.) In an LCF S, UXY is UX ∩ UY.

LEMMA 3.1.4: If S is an LCF,

Y = IndaYII
I∈Ind
∑

and

Z = IndaZII
I∈Ind
∑

σY
2 = aYIaYJ

J ∈Q
∑

I ∈Q
∑ γ IJ

Z = IndaZII
I∈Ind
∑
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then

γ YZ = IndaYI
IndaZI

I∈UYZ

∑ σI
2

Proof. Ind���������������	�����������������,��������������� IJ is equal to 0 if I ≠ J������ IJ

is equal to σ I
2
 if I = J���
����
�������������
������� IJ into the r.h.s. of the equation for

YZ in lemma 3.1.2 shows that

γ YZ = IndaYI
IndaZI

I∈Ind
∑ σI

2 (13.1)

If I is in Ind, but I is not in UYZ then there is no pair of directed acyclic paths from I to Y
and Z. By lemma 3.1.1, if there is no pair of directed acyclic paths from I to Y and Z, then
the coefficient of I in the independent equation for either Y or Z is zero. So, the only
nonzero terms in equation 1 are for I ∈ UYZ. ∴

LEMMA 3.1.5: If S is an LCF,

Y = IndaYII
I∈Ind
∑

then

σY
2 = IndaYI

2

I ∈UY

∑ σ I
2

Proof. Ind���������������	������������������������,��������������� IJ is equal to 0 if I ≠
J�� ���� IJ is equal to σ I

2
 if I = J���
����
���� ���������
��� ���� IJ into the r.h.s. of the

equation for σY
2

 in lemma 3.1.1 proves that

σY
2 = IndaYI

2

I ∈Ind
∑ σ I

2  (13.2)

If I is in Ind, but I is not in UY, then there is no directed path from I to Y. It follows from
lemma 3.1.1 that aYI is zero. Hence the only nonzero terms in equation 2 come from I ∈
UY. ∴

LEMMA 3.1.6: If S is an LCF,

γ YZ = IndaYI
IndaZI

I∈Ind
∑ σI

2

γ YZ = IndaYI
IndaZI

I∈UYZ

∑ σI
2

σY
2 = IndaYI

2

I ∈UY

∑ σ I
2

σY
2 = IndaYI

2

I ∈Ind
∑ σ I

2
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γ IJ = L(R)L(R' )σK
2

R'∈D(K, J)
∑

R∈D(K, I)
∑

K ∈UIJ

∑

Proof. This follows immediately from lemmas 3.1.2 and 3.1.4. ∴

LEMMA 3.1.7: If S is an LCF,

σ I
2 = L(R)

R∈D(K, L)
∑

 

 
 

 

 
 

2

σK
2

 

 
  

 

 
  

K∈U I

∑

Proof. This follows immediately from lemmas 3.1.1 and 3.1.5. ∴

THEOREM 3.1: If S is an LCT, and S  is a random coefficient LCT with the same directed
acyclic graph, the same set of noncoefficient random variables, the same variances for
each exogenous variable, and for each random coefficient a IJ in S , E(a IJ) = aIJ in S, then
a partial correlation is equal to zero in S if and only if it is equal to 0 in S .

Proof. Because S is an instance of an LCF, by lemma 3.1.6

γ IJ = L(R)L(R' )σK
2

R'∈D(K, J)
∑

R∈D(K, I)
∑

K ∈UIJ

∑

The label of a path is equal to the product of the labels of the edges and because the
random coefficients are independent of each other and all the random variables that are
not coefficients, it follows that

E L(edge)
edge∈U
∏

 

 
 

 

 
 = E(L(edge))

edge∈U
∏

Transform all of the variables so that they have mean 0; this does not affect the value of
any of the covariances. In T�� IJ = E(IJ) and

E L(edge)
edge∈U
∏

 

 
 

 

 
 = E(L(edge))

edge∈U
∏

γ IJ = L(R)L(R' )σK
2

R'∈D(K, J)
∑

R∈D(K, I)
∑

K ∈UIJ

∑

σ I
2 = L(R)

R∈D(K, L)
∑

 

 
 

 

 
 

2

σK
2

 

 
  

 

 
  

K∈U I

∑

γ IJ = L(R)L(R' )σK
2

R'∈D(K, J)
∑

R∈D(K, I)
∑

K ∈UIJ

∑

The label of a path is equal to the product of the labels of the edges and because the
random coefficients are independent of each other and all the random variables that are
not coefficients, it follows that

Transform all of the variables so that they have mean 0; this does not affect the value of
any of the covariances. In T�� IJ = E(IJ) and
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E(IJ) = E L(U)L(V )HF
V∈D(F ,Y )

∑
F∈UJ

∑
U∈D(H ,X)

∑
H∈UI

∑
 

 
 

 

 
 =

E(L(U )L(V)H2 )
V∈D(H ,Y )

∑
U∈D( H, X)

∑
H∈U IJ

∑ =

E( L(edge)
edge∈U
∏ L(edge)

edge∈V
∏ H2)

V∈D( H,Y )
∑

U∈D(H , X)
∑

H∈UIJ

∑ ) =

E(L(edge))
edge∈U
∏ E(L(edge))

edge∈V
∏ E(H2 )

V ∈D(H ,Y )
∑

U∈D( H ,X)
∑

H∈UIJ

∑

because for exogenous variables E(HF) = 0 unless H = F.

By hypothesis, E(L(edge)) in S  = L(edge) in S��0����������.	������� IJ is the same for
both random and constant coefficients. The partial correlations are a function of the
covariance matrix so the partial correlations are the same in S and S . ∴

13.3 Theorem 3.2

THEOREM 3.2: Let M be an LCF with n free linear coefficients a1,..., an and k positive
variances v1,..., vk. Let M(<u1,...,un, un+1,...,un+k>) be the distributions consistent with
specifying values <u1,...,un, un+1,...,un+k> for a1,..., an and v1,...,vk. Let  be the set of
probability measures P on the space ℜ n+k of values of the parameters of M such that for
every subset V of ℜ n+k having Lebesgue measure zero, P(V) = 0. Let Q be the set of
vectors of coefficient and variance values such that for all q in Q every probability
distribution consistent with M(q) has a vanishing partial correlation that is not linearly
implied by M. Then for all P in  P(Q) = 0.

LEMMA 3.2.1: In an LCF S, ij.X = 0 is equivalent to a polynomial equation in the linear
coefficients and variances of the independent variables.

Proof. We will prove more generally that a polynomial equation in partial covariances is
equivalent to a polynomial equation in the linear coefficients and variances of the
independent variables. If X contains n� ������� ���������� ����� ���� ij.X is a partial
correlation of order n. Let the pc-order (partial covariance order) of a polynomial in
partial covariances be the highest order of any partial covariance appearing in the
polynomial. The proof is by induction on the pc-order of the polynomials.

Base Case: If polynomial Q is of pc-order 0, then by lemma 3.1.2, Q is equivalent to a
polynomial equation in the linear coefficients and variances of the independent variables.
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Induction Case: Suppose that the lemma is true for polynomials of pc-order n–1, and let
Q be a polynomial of pc-order n. The recursion formula for partial covariances is

γ ij.Y∪r = γ ij.Y −
γ ir.Yγ jr.Y

γ rr.Y

Form Q  by using this recursion formula to replace each covariance of pc-order n
appearing in Q by an algebraic combination of covariances of pc-order n–1. Form Q  by
multiplying Q  by the lowest common denominator of all of the terms in Q , producing a
polynomial of pc-order n–1. By the induction hypothesis, Q  is equivalent to a
polynomial equation in the linear coefficients and variances of the independent variables.
Hence, a polynomial equation in partial covariances is equivalent to a polynomial
equation in the linear coefficients and variances of the independent variables.

By definition,

ρij.X =
γ ij.X

γ ii.X γ jj.X

so ij.X� �1���� ij.X = 0. Since the latter is a polynomial equation in partial covariances, it
is equivalent to a polynomial equation in the linear coefficients and variances of the
independent variables. It follows that the former is also equivalent to a polynomial
equation in the linear coefficients and variances of the independent variables. ∴

THEOREM 3.2: Let M be a linear model with directed acyclic graph G and n linear
coefficients a1,..., an and k positive variances of exogenous variables v1 ,..., vk. Let
M(<u1,...,un, un+1,...,un+k>) be the distributions consistent with specifying values <u1,...,un,
un+1,...,

u
n+k> for a1,..., an and v1,...vk. Let  be the set of probability measures P on the

space ℜ n+k of values of the parameters of M such that for every subset V of ℜ n+k having
Lebesgue measure zero, P(V) = 0. Let Q be the set of vectors of coefficient and variance
values such that for all q in Q every probability distribution in with M(q) has a vanishing
partial correlation that is not linearly implied by G. Then for all P in  P(Q) = 0.

Proof. For any LCF, each partial correlation is equivalent to a polynomial in the linear
coefficients and the variances of the exogenous variables: the rest of the features of the
distribution have no bearing on the partial correlation. Hence for a vanishing partial
correlation to be linearly implied by the directed acyclic graph of the theory, it is
necessary and sufficient that the corresponding polynomial in the linear coefficient and
variance parameters vanish identically. Thus any vanishing partial correlation not linearly
implied by an LCF represents a polynomial P in variables consisting of the linear
coefficients and variances of that theory, and the polynomial does not vanish identically.

ρij.X =
γ ij.X

γ ii.X γ jj.X

γ ij.Y∪r = γ ij.Y −
γ ir.Yγ jr.Y

γ rr.Y
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So the set of linear coefficient and variance values satisfying P is an algebraic variety in
ℜ n+k. Any connected component of such a variety has Lebesgue measure zero. But an
algebraic variety has at most a finite number of connected components (Whitney 1957).
∴

13.4 Theorem 3.3

THEOREM 3.3: P(V) is faithful to directed acyclic graph G with vertex set V if and only if
for all disjoint sets of vertices X, Y, and Z, X, and Y are independent conditional on Z if
and only if X and Y are d-separated given Z.

The “if” portion of the theorem was first proved in Verma 1986 and the “only if”
portion of the theorem was first proved in Geiger and Pearl 1989a. The proof produced
here is considerably different, but since the bulk of it is a series of lemmas that we also
need to prove other theorems, we state it here.

G  is an inducing path graph over O for directed acyclic graph G if and only if O is
a subset of the vertices in G, there is an edge between variables A and B with an
arrowhead at A if and only if A and B are in O, and there is an inducing path in G
between A and B relative to O that is into A. (Using the notation of chapter 2, the set of
marks in an inducing path graph is {>, EM}.) We will refer to the variables in O as
observed variables. Unlike a directed acyclic graph, an inducing path graph can contain
double-headed arrows. However, it does not contain any edges with no arrowheads. If
there is an inducing path between A and B in G that is into A, then the edge between A
and B in G  is into A. However, if there is an inducing path between A and B in G that is
out of A, it does not follow that the edge in G  between A and B is out of A. Only if no
inducing path between A and B in G is into A is the edge between A and B in G  out of A.
The definitions of directed path, d-separability, inducing path, collider, ancestor, and
descendant are the same as those for directed graphs, that is, a directed path in an
inducing path graph, as in an acyclic directed graph, contains only directed edges (e.g., A
→ B). However, an undirected path in an inducing path graph can contain either directed
edges, or bi-directed edges (e.g., C ↔ D.) Also, if A ↔ B in an inducing path graph, A is
not a parent of B. Note that if G is a directed acyclic graph, and G  the inducing path
graph for G over O, then there are no directed cycles in G .

Lemma 3.3.1 states a method for constructing a path between X and Y that d-connects
X and Y given Z out of a sequence of paths.

LEMMA 3.3.1: In a directed acyclic graph G (or an inducing path graph G) over V, if X
and Y are not in Z, there is a sequence S of distinct vertices in V from X to Y, and there is
a set T of undirected paths such that

(i). for each pair of adjacent vertices V and W in S there is a unique undirected path in T
that d-connects V and W given Z\{V,W}, and
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(ii). if a vertex Q in S is in Z, then the paths in T that contain Q as an endpoint collide at
Q, and
(iii). if for three vertices V, W, Q occurring in that order in S the d-connecting paths in T
between V and W, and W and Q collide at W then W has a descendant in Z,
then there is a path U in G that d-connects X and Y given Z. In addition, if all of the edges
in all of the paths in T that contain X are into (out of) X then U is into (out of) X, and
similarly for Y.

Proof. Let U  be the concatenation of all of the paths in T in the order of the sequence S.
U  may not be an acyclic undirected path, because it may contain some vertices more than
once. Let U be the result of removing all of the cycles from U . If each edge in U  that
contains X is into (out of) X, then U is into (out of) X, because each edge in U is an edge
in U . Similarly, if each edge in U  that contains Y is into (out of) Y, then U is into (out of)
Y, because each edge in U is an edge in U . We will prove that U d-connects X and Y
given Z.

We will call an edge in U containing a given vertex V an endpoint edge if V is in the
sequence S, and the edge containing V occurs on the path in T between V and its
predecessor or successor in S; otherwise the edge is an internal edge.

First we prove that every member R of Z that is on U is a collider on U. If there is an
endpoint edge containing R on U then it is into R because by assumption the paths in T
containing R collide at R. If an edge on U is an internal edge with endpoint R then it is
into R because it is an edge on a path that d-connects two variables A and B not equal to R
given Z\{A,B}, and R is in Z. All of the edges on paths in T are into R, and hence the
subset of those edges that occur on U are into R.

Next we show that every collider R on U has a descendant in Z. R is not equal to either
of the endpoints X or Y, because the endpoints of a path are not colliders along the path. If
R is a collider on any of the paths in T then R has a descendant in Z because it is an edge
on a path that d-connects two variables A and B not equal to R given Z\{A,B}. If R is a
collider on two endpoint edges then it has a descendant in Z by hypothesis. Suppose then
that R is not a collider on the path in T between A and B, and not a collider on the path in
T between C and D, but after cycles have been removed from U , R is a collider on U. In
that case U  contains an undirected cycle containing R. Because G is acyclic, the
undirected cycle contains a collider. Hence R has a descendant that is a collider on U .
Each collider on U  has a descendant in Z. Hence R has a descendant in Z. ∴

LEMMA 3.3.2: If G is a directed acyclic graph (or an inducing path graph), R is d-
connected to Y given Z by undirected path U, and W and X are distinct vertices on U not
in Z, then U(W,X) d-connects W and X given Z = Z\{W,X}.

Proof. Suppose G is a directed acyclic graph, R is d-connected to Y given Z by undirected
path U, and W and X are distinct vertices on U not in Z. Each noncollider on U(W,X)
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except for the endpoints is a noncollider on U, and hence not in Z. Every collider on
U(W,X) has a descendant in Z because each collider on U(W,X) is a collider on U, which
d-connects R and Y given Z. It follows that U(W,X) d-connects W and X given Z =
Z\{W,X}. ∴

LEMMA 3.3.3: If G is a directed acyclic graph (or an inducing path graph), R is d-
connected to Y given Z by undirected path U, there is a directed path D from R to X that
does not contain any member of Z, and X is not on U, then X is d-connected to Y given Z
by a path U  that is into X. If D does not contain Y, then U  is into Y if and only if U is.

Proof. Let D be a directed path from R to X that does not contain any member of Z, and
U an undirected path that d-connects R and Y given Z and does not contain X. Let Q be
the point of intersection of D and U that is closest to Y on U. Q is not in Z because it is on
D.

If D does contain Y, then Y = Q, and D(Y,X) is a path into X that d-connects X and Y
given Z because it contains no colliders and no members of Z.

If D does not contain Y then Q ≠ Y. X ≠ Q because X is not on U and Q is. By lemma
3.3.2 U(Q,Y) d-connects Q and Y given Z\{Q,Y} = Z. Also, D(Q,X) d-connects Q and X
given Z\{Q,X} = Z. D(Q,X) is out of Q, and Q is not in Z. By lemma 3.3.1, there is a path
U  that d-connects X and Y given Z that is into X. If Y is not on D, then all of the edges
containing Y in U  are in U(Q,Y), and hence by lemma 3.3.1 U  is into Y if and only if U
is. ∴

In a directed acyclic graph G, ND(Y) is the set of all vertices that do not have a
descendant in Y

LEMMA 3.3.4: If P(V) satisfies the Markov condition for directed acyclic graph G over V,
S is a subset of V, and ND(Y) is included in S, then

P(V|Parents(V))
V∈V
∏

 

 
 

 

 
 

S

→
∑ = P(V| Parents(V ))

V∈V \ND(Y)
∏

 

 
 

 

 
 

S \ ND(Y)

→
∑

Proof. S can be partitioned into S\ND(Y) and S ∩ ND(Y) = ND(Y). If V is in V\ND(Y)
then no variable occurring in the term P(V|Parents(V)) occurs in ND(Y); hence for each
V in V\ND(Y), P(V|Parents(V)) can be removed from the scope of the summation over
the values of variables in ND(Y).
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P(V|Parents(V))
V∈V
∏

 

 
 

 

 
 

S

→
∑ =

P(V| Parents(V )) × P(V|Parents(V))
V∈ND(Y)

∏
 

 
 

 

 
 

ND(Y)

→
∑

 

 
 

 

 
 

V∈V\ ND(Y)
∏

 

 
 

 

 
 

S \ND(Y)

→
∑

(1)

We will now show that

P(V |Parents(V ))
V∈ND(Y)

∏
 

 
 

 

 
 

ND(Y)

→
∑ = 1

unless for some value of S\ND(Y) the set of values of ND(Y) such that P(V|Parents(V))
is defined for each V in ND(Y) is empty, in which case on the l.h.s of (1) no term
containing that value of S\ND(Y) appears in the sum, and on the r.h.s.of (1) every term in
the scope of the summation over S\ND(Y) that contains that value of S\ND(Y) is zero.

Let P(W|Parents(W))be a term in the factorization such that W does not occur in any
other term, that is, W is not the parent of any other variable. If ND(Y) is not empty W is
in ND(Y).

P(V |Parents(V ))
V∈ND(Y )
∏

 

 
  

 
 

ND(Y )

→

∑ =

P(V|Parents(V ))
V∈ND(Y ) \{W}

∏
 

 
  

 
 

ND (Y ) \ {W}

→

∑ × P(W |Parents(W)
W

→

∑ )
 
 
  

 

The latter expression can now be written as

P(V |Parents(V ))
V∈ND(Y ) \{W}

∏
 
 
  

 
 

ND (Y ) \ {W}

→

∑

because P(W| Parents(W)
W

→

∑ )  is equal to one. Now some element in ND(Y)\{W} is not a

parent of any other member of ND(Y)\{W}, and the process can be repeated until each
element is removed from ND(Y). ∴

In a directed acyclic graph G, if Y ∩ Z = ∅, then V is in IV(Y,Z) (informative
variables for Y given Z) if and only if V is d-connected to Y given Z, and V is not in
ND(YZ). (This entails that V is not in Y ∪ Z by definition of d-connection.) In a directed
acyclic graph G, if Y ∩ Z = ∅, W is in IP(Y,Z) (W has a parent that is an informative
variable for Y given Z) if and only if W is a member of Z, and W has a parent in IV(Y,Z)
∪ Y.

P(W| Parents(W)
W

→

∑ )  

P(V |Parents(V ))
V∈ND(Y ) \{W}

∏
 
 
  

 
 

ND (Y ) \ {W}

→

∑

P(V |Parents(V ))
V∈ND(Y )
∏

 

 
  

 
 

ND(Y )

→

∑ =

P(V|Parents(V ))
V∈ND(Y ) \{W}

∏
 

 
  

 
 

ND (Y ) \ {W}

→

∑ × P(W |Parents(W)
W

→

∑ )
 
 
  

 

P(V|Parents(V))
V∈V
∏

 

 
 

 

 
 

S

→
∑ =

P(V| Parents(V )) × P(V|Parents(V))
V∈ND(Y)

∏
 

 
 

 

 
 

ND(Y)

→
∑

 

 
 

 

 
 

V∈V\ ND(Y)
∏

 

 
 

 

 
 

S \ND(Y)

→
∑

(1)

We will now show that

P(V |Parents(V ))
V∈ND(Y)

∏
 

 
 

 

 
 

ND(Y)

→
∑ = 1

388  Chapter 13

We will now show that



Proofs of Theorems 389

LEMMA 3.3.5: If P satisfies the Markov condition for directed acyclic graph G over V,
then

P(Y|Z) =

P(W |Parents(W))
W ∈IV(Y,Z)∪IP (Y ,Z)∪Y

∏
IV(Y,Z)

→
∑

P(W |Parents(W ))
W∈IV(Y,Z)∪IP(Y ,Z)∪Y

∏
IV(Y,Z)∪ Y

→
∑

for all values of V for which the conditional distributions in the factorization are defined,
and for which P(z) ≠ 0.

Proof. Let V  = V\ND(YZ), that is, the subset of V with descendants in YZ. It follows
from the definition of conditional probability that

P(Y|Z) =
P(YZ)

P(Z)
=

P(W |Parents(W))
W∈V
∏

V \YZ

→
∑

P(W |Parents(W))
W∈V
∏

V \Z

→
∑

By lemma 3.3.4,

P(W |Parents(W))
W∈V
∏

V \ YZ

→
∑

P(W |Parents(W))
W∈V
∏

V \ Z

→
∑

=

P(W| Parents(W))
W∈V'
∏

V' \ YZ

→
∑

P(W |Parents(W ))
W ∈V'
∏

V' \ Z

→
∑

First we will show that we can factor the numerator and the denominator into a product of
two sums. The second term in both the numerator and the denominator is the same, so it
cancels. In the case of the denominator, we show that

P(W|Parents(W))
W∈V'
∏

V' \ Z

→
∑ =

P(W|Parents(W))
W∈IV(Y,Z)∪IP(Y,Z)∪Y

∏
IV(Y,Z)∪Y

→
∑ × P(W|Parents(W))

W∈V' \ (IV(Y,Z)∪IP(Y,Z)∪Y)
∏

V' \(IV(Y,Z)∪YZ)

→
∑

by demonstrating that if W is in IV(Y,Z) ∪ IP(Y,Z) ∪ Y, then neither W nor any parent
of W occurs in the scope of the summation over V \(IV(Y,Z) ∪ YZ), and also that if W is

P(Y|Z) =

P(W |Parents(W))
W ∈IV(Y,Z)∪IP (Y ,Z)∪Y

∏
IV(Y,Z)

→
∑

P(W |Parents(W ))
W∈IV(Y,Z)∪IP(Y ,Z)∪Y

∏
IV(Y,Z)∪ Y

→
∑

P(W |Parents(W))
W∈V
∏

V \ YZ

→
∑

P(W |Parents(W))
W∈V
∏

V \ Z

→
∑

=

P(W| Parents(W))
W∈V'
∏

V' \ YZ

→
∑

P(W |Parents(W ))
W ∈V'
∏

V' \ Z

→
∑

P(W|Parents(W))
W∈V'
∏

V' \ Z

→
∑ =

P(W|Parents(W))
W∈IV(Y,Z)∪IP(Y,Z)∪Y

∏
IV(Y,Z)∪Y

→
∑ × P(W|Parents(W))

W∈V' \ (IV(Y,Z)∪IP(Y,Z)∪Y)
∏

V' \(IV(Y,Z)∪YZ)

→
∑
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in V \(IV(Y,Z) ∪ IP(Y,Z) ∪ Y) then neither W nor any parent of W is in the scope of the
summation over IV(Y,Z) ∪ Y.

First we demonstrate that if W is in IV(Y,Z) ∪ IP(Y,Z) ∪ Y then W is not in
V \(IV(Y,Z) ∪ YZ). If W is in IV(Y,Z) ∪ Y then trivially it is not in V \(IV(Y,Z) ∪
YZ). If W is in IP(Y,Z) then W is in Z, so W is not in V \(IV(Y,Z) ∪ YZ).

Now we will demonstrate that if W is in IV(Y,Z) ∪ IP(Y,Z) ∪ Y then no parent of W
is in V \(IV(Y,Z) ∪ YZ). Suppose first that W is in IV(Y,Z) and T is a parent of W. If T
is in IV(Y,Z) ∪ IP(Y,Z) ∪ Y this reduces to the previous case. Assume then that T is not
in IV(Y,Z) ∪ IP(Y,Z) ∪ Y. We will show that T is in YZ. T is not d-connected to Y
given Z. However, W, a child of T, is d-connected to Y given Z by some path U. If T is
on U then T is d-connected to Y given Z, contrary to our assumption, unless T is in YZ. If
T is not on U, and U is not into W, then the concatenation of the edge between T and W
with U d-connects T and Y given Z, contrary to our assumption, unless T is in YZ. If T is
not on U, but U is into W, then because W is in IV(Y,Z) it has a descendant in YZ. If W
has a descendant in Z, then W is a collider on the concatentation of the edge between T
and W with U, and has a descendant in Z; hence T is d-connected to Y given Z, contrary
to our assumption, unless T is in YZ. If W does not have a descendant in Z, then there is a
directed path D from W to Y that does not contain any member of Z. The concatenation
of the edge from T to W and D d-connects T and Y given Z, contrary to our assumption,
unless T is in YZ. In any case, T is in YZ, and not in V \(IV(Y,Z) ∪ YZ).

Suppose next that W is in IP(Y,Z) and T is a parent of W. It follows that some parent R
of W is in IV(Y,Z) or in Y, and W is in Z. If T is in IV(Y,Z) ∪ IP(Y,Z) ∪ Y this reduces
to the previous case. Assume then that T is not in IV(Y,Z) ∪ IP(Y,Z) ∪ Y. If R is in Y,
then T is d-connected to Y given Z by the concatenation of the edge from R to W and the
edge from W to T, contrary to our assumption, unless T is in YZ. Hence T is in YZ, and
not in V \(IV(Y,Z) ∪ YZ). Assume then that R is in IV(Y,Z). R is d-connected to Y
given Z by some path U. If T is on U then T is d-connected to Y given Z unless T is in
YZ. If W is on U, but T is not, then W is a collider on U, because W is in Z. W is also a
collider on the concatenation of the edge from T to W with the subpath of U from W to Y;
hence this path d-connects T and Y given Z unless T is in YZ. If neither T nor W is on U,
then the concatentation of the edge between T and W, the edge between W and R, and U,
is a path on which W is a collider and R is not a collider (because R is a parent of W);
hence this path d-connects T and Y given Z, unless W is in YZ. By hypothesis, T is not d-
connected to Y given Z because T is not in IV(Y,Z); it follows that T is in YZ. Hence T
is not in V \(IV(Y,Z) ∪ YZ).

Suppose finally that W is in Y and T is a parent of W. It follows that T is d-connected
to Y given Z unless T is in YZ. By hypothesis, T is not d-connected to Y given Z because
T is not in IV(Y,Z) so T is in YZ. Hence T is not in V \(IV(Y,Z) ∪ YZ).

Now we will demonstrate by contraposition that if W is in V \(IV(Y,Z) ∪ IP(Y,Z) ∪
Y) then neither W nor any parent of W is in the scope of the summation over IV(Y,Z) ∪
Y. Suppose W or some parent T of W is in IV(Y,Z) ∪ Y. If W is in IV(Y,Z) ∪ Y it
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follows trivially that W is not in V \(IV(Y,Z) ∪ IP(Y,Z) ∪ Y). Suppose T is in IV(Y,Z)
∪ Y but W is not. We will show that W is in YZ. If T is in Y, then W is d-connected to Y
given Z, contrary to our assumption, unless T is in YZ. If T is in IV(Y,Z) it follows that
there is a path U d-connecting T and Y given Z. If W is on U, then W is d-connected to Y
given Z, contrary to our hypothesis, unless W is in YZ. If W is not on U, then the
concatenation of the edge between W and T with U d-connects W and Y given Z (because
T is not a collider and not in Z), contrary to our hypothesis, unless W is in YZ. It follows
that W is in YZ. If W is in Z, then W is in IP(Y,Z), and hence not in V \(IV(Y,Z) ∪
IP(Y,Z) ∪ Y). If W is in Y, then W is not in V \(IV(Y,Z) ∪ IP(Y,Z) ∪ Y). Hence by
contraposition, if W is in V \(IV(Y,Z) ∪ IP(Y,Z) ∪ Y) then neither W nor any parent of
W is in the scope of the summation over IV(Y,Z) ∪ Y.

The proof for the numerator is essentially the same. Hence,

P(W |Parents(W))
W ∈V'
∏

V' \YZ

→
∑

P(W |Parents(W))
W∈V'
∏

V' \Z

→
∑

=

P(W |Parents(W))
W∈IV(Y,Z)∪IP (Y,Z)∪Y

∏
IV(Y,Z)

→
∑

P(W |Parents(W))
W ∈IV(Y,Z)∪IP (Y,Z)∪Y

∏
IV(Y ,Z)∪Y

→
∑

×

P(W |Parents(W))
W∈V' \ (IV(Y,Z)∪IP(Y ,Z)∪Y)

∏
V' \ (IV(Y,Z)∪ YZ)

→
∑

P(W |Parents(W))
W∈V' \ (IV(Y,Z)∪IP(Y ,Z)∪Y)

∏
V' \ (IV(Y,Z)∪ YZ)

→
∑

=

P(W |Parents(W ))
W∈IV(Y,Z)∪IP(Y ,Z)∪Y

∏
IV(Y,Z)

→
∑

P(W| Parents(W))
W∈IV(Y ,Z)∪IP(Y,Z)∪ Y

∏
IV(Y,Z)∪Y

→
∑

∴

LEMMA 3.3.6: In a directed acyclic graph G, if V is d-connected to Y given Z, and X is d-
separated from Y given Z, then V is d-connected to Y given XZ.

Proof. Suppose X is d-separated from Y given Z. If V is d-separated from Y given XZ,
but d-connected to Y given Z, then there is a path U that d-connects V and some Y in Y

P(W |Parents(W))
W ∈V'
∏

V' \YZ

→
∑

P(W |Parents(W))
W∈V'
∏

V' \Z

→
∑

=

P(W |Parents(W))
W∈IV(Y,Z)∪IP (Y,Z)∪Y

∏
IV(Y,Z)

→
∑

P(W |Parents(W))
W ∈IV(Y,Z)∪IP (Y,Z)∪Y

∏
IV(Y ,Z)∪Y

→
∑

×

P(W |Parents(W))
W∈V' \ (IV(Y,Z)∪IP(Y ,Z)∪Y)

∏
V' \ (IV(Y,Z)∪ YZ)

→
∑

P(W |Parents(W))
W∈V' \ (IV(Y,Z)∪IP(Y ,Z)∪Y)

∏
V' \ (IV(Y,Z)∪ YZ)

→
∑

=

P(W |Parents(W ))
W∈IV(Y,Z)∪IP(Y ,Z)∪Y

∏
IV(Y,Z)

→
∑

P(W| Parents(W))
W∈IV(Y ,Z)∪IP(Y,Z)∪ Y

∏
IV(Y,Z)∪Y

→
∑

∴

LEMMA 3.3.6: In a directed acyclic graph G, if V is d-connected to Y given Z, and X is d-
separated from Y given Z, then V is d-connected to Y given XZ.

Proof. Suppose X is d-separated from Y given Z. If V is d-separated from Y given XZ,
but d-connected to Y given Z, then there is a path U that d-connects V and some Y in Y
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given Z, but not given XZ. It follows that some noncollider X on U is in X. Hence U(X,Y)
d-connects X and Y given Z. ∴

LEMMA 3.3.7: In a directed acyclic graph G, if V is d-connected to Y given XZ, and X is
d-separated from Y given Z, then V is d-connected to Y given Z.
Proof. Suppose X is d-separated from Y given Z. If V is d-separated from Y given Z, but
d-connected to Y given XZ, then there is a path U that d-connects V and Y given XZ, but
not given Z. Some vertex on U is a collider with a descendant in X, but not in Z. Let C be
the vertex on U closest to Y that is the source of a directed path to some X in X that
contains no member of Z. C is d-connected to Y given Z. If X is on U then U(X,Y) d-
connects X and Y given Z. If X is not on U, then there is a directed path from C to X that
does not contain any member of Z, and hence X is d-connected to Y given Z, contrary to
our assumption. ∴

LEMMA 3.3.8: In a directed acyclic graph G, if X is d-separated from Y given Z, and P
satisfies the Markov condition for G, then X is independent of Y given Z.

Proof. We will show if X is d-separated from Y given Z that P(Y|XZ) = P(Y|Z) by
showing that IV(Y,XZ) = IV(Y,Z) and IP(Y,XZ) = IP(Y,Z) and applying lemma 3.3.5.

Suppose that V is in IV(Y,Z). V is d-connected to Y given Z and has a descendant in
YZ. Hence V has a descendant in XYZ. It follows by lemma 3.3.6 that V is d-connected
to Y given XZ. Hence V is in IV(Y,XZ).

Suppose then that V is in IV(Y,XZ); we will show that V is also in IV(Y,Z). Because
V is in IV(Y,XZ), V is not in XYZ, V has a descendant in XYZ and is d-connected to Y
given XZ. Because V is not in XYZ it is not in XZ. By lemma 3.3.7 V is d-connected to
Y given Z. If V has a member X of X as a descendant, but no member of YZ as a
descendant then there is a directed path from V to X that contains no member of Y or Z. It
follows by lemma 3.3.3 that X is d-connected to Y given Z, contrary to our hypothesis.
Hence V has a member of YZ as a descendant, and is in IV(Y,Z).

Suppose that V is in IP(Y,Z). If V has a parent in Y, then V is in IP(Y,XZ). If V has a
parent T in IV(Y,Z) then T is in IV(Y,XZ) because IV(Y,Z) = IV(Y,XZ). Hence V is in
IP(Y,XZ).

Suppose that V is in IP(Y,XZ). Because V is in IP(Y,XZ) V is in XZ and has a parent
in IV(Y,XZ) ∪ Y. We have already shown that IV(Y,XZ) ∪ Y = IV(Y,Z) ∪ Y. We will
now show that V is not in X. If V is in X and has a member of Y as a parent, then X is d-
connected to Y given Z, contrary to our hypothesis. If V is in X and has some W in
IV(Y,XZ) as a parent, then W is in IV(Y,Z). It follows that X is d-connected to Y given
Z, contrary to our hypothesis. Hence V is not in X, and IP(Y,XZ) = IP(Y,Z).

By lemma 3.3.5, P(Y|XZ) = P(Y|Z), and hence X is independent of Y given Z. ∴
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LEMMA 3.3.9: In a directed acyclic graph G, if X is not a descendant of Y, and X and Y are
not adjacent, then X and Y are d-separated by Parents(Y).

Proof. (A slight variant of this is stated in Pearl 1989.) Suppose on the contrary that some
undirected path U d-connects X and Y given Parents(X). If U is into Y then it contains
some member of Parents(Y) not equal to X as a noncollider. Hence it does not d-connect
X and Y given Parents(Y), contrary to our assumption. If U is out of Y, then because X is
not a descendant of Y, U contains a collider. Let C be the collider on U closest to Y. If U
d-connects X and Y given Parents(Y) then C has a descendant in Parents(Y). But then C
is an ancestor of Y, and Y is an ancestor of C, so G is cyclic, contrary to our assumption.
Hence no undirected path between X and Y d-connects X and Y given Parents(Y). ∴

THEOREM 3.3: P(V) is faithful to directed acyclic graph G with vertex set V if and only if
for all disjoint sets of vertices X, Y, and Z, X, and Y are independent conditional on Z if
and only if X and Y are d-separated given Z.

Proof. ⇒Suppose that P is faithful to G. It follows that P satisfies the Markov condition
for G. By lemma 3.3.8 if X and Y are d-separated given Z then X and Y are independent
conditional on Z. By lemma 3.5.8 (proved below) there is a distribution P  that satisfies
the Markov condition for G such that if X and Y are not d-separated given Z then X and
Y are not independent conditional on Z. It follows that if X and Y are not d-separated
given Z then the Markov condition does not entail that X and Y independent conditional
on Z.

⇐Suppose that X and Y are independent conditional on Z in P if and only if X and Y
are d-separated given Z. It follows from lemma 3.3.9 that that P satisfies the Markov
condition for G because Parents(V) d-separates V from V\(Descendants(V) ∪
Parents(V)). Hence all of the conditional independence relations entailed by the Markov
condition are true of P. If the independence of X and Y conditional on Z is not entailed
by the Markov condition for G then by lemma 3.5.8 X and Y are not d-separated in G,
and X and Y are not independent conditional on Z. It follows that P is faithful to G. ∴

13.5 Theorem 3.4

THEOREM 3.4: If P(V) is faithful to some directed acyclic graph, then P(V) is faithful to
directed acyclic graph G with vertex set V if and only if

(i) for all vertices X, Y of G, X, and Y are adjacent if and only if X and Y are dependent
conditional on every set of vertices of G that does not include X or Y; and
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(ii) for all vertices X, Y, Z such that X is adjacent to Y and Y is adjacent to Z and X and Z
are not adjacent, X +� Y ← Z is a subgraph of G if and only if X, Z are dependent
conditional on every set containing Y but not X or Z.

Proof. The theorem follows from a theorem first proved in Verma and Pearl 1990b. ∴

13.6 Theorem 3.5

THEOREM 3.5: Let S be an LCT with directed acyclic graph G over the set of non-error
variables V. Then for any two non-error vertices A, B in V and any subset H of V\{A,B},
G linearly implies that AB.H = 0 if and only if A, B are d-separated given H .

The distributed form of an expression or equation E is the result of carrying out every
multiplication, but no additions, subtractions, or divisions in E. If there are no divisions in
an equation then its distributed form is a sum of terms. For example, the distributed form
of the equation u = (a + b)(c + d)v is u = acv + adv + bcv + bdv. In an LCF or LCT T, if
an expression is equal to ce, where c is a nonzero constant, and e is a product of equation
coefficients raised to positive integral powers, then e is the equation coefficient
factor(e.c.f.) of ce, and c is the constant factor (c.f.) of ce.

An acyclic directed graph G over V is an I-map of probability distribution P(V) iff for
every X, Y, and Z that are disjoint sets of random variables in V, if X is d-separated from
Y given Z in G then X is independent of Y given Z in P(V). An acyclic graph G is a
minimal I-map of probability distribution P iff G is an I-map of P, and no proper
subgraph of G is an I-map of P. An acyclic graph G over V is a D-map of probability
distribution P(V) iff for every X, Y, and Z that are disjoint sets of random variables in V,
if X is not d-separated from Y given Z in G then X is not independent of Y given Z in
P(V). However, when minimal I-map, I-map, or D-map is applied to the graph in an LCT
or LCF, the quantifiers in the definitions apply only to sets of non-error variables.

A trek T(I,J) between two distinct vertices I and J is an unordered pair of acyclic
directed paths from some vertex K to I and J respectively that intersect only at K. The
source of the paths in the trek is called the source of the trek. I and J are called the
termini of the trek. Given a trek T(I,J) between I and J, I(T(I,J)) will denote the path in
T(I,J) from the source of T(I,J) to I and J(T(I,J)) will denote the path in T(I,J) from the
source of T(I,J) to J. One of the paths in a trek may be an empty path. However, since the
termini of a trek are distinct, only one path in a trek can be empty. T(I,J) is the set of all
treks between I and J. T(I,J) will represent a trek in T(I,J). S(T(I,J)) represents the source
of the trek T(I,J).

The proofs of the following two lemmas are trivial.
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LEMMA 3.5.1: In a directed acyclic graph G, every undirected path V = <V1,V2,...Vn–1,Vn>
without colliders contains a vertex Vk such that <Vk,...,V1> and <Vk,...,Vn> are directed
subpaths of V that intersect only at Vk.

Hence, corresponding to each undirected path V = <V1,V2,...Vn–1,Vn> without colliders
is a trek T = (<Vk,...,V1>,<Vk,...,Vn>). When V is a directed path, one of the paths is empty;
for example, Vk = V1.

LEMMA 3.5.2: In a directed acyclic graph G, for every trek (<V1,...,Vn>,<V1,...,Vm>), the
concatenation of <Vn,...,V1> with <V1,...,Vm> is an undirected path from Vn to Vm without
colliders.

We will say that a directed acyclic graph has error variables if every vertex of indegree
not equal to 0 has an edge into it from a vertex of indegree 0 and outdegree 1. If each
independent random variable in an LCT S is normally distributed, then the joint
distribution of the set of all random variables in the LCT is multivariate normal. We will
say the random variables in such an LCT have a linear multivariate normal distribution.
The next series of lemmas demonstrate that every directed acyclic graph with error
variables is faithful to some LCT S in which the joint distribution Q of the random
variables in S is linear multivariate normal.

LEMMA 3.5.3: If S is an acyclic multivariate normal LCT with directed acyclic graph G
and distribution P, V is the set of non-error terms in S, G is the subgraph of G  over V,
and the exogenous variables are jointly independent, then G is a minimal I-map of P(V).

Proof. Let V be the set of non-error terms in S, and G be the subgraph of G  over V. First
we will show that if A and B are distinct variables in V, and B is not a descendant of A or
a parent of A in G, then A is independent of B given Parents(G,A). A is normally
distributed and uncorrelated with any of the parents of A or B. B is not a linear function of
Parents(G,A) because the distribution is positive. Hence, if we write A as a linear
function of Parents(G,A), B, and A, this is a regression model of A. The coefficient of B
in such an equation is zero. The coefficient of B in such a linear equation for A is zero if
and only if A and B are independent conditional on Parents(G,A). (See Whittaker 1990.)
Hence B is independent of A given Parents(G,A). Because the joint distribution is
normal, it follows that A is independent of the set of its nonparental nondescendants
given its parents. Hence G is an I-map of P(V).

We will now show that P(V) satisfies the Minimality Condition for G. Suppose, on the
contrary, that G is not a minimal I-map of P(V). It follows that some some subgraph of G
is an I-map of P(V). Let GSub be a subgraph of G that is an I-map of P(V), and in which
the only difference between G and GSub is that X is a parent of Y in G, but not in GSub

Because Parents(GSub,Y) ∪ {X} = Parents(G,Y), when Y is written as a linear function of
Parents(GSub,Y), X, and Y, the coefficient of X is not zero. But because X is not a parent
of Y in GSub, and not a descendant of Y in GSub, it follows that X and Y are d-separated
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given Parents(GSub,Y). Because GSub is an I-map of P(V), X and Y are independent given
Parents(GSub,Y). But this entails that the coefficient of X in the linear equation for Y in
terms of Parents(G,Y) and Y is zero, which is a contradiction. ∴

LEMMA 3.5.4: If a polynomial equation Q in real variables <X1,...,Xn> is not an identity,
then for every solution a of Q, and for every  > 0 there is a nonsolution b of Q such that
|b - a| < , where |b - a| is the Euclidean distance between a and b.

Proof. The proof is by induction on the number n of variables in Q.

Base case: If n = 1, then there are only a finite number of solutions of Q. It follows that
for every solution a of Q, and for every  > 0 there is a nonsolution b of Q such that |b - a|
< .

Induction case: Suppose that Q is a polynomial equation in <X1,...,Xn>, Q is not an
identity, and the lemma is true for n–1. Take an arbitrary solution <a1,...,an> of Q.
Transform Q into a polynomial equation Q  in Xn by fixing the variables <X1,...,Xn–1> at
the value <a1,...,an–1>. There are two cases.

In the first case, Q  is not an identity. Hence, by the induction hypothesis, there is a
nonsolution of Q  whose distance from an is < . Let a n be this nonsolution of Q . Then a
= <a1,...an–1,a n> is a nonsolution of Q, and |a - a | < .

In the second case, Q  is an identity. Rewrite Q so that it is of the form

Qm Xn
m

m
∑

where each Qm is a polynomial in at most X1,...,Xn–1.
For each m, the equation Qm = 0 is a polynomial equation in less than n variables. If Q

is an identity, then when terms of the same power of Xn are added together, the
coefficient of each power of Xn is zero. This implies that <a1,...,an–1> is a solution to Qm =
0 for each m. If, for each m, Qm = 0 is an identity, then so is Q; hence for some m, Qm = 0
is not an identity. For this value of m, by the induction hypothesis, there is a nonsolution
<a 1,...,a n–1> to Qm = 0 that is less than distance  from <a1,...,an–1>. If <a 1,...,a n–1> is
substituted for <X1,...,Xn–1> in Q, the resulting polynomial equation in Xn is not an
identity. This reduces to the first case. ∴

LEMMA 3.5.5: If G  is a subgraph of G, and there is some LCT S  with directed acyclic
graph G �and distribution P  such that IJ.Z ≠ 0 in P , then there is some LCT S containing
G and distribution P such that IJ.Z ≠ 0 in P.

396  Chapter 13

an

1



Proofs of Theorems 397

Proof. By lemma 3.2.1, in S  IJ.Z= 0 is equivalent to a polynomial equation in the linear
coefficients and variances of independent variables in S . Since there is some LCT S
containing G  such that IJ.Z ≠ 0 in S , the polynomial equation is not an identity.

Let S be an LCT with directed acyclic graph G such that for all variables J, I, if the
coefficient c  of J in the equation for I in S  is not equal to zero, then the coefficient of J
in the equation for I in S is equal to c . In S, IJ.Z = 0 is equivalent to a polynomial
equation E in the linear coefficients and variances of independent variables in S. When
labels of the edges in G but not in G  are set to zero, the polynomial in E equals the
polynomial in E . No label of an edge in G but not in G  occurs in E . Hence when the
labels of the edges in G but not in G  are set to nonzero values, the polynomial in E
contains all of the terms that are in E  and possibly some extra terms. Let us say that two
terms in a polynomial equation are like terms if they contain the same variables raised to
the same powers. Each of the terms that are in E but not E  contain some linear
coefficient that does not appear in any term in E ; hence each of the additional terms in E
is not like any term in E .

If E were an identity, then the sum of the coefficients of like terms in E would be
equal to zero. Since E  is not an identity, there are like terms in E  such that the sum of
their coefficients is not zero. These same like terms appear in E. Furthermore, since the
only additional terms in E that are not in E  are not like any term in E , it follows that if
the sum of the coefficients of like terms in E  is not zero, then the sum of the coefficients
of the same like terms in E is not identically zero. Hence E is not identically zero, and
there is some LCT S containing G such that IJ.Z ≠ 0 in S. ∴

The next lemma states that given a set Z of partial correlations and a directed acyclic
graph G, if it is possible to construct a set S of LCTs with directed acyclic graph G such
that each Z in Z fails to vanish for some one of the LCTs in S, then it is possible to
construct a single LCT with directed acyclic graph G such that all of the Z in Z fail to
vanish.

LEMMA 3.5.6: Given a set of partial correlations Z and a directed acyclic graph G, if for
all Z in Z there exists an LCT S  with directed acyclic graph G and distribution P  such
that Z ≠ 0 in P , then there exists a single LCT S with directed acyclic graph G and
distribution P such that for all Z in Z, Z ≠ 0 in P.

Proof. The proof is by induction on the cardinality of Z.

Base Case: If the only member of Z is Z, then by assumption there is an LCT S
containing G such that Z ≠ 0.

Induction Case: Suppose that the lemma is true for each set of cardinality n–1, Z is of
cardinality n, and for each Zi in Z, there is an LCT S  with directed acyclic graph G and
distribution P  such that Zi ≠ 0 in P . By the induction hypothesis, there is an LCT S with
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directed acyclic graph G and distribution P such that Zi ≠ 0, i ≤ 1 ≤ n–1. Let V be a set of
values for the linear coefficients and variances of independent variables such that Zi ≠ 0, i
≤ 1 ≤ n–1. The valuation V either makes Zn equal to zero or it doesn’t. If it doesn’t, then
the proof is done. If it does, we will show how to perturb V by a small amount to make Zn

≠ 0, while keeping each Zi ≠ 0, i ≤ 1 ≤ n–1.
By lemma 3.2.1, each of the partial correlations in Zi in Z is equivalent to a

polynomial Qi in the linear coefficients and the variances of independent variables in G.
Suppose that the smallest nonzero value for any of the Qi under the valuation V is . By
lemma 3.5.4, for arbitrarily small  there is a nonsolution V  to Zn = 0 within distance  of
V. Choose an  small enough so that the largest possible change in any of the Qi is less
than . For the valuation V  then Zi ≠ 0, i ≤ 1 ≤ n. ∴

Recall that if a graph with error variables is a D-map of some distribution P, then we
consider only dependencies among the non-error variables.

LEMMA 3.5.7: For every directed acyclic graph G with error variables, there is an LCT S
with directed acyclic graph G and joint linear multivariate normal distribution Q, such
that G is a D-map of Q.

Proof. In order to show that G is a D-map of Q, we must show that for all disjoint sets of
variables X, Y, and Z, if X and Y are not d-separated in G, then X is not independent of
Y given Z in Q. In a linear multivariate normal distribution, if X, Y, and Z are disjoint
sets of variables, then X Y|Z iff X Y|Z for each X in X and Y in Y; similarly if X,
Y, and Z are disjoint sets of variables then X and Y are d-separated given Z iff for all X
in X and Y in Y, X and Y are d-separated given Z. Hence, we need consider only
dependency statements of the form X and Y are not independent given Z, where X and Y
are individual variables. Also in a linear multivariate normal distribution, XY.Z = 0 iff
X Y|Z. So it suffices to prove that there is an LCT S with directed acyclic graph G and
distribution P such that for each X, Y, and Z in G such that X and Y are not d-separated
given Z in G, XY.Z ≠ 0 in P. The proof is by induction. We assume that in all of the LCTs
constructed, the independent random variables are normally distributed.

Base Case: If Z is empty, then by lemma 3.5.1, X and Y are not d-separated given Z iff
there is a trek connecting them. Form a subgraph G  and a sub-LCT S  with directed
acyclic graph G  and distribution P , such that there is exactly one trek between X and Y.
It was proved in Glymour et al. (1987) that in this case the covariance between X and Y is
equal to the product of the labels of the edges in the trek (the linear coefficients) times the
variance of the source of the trek. If each of these quantities is nonzero, so is the
covariance, and also the correlation in P . By lemma 3.5.5 if XY is not identically zero in
S  it is also not identically zero in some LCT S with directed acyclic graph G. By lemma
3.5.6 there exists a LCT containing G in which for all X and Y, if X and Y are not d-
separated by the empty set then the correlation between X and Y is not zero.
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Figure 13.1

Let E be the vertex that is the sink of the directed path from the collider closest to Y on
U, and W = Z\{E}. Since by construction there is a trek between Y and E that does not
contain any variables in W, Y and E are not d-separated by W. There is also an
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Induction Case: Suppose that there is an LCT S with directed acyclic graph G and
distribution P such that for each X, Y, and for each A of cardinality less than n that does
not contains X or Y, such that X and Y are not d-separated given A in G, ��.A ≠ 0 in P. Let
Z be of cardinality n. Suppose that X and Y are not d-separated by Z in G. It follows that
there is an undirected path U between X and Y such that every noncollider is not in Z, and
every vertex Vi on U that is a collider is the source of a directed path Ui from Vi to a
variable in Z. Form a subgraph G , such that G  contains only the undirected path U, one
directed path Ui from each collider Vi on U, the vertices in those paths, and the vertices in
Z. Shorten each Ui so that it contains only one variable in Z. Finally, if two variables Vn

and Vm that are colliders on U are the sources of directed paths Un and Um that intersect,
let F be the first point of intersection of Un and Um. Replace the subpath of U from Vn to
Vm by the concatenation of the subpaths of Un(Vn,F) and Um(F,Vm), and replace Un and
Um by Un(F,Z), where Z is in Z. The new path has one fewer collider than the old path.
Repeat this process until none of the Ui intersect each other or there are no colliders on U.
There are two cases.

In the first case, U contains no vertices with a collider, and hence no vertices in Z. By
lemma 3.5.1 there is a trek between X and Y that contains no vertices in Z. Let R be an
arbitrary vertex in Z, and W = Z\{R}. There is a trek between X and Y that contains no
vertices in W. It follows that W does not d-separate X and Y, so by the induction
hypothesis, there is an LCT with directed acyclic graph G  and distribution P  such that

In the second case, U contains vertices with colliders, but every vertex that is not a
collider is not in Z. (See figure 13.1.)

X YA B C

D E

Z = {    ,     }D E
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qXY.A

qXY.W ≠ 0. It follows from lemma 3.5.3 that in P' that qXR.W = 0 and qYR.W = 0 because by 
construction there are no undirected paths from X to R or Y to R. By the recursion formula 
for partial correlation, qXY.W = 0 iff qXY.W = qXR.W × qYR.W. But qXY.W is nonzero in P', and 
qXR.W × qYR.W is zero in P'. Hence qXY.Z ≠ 0 in P'. By lemma 3.5.5, there is some LCT S" 
with directed acyclic graph G and distribution P" such that qXY.Z ≠ 0 in P".
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undirected path from X to E such that every vertex that is not a collider is not in W, and
every vertex that does contain a collider has a descendant in W. Hence X and E are not d-
separated by W. By the induction hypothesis, there is an LCT S  with directed acyclic
graph G  and distribution P  such that XE.W ≠ 0, and YE.W ≠ 0 in P .

On the other hand, since path U was constructed so that each vertex that is a collider
has only one descendant in Z, and W does not contain E, X and Y are d-separated by W.
Hence by lemma 3.5.3 XY.W = 0 in P .

XY.W = 0 iff XY.W = XE.W × YE.W. Since XY.W = 0, while XE.W × YE.W ≠ 0,

XY.Z ≠ 0 in P . By lemma 3.5.5, there is an LCT S  with directed acyclic graph G and
distribution P  such that XY.Z ≠ 0 in P .

Since for each triple X, Y, Z such that X and Y are not d-separated given Z in G there is
an LCT S  with directed acyclic graph G and distribution P  such that XY.Z ≠ 0 in P , by
lemma 3.5.6 there is an LCT S  with directed acyclic graph G and distribution P  such
that for each triple X, Y, Z for which X and Y are not d-separated given Z in G, XY.Z ≠ 0
in P . Because the LCTs constructed in lemmas 3.5.5 and 3.5.6 don’t change the
normality of the independent variables, the joint distribution of the random variables in S
is linear multivariate normal. Hence there is an LCT S such that Q is a linear multivariate
normal distribution and G is a D-map of Q. ∴

LEMMA 3.5.8: For every directed acyclic graph G with error variables, there is an LCT S
containing G with a linear multivariate normal distribution Q such that G is faithful to Q.

Proof. This follows immediately from lemmas 3.5.7 and 3.5.3. ∴

The next theorem states that the d-separability relations between sets of non-error
variables can be determined from a subgraph that does not include error terms.

LEMMA 3.5.9: In an acyclic LCT S with directed acyclic graph G, let G  be the subgraph
of G over the non-error variables. Given three disjoint sets X, Y, and Z of non-error
variables, X is d-separated from Y given Z in G iff X is d-separated from Y given Z in
G .

Proof. If an error variable occurs on an undirected path, then that error variable is either
the source or the sink of the undirected path. Hence, error variables do not occur on any
undirected path between non-error variables. It follows that the undirected paths in G and
G  between non-error variables are exactly the same. The lemma then follows from the
definition of d-separability. ∴

A directed acyclic graph G linearly implies AB.H = 0 if and only if AB.H = 0 in all
distributions linearly represented by G. (We assume all partial correlations exist for the
distribution.) Kiiveri and Speed (1982) explicitly notes the connection between the
Markov Condition and zero partial correlations.
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LEMMA 3.5.10: In an LCT S with directed acyclic graph G over the set of non-error
variables V and the distribution P(V), if Y d-separates X and Z, then S linearly implies
that XZ.Y = 0.

Proof. Suppose Y d-separates X and Zin G. The values of the partial correlations in P(V)
are completely determined by the values of the linear coefficients and the variances of the
independent variables. Consider a multivariate normal distribution P (V) in the LCT with
the same linear coefficients and the same variances of independent variables as S, but in
which the independent variables are normally distributed and jointly independent. By
lemma 3.5.3, G is an I-map of P (V), and because Y d-separates X and Z, X Z|Y in
P (V). Because P (V) is a multivariate normal distribution, X Z|Y if and only XZ.Y =
0. It follows that XZ.Y = 0 in P (V), and hence XZ.Y = 0 in P(V). ∴

THEOREM 3.5: Let S be an LCT with directed acyclic graph G over the set of non-error
variables V. Then for any two non-error vertices A, B in V and any subset H of V\{A,B},
G linearly implies that AB.H = 0 if and only if A, B are d-separated given H.

Proof. The if clause follows from lemma 3.5.10.
The only if clause follows from lemma 3.5.7. By lemma 3.5.7 there is an LCT S such

that Q, the joint distribution of the random variables is linear multivariate normal, and G
is a D-map of Q. In S, if A and B are not d-separated given H, then A and B are not
independent given H, and AB.H ≠ 0. Hence if A and B are not d-separated given H, G
does not linearly imply that AB.H = 0. ∴

COROLLARY 3.5.1: In an LCT S = <G, ( ,f,P), EQ, L> in which the exogenous variables
are jointly independent, if X and Z are distinct non-error variables, and Y is a set of non-
error variables not including X and Z, if XZ.Y is linearly implied to vanish then X,Z

Y.

COROLLARY 3.5.2: In an LCT S = <G, ( ,f,P), EQ, L>, if P is faithful to G, X and Z are
distinct non-error variables, and Y is a set of non-error variables not including X and Z ,
G linearly implies that XZ.Y = 0 if and only if X  Z|Y.

13.7 Theorem 3.6 (Manipulation Theorem)

THEOREM 3.6: (Manipulation Theorem): Given directed acyclic graph GComb over vertex
set V ∪ W and distribution P(V ∪ W) that satisfies the Markov condition for GComb, if
changing the value of W from w1 to w2 is a manipulation of GComb with respect to V,
GUnman is the unmanipulated graph, GMan is the manipulated graph, and

COROLLARY 3.5.2: In an LCT S = <G, ( ,f,P), EQ, L>, if P is faithful to G, X and Z are
distinct non-error variables, and Y is a set of non-error variables not including X and Z ,
G linearly implies that XZ.Y = 0 if and only if X  Z|Y.

13.7 Theorem 3.6 (Manipulation Theorem)

THEOREM 3.6: (Manipulation Theorem): Given directed acyclic graph GComb over vertex
set V ∪ W and distribution P(V ∪ W) that satisfies the Markov condition for GComb, if
changing the value of W from w1 to w2 is a manipulation of GComb with respect to V,
GUnman is the unmanipulated graph, GMan is the manipulated graph, and

,
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PUnman (W )(V) = PUnman(W )(X |Parents(GUnman , X))
X∈V
∏

for all values of V for which the conditional distributions are defined, then

PMan(W)(V) =

PMan(W)( X| Parents(GMan, X))
X∈Manipulated(W )

∏ ×

PUnman(W)( X| Parents(GUnman, X))
X∈V\ Manipulated(W)

∏

for all values of V for which each of the conditional distributions is defined.
If G is a directed acyclic graph over a set of variables V ∪ W, and V ∩ W = ∅, then

W is exogenous with respect to V in G if and only if there is no directed edge from any
member of V to any member of W. If GComb is a directed acyclic graph over a set of
variables V ∪ W, and P(V ∪ W) satisfies the Markov condition for GComb, then changing
the value of W from w1 to w2 is a manipulation of GComb with respect to V if and only if
W is exogenous with respect to V, and P(V|W = w1) ≠ P(V|W = w2).

We define PUnman(W)(V) = P(V|W = w1), and PMan(W)(V) = P(V|W = w2), and
similarly for various marginal and conditional distributions formed from P(V).

We refer to GComb as the combined graph, and the subgraph of GComb over V as the
unmanipulated graph GUnman.

V is in Manipulated(W) (that is, V is a variable directly influenced by one of the
manipulation variables) if and only if V is in Children(W) ∩ V; we will also say that the
variables in Manipulated(W) have been directly manipulated. We will refer to the
variables in W as policy variables.

The manipulated graph, GMan is a subgraph of GUnman for which PMan(W)(V) satisfies
the Markov Condition and which differs from GUnman in at most the parents of members
of Manipulated(W).

Lemmas 3.6.1 and 3.6.2 show that distributions satisfying the antecedent of theorem
3.6 exist.

In a directed acyclic graph G over V, X is in Nondescendants(G,Y) if and only if X is
in V and there is no directed path from any member of Y to X in G.

LEMMA 3.6.1: Given directed acyclic graph GComb over vertex set V ∪ W and distribution
P(V ∪ W) that satisfies the Markov condition for G, if changing the value of W from w1
to w2 is a manipulation of GComb with respect to V, and GUnman is the unmanipulated
graph, then PUnman(W)(V) satisfies the Markov Condition for GUnman.
Proof. PUnman(W)(V) satisfies the Markov Condition for GUnman if for each vertex V in V,
V is independent of Nondescendants(GUnman,V)\Parents(GUnman,V) conditional on
Parents(GUnman,V) ∪ W. Suppose that on the contrary that for some V in V, V is
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PUnman(W)(V) satisfi es the Markov Condition
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dependent on Nondescendants(GUnman,V)\Parents(GUnman,V) conditional on Parents
(GUnman,V) ∪ W. It follows that there is some path U in GComb that d-connects V and some
member X in Nondescendants(GUnman,V) given Parents(GUnman,V) ∪ W. Every member
of W that occurs on U is a collider on U because U d-connects X and V given
Parents(GUnman,V) ∪ W. Because W is exogenous to V, U contains no member of W. It
follows that no collider on U has a descendant in W. Hence U d-connects V and X given
Parents(GUnman,V) in GComb. The path corresponding to U in GUnman also d-connects V and
X given Parents(GUnman,V). But this contradicts lemma 3.3.9. ∴

LEMMA 3.6.2: Given directed acyclic graph GComb over vertex set V ∪ W and distribution
P(V ∪ W) that satisfies the Markov condition for GComb , if changing the value of W
from w1 to w2 is a manipulation of GComb with respect to V, and GUnman is the
unmanipulated graph, then PMan(W)(V) satisfies the Markov Condition for some
subgraph of GUnman.

Proof. The proof that PMan(W)(V) satisfies the Markov Condition for GUnman is essentially
the same as that of lemma 3.6.1. Because GUnman is an (improper) subgraph of itself,
PMan(W)(V) satisfies the Markov Condition for some subgraph of GUnman.

THEOREM 3.6: (Manipulation Theorem): Given directed acyclic graph GComb over vertex
set V ∪ W and distribution P(V ∪ W) that satisfies the Markov condition for GComb, if
changing the value of W from w1 to w2 is a manipulation of GComb with respect to V,
GUnman is the unmanipulated graph, GMan is the manipulated graph, and

PUnman(W )(V) = PUnman(W )(X |Parents(GUnman , X))
X∈V
∏

for all values of V for which the conditional distributions are defined, then

PMan(W)(V) =

PMan(W)( X| Parents(GMan, X))
X∈Manipulated(W )

∏ ×

PUnman(W)( X| Parents(GUnman, X))
X∈V\ Manipulated(W)

∏

for all values of V for which each of the conditional distributions is defined.

Proof. By assumption, PMan(W)(V) satisfies the Markov Condition for GMan. Hence
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PMan(W ) = P( X| Parents(GMan, X))
X∈V
∏ =

P(X|Parents(GMan, X ))
X∈Manipulated(W)

∏ × P(X|Parents(GMan , X))
X∈V \ Manipulated(W )

∏

for all values of V for which the conditional distributions exist. No member of W is a
descendant of any variable in V in GComb, so for each V in V\Manipulated(W), W is d-
separated from V given Parents(GComb,V) in GComb. For any member X of
V\Manipulated(W), Parents(GComb,X) = Parents(GUnman,X) = Parents(GMan,X). It
follows that P(V|Parents(GMan,X),W = w2) = P(V|Parents(GMan,X)) =
P(V|Parents(GMan,X),W = w1) = P(V|Parents(GUnman,X),W = w1). Hence

PMan(W)(V) =

PMan(W) (X|Parents(GMan, X))
X∈Manipulated(W)

∏ × PUnman(W)(X|Parents(GUnman , X))
X∈V \Manipulated(W)

∏

for all values of V for which the conditional distributions are defined. ∴

13.8 Theorem 3.7

THEOREM 3.7: If G is a directed acyclic graph over V, X, Y, and Z are disjoint subsets of
V, and P(V) satisfies the Markov condition for G and the deterministic relations in
Deterministic(V) then if X and Y are D-separated given Z and Deterministic(V), X and
Y are independent given Z in P.

We will say that a set of variables Z determines the set of variables A, when every
variable in A is a deterministic function of the variables in Z, and not every variable in A
is a deterministic function of any proper subset of Z. Suppose G is a directed acyclic
graph over V, and Deterministic(V) is a set of ordered tuples of variables in V, where for
each tuple D in Deterministic(V), if D is <V1,...,Vn> then Vn is a deterministic function of
V1 ,..., Vn–1 and is not a deterministic function of any subset of V1 ,..., Vn–1; we also say
{V1,..., Vn–1 } determines Vn. For a given Deterministic(V), if Z is included in V, then
Det(Z) is the set of variables determined by any subset of Z. Note that Z is included in
Det(Z).

If G is a directed acyclic graph over V, and Z is included in V, then G  is in Mod(G)
relative to Deterministic(V) and Z if and only if for each V in V

(i) if there exists a set of vertices included in Z that are nondescendants of V in G and that
determine V, then Parents(G ,V)= X, where X is some set of vertices included in Z that
are nondescendants of V in G and that determine V;
(ii) if there is no set X of vertices included in Z that are nondescendants of V in G and
that determine V, then Parents(G ,V) = Parents(G,V).
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If G is a directed acyclic graph with vertex set V, Z is a set of vertices not containing X or
Y, and X ≠ Y, then X and Y are D-separated given Z and Deterministic(V) if and only if
there is no undirected path U in G between X and Y such that each collider on U has a
descendant in Z, and no other vertex on U is in Det(Z); otherwise if X ≠ Y and X and Y
are not in Z, then X and Y are D-connected given Z and Deterministic(V). Similarly, if
X, Y, and Z are disjoint sets of variables, and X and Y are non-empty, then X and Y are
D-separated given Z and Deterministic(V) if and only if each pair <X,Y> in the Cartesian
product of X and Y are D-separated given Z and Deterministic(V); otherwise if X, Y,
and Z are disjoint, and X and Y are non-empty, then X and Y are D-connected given Z
and Deterministic(V).

If G is a directed acyclic graph over V, Z is a subset of V that does not contain X or Y,
and X ≠ Y, then X and Y are det-separated given Z and Deterministic(V) if and only if
either X and Y are d-separated given Z ∪ Det(Z) in some Mod(G) relative to
Deterministic(V) and Z, or X or Y is in Det(Z); otherwise if X ≠ Y and X and Y are not in
Z, then X and Y are det-connected given Z and Deterministic(V). If X, Y and Z are
disjoint sets of variables in V, and X and Y are non-empty, then X and Y are det-
separated given Z if and only if every member X of X and every member Y of Y are det-
separated given Z; otherise if X, Y and Z are disjoint sets of variables in V, and X and Y
are non-empty, then X and Y are det-connected given Z and Deterministic(V).

LEMMA 3.7.1: Let G be a directed acyclic graph with vertex set V, Ord an ordering of
variables in V such that if A is before B in Ord then A is not a descendant of B in G,
Predecessors(Ord,V) the set of all vertices before V in Ord, and P(V) a distribution over
V. P(V) satisfies the Minimality and Markov Conditions for G if and only if for each V in
V, V is independent of Predecessors(Ord,V)\Parents(G,V) given Parents(G,V) and for
no proper subset X(V) of Parents(G,V), V is independent of Predecessors(Ord,V)\X(V)
given X(V).

Proof. See Pearl 1988. ∴

LEMMA 3.7.2: If G is a directed acyclic graph over V, and X, Y, and Z are disjoint
subsets of V, and P(V) satisfies the Markov condition for G and the deterministic
relations in Deterministic(V), then if X and Y are det-separated given Z and
Deterministic(V), X and Y are independent given Z in P.

Proof. First we will prove that P(V) satisfies the Markov condition for each directed
acylic graph G  in Mod(G). First form an acceptable ordering Ord of the variables in V
for G. Let Predecessors(Ord,V) be the variables that precede V in Ord. From lemma
3.7.1 it follows that if G  is a directed acyclic graph in which for each V in V, V is
independent of Predecessors(V)\Parents(V) given Parents(V), then G  is an I-map of
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P(V). If X is a subset of Parents(V) that determines V, it follows that V is independent of
Predecessors(V)\X given X. Hence if in G � Parents(V) = X, G  is still an I-map of P(V).

If either X or Y is included in Det(Z), it follows that X and Y are independent given Z
∪ Det(Z). Suppose then that neither X nor Y is included in Det(Z). By definition of det-
separability, X\Det(Z) and Y\Det(Z) are d-separated given Z ∪ Det(Z). Hence

P((X∪ Y) \ Det(Z)|Z ∪ Det(Z)) = P(X \ Det(Z)|Z ∪ Det(Z))P(Y \ Det(Z)|Z ∪ Det(Z))

It now follows that X is independent of Y given Z because

P(X ∪ Y| Z) = P(X ∪ Y|Z ∪ Det(Z)) = P((X ∪ Y) \ Det(Z)|Z ∪ Det(Z)) =
P(X \ Det(Z)|Z ∪ Det(Z))P(Y \ Det(Z)|Z ∪ Det(Z)) =

P(X|Z ∪ Det(Z))P(Y|Z ∪ Det(Z)) = P(X|Z)P(Y|Z)

∴
THEOREM 3.7: If G is a directed acyclic graph over V, X, Y, and Z are disjoint subsets of
V, and P(V) satisfies the Markov condition for G and the deterministic relations in
Deterministic(G) then if X and Y are D-separated given Z and Deterministic(V), X and
Y are independent given Z in P.

Proof. We will prove that if X and Y are det-connected given Z and Deterministic(V),
then X and Y are D-connected given Z and Deterministic(V). It follows then that if X and
Y are D-separated given Z and Deterministic(V), then X and Y are det-separated given Z
and Deterministic(V), and by lemma 3.7.1, X and Y are independent given Z in P.

Suppose some X in X is det-connected to some Y in Y given Z and Deterministic(V).
It follows by definition that X and Y are not in Z and not in Det(Z). Because X and Y are
det-connected given Z there is an undirected path U  that d-connects X and Y given Z in
some graph G  in Mod(G).

First, we will show that the path U corresponding to U  exists in G; then we will show
that U D-connects X and Y given Z and Deterministic(V) in G.

No member of Det(Z) is a noncollider on U  because U  d-connects X and Y given Z ∪
Det(Z). Hence for each noncollider A on U , Parents(G ,A) equals Parents(G,A). It
follows that if there is an edge into A in G , there is a corresponding edge into A in G.

Suppose then that A is a collider on U . If there is an edge into A in G  that does not
exist in G, then every parent of A is in Z. It follows that either the endpoints of U  are in
Z, or some noncollider on U  is in Z. But then U  does not d-connect X and Y given Z ∪
Det(Z) in G . Hence if there is an edge into A on U , then the corresponding edge exists in
G.

It follows that the path U in G corresponding to U  in G  exists.
The endpoints of U are not in Z ∪ Det(Z), because they are equal to the endpoints of
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No noncollider on U is in Z ∪ Det(Z), because each noncollider on U is a noncollider
on U , and no noncollier on U  is in Z ∪ Det(Z).

Finally suppose that A is a collider on U . It follows that A has a descendant in Z ∪
Det(Z) in G . There are two cases.

If A has a descendant in Z in G , then it has a descendant in Z in G. Suppose that A has
a descendant X in Z in G, and let D(A,X) be a directed path from A to X in G . Let Z be
the member of Z closest to A on D(A,X). Every edge that is in G  but not in G is out of a
member of Z. D(A,Z) has no edges out of a member of Z. Hence every edge in D(A,Z)
exists in G, and A has a descendant in Z in G.

Suppose A does not have a descendant in Z in G . It follows that there is a directed
path D(A,X) from A to a member X of Det(Z)\Z in G . If A itself is in Det(Z) then it has
parents not in Z, because U  d-connects X and Y given Z ∪ Det(Z). Because G  is in
Mod(G), it follows from the fact that A has a parent not in Z that A has a descendant in Z
in G. If A is not in Det(Z) then D(A,X) is not an empty path, and it does not contain any
member of Z. Hence X has a parent that is not in Z. Because G  is in Mod(G), it follows
from the fact that X has a parent not in Z that X has a descendant in Z in G. D(A,X) exists
in G because every edge in G  but not in G is out of a member of Z, and D(A,X) contains
no member of Z. Hence A has a descendant in Z in G.

It follows that U D-connects X and Y given Z and Deterministic(V) in G.∴

13.9 Theorem 4.1

THEOREM 4.1: Two directed acyclic graphs G1, G2, are strongly statistically
indistinguishable if and only if (i) they have the same vertex set V, (ii) vertices V1 and V2

are adjacent in G1 if and only if they are adjacent in G2, and (iii) for every triple V1, V2, V3

in V, the graph V1 +�V2 ← V3 is a subgraph of G1 if and only if it is a subgraph of G2.

Proof. ⇐ Suppose two directed acyclic graphs G1 and G2 contain the same vertices, the
same adjacencies and the same colliders, and G1 is a minimal I-map of P. By theorem 3.4
the same distributions are faithful to G1 and G2 so they have the same d-separability
relations, and hence G2 is also an I-map of P.

G2 is also minimal. Every subgraph of G1 has the same d-separability relations as does
the corresponding subgraph of G2 because removing corresponding vertices and
adjacencies from both graphs leaves subgraphs that contain the same vertices, adjacencies
and colliders. Hence, if a subgraph of G2 is an I-map of P, then the corresponding
subgraph of G1 is an I-map of P. But by supposition, no proper subgraph of G1 is an I-
map of P. Hence no proper subgraph of G2 is an I-map of P. By definition, G2 is a
minimal I-map of P. It follows that G1 and G2 are s.s.i.
⇒ Now consider the case where G1 and G2 differ either in their sets of vertices, their
adjacencies, or their colliders. We will show that there exists a distribution P such that G1
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is a minimal I-map of P, while G2 is not. By definition, it follows that G1 and G2 are not
s.s.i.

Case 1. Suppose first that G1 and G2 differ in their sets of vertices. By definition they are
not s.s.i.

Case 2. Suppose that G1 and G2 differ in their adjacencies. Suppose without loss of
generality that G1 contains an adjacency not in G2. Then there is a pair of vertices X and Y
such that X and Y are d-separated given a subset S in G2, while X and Y are not d-
separated given S in G1. There is a distribution P faithful to G1. G1 is also a minimal I-
map of P. In G1, X and Y are dependent conditional on S. But because X and Y are d-
separated given a subset S in G2, G2 is not an I-map of P. Hence G1 and G2 are not s.s.i.

Case 3. Suppose that G1 and G2 differ in their unshielded colliders but not in any
adjacencies. Let Y be an unshielded collider on the path <X,Y,Z> in G1, but not in G2. Let
P be a distribution faithful to G1. It follows that G1 is a minimal I-map of P. In G2, X and
Z are d-separated given a set S containing Y, while in G1 X and Z are not d-separated
given S. Since G1 is faithful to P, X and Z are dependent conditional on S. Hence G2 is
not a minimal I-map of P, and G1 and G2 are not s.s.i.

Case 4. Finally, suppose that G1 and G2 differ in their shielded colliders but not in any
adjacencies or unshielded colliders. Let Y be a shielded collider on the path <X,Y,Z> in
G1, but not in G2. Suppose G2  is the subgraph of G2 with the edge between X and Z
removed. G2  is faithful to some distribution P. G2 is not a minimal I-map of P (because it
contains a subgraph which is an I-map of P). We will now show that G1 is a minimal I-
map of P.

First, G1 is an I-map of P. G1 is f.i. to G2. G2 is a proper supergraph of G2 , and so the
d-separation relations true of G2 are included in the d-separation relations true of G2 ;
hence the d-separation relations true of G1 are included in the d-separation relations true
of G2 . It follows that G1 is an I-map of P.

G1 is also minimal. If G1  is a subgraph obtained by deleting from G1 any edge other
than the X - Z edge, by Case 2, the subgraph is not an I-map of P. If G1  is a subgraph
obtained by deleting from G1 just the X - Z edge, then G1  contains an unshielded collider
at Y that does not occur in G2 . By Case 3, G1  is not an I-map of P.

Because G1 is a minimal I-map of P, and G2 is not, G1 and G2 are not s.s.i. ∴

13.10 Theorem 4.2

THEOREM 4.2: Two directed acyclic graphs G and H are faithfully indistinguishable if
and only if (i) they have the same vertex set, (ii) any two vertices are adjacent in G if and
only if they are adjacent in H, and (iii) any three vertices, X, Y, Z, such that X is adjacent
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to Y and Y is adjacent to Z but X is not adjacent to Z in G or H, are oriented as X +�Y ← Z
in G if and only if they are so oriented in H.

Proof. This was proved in Verma and Pearl 1990b. It also follows directly from theorem
3.4. ∴

13.11 Theorem 4.3

THEOREM 4.3: Two directed acyclic graphs are faithfully indistinguishable if and only if
some distribution faithful to one is faithful to the other and conversely; that is, they are
f.i. if and only if they are w.f.i.

Proof. Suppose G1 and G2 are f.i. By lemma 3.5.8 there is some distribution P faithful to
G1. Hence P is faithful to G2, and G1 and G2 are w.f.i.

Suppose that G1 and G2 are w.f.i. Then there is some distribution P faithful to G1 and
G2. It follows that G1 and G2 have the same d-separation relations, so any distribution
faithful to G1 is also faithful to G2 and vice-versa. ∴

13.12 Theorem 4.4

THEOREM 4.4: If probability distribution P satisfies the Markov Condition for directed
acyclic graphs G and H, and P is faithful to H, then for all vertices X, Y, if X, Y are
adjacent in H they are adjacent in G.

Proof. If P is faithful to H then X is adjacent to Y in H only if X, Y are dependent
conditional on every set of vertices not containing X or Y. Suppose then that P satisfies
the Markov condition for G but, contrary to the claim, X and Y are not adjacent in G.
Then X is not a parent of Y and Y is not a parent of X. Either X is not a descendant of Y or
Y is not a descendant of X; suppose without loss of generality that X is not a descendant
of Y. Then by the Markov Condition, X and Y are independent in P conditional on the set
of all parents of Y, which is a contradiction. ∴

13.13 Theorem 4.5

THEOREM 4.5: If probability distribution P satisfies the Markov and Minimality
Conditions for directed acyclic graphs G , and P is faithful to graph H, then (i) for all X,
Y, Z such that X → Y ← Z is in H and X is not adjacent to Z in H, either X → Y ← Z in G
or X, Z are adjacent in G and (ii) for every triple X, Y, Z of vertices such that X → Y ← Z
is in G and X is not adjacent to Z in G, if X is adjacent to Y in H and Y is adjacent to Z in
H then X → Y ← Z in H.
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Proof.
(i) Suppose that P satisfies the Markov and Minimality Conditions for directed acyclic
graphs G , and P is faithful to graph H. Suppose X → Y ← Z is in H and X is not adjacent
to Z in H. By theorem 4.4, X is adjacent to Y and Y is adjacent to Z in G. Suppose Y is not
a collider on <X, Y, Z> in G and X and Z are not adjacent in G. Then by the Markov
Condition X and Z are independent conditional on some set containing Y; but since H is
faithful, this is impossible.
(ii) Suppose Y is an unshielded collider on the path <X,Y,Z> in G. Then X and Z are d-
separated in G given some set of vertices, and hence d-separated given Parents(G,X) or
Parents(G,Z). It follows that X and Z are independent given Parents(G,X) or
Parents(G,Z) in P. Y is not a parent of X or Z in G; hence in P, X and Z are independent
given some set not containing Y. But if X, Y and Y, Z are adjacent in H and Y is not a
collider on <X, Y, Z>, then there is a trek between X and Z containing only X, Y, and Z;
hence in H, X and Z are not d-separated given any set of variables not containing Y.
Because P is faithful to H, X and Z are not independent given any set of variables
containing Y. This is a contradiction.∴

COROLLARY 4.1: If probability distribution P satisfies the Markov condition for directed
acyclic graph G and P is faithful to directed acyclic graph H and G and H agree on an
ordering of the variables (as, for example, by time) such that X - > Y only if X < Y in the
order, then H is a subgraph of G.

Proof. An immediate consequence of theorem 4.4.

13.14 Theorem 4.6

THEOREM 4.6: No two distinct s.s.i. directed acyclic graphs with the same vertex set are
rigidly statistically indistinguishable.

Proof. Suppose G1 and G2 are distinct s.s.i. directed acyclic graphs with vertex set V.
Because they are s.s.i they have the same adjacencies; hence if they are distinct graphs
there is some edge A → B in G1 and B → A in G2. Let U1 and U2 be variables not in V.
Embed G1 and G2 in H1 and H2 respectively by adding edges from U1 to A and U2 to B.
Then H1 and H2 are not s.s.i because they have different colliders. ∴

13.15 Theorem 5.1

THEOREM 5.1: If the input to the PC, SGS, PC–1, PC–2, PC* or IG algorithms is data
faithful to directed acyclic graph G, the output is a pattern that represents the faithful
indistinguishability class of G.
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In a graph G, let V be in Undirected(X,Y) if and only if V lies on some undirected path
between X and Y.

LEMMA 5.1.1: In a directed acyclic graph G, if X is not a descendant of Y, and Y and X are
not adjacent in G, then X is d-separated from Y given Parents(Y) ∩ Undirected(X,Y).

Proof. Suppose on the contrary that some undirected path U d-connects X and Y given
Parents(X) ∩ Undirected(X,Y). If U is into Y then it contains some member of
Parents(Y) ∩ Undirected(X,Y) not equal to X as a noncollider. Hence it does not d-
connect X and Y given Parents(Y) ∩ Undirected(X,Y), contrary to our assumption. If U
is out of Y, then because X is not a descendant of Y, U contains a collider in
Undirected(X,Y). Let C be the collider on U closest to Y. If U d-connects X and Y given
Parents(Y) ∩ Undirected(X,Y) then C has a descendant in Parents(Y) ∩
Undirected(X,Y). But then C is an ancestor of Y, and Y is an ancestor of C, so G is cyclic,
contrary to our assumption. Hence no undirected path between X and Y d-connects X and
Y given Parents(Y) ∩ Undirected(X,Y). ∴

LEMMA 5.1.2: In a directed acyclic graph G, if X is adjacent to Y, and Y is adjacent to Z,
and X is not adjacent to Z, then the edges are oriented as X → Y ← Z if and only for every
subset S of V, X is d-connected to Z given {Y} ∪ S\{X,Z}.

Proof. This follows from theorem 3.4. ∴

LEMMA 5.1.3 was suggested in Pearl(1990a).

LEMMA 5.1.3: In a directed acyclic graph G, if X is adjacent to Y, and Y is adjacent to Z,
and X is not adjacent to Z, then either Y is in every set of variables that d-separates X and
Z, or it is in no set of variables that d-separates X and Z.

Proof. Assume that in G, X, Z are not adjacent but X is adjacent to Y and Y is adjacent to
Z. Since X, Z are not adjacent, they are d-separated given some subset S\{X,Z}. In G, the
X - Y and Y - Z edges collide at Y if and only if there is no set S containing Y and not X or
Z such that X, Z are d-separated given S. If the X - Y and Y - Z edges do not collide at Y,
then there is an undirected path U between X and Z that contains no colliders (including
Y). Any set S\{X,Z} that does not contain Y will fail to d-separate X and Z because of this
path. ∴
THEOREM 5.1: If the input to the PC, SGS, PC–1, PC–2, PC* or IG algorithms is data
faithful to directed acyclic graph G, the output is a pattern that represents the faithful
indistinguishability class of G.
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Proof. The correctness of the SGS algorithm is evident from theorem 3.4 since the
procedure simply verifies the conditions for faithfulness given in that theorem.

Let G  be the output of one any of the algorithms except SGS. Suppose that X and Y
are not adjacent in G . None of the algorithms removes an edge between X and Y unless X
and Y are d-separated given some subset of V\{X,Y}. If X and Y are d-separated given
some subset of V\{X,Y}, then they are not adjacent in G. Hence if X and Y are not
adjacent in G , X and Y are not adjacent in G.

Suppose X and Y are adjacent in the output G  of any of the algorithms except PC*. It
follows that in G, X and Y are not d-separated given any subset of the adjacencies of X or
any of the adjacencies of Y in G � From what we have just proved, the adjacencies of X in
G  are a superset of Parents(G,X) and the adjacencies of Y in G  are a superset of
Parents(G,Y). Hence X and Y are not d-separated given Parents(X,G) or Parents(Y,G) in
G . It follows from lemma 3.5.9 that X and Y are adjacent in G.

Suppose X and Y are adjacent in the output G  of PC*. Undirected(X,Y) in G  is a
superset of Undirected(X,Y) in G. This, together with lemmas 3.5.9 and 5.1.1 entails that
X and Y are adjacent in G.

We will show by induction on the number of applications of orientation rules in the
repeat loop of the algorithm that the orientations are correct in the output G .

Base Case: Suppose that X → Y is oriented by the rule that if X is adjacent to Y, and Y is
adjacent to Z, and X is not adjacent to Z, then the edges are oriented as X → Y ← Z if and
only Y is not in Sepset(X,Z). This is a correct orientation by lemmas 5.1.2 and 5.1.3.

Induction Case: Suppose that the orientations of G  after n applications of orientation
rules are correct. Suppose first that X → Y is oriented because there is a directed path
from X to Y in G . It follows from the induction hypothesis that there is a directed path
from X to Y in G, and hence X → Y in G because G is acyclic. Suppose next that X → Y is
oriented because there is an edge Z → X and the edge between X and Y in G  has no
arrowhead at X. It follows that Y is in Sepset(X,Z), and hence Y is not a collider on the
path <X,Y,Z> in G. Also by the induction hypothesis Z → X in G, and hence X → Y in G.
∴

13.16 Theorem 6.1

THEOREM 6.1: (Verma and Pearl): If V is a set of vertices, O is a subset of V containing
A and B, and G is a directed acyclic graph over V (or an inducing path graph over O) then
A and B are not d-separated by any subset of O\{A,B} if and only if there is an inducing
path over the subset O between A and B.

(Theorem 6.1 was first stated and proved in Verma and Pearl 1990 for directed acyclic
graphs, but that paper did not include the parts of the lemmas relating the existence of an
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inducing path that is into (or out of) its endpoints to the existence of d-connecting paths
that are into (or out of) their endpoints.)

If G is a directed acyclic graph over a set of variables V, O is a subset of V containing
A and B, and A ≠ B, then an undirected path U between A and B is an inducing path
relative to O if and only if every member of O on U except for the endpoints is a collider
on U, and every collider on U is an ancestor of either A or B. We will sometimes refer to
members of O as observed variables. In a graph G, an edge between A and B is into A if
and only if the mark at the A end of edge is an “>.” If an undirected path U between A
and B contains an edge into A we will say that U is into A. In a graph G, an edge between
A and B is out of A if and only if the mark at the A endpoint is the empty mark. If an
undirected path U between A and B contains an edge out of A we will say that U is out of
A.

LEMMA 6.1.1: If V is a set of vertices, O is a subset of V, G is a directed acyclic graph
over V (or an inducing path graph over O) if there is an inducing path relative to O
between A and B that is out of A and into B, then for any subset Z of O\{A,B} there is an
undirected path C that d-connects A and B given Z that is out of A and into B.

Proof. Let U be an inducing path over O between A and B that is out of A and into B.
Every observed vertex on U except for the endpoints is a collider, and every collider is an
ancestor of either A or B.

If every collider on U has a descendant in Z, then let C = U. C d-connects A and B
given Z because every collider has a descendant in Z, and no noncollider is in Z. C is out
of A and into B.

Suppose that not every collider on U has a descendant in Z. Let R be the collider on U
closest to A that does not have a descendant in Z, and W be the collider on U closest to A.
R ≠ A and R ≠ B because A and B are not colliders on U.

Suppose first that R = W. There is a directed path from R to B that does not contain A,
because otherwise there is a cycle in G. R is not in Z because R has no descendant in Z. B
is not on U(A,R). U(A,R) d-connects A and R given Z, and is out of A. By lemma 3.3.3
there is a d-connecting path C between A and B given Z that is out of A and into B.

Suppose then that R ≠ W. Because U is out of A, W is a descendant of A. W has a
descendant in Z by definition of R. It follows that every collider on U that is an ancestor
of A has a descendant in Z. Hence R is an ancestor of B, and not of A. B is not on
U(A,R).U(A,R) d-connects A and R given Z and is out of A. By hypothesis, there is a
directed path D from R to B that does not contain A or any member of Z. By lemma 3.3.3,
there is a path that d-connects A and B given Z that is out of A and into B. ∴
LEMMA 6.1.2: If V is a set of vertices, O is a subset of V, G is a directed acyclic graph
over V (or an inducing path graph over O), and there is an inducing path U over O
between A and B that is into A and into B, then for every subset Z of O\{A,B} there is an
undirected path C that d-connects A and B given Z that is into A and into B.
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Proof. If every collider on U has a descendant in Z, then U is a d-connecting path
between A and B given Z that is into A and into B. Suppose then that there is a collider
that does not have a descendant in Z. Let W be the collider on U closest to A that does not
have a descendant in Z. Suppose that W is the source of a directed path D to B that does
not contain A. B is not on U(A,W). U(A,W) is a path that d-connects A and W given Z, and
is into A. By lemma 3.3.3, there is an undirected path C that d-connects A and B given Z
and is into A and into B. Similarly, if the first collider W on U after B that does not have a
descendant in Z is the source of a directed path D to A that does not contain B, then by
lemma 3.3.3, A and B are d-connected given Z by an undirected path into A and into B.

Suppose then that the collider W on U closest to A that does not have a descendant in
Z is not the source of a directed path to B that does not contain A, and that the collider R
on U closest to B that does not have a descendant in Z is not the source of a directed path
to A that does not contain B. It follows that there exist two colliders E and F on U such
that E is an ancestor of A, F is an ancestor of B, and every collider between E and F is an
ancestor of a member of Z. U(E,F) d-connects E and F given Z\{E,F} because no
member of O is a noncollider on U(E,F) except for the endpoints, and every collider on
U(E,F) has a descendant in Z. The directed path from E to A d-connects E and A given
Z\{E,A} and the directed path from F to B d-connects F and B given Z\{F,B}. By lemma
3.3.3 there is an undirected path that d-connects A and B given Z that is into A and into B.
∴

In a graph G, Let A(A,B) be the union of the ancestors of A or B.

LEMMA 6.1.3: If V is a set of vertices, O is a subset of V, G is a directed acyclic graph
over V (or an inducing path graph over O) and an undirected path U in G d-connects A
and B given (A(A,B) ∩ O)\{A,B} then U is an inducing path between A and B over O.

Proof. If there is a path U that d-connects A and B given (A(A,B) ∩ O)\{A,B} then every
collider on U is an ancestor of a member of (A(A,B) ∩ O)\{A,B}, and hence an ancestor
of A or B. Every vertex on U is an ancestor of either A or B or a collider on U, and hence
every vertex on U is an ancestor of A or B. If U d-connects A and B given (A(A,B) ∩
O)\{A,B}, then every member of (A(A,B) ∩ O)\{A,B} that is on U, except for the
endpoints, is a collider. Since every vertex on U is in A(A,B), every member of O that is
on U, except for the endpoints, is a collider. Hence U is an inducing path between A and
B over O. ∴

The following pair of lemmas state some basic properties of inducing paths.

LEMMA 6.1.4: If G is a directed acyclic graph over V, O is a subset of V that contains A
and B, and G contains an inducing path over O between A and B that is out of A, then
there is a directed path from A to B in G.
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Proof. Let U be an inducing path between A and B relative to O that is out of A. If U does
not contain a collider, then U is a directed path from A to B. If U does contain a collider,
let C be the first collider after A. By definition of inducing path, there is a directed path
from C to B or C to A. There is no path from C to A because there is no cycle in G; hence
there is a directed path from C to B. Because U is out of A, and C is the first collider after
A, there is a directed path from A to C. Hence there is a directed path from A to B. ∴

LEMMA 6.1.5: If V is a set of vertices, O is a subset of V, G is a directed acyclic graph
over V (or an inducing path graph over O) that contains an inducing path relative to O
between A and B that is out of A, then every inducing path relative to O between A and B
is into B.

Proof. By lemma 6.1.4, if there an inducing path out of A, and an inducing path out of B,
there is a cycle in G. ∴

THEOREM 6.1: (Verma and Pearl): If V is a set of vertices, O is a subset of V containing
A and B, G is a directed acyclic graph over V (or an inducing path graph over O) A and B
are not d-separated by any subset of O\{A,B} if and only if there is an inducing path over
the subset O between A and B.

Proof. This follows from lemmas 6.1.1, 6.1.2, 6.1.3, and 6.1.5. ∴

13.17 Theorem 6.2

THEOREM 6.2: In an inducing path graph G  over O, where A and B are in O, if A is not
an ancestor of B, and A and B are not adjacent then A and B are d-separated given a
subset of D-SEP(A,B).

If G  is an inducing path graph over O and A ≠ B, let V ∈ D-SEP(A,B) if and only if A
≠ V and there is an undirected path U between A and V such that every vertex on U is an
ancestor of A or B, and (except for the endpoints) is a collider on U.

LEMMA 6.2.1: If G  is the inducing path graph for G over O and there is a directed path
from A to B in G , then there is a directed path from A to B in G.

Proof. Suppose there is a directed path D from A to B in G . Let X and Y be any two
vertices adjacent on the directed path and that occur in that order. There is a directed edge
from X to Y in G . By the definition of inducing path graph, there is an inducing path
between X and Y in G that is out of X. Hence by lemma 6.1.4, there is a directed path
from X to Y in G.

In G, the concatenation of the directed paths between vertices that are adjacent on D
contains a subpath that is a directed path from A to B. ∴

Proofs of Theorems  415 



416 Chapter 13

LEMMA 6.2.2: If G  is the inducing path graph for G over O, and there is a path U d-
connecting A and B given Z in G  then there is a path d-connecting A and B given Z in G.

Proof. Suppose that U d-connects A and B in G . If there are vertices R, S, and T on U
such that R and S are adjacent on U, and S and T are adjacent on U, and S is in Z, then S
is a collider on U. By the definition of inducing path graph, in G there are inducing paths
over O between R and S, and S and T, such that each of them is into S. By lemmas 6.1.1
and 6.1.2, in G there is a d-connecting path given Z\{R,S} between R and S, and a d-
connecting path given Z\{S,T} between S and T, such that each of them is into S.

If there are vertices R, S, and T on U such that R and S are adjacent on U, and S and T
are adjacent on U, and S is a collider on U, then S has a descendant in Z in G . By the
definition of inducing path graph, in G there are inducing paths between R and S, and S
and T, that are both into S. By lemmas 6.1.1 and 6.1.2, in G there is a d-connecting path
given Z\{R,S} between R and S, and a d-connecting path given Z\{S,T} between S and T,
and both are into S. If S has a descendant in Z in G  then by lemma 6.2.1 it has a
descendant in Z in G.

By lemma 3.3.1, there is a path in G that d-connects A and B given Z. ∴

LEMMA 6.2.3: If G  is the inducing path graph for directed acyclic graph G over O and
there is an inducing path U over O between A and C in G , then there is an edge between
A and C in G .

Proof. Suppose there is an inducing path over O between A and C in G . By lemmas 6.1.1
and 6.1.2, in G  there is an undirected path d-connecting A and C given A(A,C) ∩
O\{A,C}. Hence by lemma 6.2.2 there is an undirected path in G such that A and C are d-
connected given A(A,C) ∩ O\{A,C} in G. By lemma 6.1.3 there is an inducing path over
O between A and C in G. It follows by definition that there is an edge between A and C in
G . ∴

Let a total order Ord of variables in an inducing path graph or directed acyclic graph
G  be acceptable if and only if whenever A ≠ B and there is a directed path from A to B in
G , A precedes B in Ord. In a graph G, vertex X is after vertex Y if and only if there is a
directed path from Y to X in G, and it is before vertex Y if and only if there is a directed
path from X to Y in G. For inducing path graph G  and acceptable total ordering Ord, let
Predecessors(Ord,V) equal the set of all variables that precede V (not including V)
according to Ord. For inducing path graph G  and acceptable total ordering Ord, W is in
SP(Ord,G ,V) (separating predecessors of V in G  for ordering Ord) if and only if W ≠ V
and there is an undirected path U between W and V such that each vertex on U except for
V precedes V in Ord and every vertex on U except for the endpoints is a collider on U.
Notice that by this definition each parent of V is in SP(Ord,G ,V). For example in figure
13.2, if Ord = <X,S,T,R,M,Z,Q,Y>, then SP(Ord,G ,Y) = {Q,T,S} and if Ord =
<X,S,T,R,M,Z,Y,Q> then SP(Ord,G ,Y) = ∅.
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LEMMA 6.2.4: If G  is an inducing path graph and Ord an acceptable total ordering then
Predecessors(Ord,X)\SP(Ord,G ,X) is d-separated from X given SP(Ord,G ,X).

Proof. Suppose on the contrary that there is a path U that d-connects some V in
Predecessors(Ord,X)\SP(Ord,G ,X) to X given SP(Ord,G ,X). There are three cases.

X                   R                   S                   T                   Q                   Y

M

Z

Figure 13.2

First suppose U has an edge into X that is not a double-headed arrow. (By a double-
headed arrow we mean e.g., A ↔ B.) Then some parent R of X is on U, and is not a
collider on U. R is in SP(Ord,G ,X) and hence is not equal to V. Because R is not a
collider on U, U does not d-connect V to X given SP(Ord,G ,X), contrary to our
assumption.

Next suppose U has an edge out of X. Since V is in
Predecessors(Ord,X)\SP(Ord,G ,X) it precedes X in Ord; hence there is no directed path
from X to V. It follows that U contains a collider. Let the first collider after X on U be R.
R is a descendant of X, and the descendants of R are descendants of X. It follows that no
descendant of R (including R itself) is in SP(Ord,G ,X), and hence U does not d-connect
V and X, contrary to our assumption.

Suppose finally that U contains a double-arrow into X. Because U d-connects X and V
given SP(Ord,G ,X), each collider along U has a descendant in SP(Ord,G ,X) and hence
precedes X in Ord; it follows that every ancestor of a collider on U precedes X in Ord.
Let W be the vertex on U closest to X not in SP(Ord,G,X), and R be the vertex adjacent to
W on U and between W and X. If R is not a collider on U, then U does not d-connect V
and X given SP(Ord,G ,X). If R is a collider on U, then W *→ R on U. W is either an
ancestor of V or of a collider on U, in which case it precedes X, and is a member of
SP(Ord,G ,X), contrary to our assumption. ∴

THEOREM 6.2: In an inducing path graph G  over O, where A and B are in O, if A is not
an ancestor of B, and A and B are not adjacent then A and B are d-separated given a
subset of D-SEP(A,B).

X                   R                   S                   T                   Q                   Y

M

Z
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Proof. Suppose that A and B are not adjacent, and A is not an ancestor of B. Let the total
order Ord on the variables in G  be such that all ancestors of A and all ancestors of B
except for A are prior to A, and all other vertices are after A. Then SP(Ord,G ,A) is a
subset of D-SEP(A,B). Hence by lemma 6.2.4, if B is not in D-SEP(A,B) then D-
SEP(A,B) d-separates A from B in G. B is in D-SEP(A,B) if and only if there is a path
from A to B in which each vertex except the endpoints is a collider on the path, and each
vertex on the path is an ancestor of A or B. But then there is an inducing path between A
and B, and, by lemma, 6.2.3 A and B are adjacent, contrary to our assumption. ∴

13.18 Theorem 6.3

THEOREM 6.3: If the input to the CI algorithm is data over O that is faithful to G, the
output is a partially oriented inducing path graph of G over O.

It is proved in lemma 7.3.2 that if G  is the inducing path graph for G over O, and
there is a path U d-connecting A and B given Z in G then there is a path d-connecting A
and B given Z in G .

In an inducing path graph G , U is a discriminating path for B if and only if U is an
undirected path between X and Y containing B, B ≠ X, B ≠ Y, and

(i) if V and V  are adjacent on U, and V  is between V and B on U, then V *→ V  on U,
(ii) if V is between X and B on U and V is a collider on U then V → Y in G , else V ←* Y
in G ,
(iii) if V is between Y and B on U and V is a collider on U then V → X in G , else V ←* X
in G ,
(iv) X and Y are not adjacent in G .

B is a definite noncollider on undirected path U if and only if either B is an endpoint of
U, or there exist vertices A and C such that U contains one of the subpaths A ← B *-* C,
A *-* B → C, or A *-* B *-* C.

In a partially oriented inducing path graph , U is a definite discriminating path for
B if and only if U is an undirected path between X and Y containing B, B ≠ X, B ≠ Y,
every vertex on U except for B and the endpoints is a collider or a definite noncollider on
U, and
 (i) if V and V  are adjacent on U, and V  is between V and B on U, then V *→ V  on U,
(ii) if V is between X and B on U and V is a collider on U then V → Y in , else V ←* Y in

,
(iii) if V is between Y and B on U and V is a collider on U then V → X in , else V ←* X
in ,
(iv) X and Y are not adjacent in .

418  Chapter 13



Proofs of Theorems 419

LEMMA 6.3.1: If G  is an inducing path graph, U is a discriminating path for B between X
and Y, and X and Y are d-separated given S, then for every vertex V on U not equal to B,
V is in S if and only if V is a collider on U.

E                     F                      G                     A                     B

 C

o

o

o

Figure 13.3. <E,F,G,A,C,B> is a definite discriminating path for C

Proof. First we will prove for each vertex V on U between X and B that V is in S if and
only if V is a collider on U. The proof is by induction on the number of vertices between
X and V on U.

Base Case: Let A be the first vertex on U after X. If A = B, then trivially for every vertex
V between X and A, V is in S if and only if V is a collider on U. Suppose then that A ≠ B.
If A is a collider on U then there is an edge from A to Y. A is not a collider on the
concatenation of U(X,A) and the edge between A and Y, and hence that path d-connects X
and Y given S unless A is in S. If A is not a collider on U then there is an edge between Y
and A that is into A. By definition of discriminating path, the edge between X and A is
into A. Hence A is a collider on the concatenation of U(X,A) and the edge between A and
Y. Hence that path d-connects X and Y given S unless A is not in S.

Induction Case: Suppose that if there are n or fewer vertices between X and V on U, then
V is in S if and only if V is a collider on U. If there are only n vertices between X and B
then we are done. Otherwise let A be the vertex such that there are n+1 vertices between
X and A on U. Except for the endpoints, if V is on U(X,A) then V is a collider on U if and
only if U is in S. If A is a collider on U, then there is a directed edge from A to Y. A is not
a collider on the concatenation of U(X,A) and the edge from A to Y, so that path d-
connects X and Y given S unless A is in S. If A is not a collider on U, then there is an edge
between A and Y that is into A. Hence A is a collider on the concatenation of U(X,A) and
the edge from A to Y, so that path d-connects X and Y given S unless A is not in S.

Similarly, if V is between Y and B, V is in S if and only if V is a collider on U. ∴

LEMMA 6.3.2: If G  is an inducing path graph, U is a discriminating path for B between X
and Y, and X and Y are d-separated given S, then B is in S if and only if B is not a collider
on U.

o

o

o
E F G A B

C
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Proof. By lemma 6.3.1, for every vertex V on U not equal to B, V is a collider on U if and
only if V is in S. If B is a collider and in S, then U d-connects X and Y given S, contrary to
our assumption. If B is not a collider and not in S, then U d-connects X and Y given S,
contrary to our assumption. Hence B is in S if and only if B is not a collider on U. ∴

THEOREM 6.3: If the input to the CI algorithm is data over O that is faithful to G, the
output is a partially oriented inducing path graph of G over O.

Proof. The proof is by induction on the number of applications of orientation rules in the
repeat loop of the Causal Inference Algorithm. Let G  be the inducing path graph of G.
Let the object constructed by the algorithm after the nth iteration of the repeat loop be n.

Base Case: Suppose that the only orientation rule that has been applied is that if A *-* B
*-* C in F, but A and C are not adjacent in F, A *-* B *-* C is oriented as A *→ B ←* C
if B is not a member of Sepset(A,C) and as A *-* B *-* C if B is a member of
Sepset(A,C). Suppose A *→ B ←* C in 0, but not in G . It follows that B is not a
member of Sepset(A,C), and either B is a parent of A or a parent of C in G . If B is a
parent of either A or C in G , then there is an undirected path between A and C that does
not collide at B, and except for the endpoints contains only B. For any subset S, if that
path in G  does not d-connect A and C given S, then S contains B. It follows that
Sepset(A,C) contains B, which is a contradiction.

Suppose that A *-* B *-* C in 0, but the edges between A and B, and B and C collide
at B in G . It follows that Sepset(A,C) does contain B but every set that d-separates A and
C in G  does not contain B. Hence Sepset(A,C) does not contain B, which is a
contradiction.

Induction Case: Suppose n is a partially oriented inducing path graph of G. We will now
show that n+1 is a partially oriented inducing path graph of G.

Case 1: There is a directed path from A to B and an edge A *-* B in n, so A *-* B is
oriented as A *→ B. By the induction hypothesis if there is an edge R → S in n, then
there is an edge R → S in G . It follows that if there is a directed path from A to B in n,
then there is a directed path from A to B in G . Because G  is acyclic, A *→ B in G .
Case 2: If B is a collider along <A,B,C> in n, B is adjacent to D, and D is in Sepset(A,C),
then orient B *-* D as B ←* D. By the induction hypothesis, B is a collider along
<A,B,C> and D is adjacent to B in G . If in G  A and C are not d-connected given D by
<A,B,C> then B has no descendant in {D}. Hence D *→ B in G .

Case 3: If U is a definite discriminating path between A and B for M in n, and P and R
are adjacent to M on U, and P-M-R is a triangle, then

Case 2: If B is a collider along <A,B,C> in n, B is adjacent to D, and D is in Sepset(A,C),
then orient B *-* D as B ←* D. By the induction hypothesis, B is a collider along
<A,B,C> and D is adjacent to B in G . If in G  A and C are not d-connected given D by
<A,B,C> then B has no descendant in {D}. Hence D *→ B in G .
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<A,B,C> and D is adjacent to B in G'. If in G' A and C are not d-connected given 
Sepset(A,C) (which contains D) by <A,B,C> then B has no descendant in {D}. Hence 
D * → B in G'. 



if M is in Sepset(A,B) then mark M as a noncollider on subpath P *-* M *-* R
else orient P *-* M *-* R as P *→ M ← * R.

By the induction hypothesis, if U is a definite discriminating path for M in n, then it is
a discriminating path for M in G . By lemma 6.3.2, in G , if U is a discriminating path for
M , then M is a collider on <P,Q,R> if and only if M is not in Sepset(A,B).

Case 4: If P *→ M *-* R then the orientation is changed to P *→ M → R. By the
induction hypothesis, if P *→ M *-* R in n, then in G  the edge from P to M is into M,
but M is not a collider on P *→ M *-* R. It follows that P *→ M → R in G . ∴

13.19 Theorem 6.4

THEOREM 6.4: If the input to the FCI algorithm is data over O that is faithful to G, the
output is a partially oriented inducing path graph of G over O.

If A ≠ B in partially oriented inducing path graph , V is in Possible-D-Sep(A,B) in  if
and only if V ≠ A, and there is an undirected path U between A and V in  such that for
every subpath <X,Y,Z> of U either Y is a collider on the subpath, or Y is not a definite
noncollider on U, and X, Y, and Z form a triangle in .

LEMMA 6.4.1: If G  is the inducing path graph of directed acyclic graph G over O, and F’
is the partially oriented graph constructed in step C) of Fast Causal Inference Algorithm
for G over O, A and B are in O, and A is not an ancestor of B in G , then every vertex in
D-SEP(A,B) in G  is in Possible-D-SEP(A,B) in F.

Proof. Suppose that A is not an ancestor of B. If V is in D-SEP(A,B) in G , then there is an
undirected path U from A to V in which every vertex except the endpoints is a collider. It
follows that in G  for every subpath <X,Y,Z> of U, Y is a collider on the subpath. Hence
in , Y is either a collider, or X, Y, and Z form a triangle in  and Y is not a definite
noncollider. ∴

THEOREM 6.4: If the input to the FCI algorithm is data over O that is faithful to G, the
output is a partially oriented inducing path graph of G over O.

Proof. This follows immediately from theorem 6.3 and lemma 6.4.1. ∴

Cas 3: If U is a defi nite discriminationg path between A and B for M in pn, and P and R 
are adjacent to M on U, and P-M-R is a trangle, then
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13.20 Theorem 6.5

THEOREM 6.5: If  is a partially oriented inducing path graph of directed acyclic graph G
over O, and there is a directed path U from A to B in , then there is a directed path from
A to B in G.

LEMMA 6.5.1: If  is a partially oriented inducing path graph of directed acyclic graph G
over O, and A → B in , then there is a directed path from A to B in G.

Proof. Let G  be the inducing path graph of G. If A → B in , then A → B in G . If A → B
in G , then in G there is an inducing path from A to B that is not into A. Hence by lemma
6.1.4 there is a directed path from A to B in G. ∴

THEOREM 6.5: If  is a partially oriented inducing path graph of directed acyclic graph G
over O, and there is a directed path U from A to B in , then there is a directed path from
A to B in G.

Proof. By lemma 6.5.1, for each edge between R and S in U there is a directed path from
R to S in G. The concatenation of the directed paths in G contains a subpath that is a
directed path from A to B in G. ∴

13.21 Theorem 6.6

THEOREM 6.6: If  is the CI partially oriented inducing path graph of directed acyclic
graph G over O, and there is no semidirected path from A to B in , then there is no
directed path from A to B in G.

LEMMA 6.6.1: Suppose that G is a directed acyclic graph, and in G there is a sequence of
vertices M starting with A and ending with C, and a set of paths F such that for every pair
of vertices I and J adjacent in M there is exactly one inducing path W over O between I
and J in F. Suppose further that if J ≠ C then W is into J, and if I ≠ A then W is into I, and
I and J are ancestors of either A or C. Then in G there is an inducing path T over O
between A and C such that if the path in F between A and its successor in M is into A then
U is into A, and if the path in F between C and its predecessor in M is into C then U is
into C.

Proof. Suppose that in G there is a sequence M of vertices in O starting with A and
ending with C, and a set of paths F such that for every pair of vertices I and J adjacent in
M there is exactly one inducing path W over O between I and J, and if J ≠ C then W is
into J, and if I ≠ A then W is into A, and I and J are ancestors of either A or C. Let T  be
the concatenation of the paths in F. T  may not be an acyclic undirected path because it
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might contain undirected cycles. Let T be an acyclic undirected subpath of T  between A
and C. We will now show that except for the endpoints, every vertex in O on T is a
collider, and every collider on T is an ancestor of A or C.

If V is a vertex in O that is on T but that is not equal to A or C, every edge on every
path in F is into V. Hence, every edge on T that contains V is into V because the edges on
T are a subset of the edges on inducing paths in F.

Let R and S be the endpoints of W. We will now show that every vertex on W is either
an ancestor of A or an ancestor of C. By hypothesis, R is an ancestor of either A or C, and
S is an ancestor of either A or C. Because W is an inducing path over O, every collider on
W is an ancestor of either R or S, and hence an ancestor of either A or C. Every
noncollider on W is either an ancestor of R or S, or an ancestor of a collider on W. Hence
every vertex on W is an ancestor of either A or C. It follows that every collider on T is an
ancestor of A or C, because the vertices on T are a subset of the vertices on paths in F.

By definition, T is an inducing path between A and C over O. Suppose the path in F
between A and its successor is into A. If the edge on T with endpoint A is on path in F on
which A is an endpoint, then T is into A because by hypothesis that inducing path is into
A. If the edge on T with endpoint A is on an inducing path over O in which A is not an
endpoint of the path, then T is into A because A is in O, and hence a collider on every
inducing path for which it is not an endpoint. Similarly, T is into C if in F the path
between C and its predecessor is into A. ∴

In an inducing path or directed acyclic graph G that contains an undirected path U
between X and Y, the the edge between V and W is substitutable for U(V,W) in U if and
only if V and W are on U, V is between X and W on U, G contains an edge between V and
W, V is a collider on the concatenation of U(X,V) and the edge between V and W if and
only if it is a collider on U, and W is a collider on the concatenation of U(Y,W) and the
edge between V and W if and only if it is a collider on U.

LEMMA 6.6.2: If G  is an inducing path graph for directed acyclic graph G over O, C is a
descendant of B in G, and U is an undirected path in G  between X and R containing
subpath A *→ B ↔ C where A is between X and B, then in G  there is a vertex E on U
between X and A inclusive and an edge between E and C that is substitutable for U(E,C)
in U. Furthermore the concatenation of U(X,E) and the edge between E and C is into C,
and if U is into X, then the concatenation of U(X,E) and the edge between E and C is into
X.

Proof. Suppose G  is an inducing path graph for directed acyclic graph G over O, C is a
descendant of B in G, and U is an undirected path in G  between X and R containing
subpath A *→ B ↔ C where A is between X and B. If E and F are on U, we will say that
F is the successor of E on U if and only if there is an edge between E and F on U and E is
between X and F or E = X. Let Y be the successor of X on U.
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First we consider the case where there is no vertex V on U between X and A inclusive
such that the edge from V to C is substitutable for U(V,C) in U, but each vertex on U
between Y and A inclusive is adjacent to C in G . We will show that there is a directed
path from Y to B.

Suppose that U(Y,B) is not a directed path from Y to B. Let E be the vertex on U
closest to B such that U(E,B) is not a directed path from E to B. Let F be the successor of
E on U. F is an ancestor of B in G , not a collider on U unless F = B, and by assumption F
is adjacent to C. The edge between C and F is not out of C and into F, because G  is
acyclic. Hence it is into C. If F = B, then A ↔ B ↔ C in G . It follows that in G there is
an inducing path betweeen A and C that is into A and C, and hence A ↔ C in G , and the
edge between A and C is substitutable for the subpath of U between A and C. Suppose
then that F ≠ B. U(F,B) is a directed path from F to B in G . Because the edge between F
and C is not substitutable for U(F,C) in U it follows that F is a collider on the
concatenation of U(X,F) with the edge between F and C. Hence the edge between F and
C is into F and into C, and the edge between E and F on U is into F. It follows that the
edge between E and F is also into E because E is not an ancestor of B, and F is. Hence G
contains the path E ↔ F ↔ C. Because F is an ancestor of B in G , it is an ancestor of B
in G. Since F is an ancestor of B in G, and B is an ancestor of C in G, F is an ancestor of
B in G. It follows by lemma 6.6.1 that there is an inducing path between E and C in G
relative to O that is into E and into C. But then in G  the edge between E and C is
substitutable for U(E,C) in U, which is a contradiction.

We have shown that U(Y,B) is a directed path from Y to B. It follows that Y is an
ancestor of B in G, and because B is an ancestor of C in G, Y is an ancestor of C in G. We
have shown that the edge between Y and its successor on U is out of Y. Hence Y is not a
collider on U. By assumption there is an edge between Y and C in G . If the edge between
Y and C is not substitutable for U(Y,C) in U, then the edge between Y and C is into Y, and
because G  is acyclic (i.e., there is no directed cycle in G ), the edge between Y and C is
also into C. Because the edge between Y and C is not substitutable for U(Y,C) in U, and
the edge between Y and C is into Y, it follows that the edge between X and Y is into Y.
Hence G  contains the path X *→ Y ↔ C, and Y is an ancestor of C in G. It follows that
there is an inducing path between X and C in G relative to O that is into C, and if U is
into X, also into X. But then the edge between X and C is substitutable for U(X,C) in U,
which is a contradiction.

Next we consider the case where there is no vertex V on U between X and A inclusive
such that the edge from V to C is substitutable for U(V,C) in U, but some vertex on U
between Y and A inclusive is not adjacent to C. Let E be the vertex on U closest to C and
between X and C that is not adjacent to C, and let F be the successor of E on U. E ≠ A,
because by lemma 6.6.1 there is an inducing path between A and C in G, and hence A is
adjacent to C in G . From the previous case, it follows that either there is an edge between
V on U(E,C) and C that is substitutable for U(V,C) in U(E,C) or F is an ancestor of B in
G . Suppose first that there is an edge between V on U(E,C) and C that is substitutable for
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U(V,C) in U(E,C). E is not adjacent to C, so V ≠ E, and V lies on U(F,C). If the edge
between V and C is substitutable for U(V,C) in U(E,C), then it is also substitutable for
U(V,C) in U, which is a contradiction. Hence F is an ancestor of B in G . By the
definition of E, F is adjacent to C in G . The edge between F and C is not out of C and
into F, because G  is acyclic. The edge between F and C is not out of F and into C
because the edge between F and C is not substitutable for U(F,C) in U(E,C), and U(F,B)
is a directed path from F to B. Hence the edge between F and C is into F and C. If the
edge E ← F is on U, then the F ↔ C edge is substitutable for U(F,C) in U. If E *→ F in
G  then G  contains the path E *→ F ↔ C, and F is an ancestor of C in G  and hence in
G; it follows that there is an inducing path between E and C relative to O in G, and E is
adjacent to C in G . This is a contradiction.

It follows that for some vertex E on U between X and A inclusive there is an edge from
E to C that is substitutable for U(E,C) in U and is into C. If E = X then there is an
inducing path between X and C that contains the edge on U with X as endpoint. If E ≠ X
then there is some vertex E ≠ X on U such that there is an edge between E and C that is
substitutable for U(E,C) in U. In the first case, the inducing path is into X if U is into X
and hence the edge between C and X is into X. In the second case the path consisting of
the concatenation of U(X,V) and the edge between V and C contains the edge on U with X
as endpoint, and hence is into X if U is. ∴

LEMMA 6.6.3: If  is the CI partially oriented inducing path graph of graph G over O, and
A *→ B in , then every inducing path in G between A and B is into B.

Proof. We will prove that each orientation rule in the Causal Inference Algorithm is such
that if the rule orients the edge between A and B as A *→ B, then every inducing path
between A and B over O in G is into B. Let G  be the inducing path graph of G.

Case 1: By lemma 6.5.1 any of the rules that orients the edge between A and B as A → B
in  entails that there is a directed path from A to B in G. If there is an inducing path over
O between A and B in G that is out of B, and there is a directed path from B to A in G.
But G is not cyclic, so there is no inducing path between A and B in G that is not into B.

Case 2: Suppose the edge between A and B is oriented as A *→ B in order to avoid a
cycle in  because there is a directed path from A to B in . By theorem 6.5 there is a
directed path from A to B in G. If there is an inducing path over O between A and B in G
that is out of B, then there is a directed path from B to A in G. But G is not cyclic, so there
is no inducing path over O between A and B in G that is out of B.

Case 3: Suppose that the edge between A and B is oriented as A *→ B because there is a
vertex C such that A and B are adjacent in , B and C are adjacent in , A and C are not
adjacent in , and B is not in Sepset(A,C). It follows that A *→ B ←* C in G . By the
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construction of G  it follows that in G there is an inducing path over O between A and B
into B, and an inducing path over O between B and C into B. Suppose contrary to the
theorem that there is another inducing path over O between A and B in G that is out of B.
By lemma 6.1.4, A is a descendant of B in G. By lemma 6.6.1 there is an inducing path
over O between A and C. But if there is an inducing path over O between A and C in G,
then A and C are adjacent in , contrary to our assumption.

Case 4: Suppose that the edge between A and B is oriented as A *→ B because B is a
collider along <C,B,D> in , B is adjacent to A, and C and D are not d-connected given A.
Suppose, contrary to the theorem, that in G there is an inducing path over O between A
and B that is out of B. It follows that A is a descendant of B in G. Because there is an edge
between C and B that is into B in , there is an edge between C and B that is into B in G .
The edge between C and B in G  d-connects C and B given A and is into B. By lemmas
6.1.1 and 6.1.2 there is a path in G that d-connects C and B given A that is into B.
Similarly, there is a path in G that d-connects D and B given A that is into B. By lemma
3.3.1, C and D are d-connected given A in G. This is a contradiction.

Case 5: Suppose the edge between A and B in  is oriented as A *→ B because in  U is a
definite discriminating path for B between X and Y, B is in a triangle on U, and B is not in
Sepset(X,Y). Let A and C be the vertices adjacent to B on U . If U is a definite
discriminating path for B in , then by the induction hypothesis, the corresponding path
U  in G  is a discriminating path for B. In G , X and Y are d-separated given Sepset(X,Y)
because by definition of definite discriminating path they are not adjacent. If X and Y are
d-separated given Sepset(X,Y) in G , then by lemma 6.3.1 every collider on U  except for
B is in Sepset(X,Y), and every noncollider on U  is not in Sepset(X,Y).

Suppose that there is an inducing path over O between B and A in G that is out of B. It
follows that there is a directed path from B to A in G and that A ↔ B in G . By definition
of discriminating path it follows that A is a collider on U �or A = X. By lemma 6.3.1 A is
in Sepset(X,Y). Hence B is a collider on U  in G , and B has a descendant in Sepset(X,Y)
in G.

If some vertex Z on U is in Sepset(X,Y) then Z is a collider on U. Let R and T be the
vertices on U  that are adjacent to Z on U . By the definition of inducing path graph, in G
there are inducing paths over O between R and Z, and Z and T, such that each of them is
into Z. By lemmas 6.1.1 and 6.1.2, in G there is a d-connecting path given S\{R,Z}
between R and Z, and a d-connecting path given S\{Z,T} between Z and T, such that each
of them is into Z.

If there are vertices R, Z, and T on U  such that R and Z are adjacent on U, and Z and T
are adjacent on U , and Z is a collider on U , then either Z is in Sepset(X,Y) (if Z ≠ B), or
Z has a descendant in Sepset(X,Y) in G (if Z = B). In either case Z has a descendant in
Sepset(X,Y) in G. By the definition of inducing path graph, in G there are inducing paths
over O between R and Z, and Z and T, that are both into Z. By lemmas 6.1.1 and 6.1.2, in

426  Chapter 13

collider along <C,B,D> in p, B is adjacent to A, and A is not in Sepset (C,D).

By lemma 5.1.3, this is a contradiction.
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G there is a d-connecting path given Sepset(X,Y)\{R,Z} between R and Z, and a d-
connecting path given Sepset(X,Y)\{Z,T} between Z and T, that are both into Z. By
lemma 3.3.1, there is a path in G that d-connects X and Y given Sepset(X,Y). But this
contradicts the assumption that X and Y are d-separated given Sepset(X,Y). Hence there is
no inducing path in G that is out of B. ∴

A semidirected path from A to B in partially oriented inducing path graph  is an
undirected path U from A to B in which no edge contains an arrowhead pointing toward
A, that is, there is no arrowhead at A on U, and if X and Y are adjacent on the path, and X
is between A and Y on the path, then there is no arrowhead at the X end of the edge
between X and Y.

THEOREM 6.6: If  is the CI partially oriented inducing path graph of directed acyclic
graph G over O, and there is no semidirected path from A to B in , then there is no
directed path from A to B in G.

Proof. Suppose there is a directed path P from A to B in G. Let P  in  be the sequence of
vertices in O along P in the order in which they occur. P  is an undirected path in 
because for each pair of vertices X and Y adjacent in P  for which X is between A and Y or
X = A there is an inducing path over O in G that is out of X. P  is a semidirected path
from X to Y in  because by lemma 6.6.3, there is no arrowhead into X on P . ∴

13.22 Theorem 6.7

THEOREM 6.7: If  is a partially oriented inducing path graph of directed acyclic graph G
over O, A and B are adjacent in , and there is no undirected path between A and B in 
except for the edge between A and B, then in G there is a trek between A and B that
contains no variables in O other than A or B.

Proof. Suppose that every trek between A and B in G contains some member of O other
than A or B. Because there is an edge between A and B in , there is an inducing path
between A and B in G. Hence, A and B are d-connected given the empty set in G, and
there is a trek T between A and B. Let U be the sequence of observed vertices on T. Each
subpath of T between variables adjacent in U is an inducing path relative to O. Hence U
is an undirected path in  that contains a member of O other than A or B. ∴
13.23 Theorem 6.8

THEOREM 6.8: If  is the CI partially oriented inducing path graph of directed acyclic
graph G over O, and every semidirected path from A to B contains some member of C in

, then every directed path from A to B in G contains some member of C.

13.23 Theorem 6.8

THEOREM 6.8: If  is the CI partially oriented inducing path graph of directed acyclic
graph G over O, and every semidirected path from A to B contains some member of C in

, then every directed path from A to B in G contains some member of C.
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Proof. Suppose that U is a directed path in G from A to B that does not contain a member
of C. Let the sequence of observed variables on U in G be U . Let X and Y be two
adjacent vertices in U , where X is between A and Y. U(X,Y) is a directed subpath of U
that contains no observed variables except for the endpoints. Hence U(X,Y) is an inducing
path between X and Y given O that is out of X. It follows that there is an edge between X
and Y in , and by lemma 6.6.3 the edge between X and Y is not into X. Hence U  is a
semidirected path from A to B in  that does not contain any member of C. ∴

13.24 Theorem 6.9

THEOREM 6.9: If  is a partially oriented inducing path graph of directed acyclic graph G
over O, and A ↔ B in , then there is a latent common cause of A and B in G.

Proof. By theorem 6.6, every inducing path over O in G between A and B is into B and
into A. By lemma 6.1.2, there is in G a d-connecting path U between A and B given the
empty set that is into A and into B in G. Because U d-connects A and B given the empty
set in G it contains no colliders, and hence no members of O except A and B. Because U
contains an edge into A and an edge into B, U is not a single edge between A and B.
Hence there is some vertex C not in O on U that is a common cause of A and B. ∴

13.25 Theorem 6.10 (Tetrad Representation Theorem)

TETRAD REPRESENTATION THEOREM 6.10: In an acyclic LCF G, there exists an
LJ(T(I,J),T(K,L),T(I,L),T(J,K)) choke point or an IK(T(I,J),T(K,L),T(I,L),T(J,K)) choke
point iff G linearly implies IJ KL - IL JK = 0.

In a graph G, the length of a path equals the number of vertices in the path minus one.
In a graph G, a path U of length n is an initial segment of path V of length m iff m ≥ n,
and for 1 ≤ i ≤ n+1, the ith vertex of V equals the ith vertex of U. In a graph G, path U of
length n is a final segment of path V of length m, iff m ≥ n, and for 1 ≤ i ≤ n+1, the ith

vertex of U equals the (m-n+i)th vertex of V. A path U of length n is a proper initial
segment of path V of length m iff U is an initial segment of V and U ≠ V. A path U of
length n is a proper final segment of path V of length m iff U is a final segment of V and
U ≠ V.

The proofs of the following lemma are obvious.

LEMMA 6.10.1: In a directed graph G, if R(U,I) is an acyclic path, and X is a vertex on
R(U,I), then there is a unique initial segment of R(U,I) from U to X.

Because the proofs refer to many different paths, we will usually designate a directed
path by R(X,Y) where X and Y are the endpoints of the path. When there is a path R(U,I)
in a proof, and a vertex X on R(U,I), R(U,X) will refer to the unique initial segment of
R(U,I) from U to I, and R(X,I) will refer to the unique final segment of R(U,I) from X to I.
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In a directed acyclic graph G, the last point of intersection of directed path R(U,I)
with directed path R(V,J) is the last vertex on R(U,I) that is also on R(V,J). Note that if G
is a directed acyclic graph, the last point of intersection of directed path R(U,I) with
directed path R(V,J) equals the last point of intersection of R(V,J) with R(U,I); this is not
true of directed cyclic paths.

LEMMA 6.10.2: If G is a directed acyclic graph, for all variables Y and Z in G, if Y ≠ Z
and R and R  are two intersecting directed paths with sinks Y and Z respectively then there
is a trek between Y and Z that consists of subpaths of R and R .

Proof. Since R and R  intersect, they have a last point of intersection X. Let the source of
the trek to be constructed be X. R(X,Y) and R(X,Z) do not intersect anywhere except at X.
Since Y ≠ Z, one of R(X,Y) and R(X,Z) is not empty. Hence {R(X,Y),R(X,Z)} is a trek. ∴

In a directed acyclic graph, directed paths R(U,I) and R(U,J) contain trek T iff
I(T(I,J)) is a final segment of R(U,I) and J(T(I,J)) is a final segment of R(U,J).

LEMMA 6.10.3: In a directed acyclic graph, if R(U,I) and R(U,J) are directed paths that
contain both T(I,J) and T (I,J), then T(I,J) = T (I,J).

Proof. In a directed acyclic graph, there is a unique last point of intersection of R(U,I)
and R(U,J), and unique final segments of R and R  whose source is the last point of
intersection of R(U,I) and R(U,J). ∴

If G is a directed acyclic graph, let Let PXY be the set of all directed paths in G from X
to Y. In an LCF S, the path form of a product of covariances IJ KL is the distributed
form of
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2
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∑
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IJ KL - IL JK is in path form iff both terms are in path form.
Henceforth, we will assume that all variances, covariances, products of covariances,

and tetrad differences are in path form unless otherwise stated.
We will adopt the following terminology. Suppose that m is a term in the path form of

a product of covariances IJ Kl. By definition, m is of the form
L(R(U,I))L(R(U,J))L(R(V,K))L(R(V,L))σU

2 σV
2 . Let the paths associated with m be the

ordered quadruple <R(U,I),R(U,J),R(V,K),R(V,L)>. There is a one-to-one correspondence
between terms in the path form of a product of covariances, and such ordered quadruples.
We will consider terms m and m �������������������������������������	�����������������
(i.e., the terms may contain the same number of occurrences of the same edge labels, but
in different orders.) Note that under this criterion of identity of terms, no term appears
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twice in the path form of a product of covariances or tetrad difference. Henceforth when
we consider sets of terms appearing in some expression, we will do so under the
assumption that each term occurs at most once in the expression (although distinct terms
that have identically equal values may occur in the expression). We will say that a term m
contains a path or trek X if its associated quadruple contains X.

LEMMA 6.10.4: A tetrad difference IJ KL - IL JK is not linearly implied to vanish by an
LCF S if there is a term m in the path form of IJ KL such that every term m �������	���
form of IL JK contains an edge not in m.

Proof. Suppose that there is a term m in the path form of IJ Kl such that every term m ��
the path form of IL JK contains an edge not in m. Set every variable not in m to be zero.
Then IL JK is zero since every term in IL JK contains a variable not in m. Set every
variable in m to be positive. Then every nonzero term in the path form of IJ KL is
positive, since the e.c.f. of each nonzero term is positive, and the c.f. of each nonzero
term is positive. IJ KL is not zero since every term in it is either 0 or positive, and some
are positive. Hence the tetrad difference is not linearly implied to vanish. ∴

LEMMA 6.10.5: In an LCF S, if the paths in a term m in the path form of a tetrad
difference have different sources than the paths in a term m , then m contains some
variable not in m .

Proof. Each of the sources of the paths in m and m � ���� ���	������� ����������������
and it is not the case that all of the paths in m or m �������	����2���-I,J} be the sources of
the paths in m, and {K,Z} be the sources of the paths in m � ���� �
		���� ����� -I,J} ≠
{K,Z}. Suppose w.l.g. that I ≠ K. Since I, K, and Z are independent I does not occur on
any paths with source K or Z. m contains at least one edge X out of I. Since I does not
occur on any path with source K or Z, X does not occur on any path with source K or Z.
Hence m contains a variable (the label of X) that does not occur in m . ∴

In an LCF F, e(S) is equal to S if S is an independent variable, and it is equal to the
error variable into S if S is not an independent variable.

LEMMA 6.10.6: In an LCF S, if there exist T(I,J) ∈ T(I,J) and T(K,L) ∈ T(K,L) such that
I(T(I,J)) ∩ K(T(K,L)) = ∅, J(T(I,J)) ∩ L(T(K,L)) = ∅, and I(T(I,J)) ∩ L(T(K,L)) = ∅,
then there exists a term m in IJ KL such that every term m ��� IL JK contains an edge not in
m.
Proof. Let S be the source of T(I,J) and S  be the source of T(K,L). (Note that since
I(T(I,J)) does not intersect L(T(K,L)), the source of T(I,J) does not equal the source of
T(K,L), and hence e(S) does not equal e(S ). (See figure 13.4.)
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Let m = L(R(e(S),I))L(R(e(S),J))L(R(e(S ),K))L(R(e(S ),L)). m is the coefficient of a
term in IJ KL (the full term also contains a factor equal to the product of the variances of
the sources of paths in m.)

S

I J K L 

S'

e(S)
e(S')

Figure 13.4

Suppose there is a term m ��� IL JK whose associated paths contain only edges in m. m
contains the product of the labels of edges in a trek T(I,L). Let the source of T(I,L) be S .
If S  ≠ S and S  ≠ S , then e(S ) ≠ e(S) and e(S ) ≠ e(S ). Since e(S ) is an independent
variable, and the only independent variables in m are e(S) and e(S ), if e(S ) ≠ e(S) and
e(S ) ≠ e(S ), then T(I,L) contains an edge label not in m. Suppose then w.l.g. that S  = S.
There is a path R(S,L) containing edge labels only in m. Since J(T(I,J)) ∩ L(T(K,L)) = ∅,
and I(T(I,J)) ∩ L(T(K,L)) = ∅, the only path in m that contains L is L(T(K,L)). Hence
R(S,L) intersects L(T(K,L)) at some vertex. The only two paths in m with source S are
I(T(I,J)) and J(T(I,J)), and neither of them intersects L(T(K,L)). Hence one of them
intersects some other paths that in turn intersects L(T(K,L)). The only other path in m that
intersects L(T(K,L)) is K(T(K,L)). So R(S,L) intersects K(T(K,L)). Since the last point of
intersection of L(T(K,L)) and K(T(K,L)) is S , R(S,L) intersects K(T(K,L)) at or before S .
But the only paths with source S in m are J(T(I,J)) and I(T(I,J)), and neither of them
intersects K(T(K,L)) at or before S . Hence, there is no path from S to L containing only
edge labels in m. Similarly it can be shown that there is no path from S  to I containing
only edge labels in m. Hence m �����������������������������m. ∴

LEMMA 6.10.7: In an LCF S, if there exists a T(I,J) ∈ T(I,J) and T(K,L) ∈ T(K,L) such
that I(T(I,J) ∩ K(T(K,L)) = ∅, and L(T(K,L)) ∩ J(T(I,J)) = ∅, or there exists a T(I,L) ∈
T(I,L) and T(J,K) ∈ T(J,K) such that I(T(I,L)) ∩ K(T(J,K)) = ∅, and L(T(I,L)) ∩
J(T(J,K)) = ∅, then S does not linearly imply that IJ Kl - IL JK vanishes.

Proof. Suppose w.l.g. that I(T(I,J)) ∩ K(T(K,L)) = ∅, and L(T(K,L)) ∩ J(T(I,J)) = ∅.
There are four cases: either (i) I(T(I,J)) ∩ L(T(K,L)) = ∅ and J(T(I,J)) ∩ K(T(K,L)) = ∅,
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or (ii) I(T(I,J)) ∩ L(T(K,L)) = ∅ and J(T(I,J)) ∩ K(T(K,L)) ≠ ∅, or (iii) I(T(I,J)) ∩
L(T(K,L)) ≠ ∅ and J(T(I,J)) ∩ K(T(K,L)) = ∅, or (iv) I(T(I,J)) ∩ L(T(K,L)) ≠ ∅ and
J(T(I,J)) ∩ K(T(K,L)) ≠ ∅.

In the first three cases, by lemma 6.10.6 there exists a term m in IJ KL such that every
m ��� IL JK contains an edge label not in m.

In the fourth case, let X be the last point of intersection of I(T(I,J)) and L(T(K,L)), and
Y be the last point of intersection of J(T(I,J)) and K(T(K,L)). X is not the source of either
trek, since otherwise I(T(I,J)) ∩ K(T(K,L)) ≠ ∅ or J(T(I,J)) ∩ L(T(K,L)) ≠ ∅. Similarly, Y
is not the source of either trek. {R(X,I),R(X,L)} is a trek T(I,L) between I and L, by lemma
6.10.2. Similarly, {R(Y,J),R(Y,K)} form a trek T(J,K). (See figure 13.5.)

I              

Y

T(I,J) T(K,L)

L                         K     J

X

Figure 13.5

Now we will show that T(I,L) ∩ T(J,K) = ∅. I(T(I,L)) ∩ J(T(J,K)) = ∅ since I(T(I,L))
is a proper subpath of I(T(I,J)) and J(T(J,K)) is a proper subpath of J(T(I,J)), and the last
point of intersection of I(T(I,J)) and J(T(I,J)) is the source of T(I,J). I(T(I,L)) ∩ K(T(J,K))
= ∅, since I(T(I,L)) is a subpath of I(T(I,J)) and K(T(J,K)) is a subpath of K(T(K,L)), and
I(T(I,J)) ∩ K(T(K,L)) = ∅ by hypothesis. For similar reasons, L(T(I,L)) ∩ J(T(J,K)) = ∅,
and L(T(I,L)) ∩ K(T(J,K)) = ∅. It follows from lemma 6.10.6 there exists a term m in

IL JK such that every m ��� IJ KL contains an edge label not in m.
Since there exists a term m in IL JK such that every m ��� IJ KL contains an edge not in

m, by lemma 6.10.4 IJ KL - IL JK is not linearly implied. ∴
A vanishing tetrad difference is a constraint upon the covariances of four pairs of

variables: <I,J>, <K,L>, <I,L> and <J,K>. Roughly speaking, a choke point for such a
foursome of variable pairs is a point where all of the treks between I and J intersect all of
the treks between K and L, and all of the treks between I and L intersect all of the treks
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between J and K. (A more precise definition is given later.) In this section, we will prove
that in an LCF G, the existence of such a choke point is a necessary condition for the
corresponding tetrad difference to vanish in distributions perfectly represented by G. We
will prove this by showing that the existence of a choke point in G is equivalent to a
condition that has already been proved to be a necessary condition for S to linearly imply
a vanishing tetrad difference; namely, the trek intersection condition described in lemma
6.10.7. Unfortunately, this proof is long and tedious because there are many different
ways in which a choke point can fail to exist, depending upon which treks are assumed to
intersect and which treks are assumed not to intersect. In each case we show that the non-
existence of a choke point implies the violation of the necessary condition described in
lemma 6.10.7.

Two strategies are employed in the proofs. The first is to show that the assumptions
about which treks intersect and don’t intersect lead to contradictions. The second is to
show that it is possible to construct a pair of treks T (I,J) and T (K,L) such that I(T (I,J))
and K(T (K,L)) don’t intersect, and J(T (I,J)) and L(T (K,L)) don’t intersect, or to
construct a pair of treks T (I,L) and T (J,K) such that I(T (I,L)) and K(T (J,K)) don’t
intersect, and J(T (J,K)) and L(T (I,L)) don’t intersect. In either case, by lemma 6.10.7, it
follows that IJ KL- IL JK is not linearly implied by G.

In general, when constructing a trek T(I,J) we will speak as if it suffices to show how
to construct a pair of (acyclic) directed paths R and R  from a common source S to sinks I
and J respectively, without showing that the pair of directed paths constructed do not
intersect. This is because even if R and R  do not form a trek because they intersect each
other at some vertex other than S, we have shown in lemma 6.10.2 that directed subpaths
of R and R  do form a trek, and the existence of the directed subpaths of R and R  is
enough for our purposes. We are generally interested in showing that particular pairs of
trek branches fail to intersect. If R1 and R2 fail to intersect, then directed subpaths of R1

and R2 also fail to intersect. Hence, if the goal is to show that trek branches T and T  fail
to intersect, it suffices to show that R1 and R2 fail to intersect, even if T and T  are actually
equal to directed subpaths of R1 and R2 respectively.

Let S be a set of vertices, and RK(S) be the set of all directed paths with sink K and a
source in S. Let R(S,I) be a directed path from S in S to I. Let Xn be the nth vertex on
R(S,I) such that some directed path in RK(S) intersects it. Let the set of sources of
directed paths in RK(S) whose first point of intersection with R(S,I) is Xn be Sn. Let the
last vertex in R(S,I) that is the first intersection of some directed path in RK(S) with R(S,I)
be Xmax. Note that Xmax is not necessarily the last point of intersection of some directed
path in RK(S) with R(S,I); it is merely the last of the first points of intersection. (See
figure 13.6.)

LEMMA 6.10.8: In a directed acyclic graph G, if R(M,I) is a directed path, and RK(S) is
the set of all directed paths to K from a given set of sources S, and there does not exist a
vertex Z such that all of the directed paths in RK(S) intersect R(M,I) at Z, then there is a
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pair of directed paths, R and R , with the following properties: M is the source of R, R  has
a source in S, either R has sink I and R  has sink K or R has sink K and R  has sink I, and
R does not intersect R .

Proof. If there is a path R  in RK(S) that does not intersect R(M,I) the proof is done.
Assume then that every path in RK(S) intersects R(M,I). Let S  be the source of a path in
Smax (the set of all sources of paths in RK(S) whose first intersection with R(M,I) is Xmax.)
The proof is by induction on the number of distinct vertices in which the paths in RK(S)
intersect R(M,I).

M
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= {S   }

R(M,I) R(S ,K) R(S  ,K) R(S  ,K)
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S
S
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2
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3

1 2 3

1 2
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Figure 13.6

Base Case: Suppose the antecedent in the statement of the lemma is true. The paths in
RK(S) intersect R(M,I) in two distinct vertices. There is a path R(S ,K) that does not
intersect R(M,I) at X2 (= Xmax), since otherwise all paths in RK(S) would intersect X2,
contrary to our hypothesis. In addition, R(S ,K) does not intersect R(M,I) at any vertex
prior to X1, since otherwise the paths in RK(S) would intersect R(M,I) at more than two
distinct vertices, contrary to our hypothesis. Similarly, there is a path R(S ,K) that
intersects R(M,I) only at X2.

Let R(X1,K) be a final segment of R(S ,K) and R(S , X2) an initial segment of R(S ,K).
There are two cases.

M

K
I

 

X3

X1

S2

S3

S1

X2 = Xmax

S1 = {S1, S2}
S2 = {S3}

R(M, I) R(S1, K) R(S2, K) R(S3, K)
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1. R(X1,K) does not intersect R(S , X2). (See figure 13.7.) Let R(M, X1) be an initial
segment of R(M, I), R(X2, I) be a final segment of R(M,I), R = R(M, X1)&R(X1, K) and R
= R(S , X2)&R(X2, I). R and R  do not intersect for the following reasons.

R(M,X1) does not intersect R(S ,X2). R(S ,X2) is a subpath of R(S ,K), which, by
hypothesis intersects R(M,I) only at X2. Since X2 occurs after X1 on R(M,I), X2 does not
occur on R(M,X1). R(M,X1) does not intersect R(X2,I). R(M,X1) and R(X2,I) are both
subpaths of R(M,I), G is acyclic, and by hypothesis X1 occurs before X2. R(X1,K) does not
intersect R(S ,X2) by hypothesis. R(X1,K) does not intersect R(X2,I). R(X1,K) is a subpath
of R(S ,K) and R(X2,I) is a subpath of R(M,I); by hypothesis R(S ,K) intersects R(M,I) only
at X1, which does not occur on R(X2,I).
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2. R(X1,K) does intersect R(S ,X2) at Y. (See figure 13.8.) Let R(S ,Y) be an initial
segment of R(S ,K), R(Y,K) be a final segment of R(S ,K), R = R(M,I) and R  =
R(S ,Y)&R(Y,K). R and R  do not intersect for the following reasons.

First we will show that R(M,I) does not intersect R(S ,Y). Y ≠ X2 since R(X1,K)
intersect R(M,I) only at X1. Also, G is acyclic, Y is prior to X2 on R(S ,K), and X2 is the
first point of intersection of R(S ,K) with R(M,I). Next we will show that R(M,I) does not
intersect R(Y,K). Y is on R(S ,K) which does not contain X1; hence Y is not equal to X1. It
follows that R(Y,K) does not contain X1, since Y occurs after X1 on R(S ,K), and R(S ,K).
By hypothesis R (M,K) intersects R(M,I) only at X1, so that R(Y,K) does not intersect
R(M,I) at all.

Induction Case: Assume that the antecedent is true, and that the theorem is true for all m
< n. If there is a path in RK(S) that does not intersect R(M,I), the proof is done. Suppose
then that every path in RK(S) intersects R(M,I) and that the set of paths in RK(S)
intersects R(M,I) at exactly n distinct vertices. Let R(Xmax,I) be a final segment of R(M,I).
Since not every path in RK(S) intersects R(M,I) at Xmax, there is a point of intersection
prior to Xmax on R(M,I). Hence the number of distinct points of intersection of the paths in
RK(S) with R(Xmax,I) is less than n. By the induction hypothesis, there is a path R1 with
source Xmax and a path R1  with a source S  in the sources of RK(S), such that one of R1

and R1  has a sink I, the other has sink K, and R1 and R1  do not intersect. Suppose w.l.g.

R(S'',Y)

R(S'',Y)

R(Y,K)

R(M,I) R(S',K) R(S'',K) R R'

M

K

X1 X1

X2
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I

Y

S'

S'' M

K
I

Y

S'
S''

R(Y,K)

436  Chapter 13



Proofs of Theorems 437

that R1 has sink I and R1  has sink K. Since R1  does not contain Xmax, its first point of
intersection with R(M,I) is some vertex Xr, which occurs on R(M,I) before Xmax (by
definition of Xmax.) Let R1 (Xr,K) be a final segment of R1 , R(S ,K) be a path in RK(S)
whose first point of intersection with R(M,I) is Xmax, and R(S , Xmax) an initial segment of
R(S ,K). There are two cases.

1. Assume that R(X,K) does not intersect R(S , Xmax). Let R = R(M,Xr)&R1 (Xr,K) and R  =
R(S , Xmax) andR1. R and R  do not intersect for reasons analogous to those in case 1 of the
base case (with Xr substituted for X1, and Xmax substituted for X2; see figure 13.9.)

2. Assume that R1 (Xr,K) does intersect R(S ,Xmax), and the last point of intersection is Y.
Y ≠ Xmax because it lies on R1 (Xr,K) and R1 (Xr,K) does not contain Xmax. Let R1 (Y,K) be
a final segment of R1 (Xr,K). There are two cases.

a. Assume that R1 (Y,K) intersects R(M,Xmax) and the first point of intersection is Z. Let
R(S ,Y) be an initial segment of R(S ,Xmax), R(Y,Z) an initial segment of R1 (Y,K), and
R(M,Z) an initial segment of R(M,I). Z ≠ Xmax because R1 (Y,K) does not intersect Xmax.
(See figure 13.9.)

We will now prove Z is not after Xmax. Consider the path R(S ,Y)&R(Y,Z). R(S ,Y)
does not intersect R(M,I) because Y occurs before Xmax, R(S ,Y) is an initial segment of
R(S ,K) and the first point of intersection of R(M,I) and R(S ,K) is Xmax. The first point of
intersection of R(Y,Z)&R(M,I) is Z, since R(Y,Z) is an initial segment of R1 (Y,K) and Z is
the first point of intersection of R1 (Y,K) and R(M,I). Hence the first point of intersection
of R(S ,Y)&R(Y,Z) with R(M,I) is Z. R(S ,Y)&R(Y,Z) is an initial segment of a path from
S  to K that is in RK(S). It follows that there is a path in RK(S) whose first point of
intersection with R(M,I) is Z. If Z is after Xmax, then there is a path in RK(S) whose first
point of intersection with R(M,I) is after Xmax, contrary to the definition of Xmax.

Let R = R(M,Z)&R1 (Z,K) and R  = R(S ,Xmax)&R1. R(M,Z) does not intersect
R(S ,Xmax) since R(S ,Xmax) is an initial segment of R(S ,K) and R(M,Z) is an initial
segment of R(M,I) and the first point of intersection of R(M,I) and R(S ,K) is Xmax.
R(M,Z) does not intersect R1 (which has source Xmax) since Z occurs before Xmax and the
directed graph is acyclic. R1 (Z,K) does not intersect R1 since R1 (Z,K) is a subpath of R1

that does not intersect R1 by construction. R1 (Z,K) does not intersect R(S ,Xmax) since
R1 (Z,K) is a final segment of R1 (Xr,K), Z is after Y, and Y is the last point of intersection
of R1 (Xr,K) and R(S ,Xmax).
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b. Assume that R1 (Y,K) does not intersect R(M,Xmax). (This is similar to part 2 of the Base
case, with Xmax substituted for X2. See figure 13.8.) Let R  = R(S ,Y)&R1 (Y,K) and R =
R(M,Xmax)&R1. We have already shown that R(S ,Y) does not intersect R(M,I) and
R(M,Xmax) is an initial segment of R(M,I). R(S ,Y) does not intersect R1 because Y is
before Xmax, and the directed graph is acyclic. R1 (Y,K) does not intersect R(M,Xmax) by
hypothesis, and R1 (Y,K) does not intersect R1 because it is a subpath of R1  that does not
intersect R1 by construction. ∴

In a directed acyclic graph G, if all L(T(K,L)) and all J(T(I,J)) intersect at a vertex Q,
then Q is an LJ(T(I,J),T(K,L)) choke point. Similarly, if all L(T(K,L)) and all J(T(I,J))
intersect at a vertex Q, and all L(T(I,L)) and all J(T(J,K)) also intersect at Q, then Q is a
LJ(T(I,J),T(K,L),T(I,L),T(J,K)) choke point.

LEMMA 6.10.9: In a directed acyclic graph G, if there is no LJ(T(I,J),T(K,L)) choke point,
then either there is a trek T (K,L) such that there is no vertex V  that occurs in the
intersection of all J(T(I,J)) with L(T (K,L)), or there is a trek T (I,J) such that there is no
vertex V  that occurs in the intersection of all L(T(K,L)) with J(T (I,J))

Proof. Suppose that the lemma is false. Then, for each trek T (K,L) there is a non-empty
set of points P(T (K,L)) such that every point in P(T (K,L)) is in the intersection of all
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J(T(I,J)) with L(T (K,L)). Similarly, for each trek T (I,J) there is a non-empty set of points
P(T (I,J)) such that every point in P(T (I,J)) is in the intersection of all L(T(K,L)) with
J(T (I,J)). Every J(T(I,J)) contains every vertex in P(T(K , L))

T (K, L)∈T(K,L)
�

(since every J(T(I,J)) intersects each L(T (K,L)) at some vertex in P(T (K,L))), and every
vertex in 

��

P(T(K , L))
T (K, L)∈T(K,L)

�  occurs on some trek L(T (K,L)). Similarly, every L(T(K,L))

contains every vertex in 

��

P(T (I , J))
T (I,J )∈T(I,J )

� .

Furthermore, for every vertex in 

��

P(T(K , L))
T (K, L)∈T(K,L)

�  there is some L(T (K,L)) that does

not contain it (else all J(T(I,J)) and all L(T(K,L)) intersect at a single vertex), and some
L(T (K,L)) that does contain it. Similarly, for every vertex in 

��

P(T (I , J))
T (I,J )∈T(I,J )

�  there is

some J(T (I,J)) that does not contain it and some J(T (I,J)) that does contain it.

Since every vertex in 

��

P(T(K , L))
T (K, L)∈T(K,L)

�  occurs on every J(T(I,J)), they can be ordered

by the order of their occurrence on some J(T(I,J)); similarly every vertex in

��

P(T(I , J))
T (I,J )∈T(I,J )

�  can be ordered. By the antecedent of the lemma, there are at least two

vertices in each of 

��

P(T(K , L))
T (K, L)∈T(K,L)

�  and 

��

P(T (I , J))
T (I,J )∈T(I,J )

� .

(See figure 13.10.) Let A be the first vertex in P(T (I , J))
T (I,J )∈T(I,J )

�  and B be the first vertex

in 

��

P(T(K , L))
T (K, L)∈T(K,L)

� . Suppose w.l.g. that A is before B. There exists an L(T (K,L)) that

contains A (since every L(T(K,L)) contains A), that does not contain B, but that does
contain some vertex C (≠ B) in

��

P(T(K , L))
T (K, L)∈T(K,L)

� .

There is also a J(T (I,J)) that contains A. Let S be the source of T (I,J), R(S,A) an initial
segment of J(T (I,J)), R(A,C) a segment of L(T (K,L)), and R(C,J) a final segment of
J(T (I,J)). Let J(T (I,J)) = R(S,A)&R(A,C)&R(C,J), and I(T (I,J)) = I(T (I,J)). J(T (I,J))
does not contain B for the following reasons. R(S,A) does not contain B because A occurs
before B. R(A,C) does not contain B because it is a segment of L(T (K,L)) which does not
contain B. R(C,J) does not contain B because it is a segment of J(T (I,J)), and since B is
the first vertex in 

��

P(T(K , L))
T (K, L)∈T(K,L)

�  it occurs before C on J(T (I,J)).

But this contradicts the fact that for every T(I,J), J(T(I,J)) contains B. ∴
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LEMMA 6.10.10: In a directed acyclic graph G, if there is no IK(T(I,J),T(K,L)) choke
point, then either there is a trek T (K,L) such that there is no vertex V  that occurs in the
intersection of all I(T(I,J)) with K(T (K,L)), or there is a trek T (I,J) such that there is no
vertex V  that occurs in the intersection of all K(T(KL)) with I(T (I,J))

Proof. The proof of lemma 6.10.10 is the same as that of lemma 6.10.9 with I, J, K, L
permuted. ∴

LEMMA 6.10.11: In an acyclic LCF G, if there is a trek T (K,L) such that there is no vertex
V  that occurs in the intersection of all J(T(I,J)) with L(T (K,L)), then either there are treks
T (I,J) and T (K,L) such that J(T (I,J)) does not intersect L(T (K,L)) or IJ Kl - IL JK is
not linearly implied by G.

Proof. Let S be the source of T (K,L), and S be the set of sources of treks between I and J.
By lemma 6.10.8 it is possible to construct a pair of paths R and R , with sources S and S
(in S), and sinks J and L, such that R and R  do not intersect. There are two cases.

1. If R is a path from S to L, and R  is a path from S  to J, then the following treks can be
formed from subpaths of R and R . (See figure 13.11.) J(T (I,J)) = R , I(T (I,J)) =
I(T (I,J)), K(T (K,L)) = K(T (K,L)), and L(T (K,L)) = R. By construction R does not
intersect R ; hence J(T (I,J)) does not intersect L(T (K,L)).
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2. If R is a path from S to J, and R  is a path from S  to L, there are two cases.

a. K(T (K,L)) intersects I(T (I,J)), and the first vertex of intersection is Y. Let R(S,Y) be an
initial segment of K(T (K,L)), R(Y,K) a final segment of K(T (K,L)), R(S ,Y) an initial
segment of I(T (I,J)), R(Y,I) a final segment of I(T (I,J)), J(T (I,J)) = R, I(T (I,J)) =
R(S,Y)&R(Y,I), K(T (K,L)) = R(S ,Y)&R(Y,K), and L(T (K,L)) = R . (See figure 13.12.) By
construction, J(T (I,J)) and L(T (K,L)) do not intersect.
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b. If K(T (K,L)) does not intersect I(T (I,J)), the following treks can be formed. (See
figure 13.13.) I(T (I,L)) = I(T (I,J)), L(T (I,L)) = R , J(T (J,K)) = R, and K(T (J,K)) =
K(T (K,L)). By hypothesis, K(T (J,K)) does not intersect I(T (I,L)). By construction,
L(T (I,L)) does not intersect J(T (J,K)). Hence by lemma 6.10.7, IJ KL - IL JK is not
linearly implied by G. ∴

LEMMA 6.10.12: In an acyclic LCF G, if there is a trek T (I,J) such that there is no vertex
V  that occurs in the intersection of all L(T(K,L)) with J(T (I,J)), then either there are treks
T (I,J) and T (K,L) such that J(T (I,J)) does not intersect L(T (K,L)) or IJ KL - IL JK = 0
is not linearly implied by G.

I L J

SS'

RR'

L J

SS'

RR'

KK

T'(I,J) T'(K,L) T'(I,L) T'(J,K)

I

Figure 13.13

LEMMA 6.10.13: In an acyclic LCF G, if there is a trek T (I,J) such that there is no vertex
V  that occurs in the intersection of all K(T(K,L)) with I(T (I,J)), then either there are treks
T (I,J) and T �K,L) such that I(T (I,J)) does not intersect K(T (K,L)) or IJ KL - IL JK = 0
is not linearly implied by G.

LEMMA 6.10.14: In an acyclic LCF G, if there is a trek T (K,L) such that there is no vertex
V  that occurs in the intersection of all I(T(I,J)) with K(T (K,L)), then either there are treks
T (I,J) and T (K,L) such that I(T (I,J)) does not intersect K(T (K,L)) or IJ KL - IL JK = 0
is not linearly implied by G.

The proofs of lemmas 6.10.12, 6.10.13, and 6.10.14 can all be obtained from the proof of
lemma 6.10.11 by permuting I, J, K, and L.
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LEMMA 6.10.15: In an acyclic LCF G, if there is no LJ(T(I,J),T(K,L)) choke point, and
there is no IK(T(I,J),T(K,L)) choke vertex, then there exist treks T (I,J) ,T (K,L), T (I,J),
and T (K,L) such that I(T (I,J)) does not intersect K(T (K,L)) and J(T (I,J)) does not
intersect L(T (K,L)), or IJ KL - IL JK = 0 is not linearly implied by G.

Proof. This follows directly from lemmas 6.10.9 through 6.10.14. ∴

LEMMA 6.10.16: In an acyclic LCF G, if there is no LJ(T(I,J),T(K,L)) choke point, and
there is no IK(T(I,J),T(K,L)) choke point, then IJ KL - IL JK = 0 is not linearly implied by
G.
Proof. Assume that there is no LJ(T(I,J),T(K,L)) choke point, and there is no
IK(T(I,J),T(K,L)) choke point. By lemma 6.10.15 either IJ KL - IL JK = 0 is not linearly
implied by G or there exist treks T (I,J), T (K,L), T (I,J), and T (K,L) such that I(T (I,J))
does not intersect K(T (K,L)) and J(T (I,J)) does not intersect L(T (K,L)). If IJ KL - IL JK

= 0 is not linearly implied by G, the proof is done. Assume then that there exist treks
T (I,J), T (K,L), T (I,J), and T (K,L) such that I(T (I,J)) does not intersect K(T (K,L)) and
J(T (I,J)) does not intersect L(T (K,L)). There are three cases.

1. Suppose for all T(I,J), J(T(I,J)) intersects L(T (K,L)) at each vertex in a non-empty set
of vertices P , and all L(T(K,L)) intersects J(T (I,J)) at each vertex in a non-empty set of
vertices P. Hence, all L(T(K,L)) contain every vertex in P and all J(T(I,J)) contain every
vertex in P . Since there is no LJ(T(I,J),T(K,L)) choke point, there is no vertex Z such that
for all T(I,J) and all T(K,L), Z occurs in the intersection of L(T(I,J)) and J(T(I,J)). Hence
P and P  do not intersect.

Let A be the first vertex in P, and B be the first vertex in P . Suppose w.l.g. that A
occurs before B. Let S (I,J) be the source of T (I,J), S (K,L) the source of T (K,L) and
S (I,J) the source of T (I,J), and S (K,L) the source of T (K,L). L(T (K,L)) contains A
(since all L(T(K,L)) contain A), and J(T (I,J)) contains B (since all J(T(I,J)) contain B.)
There are two cases.

a. Suppose K(T (K,L)) does not intersect I(T (I,J)). Then, since K(T (K,L)) does not
intersect I(T (I,J)) and J(T (K,L)) does not intersect L(T (K,L)), by lemma 6.10.7, IJ KL -

IL JK = 0 is not linearly implied by G.

b. Suppose K(T (K,L)) does intersect I(T (I,J)) at a vertex X. (See figure 13.14.) Let
R(S (I,J),X) be an initial segment of I(T (I,J)), R(X,K) a final segment of L(T (K,L)). Let
R(S (I,J),B) be an initial segment of J(T (I,J)) and R(B,L) be a final segment of
L(T (K,L)). Form the trek K(T (K,L)) = R(S (I,J),X)&R(X,K), and L(T (K,L)) =
R(S (I,J),B)&R(B,L). R(S (I,J),B) does not contain A, since it is a subpath of J(T (I,J))
which does not intersect L(t �K,L)), which does contain A. R(B,L) does not contain A,
since A occurs before B. Hence L(T (K,L)) does not contain A; but this is a contradiction.
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2. All L(T(K,L)) intersect J(T (I,J)), but not at a single vertex, or all J(T(I,J)) intersect
L(T (K,L)) but not at a single vertex. Assume w.l.g. that the latter is the case. Let S  be the
source of T (I,J) and S be the source of T (K,L). Let S be the set of sources of treks
between I and J. By lemma 6.10.8, it is possible to form two paths R(S ,L) and R(S,J) or
R(S ,J) and R(S,L) that don’t intersect, where S  is in S. Assume that it is possible to
form the paths R(S ,L) and R(S,J) that don’t intersect. (If the paths that don’t intersect are
R(S ,J) and R(S,L) the proof is the same except that the indices are permuted.) Let T (I,J)
be a trek with source S  (See figure 13.15.) Let the first point of intersection of I(T (I,J))
with I(T (I,J)) be M. There are two cases.
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T'(I,J)

T''(I,J)

T'(K,L)

T''(K,L)
T'''(K,L)

S''(I,J) S''(I,J)

R(B,L)

R(S''(I,J),X)
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S'(K,L) S'(I,J)

S''(K,L)

Figure 13.14

a. Assume that I(T (I,J)) does not intersect K(T (K,L)) before it intersects I(T (I,J)) at M.
(See figure 13.15.) Let R(M,I) be a final segment of I(T (I,J)) and R(S ,M) be an initial
segment of I(T (I,J)). Let I(T (I,L)) = R(S ,M)&R(M,I), L(T (I,L)) = R(S ,L), J(T (J,K)) =
R(S,J) and K(T (J,K)) = K(T (K,L)). R(S ,M) and R(M,I) do not intersect K(T (K,L)) by
hypothesis. By lemma 6.10.7 IJ KL - IL JK = 0 is not linearly implied by G.
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Figure 13.15

b. Assume that I(t �I,J)) does intersect K(T (K,L)) before it intersects I(T (I,J)), and the
first point of intersection is Q. Let R(Q,K) be a final segment of K(T (K,L)) and R(S ,Q)
be an initial segment of I(t �I,J)). Let Y be the first point of intersection of R(S,J) and
J(T (I,J)), and R(S ,Y) be an initial segment of J(T (I,J)). There are two cases.

1. Assume that R(S ,L) intersects R(S ,Y) and the first point of intersection is Z. Let
R(S ,Z) be an initial segment of J(T (I,J)), R(Z,L) be a final segment of R(S ,L), L(T (I,L))
= R(S ,Z)&R(Z,L), I(T (I,L)) = I(T (I,J)), J(T (J,K)) = R(S,J), and K(T (J,K)) = K(T (K,L)).
(See figure 13.16.)
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K(T (J,K)) does not intersect I(T (I,L)) by hypothesis. J(T (J,K)) does not intersect
L(T (I,L)) for the following reasons. R(S ,Z) does not intersect R(S,J) because R(S ,Z) is a
subpath of J(T (I,J)), Z is before Y, and the first point of intersection of J(T (I,J)) and
R(S,J) is Y. R(Z,L) does not intersect R(S,J) because it is a subpath of R(S ,L) which does
not intersect R(S,J) by construction. By lemma 6.10.7 IJ KL - IL JK = 0 is not linearly
implied by G.

2. Assume that R(S ,L) does not intersect R(S ,Y). Let L(T (K,L)) = R(S ,L), K(T (K,L)) =
R(S ,Q)&R(Q,K), I(T (I,J)) = I(T (I,J)), and J(T (I,J)) = R(S ,Y)&R(Y,J). (See figure
13.17.) `K(T (K,L)) does not intersect I(T (I,J)) for the following reasons. R(S ,Q) does
not intersect I(T (I,J)) since R(S ,Q) is an initial segment of I(T (I,J)), and Q occurs
before the first point of intersection of I(T (I,J)) and I(T (I,J)). R(Q,K) does not intersect
I(T (I,J)) because it is a final segment of K(T (K,L)), which does not intersect I(T (I,J)) by
hypothesis. L(T (K,L)) does not intersect J(T (I,J)) for the following reasons. R(S ,Y)
does not intersect R(S ,L) by hypothesis, and R(Y,J) is a subpath of R(S,J) which does not
intersect R(S ,L) by construction. By lemma 6.10.7 IJ KL - IL JK = 0 is not linearly
implied by G.
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3. Either there is an L(T (K,L)) that does not intersect J(T (I,J)) or there is a J(T (I,J)) that
does not intersect L(T (K,L)). Assume w.l.g. that J(T (I,J)) with source S (I,J) does not
intersect L(T (K,L)). There are two cases.

a. Suppose that I(T (I,J)) does not intersect K(T (K,L)) before it intersects I(T (I,J)) at
vertex X. (See figure 13.18.)
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Figure 13.18

Let R(X,I) be a final segment of I(T (I,J)) and R(S (I,J),X) be an initial segment of
I(T (I,J)). The trek T (I,J) can be formed as follows. J(T (I,J)) = J(T (I,J)) and
I(T �I,J)) = R(S (I,J),X)&R(X,I). R(S (I,J),X) does not intersect K(T (K,L)) because by
hypothesis X occurs on I(T (I,J)) before it intersects K(T (K,L)). R(X,I) does not intersect
K(T (K,L)) because it is a subpath of I(T (I,J)) which does not intersect K(T (K,L)) by
hypothesis. Hence I(T (I,J)) does not intersect K(T (K,L)). J(T (I,J)) = J(T (I,J)) does
not intersect L(T (K,L)) by hypothesis. By lemma 6.10.7, IJ KL - IL JK = 0 is not linearly
implied by G.

b. Suppose I(T (I,J)) intersects K(T (I,J)) at Y before it intersects I(T (I,J)) at X. Let Z be
the first point of intersection of J(T (I,J)) and L(T (K,L)). (If no such vertex exists, then
J(T (I,J)) and L(T (K,L)) do not intersect, I(T (I,J)) and K(T (K,L)) do not intersect by
hypothesis, and by lemma 6.10.7 IJ KL - IL JK = 0 is not linearly implied by G.). Let
R(S (I,J),Z) be an initial segment of I(T (I,J)), and R(Z,L) be a final segment of L(T (K,L)).
There are two cases.

1. Suppose that J(T (I,J)) does not intersect R(S (I,J),Z). (See figure 13.19.)
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Let R(Y,K) be a final segment of K(T (K,L)) and R(S (I,J),Y) be an initial segment of
I(T (I,J)). Let J(T (J,K)) = J(T (I,J)), K(T (J,K)) = R(S (I,J),Y)&R(Y,K), I(T (I,L)) =
I(T (I,J)), L(T (I,L)) = R(S (I,J),Z)&R(Z,L). I(T (I,L)) and K(T (J,K)) do not intersect for
the following reasons. I(T (I,L)) does not intersect R(S (I,J),Y) because by hypothesis,
I(T (I,J)) intersects K(T (K,L)) at Y before it intersects I(T (I,J)). I(T (I,L)) does not
intersect R(Y,K) because I(T (I,L)) = I(T (I,J)) and R(Y,K) is a subpath of K(T (K,L)),
which does not intersect I(T (I,J)) by hypothesis. J(T (J,K)) does not intersect L(T (I,L))
for the following reasons. J(T (J,K)) does not intersect R(S (I,J),Z) because J(T (J,K)) =
J(T (I,J)), which does not intersect R(S (I,J),Z) by hypothesis. J(T (J,K)) does not
intersect R(Z,L) because J(T (J,K)) = J(T (I,J)) which does not intersect L(T (K,L))
(which contains R(Z,L)) by hypothesis. By lemma 6.10.7, IJ KL - IL JK = 0 is not linearly
implied by G.

2. Suppose that J(T (I,J)) does intersect R(S (I,J),Z) and the first point of intersection is
M. (See figure 13.20.) M ≠ Z because J(T (I,J)) does not intersect L(T (K,L)) which
contains Z. Let R(S (I,J),M) be an initial segment of J(T (I,J)) and R(M,J) be a final
segment of J(T (I,J)). Let I(T (I,J)) = I(T (I,J)) and J(T (I,J)) = R(S (I,J),M)&R(M,J).
I(T (I,J)) does not intersect K(T (K,L)) by hypothesis. J(T (I,J)) does not intersect
L(T (K,L)) for the following reasons. R(S (I,J),M) does not intersect L(T (K,L)) since M is
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before Z on J(T (I,J)), and the first point of intersection of J(T (I,J)) with L(T (K,L)) is Z.
R(M,J) does not intersect L(T (K,L)) because it is a subpath of J(T (I,J)) which does not
intersect L(T (K,L)) by hypothesis. By lemma 6.10.7, IJ KL - IL JK = 0 is not linearly
implied by G.
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Figure 13.20

∴

LEMMA 6.10.17: In an acyclic LCF G, if there is no LJ(T(I,L),T(J,K)) choke point, and
there is no IK(T(I,L),T(J,K)) choke point, then IJ KL - IL JK = 0 is not linearly implied by
G.

Proof. The proof is the same as that of lemma 6.10.16, with the indices permuted. ∴

LEMMA 6.10.18: In an acyclic LCF G, if G linearly implies IJ KL - IL JK = 0, then either
there is an LJ(T(I,J),T(K,L)) choke point and an LJ(T(I,L),T(J,K)) choke point, or there is
an IK(T(I,J),T(K,L)) choke point and an IK(T(I,L),T(J,K)) choke point.

Proof. Assume that G linearly implies IJ KL - IL JK = 0. By lemmas 6.10.16 and 6.10.17,
if G linearly implies IJ KL - IL JK = 0 then either there is an LJ(T(I,J),T(K,L)) choke
point or an IK(T(I,J),T(K,L)) choke point, and there is either an LJ(T(I,L),T(J,K)) choke
point or an IK(T(I,L),T(J,K)) choke point. If there is an LJ(T(I,J),T(K,L)) choke point and
an LJ(T(I,L),T(J,K)) choke point, or there is an IK(T(I,J),T(K,L)) choke point and an
IK(T(I,L),T(J,K)) choke point, the proof is done. Suppose then that there is an
LJ(T(I,J),T(K,L)) choke point and an IK(T(I,L),T(J,K)) choke point, but no
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IK(T(I,J),T(K,L)) choke point and no LJ(T(I,L),T(J,K)) choke point. (The case where
there is an LJ(T(I,L),T(J,K)) choke point and an IK(T(I,J),T(K,L)) choke point, but no
LJ(T(I,J),T(K,L)) choke point and no IK(T(I,L),T(J,K)) choke point is essentially the
same, with the indices permuted.)

By lemmas 6.10.9 through 6.10.14, if there is no LJ(T(I,L),T(J,K)) choke point, then
either there is a pair of treks T (I,L) and T (J,K) such that L(T (I,L)) does not intersect
J(T (J,K)) or IJ KL - IL JK = 0 is not linearly implied by G. Since the latter possibility
contradicts our hypothesis, assume that there is a pair of treks T (I,L) and T (J,K) such
that L(T (I,L)) does not intersect J(T (J,K)). There are two cases.

If I(T (I,L)) does not intersect K(T (J,K)) then by lemma 6.10.7, G does not linearly
imply IJ KL - IL JK = 0, contrary to our hypothesis. Suppose then that I(T (I,L)) does
intersect K(T (J,K)) at a vertex Y. (See figure 13.21.)

L IK J

S
S'

R(S,Y) R(S',Y)

R(Y,I)R(Y,K)

L IK J

S
S'

R(S,Y) R(S',Y)

R(Y,I)R(Y,K)

T'(I,L) T'(J,K) T'(I,J) T'(K,L)

Figure 13.21

Let S be the source of T (I,L), S  the source of T (J,K), R(S,Y) an initial segment of
I(T (I,L)), R(Y,K) a final segment of K(T (J,K)), R(S ,Y) an initial segment of K(T (J,K)),
R(Y,I) a final segment of I(T (I,L)), I(T (I,J)) = R(S ,Y)&R(Y,I), J(T (I,J)) = J(T (J,K)),
K(T (K,L)) = R(S,Y)&R(Y,K), and L(T (K,L)) = L(T (I,L)). But since J(T (I,J)) = J(T (J,K))
does not intersect L(T (K,L)) = L(T (I,L)), there is no LJ(T(I,J),T(K,L)) choke point,
contrary to our hypothesis. ∴

LEMMA 6.10.19: In an acyclic LCF G, if G linearly implies IJ KL - IL JK = 0, then either
there is an LJ(T(I,J),T(K,L),T(I,L),T(J,K)) choke point, or there is an
IK(T(I,J),T(K,L),T(I,L),T(J,K)) choke point.

Proof. Assume that G linearly implies IJ KL - IL JK = 0. By lemma 6.10.18, either there
is an LJ(T(I,J),T(K,L)) choke point and an LJ(T(I,L),T(J,K)) choke point, or there is an
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IK(T(I,J),T(K,L)) choke point and an IK(T(I,L),T(J,K)) choke point. Suppose w.l.g. that
the former is the case. If some LJ(T(I,J),T(K,L)) choke point is also an LJ(T(I,L),T(J,K))
choke point, the proof is done. Suppose then that no LJ(T(I,J),T(K,L)) choke point is also
an LJ(T(I,L),T(J,K)) choke point. Let C be an LJ(T(I,J)),T(K,L)) choke point. By
hypothesis C is not an LJ(T(I,L),T(J,K)) choke point, so there exist a pair of treks T (I,L)
and T (J,K) with sources S and S  respectively, such that L(T (I,L)) and J(T (J,K)) do not
intersect at C. (See figure 13.22.)
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Figure 13.22

Hence there is at most one occurrence of C in the pair of paths L(T (I,L)) and
J(T (J,K)). Since there is an LJ(T(I,L),T(J,K)) choke point, L(T (I,L)) and J(T (J,K))
intersect at a point Y. Let R(S,Y) be an initial segment of L(T (I,L)), R(Y,J) be a final
segment of J(T (J,K)), R(S ,Y) an initial segment of J(T (J,K)), R(Y,L) a final segment of
L(T (I,L)), I(T (I,J)) = I(T (I,L)), J(T (I,J)) = R(S,Y)&R(Y,J), K(T (K,L)) = K(T (J,K)) and
L(T (K,L)) = R(S ,Y)&R(Y,L). Since L(T (K,L)) and J(T (I,J)) are rearrangements of the
vertices in J(T (J,K)) and L(T (I,L)), the number of occurrences of any vertex in
L(T (K,L)) and J(T (I,J)) is less than or equal to the number of occurrences of that vertex
in J(T (J,K)) and L(T (I,L)). Since C occurs at most once in J(T (J,K)) and L(T (I,L)), it
occurs at most once in L(T (K,L)) and J(T (I,J)). Hence L(T (K,L)) and J(T (I,J)) do not
intersect at C, contrary to the hypothesis that C is an LJ(T(I,J),T(K,L)) choke point. ∴

LEMMA 6.10.20: For any probability distribution over a set of random variables W, if
there exists a subset P of V such that IJ.P KL.P - IL.P JK.P = 0, and for all variables U in P
and all subsets V of P not containing U, either IU.V = 0 and KU.V = 0, or JU.V = 0 and

LU.V = 0, then IJ KL- IL JK = 0.

Proof. The proof is by induction on the cardinality of P.
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Base Case: Suppose the cardinality of P is zero. Then IJ Kl - IL JK = 0 is equivalent to

IJ.P KL.P - IL.P JK.P = 0.

Induction Case: Suppose that the lemma is true for all sets of cardinality n or less. Let P
have cardinality n+1. Assume that IJ.P KL.P - IL.P JK.P = 0.

Let Y be a variable in P, and P  = P - {Y}. Since IJ.P KL.P - IL.P JK.P, by the recursion
formula for partial correlation,
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The denominator of the l.h.s. equals the denominator of the r.h.s., so the numerator of the
l.h.s. equals the numerator of the r.h.s. Expanding the numerators of each side,
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The fourth terms on both sides are equal. By hypothesis, either IY.P  = KY.P  = 0, or JY.P

= LY.P  = 0. In either case, the second and third terms on each side are equal to zero. It
follows that IJ.P KL.P  - IL.P JK.P  = 0. Since P  has one less member than P, by the
induction hypothesis, IJ KL - IL JK = 0. ∴

LEMMA 6.10.21: In an acyclic LCF G, if there exists an LJ(T(I,J),T(K,L),T(I,L),T(J,K))
choke point or an IK(T(I,J),T(K,L),T(I,L),T(J,K)) choke point, then G linearly implies
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Proof. Suppose w.l.g. that X is the last LJ(T(I,J),T(K,L),T(I,L),T(J,K)) choke point. There
are two cases.

First consider the case where there is no trek between at least one of the pairs I and J,
and K and L, and there is no trek between at least one of the pairs I and L, and J and K. It
follows that at least one of IJ and KL equals 0, and at least one of IL and JK is equal to
zero. Hence IJ KL - IL JK = 0.

Next suppose w.l.g. that there are treks T (I,J) and T (K,L). We will prove that IJ KL -

IL JK = 0 by proving that there exists a set Q  of variables such that IJ.Q KL.Q  - IL.Q JK.Q
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zero. Hence IJ KL - IL JK = 0.
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and K and L, and there is no trek between at least one of the pairs I and L, and J and K. It
follows that at least one of IJ and KL equals 0, and at least one of IL and JK is equal to
zero. Hence IJ KL - IL JK = 0.

Next suppose w.l.g. that there are treks T (I,J) and T (K,L). We will prove that IJ KL -
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= 0, and for all variables U in Q  and all subsets V of Q  not containing U, either IU.V = 0
and KU.V = 0, or JU.V = 0 and LU.V = 0, and applying lemma 6.10.20.

Let Q = {sources of treks between X and J or X and L}. Since X is on J(T (I,J)) and
L(T (K,L)), and by definition the sink of J(T (I,J)) is J, and the sink of L(T (K,L)) is L,
there are directed paths R(X,J) and R(X,L); hence X is in Q. We will now demonstrate
that I J|Q by showing that I and J are d-separated given Q. We will show that I and J
are d-separated given Q by showing that every undirected path between I and J either
contains a vertex V that is a collider that is not the source of a directed path from V to any
vertex in Q, or it contains some vertex in Q that is not a collider.

Consider first the undirected paths between I and J without colliders. If there is an
undirected path with no collider between I and J that does not contain X, there is a trek
between I and J that does not contain X. But, every T(I,J) contains X, since X is a choke
point. Hence, there does not exist an undirected path between I and J without colliders
that does not contain X. Since X is in Q, every undirected path that does not contain a
collider contains a vertex in Q.

Consider now undirected paths between I and J that contain colliders. If some vertex
W is a collider and is not the source of a directed path from W to some vertex in Q, the
proof is done. Suppose then that every vertex W that is a collider is the source of a
directed path from W to some vertex in Q. Consider w.l.g. an arbitrary undirected path
R(J,I) from J to I. Let Z be the first vertex on R(J,I) that is a collider. By hypothesis, there
is a directed path R(Z,U) where U is a vertex in Q. Since the undirected path from J to Z
does not contain any colliders, there is a vertex S that is the source of a pair of directed
paths R(S,J) and R(S,Z). Since Z has an edge directed into it, S ≠ Z. There are two cases.

a. S = J. (See figure 13.23.) There is a directed path R(J,Z). There is a directed path
R(Z,U). Since U is the source of a trek between X and J, there is a directed path R(U,X).
We have already shown that there is a directed path R(X,J). Hence there is a cyclic path
R(J,Z)&R(Z,U)&R(U,X)&R(X,J).

b. S ≠ J. (See figure 13.24.) There is a directed path R(S,J), and a directed path
R(S,Z)&R(Z,U)&R(U,X). By lemma 6.10.2 there is a trek T (J,X) with source M, where M
is the last point of intersection of R(S,J) and R(S,Z)&R(Z,U)&R(U,X), and J(T (J,X)) is a
subpath of R(S,J). Since M is on R(S,J), and S occurs before Z on R(J,I), M occurs before
Z on R(J,I). Hence there is no collision at M in R(J,I). Also, M is in Q, since it is the
source of a trek between X and J. The undirected path R(J,I) contains a vertex in Q that is
not a collider.
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I J = S KL
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R(Z,U)

R(U,X)
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Figure 13.23

In either case Q d-separates X and Y, so I J|Q. Similarly, it can be shown that

K L|Q, I L|Q, and J K|Q. It follows that IJ.Q= 0, KL.Q = 0, IL.Q= 0, and JK.Q =
0. Let Q  = Q \{X}. By the recursion formula for partial correlation, IJ.Q  = IX.Q JX.Q ,

KL.Q  = KX.Q LX.Q , IL.Q  = IX.Q LX.Q , and JK.Q  = JX.Q KX.Q . Hence IJ.Q  KL.Q  =

IX.Q JX.Q KX.Q LX.Q  = IX.Q LX.Q JX.Q KX.Q  = IL.Q  JK.Q  .

I J KL

X

U

Z

S M

R(M,J)

R(M,U)

R(U,X)

Figure 13.24

I
J = S KL

X

U

Z
R(J,Z)

R(Z,U)

R(U,X)

R(X,J)

I
J KL

X

U

Z

S M

R(M,J)

R(M,U)

R(U,X)

454  Chapter 13

qIX.Q' qJX.Q' qKX.Q' qLX.Q' = qIX.Q' qLX.Q' qJX.Q' qKX.Q' = qIL.Q'qJK.Q' .



Proofs of Theorems 455

We will next demonstrate that for each variable U in Q , and each subset V of Q  not
containing U, I U|V, by showing that I and U are d-separated given V. We will show
that I and U are d-separated given V by showing that every undirected path between I and
U either contains a vertex W that is a collider that is not the source of a directed path from
W to any vertex in V, or it contains some vertex in V that is not a collider.

For U in Q , consider an arbitrary undirected path R(I,U) that contains colliders. Let Z
be the first point of R(I,U) after I that is a collider, and R(I,Z) be an initial segment of
R(I,U). If Z is not the source of a path to some vertex M in V, then the path does not d-
connect I and U given V, and the proof is done. Suppose then that there is a directed path
R(Z,M) to some M in V. Since R(I,Z) contains no colliders, there is a vertex S on R(I,Z)
that is the source of directed paths R(S,I) and R(S,Z). Hence S is the source of directed
paths to I and M, R(S,I) and R(S,M) = R(S,Z)&R(Z,M) respectively. (If R(I,U) is an
undirected path that contains no colliders, then it still follows that there is a vertex S on
R(I,U) that is the source of directed paths R(S,I) and R(S,U).) M is either the source of a
trek between X and J or X and L. Suppose w.l.g. that M is the source of a trek between X
and J. Then M is the source of a directed path R(M,J) and a directed path R(M,X). M does
not equal X by hypothesis. Hence R(M,J) does not contain X, since R(M,J) is a branch of
a trek between J and X, and the two branches of the trek intersect only at M. R(S,M) does
not contain X, else there is a cycle. Because X is not on the J branch of the trek between I
and J just constructed, it is not an LJ(T(I,J),T(K,L),T(I,L),T(J,K)) choke point, contrary to
the assumption. ∴

TETRAD REPRESENTATION THEOREM 6.10: In an acyclic LCF G, there exists an
LJ(T(I,J),T(K,L),T(I,L),T(J,K)) choke point or an IK(T(I,J),T(K,L),T(I,L),T(J,K)) choke
point iff G linearly implies IJ KL - IL JK = 0.

Proof. This follows directly from lemma 6.10.19 and lemma 6.10.21. ∴

COROLLARY 6.10.1: If an acyclic LCF G  is a subgraph of an acyclic LCF G, and G
linearly implies IJ KL - IL JK = 0, then G  linearly implies IJ KL - IL JK = 0.

Proof. If G linearly implies IJ KL - IL JK = 0, then by lemma 6.10.21 G has either an
LJ(T(I,J),T(K,L),T(I,L),T(J,K)) choke point or an IK(T(I,J),T(K,L),T(I,L),T(J,K)) choke
point. If G has either an LJ(T(I,J),T(K,L),T(I,L),T(J,K)) choke point or an
IK(T(I,J),T(K,L),T(I,L),T(J,K)) choke point, then G  has either an
LJ(T(I,J),T(K,L),T(I,L),T(J,K)) choke point or an IK(T(I,J),T(K,L),T(I,L),T(J,K)) choke
point. By lemma 6.10.21, G  linearly implies IJ KL - IL JK = 0. ∴
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13.26 Theorem 6.11

THEOREM 6.11: An acyclic LCF G linearly implies IJ KL - IL JK = 0 only if either it
linearly implies that IJ or KL = 0, and IL or JK = 0, or there is a (possibly empty) set Q
of random variables in G that does not contain both I and K or both J and L such that G
linearly implies that IJ.Q = KL.Q = IL.Q = JK.Q = 0.

Proof. By theorem 6.10, if G linearly implies IJ KL - IL JK = 0, then there is either an
LJ(T(I,J),T(K,L),T(I,L),T(J,K)) choke point or an IK(T(I,J),T(K,L),T(I,L),T(J,K)) choke
point in G. In the proof of lemma 6.10.21 we demonstrated that the existence of an
LJ(T(I,J),T(K,L),T(I,L),T(J,K)) choke point or an IK(T(I,J),T(K,L),T(I,L),T(J,K)) choke
point then either IJ or KL = 0, and IL or JK = 0, or there exists a set Q of random
variables such that IJ.Q = 0, KL.Q = 0, IL.Q= 0, and JK.Q = 0.

Suppose without loss of generality that G does not linearly entail that IJ or KL equals
0, does not linearly entail that IL or JK equals 0, there is a JL(T(I,J),T(K,L),T(I,L),T(J,K))
choke point C, and Q is the set of sources of treks between C and J or C and L. Now we
will show that Q does not contain both I and K, and Q does not contain both J and L.

If J ≠ C, then J is not the source of a trek between J and C for the following reasons.
Because IJ or JK is not linearly entailed to be zero, there is a trek between I and J, or
between J and K. Suppose without loss of generality that there is a trek t between I and J.
Because C is a JL(T(I,J),T(K,L),T(I,L),T(J,K)) choke point, it lies on the J branch of t. If J
≠ C, then J cannot the source of t. Hence C lies on a directed path from the source of t to
J, and there is a directed path from C to J. If J is the source of trek between J and C, then
there is a directed path from J to C. It follows then that the directed graph is cyclic,
contrary to our assumption. Similarly, if L ≠ C, then L is not the source of a trek between
L and C.

Suppose that Q contains J and L. Consider first the case where J = C. Because L ≠ J, it
follows that L ≠ C. L is the source of a trek between C and L or C and J. There is no trek
between C and J, because C = J. Because L ≠ C, L is not the source of a trek between C
and L. This is a contradiction, so J ≠ C. Similarly, L ≠ C.

Consider the case where J ≠ C, and L ≠ C. It follows that J is the source of a trek
between C and L, and L is the source of a trek between C and J. If J is the source of a trek
between C and L, there is a directed path from J to L, and if L is the source of a trek
between C and J, there is a directed path from L to J. Hence they cannot both be in Q
because the graph is acyclic.

Suppose then that Q contains both I and K. It follows that I and K are sources of treks
between C and J or C and L. If I ≠ C then I is the source of a trek between C and J or C
and L, and there is a directed path from I to J or I to L that does not contain C. That
directed path is a trek that does not contain C, and hence C is not a
JL(T(I,J),T(K,L),T(I,L),T(J,K)) choke point, contrary to the hypothesis. If I = C, then K is
the source of a trek between I and J or I and L. It follows that there is directed path from
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K to J or K to L that does not contain C, and hence C is not a
JL(T(I,J),T(K,L),T(I,L),T(J,K)) choke point, contrary to the hypothesis. ∴

13.27 Theorem 7.1
If G is a directed acyclic graph over a set of variables V ∪ W, W is exogenous with
respect to V in G, Y and Z are disjoint subsets of V, P(V ∪ W) is a distribution that
satisfies the Markov condition for G, and Manipulated(W) = X, then P(Y|Z) is
invariant under direct manipulation of X in G by changing W from w1 to w2 if and only
if P(Y|Z,W = w1) = P(Y|Z,W = w2) wherever they are both defined. .

THEOREM 7.1: If GComb is a directed acyclic graph over V ∪ W, W is exogenous with
respect to V in GComb, Y and Z are disjoint subsets of V, P(V ∪ W) is a distribution that
satisfies the Markov condition for GComb, no member of X ∩ Z is a member of IP(Y,Z) in
GUnman, and no member of X\Z is a member of IV(Y,Z) in GUnman, then P(Y|Z) is
invariant under a direct manipulation of X in GComb by changing W from w1 to w2.

Proof. Suppose that GComb is a directed acyclic graph over V ∪ W, W is exogenous with
respect to V, GUnman is the subgraph of GComb over V, P(V ∪ W) is a distribution that
satisfies the Markov condition for GComb, X = Manipulated(W), P(Y|Z,W= w1) ≠
P(Y|Z,W= w2) when GComb is manipulated by changing the value of W from w1 to w2, Y
and Z are disjoint subsets of V, no member of X ∩ Z is a member of IP(Y,Z) in GUnman,
and no member of X\Z is a member of IV(Y,Z) in GUnman, but P(Y|Z) is not invariant
when X is manipulated. Hence there is an undirected path U in GComb that d-connects
some R in W to some Y in Y given Z. Let W be the vertex on U closest to Y that is in W.
By lemma 3.3.2, U(W,Y) d-connects W and Y given Z\{W,Y} = Z. Because U(W,Y)
contains no member of W except W, every subpath of U(W,Y) that does not contain W is
an undirected path in GUnman. Because U(W,Y) is an undirected path between W and Y, it
contains some variable X in Manipulated(W). There are two cases: either X is in Z or it
is not in Z.

If X is in Z then X is a collider on U in GUnman, and the vertex T adjacent to X on U and
between X and Y is a parent of X, and hence not a collider on U. Because T is not a
collider on U, T is not in Z, and Z\{T} = Z. If T is in Y, then X is in IP(Y,Z), contrary to
our assumption. If T is not in Y, then U(T,Y) d-connects T and Y given Z\{T,Y} = Z in
GUnman. T has a descendant (X) in Z in GUnman, and hence T is in IV(Y,Z) in GUnman. But
then X is in IP(Y,Z) in G, contrary to our assumption.

If X is not in Z, then U(X,Y) d-connects Y and X given Z\{X} = Z in GUnman. If X is a
collider on U then X has a descendant in Z in GUnman. If X is not a collider on U then
U(X,Y) is out of X because X is a child of W. Either X is an ancestor of a collider on
U(X,Y), in which case it is an ancestor of some member of Z in GComb, or U(X,Y) is a
directed path to Y, in which case it is an ancestor of some member of Y in GComb. If X has
a descendant in Z ∪ Y in GComb, then X has a descendant in Z ∪ Y in GUnman, because W
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is exogenous with respect to V. Hence X has a descendant in Y ∪ Z in GUnman. It follows
that X is in IV(Y,Z) in GUnman, contrary to our assumption. ∴

13.28 Theorem 7.2

THEOREM 7.2: If P(O) is the marginal of a distribution faithful to G over V,  is a
partially oriented inducing path graph of G over O, and Ord is an ordering of variables in
O acceptable for some inducing path graph over O with partially oriented inducing path
graph , then there is a minimal I-map GMin of P(O) in which Definite-SP(Ord,X) in  is
included in Parents(GMin,X) which is included in Possible-SP(Ord,X) in .

Proof. Suppose that GIP is an inducing path graph over O with partially oriented inducing
path graph . By lemma 6.2.4 if GIP is an inducing path graph over O and Ord an
acceptable total ordering of variables for GIP, then Predecessors(Ord,X)\ SP(Ord,GIP,X)
is d-separated from X given SP(Ord,GIP,X). Hence, if Parents(GMin,X) = SP(Ord,GIP,X)
then GMin is an I-map of P(O).

We will now show that no subgraph of GMin is an I-map of P(O). Suppose in GSub

Parents(GSub,X) is properly included in Parents(GMin,X) and hence properly included in
SP(Ord,GIP,X). Let V be some variable in Parents(GMin,X)\Parents(GSub,X). Because V is
in SP(Ord,GIP,X) there is an undirected path U in GIP between V and X on which all of
the vertices except the endpoints are colliders, and precede X in Ord. Let W be the vertex
on U closest to X but not equal to X that is in Parents(GMin,X)\ Parents(GSub,X). It
follows that U(W,X) is an undirected path in GIP between W and X such that every vertex
on U(W,X) except for the endpoints is a collider and in Parents(GSub,X). Hence W is in
Predecessors(Ord,X)\Parents(GSub,X) and is d-connected to X given Parents(GSub,X) in
GIP. Hence W is d-connected to X given Parents(GSub,X) in G, and because P(V) is
faithful to G, W and X are dependent given Parents(GSub,X). Hence P(O) does not satisfy
the Markov Condition for GSub.

For a partially oriented inducing path graph  and ordering Ord acceptable for , V is
in Possible-SP(Ord,X) if and only if V ≠ X and there is an undirected path U in  between
V and X such that every vertex on U except for X is a predecessor of X in Ord, and no
vertex on U except for the endpoints is a definite-noncollider on U. For a partially
oriented inducing path graph  and ordering Ord acceptable for , V is in Definite-
SP(Ord,X) if and only if V ≠ X and there is an undirected path U in  between V and X
such that every vertex on U except for X is a predecessor of X in Ord, and every vertex on
U except for the endpoints is a collider on U. From these definitions and the definition of
partially oriented inducing path graph it follows that Definite-SP(Ord,X) is included in
Parents(GMin,X) which is included in Possible-SP(Ord,X). ∴
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13.29 Theorem 7.3

THEOREM 7.3: If G is a directed acyclic graph over V ∪ W, W is exogenous with respect
to V in G, O is included in V, GUnman is the subgraph of G over V,  is the FCI partially
oriented inducing path graph over O of GUnman, Y and Z are included in O, X is included
in Z, Y and Z are disjoint, and no X in X is in Possibly-IP(Y,Z) in , then P(Y|Z) is
invariant under direct manipulation of X in G by changing the value of W from w1 to w2.

If A and B are not in Z, and A ≠ B, then an undirected path U between A and B in a
partially oriented inducing path graph �over O is a possibly d-connecting path of A and
B given Z if and only if every collider on U is the source of a semidirected path to a
member of Z, and every definite noncollider is not in Z.

LEMMA 7.3.1: If G is a directed acyclic graph, U is a path that d-connects V and Y given
Z, X is in Z, and X is on U, then there is a path that d-connects X and Y given Z\{X} that
is into X and that contains only edges that lie on a directed path to X, and a subpath of
U(X,Y).

Proof. Suppose that G is a directed acyclic graph, U is a path that d-connects V and Y
given Z, X is in Z, and X is on U. Because X is in Z and on U, it follows that X is a
collider on U, and hence U(X,Y) is into X. No noncollider on U(X,Y) except for the
endpoints is in Z, so no noncollider on U(X,Y) except for the endpoints is in Z\{X}.
Every collider on U(X,Y) has a descendant in Z. If every collider on U(X,Y) has a
descendant in Z\{X} then U(X,Y) d-connects X and Y given Z\{X}. Suppose then that
some collider on U(X,Y) has X as a descendant but no other member of Z as a descendant,
and let C be the closest such collider on U to Y. U(C,Y) d-connects C and Y given Z\{X}
because C is not in Z\{X}, every collider on U(C,Y) has a descendant in Z\{X}, and no
noncollider on U(C,Y) is in Z\{X}. There is a directed path from C to X that contains no
member of Z\{X}. Hence by lemma 3.3.3 X is d-connected to Y given Z\{X} by a path
that is into X, and that contains only edges that lie on a directed path to X and a subpath
of U(X,Y).

LEMMA 7.3.2: If G  is the inducing path graph for G over O, X and Y are in O, Z is
included in O, and there is a path U d-connecting X and Y given Z in G, then there is a
path T d-connecting X and Y given Z in G  such that if U is into X in G, then T is into X in
G  and if U is into Y in G then T is into Y in G .

Proof. Suppose that in G with inducing path graph G  that U is a path d-connecting X and
Y given Z. We will use the following algorithm to construct two sequences of vertices,
Ancestor, and D-Path. (We are actually interested only in the undirected path D-path;
Ancestor is used solely as a device to construct D-path.) The vertices in D-Path are
always observed (i.e., vertices in O), but might not be on U; vertices in Ancestor are
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always on the path U, but might not be observed. For any sequence of vertices R of
vertices, R(n) refers to the nth vertex in R. We will say that for any pair of variables V and
W on U that W is after V on U if V is between W and X on U or V = X.

Algorithm D-Path
Ancestor(0) = <X>.
D-path(0) = <X>.
n = 0.
repeat

if Ancestor(n) = D-path(n) then
if there is no collider between Ancestor(n) and the next observed variable V on U,
Ancestor(n+1) = D-path(n+1) = V;
else Ancestor(n+1) = first collider on U after Ancestor(n) and D-path(n+1) = first
observed variable on a path from Ancestor(n+1) to a member of Z;

else if Ancestor(n) ≠ D-path(n) then
if on U there is no collider C after Ancestor(n) that has D-path(n) as the first
observed variable on a directed path from C to a member of Z, then Ancestor(n+1)
= D-path(n+1) = first observed variable on U after Ancestor (n)
else

let C2 be the collider closest to Y that has D-path(n) as the first observed variable
on a directed path from C2 to a member of Z;
if there is no collider between C2 and the first observed variable after C2 on U
then Ancestor(n+1) = D-path(n+1) = first observed variable after C2 on U;
else let C1 be the first collider after C2, let Ancestor(n+1) = C1 and D-path(n+1)
= the first observed variable on a directed path from C1 to a member of Z;

 n = n + 1.
until Y is in D-path.

X                   R                   S                   T                   Q

M

Z

Figure 13.25

X R S T Q Y

M

Z
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For example, when the algorithm is applied to the graph in figure 13.25 (where the
circled vertices are not observed, and Z = {Z,Q}), for U = <X,R,S,T,Q,Y>, and the result
is Ancestor = <X,R,Q,Y> and D-path = <X,M,Q,Y>.

We will now show that either D-path d-connects X and Y given Z in G , or some other
path in G  d-connects X and Y given Z.

All of the vertices in D-path are observed variables, and hence in G . By the way that
D-path is constructed, each adjacent pair of vertices A and B in D-path is connected in G
by a trek T(A,B) that contains no observed variables, except for the endpoints. If A and B
are both on U then T(A,B) contains the edges in U(A,B); if A is on U and B is not then
T(A,B) contains the edges in U(A,Ancestor(B)) and a directed path from Ancestor(B) to B;
if A is not on U and B is, then T(A,B) consists of a directed path from Ancestor(A) to A
and U(Ancestor(A),B); and if neither is on U, then T(A,B) contains the edges in a directed
path from Ancestor(A) to A, U(Ancestor(A),Ancestor(B)), and a directed path from
Ancestor(B) to B. T(A,B) is constructed out of subpaths of U, and subpaths of directed
paths from colliders on U to vertices in Z. T(A,B) is an inducing path in G, and hence
each adjacent pair of vertices in D-path is adjacent in G . The method of construction of
D-path makes D-path acyclic. It follows that D-path is an acyclic undirected path from X
to Y in G .

If W is on D-path, but is not a collider on D-path, then W is on U in G, and is not a
collider on U. It follows that W is not in Z.

We will now show that we can transform D-path into a path D-path  in G  such that
every collider B on D-path  has a descendant in Z in G. Let B be the vertex on D-Path
closest to X that is a collider on D-path but that in G does not have a descendant in Z, and
A be the predecessor of B on D-path, and C be the successor of B on D-path. If in G
T(A,B) and T(B,C) are both into B, then by the construction of D-path, B has a descendant
in Z in G. Hence at least one of T(A,B) and T(B,C) is out of B in G. Suppose without loss
of generality that T(B,C) is out of B in G, and B is between X and C on D-path. It follows
that B is an ancestor of C in G. In addition since there is an arrowhead at B in G , there is
an inducing path between B and C that is into B and C. By lemma 6.6.2, there is a vertex
V on D-path(X,C) such that there is an edge between V and C in G  that is substitutable
for D-path(V,C). Let D-path  be the concatenation of D-path(X,V) with the edge between
V and C. By lemma 6.6.2, D-path  is into X if D-path is. Every collider on D-path  is a
collider on D-path, and every noncollider on D-path  is a noncollider on D-path.
Furthermore, D-path  does not contain the vertex B which in G does not have a
descendant in Z. Repeat this process until every vertex on the modified D-path that in G
does not have a descendant in Z has been removed from the path. Call the result D-path .

Suppose now that some collider B on D-path  has a descendant in Z in G but not in G .
We will show how to transform D-path  into a path in G  in which every collider has a
descendant in Z in G . Let P be a directed path in G from B to some Z that is a member of
Z. In G , let P  be the undirected path from B to Z that consists of the observed variables
on P in the order in which they occur. P  is an undirected path in G  because in G the
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directed path between any two observed variables on P is an inducing path. Let S be the
vertex on P  closest to B such that there is no directed path from B to S in G . Let R be the
predecessor of S on P . If P (B,R) is not a directed path from B to R then form P  by
substituting some directed path from B to R in G  for P (B,R) in P . There is an inducing
path between R and S in G that is into S, so in G  the edge between R and S is into S.
Because P (B,S) is not a directed path from B to S, but P (B,R) is a directed path from B
to R, it follows that R ↔ S in G .

We will now demonstrate that there is an edge B ↔ S in G . If B = R, it follows from
what we have just shown. Suppose then that R ≠ B. In that case let Q be the predecessor
of R on P . Because P (B,R) is a directed path from B to R, Q → R in G . By lemma
6.6.2, there is a vertex E on P (B,R) such that there is an edge between E and S that is
into S and is substitutable for P (E,S) in P (B,S). If the edge between E and S is out of E,
then there is a directed path from B to S in G , contrary to our assumption. It follows that
the edge between E and S is into E. But because P (B,R) is a directed path from B to R, if
the edge between E and S is into E, the edge between E and S is not substitutable for
P (E,S) in P (B,S) unless E = B. It follows then that B ↔ S in G .

We will now form a path D-path  between X and Y by the following iteration, where
at each stage of the iteration the vertices B and S are defined as above. Let the 0th stage D-
path  equal D-path . If S is on the n–1th stage D-path (X,B) let the nth stage D-path (X,S)
equal the n–1th stage D-path (X,S). If S is not on the n–1th stage D-path (X,B) let V equal
the concatenation of the n–1th stage D-path (X,B) and B ↔ S. By lemma 6.6.2 there is a
vertex E on V that is not equal to B and not equal to S such that there is an edge from E to
S that is into S, and is a collider on V if and only if it is a collider on the concatenation of
V(X,E) with the edge between E and S. Let the nth stage D-path (X,S) equal the
concatenation of V(X,E) and the edge between E and S. Similarly, form the nth stage D-
path (Y,S). The nth stage D-path (X,S) does not intersect the nth stage D-path (Y,S) except
at S because except for the edges containing S, they are subpaths of paths that do not
intersect except possibly at S. Let the nth stage D-path  be the concatenation of D-
path (X,S) and D-path (Y,S). If S does not have a descendant in Z in G , repeat this
process until some vertex M on P  that does have a descendant in Z in G  is on D-path .
(See figure 13.26, where D-path  is <X,E,B,F,Y> and D-path  consists of the edges in
boldface.)
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X                E                    B                  F                     Y

R

S

Figure 13.26

The nth stage D-path  is into X if the n–1th stage D-path  is, and into Y if the n–1th

stage D-path  is. Moreover, the 0th stage D-path  (D-path ) is into X if U is, and into Y if
U is. Every noncollider on the nth stage D-path  is a noncollider on the n–1th stage D-
path . Because every noncollider on D-path  is not in Z, every noncollider on the nth

stage D-path  is not in Z. Every collider on the nth stage D-path  with the possible
exception of M is a collider on the n–1th stage D-path , and hence a collider on D-path .
M is a collider on the nth stage D-path , but it has a descendant in Z. There is at least one
fewer collider on nth stage D-path  that does not have a descendant in Z than there is on
D-path  (because D-path  contains B, and the nth stage D-path  does not.) This process
can be repeated until every collider on D-path  has a descendant in Z. The resulting path
d-connects X and Y given Z in G , is into X if U is, and into Y if U is. ∴

LEMMA 7.3.3: If G is a directed acyclic graph over V,  is the FCI partially oriented
inducing path graph of G over O, and some path U in G d-connects X and Y given Z, then
there is a path U  in  that possibly d-connects X and Y given Z. Furthermore if U is into
X, then U  is not out of X.

Proof. Suppose that some path U in G d-connects X and Y given Z. Let G  be the inducing
path graph of G. By lemma 7.3.2, there is a path U  in G  that d-connects X and Y given
Z, and if U is into X then U  is into X. Let U  be the path in �that corresponds to U  in G .
If R is a collider on U , then by the definition of partially oriented inducing path graph R
is a collider on U . Because R is a collider on U , and U  d-connects X and Y given Z, R
has a descendant in Z in G . By theorem 6.6, there is a semidirected path from R to a
member of Z in . If R is a definite noncollider on U , then by definition of partially
oriented inducing path graph R is a noncollider on U . Because R is a noncollider on U ,
and U  d-connects X and Y given Z, R is not in Z. Hence U  is a possibly d-connecting
path between X and Y given Z. Furthermore, if U  is into X, then by definition of partially
oriented inducing path graph U  is not out of X. ∴

R

S

X E B F Y
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If � is a partially oriented inducing path graph of G over O, then X is in Possibly-
IV(Y,Z) if and only if X is not in Z, there is a possibly d-connecting path between X and
some Y in Y given Z, and there is a semidirected path from X to a member of Y ∪ Z. If 
is a partially oriented inducing path graph of G over O, then X is in Possibly-IP(Y,Z) if
and only if Y and Z are disjoint, X is in Z, and there is a possibly d-connecting path
between X and some Y in Y given Z\{X} that is not out of X. If � is the FCI partially
oriented inducing path graph of G over O, then X is in Definite-Nondescendants(Y) if
and only if there is no semidirected path from any member of Y to X in .

LEMMA 7.3.4: If X is in IV(Y,Z) in directed acyclic graph G, Y and Z are disjoint subsets
of O, X is in O, and �is the FCI partially oriented inducing path graph of G over O, then
X is in Possibly-IV(Y,Z) in .

Proof. Suppose that X is in IV(Y,Z) in G, Y and Z are disjoint subsets of O, X is in O,
and � is the FCI partially oriented inducing path graph of G over O. Because X is in
IV(Y,Z) in G, X has a descendant in Y ∪ Z in G. Hence, by theorem 6.6, there is a
semidirected path from X to a member of Y ∪ Z in . Also, there is a path that d-connects
X and some member Y of Y given Z in G. Hence, by lemma 7.3.3 there is a path that
possibly d-connects X and some member Y of Y given Z in . By definition X is in
Possibly-IV(Y,Z) in . ∴

LEMMA 7.3.5: If X is in IP(Y,Z) in directed acyclic graph G, Y and Z are disjoint subsets
of O, and  is the FCI partially oriented inducing path graph of G over O, then X is in
Possibly-IP(Y,Z) in .

Proof. Suppose that X is in IP(Y,Z) in G, Y and Z are disjoint subsets of O, and �is the
FCI partially oriented inducing path graph of G over O. Because X is in IP(Y,Z) in G,
some variable T in G is a parent of X and in IV(Y,Z) or Y. If T is in Y then there is a
directed path from a member T of Y to X that d-connects T and X given Z\{X}. If T is in
IV(Y,Z) then T is d-connected to some Y in Y given Z by some path U. If X is on U then
X is a collider on U and U(X,Y) is into X; furthermore, by lemma 7.3.1 there is an
undirected path that d-connects X and Y given Z\{X} that is into X. If X is not on U then
the concatenation of the edge from T to X and U is a path that d-connects X and Y given
Z\{X} and is into X. Hence, by lemma 7.3.3 there is a path that possibly d-connects X and
Y given Z\{X} in �that is not out of X. By definition X is in Possibly-IP(Y,Z) in . ∴

THEOREM 7.3: If G is a directed acyclic graph over V ∪ W, W is exogenous with respect
to V in G, O is included in V, GUnman is the subgraph of G over V,  is the FCI partially
oriented inducing path graph over O of GUnman, Y and Z are included in O, X is included
in Z, Y and Z are disjoint, and no X in X is in Possibly-IP(Y,Z) in , then P(Y|Z) is
invariant under direct manipulation of X in G by changing the value of W from w1 to w2.
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Proof. Suppose that G is a directed acyclic graph over V ∪ W, O is included in V, W is
exogenous with respect to V in G, GUnman is the subgraph of G over V,  is the FCI
partially oriented inducing path over O of GUnman, Y and Z are included in O, X is
included in Z, Y and Z are disjoint, and no X in X is in Possibly-IP(Y,Z) in . If P(Y|Z)
is not invariant when X is manipulated by changing the value of W from w1 to w2 then W
is d-connected to Y given Z in G. Suppose that W is d-connected to Y given Z in G. Let
W be a member of W that is d-connected to some Y in Y by an undirected path U in G
that contains no other member of W. No noncollider on U is in Z, and every collider on
U has a descendant in Z.

Note that if R and N are in V and R is a descendant of N in G, then R is a descendant
of N in GUnman, because there is no edge from any member of V into a member of W. In
G, U contains some X in X. Because X is in Z, X is a collider on U, and U(X,Y) is into X.
By lemma 7.3.1 in G there is an undirected path M that d-connects X and Y given Z\{X},
is into X, and contains only edges that lie on a directed path to X and a subpath of U(X,Y).
Hence M is an undirected path in GUnman,no noncollider on M is in Z\{X}, and every
collider on M has a descendant in Z\{X} in G, and hence in GUnman. It follows that M d-
connects X and Y given Z\{X} in GUnman. Let T be the vertex adjacent to X on M. If T = Y
then X is in IP(Y,Z) in GUnman. If T ≠ Y then T has a descendant in Z (namely X) in
GUnman. Also T is not a collider on U(X,Y), and hence not in Z. By lemma 3.3.2 T is d-
connected to Y given Z\{T} = Z in GUnman. It follows that T is in IV(Y,Z) in GUnman, and
hence X is in IP(Y,Z) in GUnman. In either case X is in IP(Y,Z) in GUnman and by lemma
7.3.5, X is in Possibly-IP(Y,Z) in , contrary to our assumption. ∴

13.30 Theorem 7.4

THEOREM 7.4: If G is a directed acyclic graph over V ∪ W, W is exogenous with respect
to V in G, O is included in V, GUnman is the subgraph of G over V,  is the FCI partially
oriented inducing path graph over O of GUnman, X, Y and Z are included in O, X, Y and Z
are pairwise disjoint, and no X in X is in Possibly-IV(Y,Z) in , then P(Y|Z) is invariant
under direct manipulation of X in G by changing the value of W from w1 to w2.

Proof. Suppose G is a directed acyclic graph over V ∪ W, W is exogenous with respect
to V in G, O is included in V, GUnman is the subgraph of G over V,  is the FCI partially
oriented inducing path over O of GUnman, Y and Z are included in O, X, Y and Z are
pairwise disjoint, and no X in X is in Possibly-IV(Y,Z). If P(Y|Z) is not invariant when
X is manipulated by changing the value of W from w1 to w2 then W is d-connected to Y
given Z in G. Let W be a member of W that is d-connected to some Y in Y given Z by an
undirected path U in G that contains no other member of W.

Because U d-connects W and Y given Z, no noncollider on U is in Z, and every
collider on U has a descendant in Z. U contains some X in X. By lemma 3.3.2 U(X,Y) is
an undirected path that d-connects X and Y given Z in G. There is a path U (X,Y) in
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GUnman with the same edges as U(X,Y) in G, because U(X,Y) contains no member of W.
No noncollider on U (X,Y) is in Z. In G, every collider on U(X,Y) has a descendant in Z;
hence every collider on U (X,Y) has a descendant in Z in GUnman. Hence U(X,Y) d-
connects X and Y given Z in GUnman. By lemma 7.3.3 there is a possibly d-connecting path
between X and some Y in Y given Z in .

Now we will show that X has a descendant in Y ∪ Z in GUnman. If X is a collider on U,
then X has a descendant in Z in G, and hence in GUnman. Suppose then that X is not a
collider on U. The edge from W to X on U is into X, so the edge containing X on U(X,Y) is
out of X. If U(X,Y) contains no colliders then Y is a descendant of X. If U(X,Y) contains a
collider, then the collider on U(X,Y) closest to X is a descendant of X, and an ancestor of a
member of Z. Hence X is an ancestor of a member of Z. In either case, X has a
descendant in Y ∪ Z in G, and hence in GUnman.

It follows that X is in IV(Y,Z) in GUnman, and hence by lemma 7.3.4 X is in in
Possibly-IV(Y,Z), contrary to our assumption. ∴

13.31 Theorem 7.5

THEOREM 7.5: If G is a directed acyclic graph over V ∪ W, W is exogenous with respect
to V in G, GUnman is the subgraph of G over V, PUnman (W)(V) = P(V|W = w1) is faithful to
GUnman, and changing the value of W from w1 to w2 is a direct manipulation of X in G,
then the Prediction Algorithm is correct.

Proof. Let GMan be the manipulated graph, and F the minimal I-map of PUnman (W)(V)
constructed by the algorithm for the given ordering of variables Ord. Step A) is trivial.
Step B) is correct by theorem 6.4. Step C1) is correct by theorem 7.2. In step C2, by
lemma 3.3.5, for all values of V for which the conditional distributions in the
factorization are defined

PUnman(W)(Y|Z) =

PUnman(W)(V| Parents(F,V ))
V∈IV(Y ,Z)∪IP(Y,Z)∪Y

∏
IV(Y,Z)

→
∑

PUnman(W)(V| Parents(F,V ))
V∈IV(Y ,Z)∪IP(Y,Z)∪Y

∏
IV(Y,Z)∪ Y

→
∑

for all values z of Z such that PMan(z) ≠ 0.
Because GMan is a subgraph of GUnman, if F is an I-map of PUnman (W)(V)then F is an I-

map of PMan (W)(V). Hence PMan (W)(V) satisfies the Markov condition for F, and by
lemma 3.3.5
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(1)

PMan(W )(Y|Z) =

PMan(W )(V|Parents(F,V ))
V∈IV(Y,Z)∪IP(Y,Z)∪Y

∏
IV(Y,Z)

→
∑

PMan(W )(V|Parents(F,V))
V∈IV(Y,Z)∪IP(Y,Z)∪Y

∏
IV(Y,Z)∪Y

→
∑

for all values z of Z such that PMan (z) ≠ 0, and for all values for which the conditional
distributions in the factorization exist.

PMan(W)(V) satisfies the Markov condition for GMan by hypothesis. Hence in PMan

(W)(V) X is independent of its nonparental nondescendants in GMan given Parents
(GMan,X). The predecessors of X in Ord by hypothesis are either in Definite-
Nondescendants( ,X), in which case they are in Nondescendants(GUnman,X) or they are
in Parents(GMan,X). GMan is a subgraph of GUnman, so any vertex that is a nondescendant
of X in GUnman is a nondescendant of X in GMan. Hence each predecessor of X in Ord is a
nondescendant of X in GMan. The algorithm guarantees that Parents(GMan,X) is included
in Predecessors(Ord,X). It follows that Parents(GMan,X) is a subset of Predecessors
(Ord,X) such that Predecessors(Ord,X)\Parents(GMan,X) is independent of X given
Parents(GMan,X) in PMan(W)(V). Hence, if Parents(GMan,X) is substituted for Parents
(F,X) in F, the resulting graph is still an I-map of PMan(W)(V), by lemma 3.7.1. So in (1)
we can substitute P(X|Parents(GMan,X)) for P(X|Parents(F,X)) By assumption the
algorithm returns a value only if PMan (W)(V|Parents(F,V)) = PUnman(W) (V|Parents(F,V))
for each V ≠ X, so we can substitute PUnman(W)(V|Parents(F,V)) for
PMan(W)(V|Parents(F,V)) in (1). ∴

13.32 Theorem 9.1

THEOREM 9.1: If P(S) is faithful to G(S), and X and Y are sets of variables in G(S) not
containing S, then P(Y|X) = P(Y|X,S) if and only if X d-separates Y and S in G(S).

Proof. This follows from theorem 3.3. ∴

13.33 Theorem 9.2

THEOREM 9.2: For a joint distribution, P ,faithful to graph G, exactly one of <Y  X|Z;
Y  X|Z ∪ {S}> is true in P if and only if the corresponding member and only that
member of <Z d-separates X, Y; Z ∪ {S} d-separates X, Y> is true in G.

Proof. This follows from theorem 3.3. ∴
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13.34 Theorem 10.1

THEOREM 10.1: If G is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, and each latent variable in T has at least two measured indicators,
then latent variables T1 and T3, whose measured indicators include J and L respectively,
are d-separated given latent variable T2, whose measured indicators include I and K, if
and only if G linearly implies JI LK =� JL KI =� JK IL.

T1
T2 T3

J I K L

Figure 13.27

We say that a measurement model is almost pure if the only kind of impurities among
the measured variables are common cause impurities. An almost pure latent variable
graph is one in which the measurement model is almost pure.

LEMMA 10.1.1: If G  is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, and each latent variable in T has at least two measured indicators, and
latent variables T1 and T3, whose measured indicators include J and L respectively, are d-
separated given latent variable T2, whose measured indicators include I and K, then G
linearly implies JI LK =� JL KI =� JK IL.

Proof. Let G be a pure latent variable subgraph of G , formed by removing the sources of
all treks creating common cause impurities. If T1 and T2 are d-separated given T2 in G
then they are d-separated given T2 in G. BecauseI and K are pure indicators of T2 in G,
and thus children only of T2, T2 is a noncollider on all undirected paths between I and any
other indicator or K and any other indicator. Therefore J and I are d-separated given T2, K
and L are d-separated given T2, and K and I are d-separated given T2.

Since T1 and T3 are d-separated given T2, and again J and L are children only of T1 and
T3 respectively, then J and L are d-separated given T2. X and Z are d-separated given Y if

and and only if G linearly implies PXZ.T= 0. Hence G linearly implies ρIJ .T2  = 0, and
ρIJ = ρIT2 × ρ JT2

. Similarly, G linearly implies ρKL = ρKT2 × ρ LT2
,

ρJL = ρJT2 × ρ LT2
 and ρIK = ρIT2 ×ρ KT2

. Hence G linearly implies JI LK =

ρJT2 ×ρ IT2 × ρLT2 × ρKT2
 = ρJT2 ×ρ LT2 × ρKT2 ×ρ IT2

 = JL KI. G linearly

IJ K L

T1 T2 T3
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Because I and K are pure indicators of T2 and G'

qIJ.T2
 = 0, and

qIJ = qIT2
 × qJT2

. Similarly, G linearly implies qKL = qKT2
 × qLT2

, qJL = qJT2
 × qLT2

 and qIK = 
qIT2

 × qKT2
. Hence G linearly implies qJIqLK = qJT2

 × qIT2
 × qLT2 × qKT2 = qJT2

 × qLT2 × qKT2
 × 

qIT2 = qJLqKI. G linearly implies the same vanishing tetrad differences as G', so G' linearly 
implies qJIqLK = qJLqKI. The proof that qJLqKI = qJKqIL is linearly implied by G' is essentially 
the same. ∴ 
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implies the same vanishing tetrad differences as G , so G  linearly implies JI LK =� JL KI.
The proof that JL KI =� JK IL is linearly implied by G  is essentially the same. ∴

LEMMA 10.1.2: If G is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, and each latent variable in T has at least two measured indicators,
then latent variables T1 and T3, whose measure indicators respectively include J and L,
are d-separated given latent variable T2, whose measured indicators include I and K, if G
linearly implies JI LK = JL KI .

Proof. Suppose that G linearly implies JI LK = JL KI but T1 and T3 are not d-separated
given T2.

By the Tetrad Representation Theorem, if G linearly implies JI� LK =� JL KI then either
there is an IL(T(I,J),T(L,K),T(L,J),T(I,K)) choke point, or there is a
JK(T(I,J),T(L,K),T(L,J),T(I,K)) choke point.

Let T(I,K) be the trek consisting of the edges from T2 to I and T2 to K. Suppose first
that there is an IL(T(I,J),T(L,K),T(L,J),T(I,K)) choke point. The choke point is either I or
T2 because those are the only vertices in I(T(I,K)). I is not the choke point because it does
not lie on any trek between L and K. Hence T2 is the choke point. Similarly, if there is a
JK(T(I,J),T(L,K),T(L,J),T(I,K)) choke point it is T2. Hence, in either case T2 is a choke
point.

There are two ways that T1 and T3 might fail to be d-separated given T2. Either there is
a trek between T1 and T3 that does not contain T2, or there is some undirected path U
between T1 and T3 such that T2 is a descendent of every collider on U, and T2 is not a
noncollider on U.

First assume that there is some trek between T1 and T3 that does not contain T2. Then
there is a trek between J and L that does not contain T2. But then T2 is not a choke point,
contrary to what we have just proved.

Now assume that there is some undirected path U between T1 and T3 such that T2 is a
descendent of every collider on U, and T2 is not a noncollider on U. In that case U d-
connects T1 and T3 given T2. Again there are two cases.

Suppose first that T2 is an IL(T(I,J), T(L,K), T(L,J), T(I,K)) choke point. Let C be the
collider on the undirected path U that is closest to T3. (See figure 13.28.)

LEMMA 10.1.2: If G is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, and each latent variable in T has at least two measured indicators,
then latent variables T1 and T3, whose measure indicators respectively include J and L,
are d-separated given latent variable T2, whose measured indicators include I and K, if G
linearly implies JI LK = JL KI .

Proof. Suppose that G linearly implies JI LK = JL KI but T1 and T3 are not d-separated
given T2.

By the Tetrad Representation Theorem, if G linearly implies JI� LK =� JL KI then either
there is an IL(T(I,J),T(L,K),T(L,J),T(I,K)) choke point, or there is a
JK(T(I,J),T(L,K),T(L,J),T(I,K)) choke point.

Let T(I,K) be the trek consisting of the edges from T2 to I and T2 to K. Suppose first
that there is an IL(T(I,J),T(L,K),T(L,J),T(I,K)) choke point. The choke point is either I or
T2 because those are the only vertices in I(T(I,K)). I is not the choke point because it does
not lie on any trek between L and K. Hence T2 is the choke point. Similarly, if there is a
JK(T(I,J),T(L,K),T(L,J),T(I,K)) choke point it is T2. Hence, in either case T2 is a choke
point.

There are two ways that T1 and T3 might fail to be d-separated given T2. Either there is
a trek between T1 and T3 that does not contain T2, or there is some undirected path U
between T1 and T3 such that T2 is a descendent of every collider on U, and T2 is not a
noncollider on U.

First assume that there is some trek between T1 and T3 that does not contain T2. Then
there is a trek between J and L that does not contain T2. But then T2 is not a choke point,
contrary to what we have just proved.

Now assume that there is some undirected path U between T1 and T3 such that T2 is a
descendent of every collider on U, and T2 is not a noncollider on U. In that case U d-
connects T1 and T3 given T2. Again there are two cases.

Suppose first that T2 is an IL(T(I,J), T(L,K), T(L,J), T(I,K)) choke point. Let C be the
collider on the undirected path U that is closest to T3. (See figure 13.28.)
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T 1 T 2
T 3

J I K L

C W
U

Figure 13.28

U(T3,C) does not contain any colliders on U except C because C is the closest collider
to T3 on U; hence U(T3,C) is a trek between T3 and C. There is a vertex W on U(T3,C) that
is the source of a trek between T3 and C. W ≠ C because W is not a collider on U, but C is.
Hence U(W, T3) contains no colliders on U. It follows that U(W, T3) does not contain T2,
because T2 is not a noncollider on U. Hence there is a trek T(K,L) between K and L whose
K branch consists of the concatenation of U(W,C), a directed path from C to T2, and the
edge from T2 to K, and whose L branch consists of the concatenation of U(W, T3) and the
edge from T3 to L. Because neither U(W, T3) nor the edge from T3 to L contains T2, T2 is
not in L(T(K,L)), and hence is not an IL(T(I,J),T(L,K), T(L,J),T(I,K)) choke point,
contrary to our hypothesis.

A similar argument shows that if there is some undirected path U between T1 and T3

such that T2 is a descendent of every collider on U and T2 is not a noncollider on U, then
there is no JK(T(I,J), T(L,K), T(L,J), T(I,K)) choke point.

Therefore T1 and T3 are d-separated given T2. ∴

THEOREM 10.1: If G is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, each latent variable in T has at least two measured indicators, then
latent variables T1 and T3, whose measured indicators include J and L respectively, are d-
separated given latent variable T2, whose measured indicators include I and K, if and only
if G linearly implies JI LK =� JL KI =� JK IL.

Proof. The theorem follows from lemmas 10.1.1 and 10.1.2.

13.35 Theorem 10.2

THEOREM 10.2: If G is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, each variable in T has at least two measured indicators, the input to
MIMBuild is a list of all vanishing zero and first order correlations among the latent
variables linearly implied by G, and  is the output of MIMBuild then

LKIJ

U

T1 T2
T3

C W
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not in L(T(K,L)), and hence is not an IL(T(I,J),T(L,K),T(L,J),T(I,K)) choke point, contrary 
to our hypothesis.
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A–1) If X and Y are not adjacent in , then they are not adjacent in G.
A–2) If X and Y are adjacent in  and the edge is not labeled with a “?,” then X and Y are
adjacent in G.
O–1) If X → Y is in , then every trek in G between X and Y is into Y.
O–2) If X → Y is in  and the edge between X and Y is not labeled with a “?,” then X →
Y is in G.

LEMMA 10.2.1: If G is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, each variable in T has at least two measured indicators, the input to
MIMBuild is a list of all vanishing zero and first order correlations among the latent
variables linearly implied by G,  is the output of MIMBuild, and X and Y are not
adjacent in , then they are not adjacent in G.

Proof. This follows directly from theorem 3.4.

LEMMA 10.2.2: If G is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, each variable in T has at least two measured indicators, the input to
MIMBuild is a list of all vanishing zero and first order correlations among the latent
variables linearly implied by G,  is the output of MIMBuild, and X → Y is in , then
every trek in G between X and Y is into Y.

Proof. Suppose X → Y is in . The proof is by induction on the number of iterations of
the repeat loop in step D) in the PC Algorithm.

Base Case: There is a trek between X and Y in G, because otherwise X and Y are d-
separated given the empty set and therefore not adjacent in . Suppose that X → Y is
oriented as X → Y ← Z by step C) of the PC Algorithm (i.e., X and Z are d-separated by
some set not containing Y.) If in G, there is a trek between X and Y, and a trek between Y
and Z that are not both into Y, then there is a trek between X and Z and hence X and Z are
not d-separated given the empty set. Suppose then that X and Z are d-separated by some
W ≠ Y in G. Because X and Y are adjacent in , W does not d-separate X and Y in G.
Similarly, W does not d-separate Y and Z. If there is a trek in G between X and Y that is
out of Y then there is a directed path U from Y to X in G. If U does not contain W then U
d-connects X and Y given W in G. There is also a path V in G that d-connects Y and Z
given W. Because U is out of Y, U and V do not collide at Y in G. Hence by lemma 3.3.1
X and Z are d-connected given W in G, contrary to our assumption. If U does contain W,
then W is a descendant of Y, and by lemma 3.3.1 X and Z are d-connected given W,
contrary to our assumption. Hence no trek in G between X and Y is out of Y.

Induction Case: Suppose after n–1 iterations of the repeat loop in step D) of the PC
Algorithm, if Z → X in , then every trek between Z and X in G is into X. Suppose that
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the X → Y edge is oriented because there is some vertex Z such that Z → X - Y in  and Z
is not adjacent to Y in . Because the edge between X and Y in  was not oriented into Y,
X and Z are d-separated given Y. There are treks between X and Y, and between Y and Z
in G, because they are adjacent in . If there is a trek between Y and X that is into X, then
by lemma 3.3.1, X and Z are d-connected given Y, contrary to our assumption. ∴

Y is a definite noncollider on an undirected path U in pattern  if and only if either X *-
* Y → Z, or X ← Y *-* Z are subpaths of U, or X and Z are not adjacent and not X → Y ←
Z on U.

LEMMA 10.2.3: If G is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, each variable in T has at least two measured indicators, the input to
MIMBuild is a list of all vanishing zero and first order correlations among the latent
variables linearly implied by G,  is the output of MIMBuild, and Y is a definite
noncollider on undirected path U in P, and the corresponding path U  exists in G, then Y
is a noncollider on U .

Proof. If U contains X *-* Y → Z in , then by lemma 10.2.2, if the corresponding path
U  exists in G, then the edge between Y and Z in G is out of Y; hence Y is not a collider on
U . Similarly, if X ← Y *-* Z in , then Y is not a collider on U . Suppose then that X and
Z are not adjacent and not X → Y ← Z on U in . It follows that X and Z are d-separated
given Y in G. Hence if the edges between X and Y and between Y and Z exist in G, they
do not collide at Y.

LEMMA 10.2.4: If G is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, each variable in T has at least two measured indicators, the input to
MIMBuild is a list of all vanishing zero and first order correlations among the latent
variables linearly implied by G,  is the output of MIMBuild, and X - Y or X → Y is in �
and the edge is not labeled by a “?,” then X and Y are adjacent in G.

Proof. Suppose that X - Y or X → Y is in ��the edge is not labeled by a “?,” but that X
and Y are not adjacent in G. Then there is some set S that d-separates X and Y in G. Let P
be the set of undirected paths in P between X and Y of length ≥ 2. Any such S has
cardinality ≥ 2, because otherwise MIMBuild would have found it with some test of
vanishing zero or first order partial correlations. X - Y or X → Y was not labeled with a
“?” so either (i) P is empty, or (ii) every path in P contains a collider, or (iii) there is
some vertex Z that is a definite noncollider on every path in P, or (iv) every path in P
contains some subpath <A,B,C>.

Suppose P is empty. Because by lemma 10.2.1 nonadjacencies in  are
nonadjacencies in G, the adjacencies in  are a superset of those in G, and thus the set of
undirected paths in  is a superset of the undirected paths in G. It follows that there is no
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undirected path of length ≥ 2 in G. If in G there is also no edge between X and Y, then X
and Y are d-separated given the empty set in G. But since there is an edge between X and
Y in , X and Y are not d-separated given the empty set in G. Hence there is an edge
between X and Y in G.

Suppose every path in P contains a collider and there is no edge between X and Y in G.
By lemmas 10.2.1 and 10.2.2 every path in G between X and Y contains a collider. Hence
there is no trek between X and Y in G. But then there is no edge between X and Y in ,
contrary to our assumption.

Suppose there is some vertex Z that is a definite noncollider on every path in P. It
follows from lemma 10.2.1, 10.2.2, and 10.2.3 that if there is no edge between X and Y in
G, then Z is a noncollider on every undirected path between X and Y in G. Hence X and Y
are d-separated by Z. It follows that there is no edge between X and Y in , contrary to
our assumption.

Suppose every path in P contains some subpath <A,B,C>. If there is no edge between
X and Y in G, then every undirected path in G between X and Y contains <A,B,C>. It
follows that B is either a collider on every path between X and Y in G, in which case X
and Y are d-separated given the empty set, or B is a noncollider on every path between X
and Y in G, in which case, X and Y are d-separated given B in G. In either case, there is no
edge between X and Y in , contrary to our assumption. ∴

LEMMA 10.2.5: If G is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, each variable in T has at least two measured indicators, the input to
MIMBuild is a list of all vanishing zero and first order correlations among the latent
variables linearly implied by G,  is the output of MIMBuild, and X → Y is in , and the
edge is not labeled by a “?,” then X → Y is in G.

Proof. This follows from lemmas 10.2.2 and 10.2.4. ∴

THEOREM 10.2: If G is an almost pure latent variable graph over V ∪ T ∪ C, T is
causally sufficient, each variable in T has at least two measured indicators, the input to
MIMBuild is a list of all vanishing zero and first order correlations among the latent
variables linearly implied by G, and  is the output of MIMBuild then

A–1) If X and Y are not adjacent in , then they are not adjacent in G.
A–2) If X and Y are adjacent in  and the edge is not labeled with a “?,” then X and Y are
adjacent in G.
O–1) If X → Y is in , then every trek in G between X and Y is into Y.
O–2) If X → Y is in  and the edge between X and Y is not labeled with a “?,” then X →
Y is in G.

Proof. This follows from lemmas 10.2.1 through 10.2.5. ∴
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13.36 Theorem 11.1

THEOREM 11.1: If G is a subgraph of directed acyclic graph G , than the set of tetrad
equations among variables of G that are linearly implied by G  is a subset of those
linearly implied by G.

Proof. If G is a subgraph of directed acyclic graph G , then the treks in G are a subset of
the treks in G . Hence if there is a choke point in G , there is a choke point in G. By the
Tetrad Representation Theorem, if G  linearly implies that a tetrad difference t vanishes,
then G linearly implies t vanishes. ∴
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Notes

Chapter 2
1. It is customary to represent the ordered pair A, B with angle brackets as <A, B>, but for
endpoints of an edge we use square brackets so that the angle brackets will not be
misread as arrowheads.
2. Some writers, especially in statistics, understand “clique” as we have defined maximal
clique.
3. We do not include trivial independence relations, for example, C    ∅ | ∅ which are

true by definition.

Chapter 3
1. Strictly, we require for causal sufficiency of V for a population that if X is not in V and
is a common cause of two or more variables in V, that the joint probability of all
variables in V be the same on each value of X that occurs in the population.
2. Using the notion of identifiability, Simon (1953) proposed a general means to derive
causal structure from a set of equations describing a system; later in the same paper
Simon also proposed an account of causation using invariances under perturbations of
linear coefficients.
3. Since causation for variables is assumed to be transitive and irreflexive, the directed
graph representing a causal structure must be acyclic. Introducing cyclic directed graphs
requires a systematic reinterpretation.
4. A better practical arrangement might be a query system that, besides inferring the
causal graph or graphs, responds to the user’s questions about the effects of the
manipulation of variables.
5. P. 319. Q is Yule’s Q = (ad - bc)/(ad+bc) when the first row is a,b and the second c,d
in a 2 × 2 table.

6. (Sic.) Kendall means, of course, that the symbols denote the respective treatment and
recovery states, not vice-versa.
7. Fienberg (1977), citing Darroch, attributes the issue to Yule “since Yule discussed it in
the final section of his 1903 paper on the theory of association of attributes” (p. 51). But
save for the first sentence of that section, Yule actually discusses the reverse issue of
mixtures, namely circumstances in which variables are statistically dependent in a
population but independent in sub-populations.
8. The subsequent literature has confused it with a number of other questions about how
independence and dependence relations in a population may be related to independence
and dependence relations in sub-populations, and the causal significance of such facts.
The unfortunate aspect of collapsing these questions is that they have distinct answers. A
circumstance attributed to Simpson and now often called “Simpson’s paradox,” but
nonetheless distinct from the question Simpson actually posed, was described by Colin
Blyth (1972):
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It is possible to have simultaneously

(1) P(A|B) < P(A|B')

and

(2) P(A|BC) ≥ P(A|B'C)

(3) P(A|BC') ≥ P(A|B'C')

In fact, Simpson has equality in (1) and > in (2) and (3).
9. The point is implicit in Blalock 1961 and no doubt other sources as well.
10. Treks were defined in section 2.3.1. A trek between X an Y is either i) a directed path
from X to Y, ii) a directed path from Y to X, or iii) a pair of directed paths from Z to X and
Z to Y that have only Z in common.
11. We thank Marek Druzdel for suggesting this example, and pointing out the problem
of reversible mechanisms to us.

Chapter 5
1. In particular, when the method is idealized to give up the greedy algorithm. Because of
the greedy algorithm, we would expect the specific search procedure to be asymptotically
unreliable when there are two or more treks between a pair of nonadjacent variables, say
X and Y, that result in a close statistical association between those variables. This is the
circumstance in the case of the one edge the procedure erroneously introduces in the
ALARM network. In practice, such structures may be sufficiently uncommon for the
error to be tolerable and Cooper and his colleagues are investigating techniques to
ameliorate the problem.
2. Indeed, any statistical constraint can be used as input for the algorithms for any pairing
of distributions with graphs such that the constraint is satisfied in the distribution if and
only if the corresponding d-separation relation holds in the graph.
3. In the following heuristics, “high probabilistic dependence” means high partial
correlation in the linear case, and high G2 statistic in the discrete case.
4. For causally sufficient structures, if a distribution P, obtained by imposing a linear
distribution compatible with a graph G, implies some vanishing partial correlation not
linearly implied by G, is then P  not faithful to G?  If P  is not faithful to G, does P
necessarily imply some vanishing partial correlation not linearly implied by G? We don’t
know the answer to either question.
5. An exact general rule for calculating the reduction of degrees of freedom given cells
with zero entries seems not to be known. See Bishop, Fienberg, and Holland 1975.
6. It is not clear from the article how the correlations of the latent variables, GPQ and
ABILITY, with other variables such as publishing productivity and QFJ were obtained.
They can be obtained, for example, by using the factor structure as a regression model to
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calculate estimated factor scores for each subject, or by including the covariances of the
latents among the free parameters in a set of structural equations and letting a program
such as LISREL estimate their values. In general the results of these procedures will be
different.
7. The small differences are presumably attributable to round-off errors.
8. We do not know whether this method of graph generation produces “realistic” graphs.
One feature of some of the graphs generated in this fashion that may not be desirable is
the existence of isolated variables. An informal examination showed topologies not
unlike the Alarm network.

Chapter 6
1. We thank Thomas Verma (personal communication) for pointing out an error in the
original formulation of the CI algorithm.
2. N.B. “P1,” “M,” “R,” in this line do not refer to vertices on the definite discriminat-
ing path U.

Chapter 7
1. This section is based on Spirtes, Glymour, Scheines, Meek, Fienberg, and Slate 1992.

Chapter 8
1. In linear regression, we understand the “direct influence” of Xi on Y to mean (i) the
change in value of a variable Y that would be produced in each member of a population
by a unit change in Xi, with all other X variables forced to be unchanged. Other meanings
might be given, for example: (ii) the population average change in Y for unit change in Xi,
with all other X variables forced to be unchanged; (iii) the change in Y in each member of
the population for unit change in Xi; (iv) the population average change in Y for unit
change in Xi; etc. Under interpretations (iii) and (iv) the regression coefficient is an
unreliable estimate whenever Xi also influences other regressors that influence Y.
Interpretation (ii) is equivalent to (i) if the units are homogeneous and the stochastic
properties are due to sampling; otherwise, regression will be unreliable under
interpretation (i) except in special cases, for example, when the linear coefficients, as
random variables, are independently distributed (in which case the analysis given here
still applies [Glymour, Spirtes, and Scheines 1991a]).
2. In fact, we were inadvertently misinformed that all seven tests are components of
AFQT and we first discovered otherwise with the SGS algorithm.
3. The correlation matrix given in Rawlings 1988 incorrectly gives the correlation
between CU and NH4 as 0.93.
4. The “maximum R-square” and “stepwise” options in PROC REG in the SAS program.
5. Although the definition of the population in this case is unclear, and must in any case
be drawn quite narrowly.
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6. More exactly, at .05, with the exception of M G the partial correlation of every
regressor with BIO  vanishes when some set containing PH is controlled for; the
correlation of MG with BIO vanishes when CA is controlled for.
7. Searches at lower significance levels remove the adjacency between FI and EN.

Chapter 9
1. Personal communication.
2. We thank Jay Kadane for pointing out that the causal relationship between Preference
and other variables might be different in the experimental and non-experimental
populations, even if Preference is not directly manipulated.

Chapter 11
1. This chapter is an abbreviated version of Spirtes, Scheines, and Glymour 1990, and is
reprinted with the permission of Sage Publications.
2. The original TETRAD program (Glymour, Scheines, Spirtes, and Kelly 1987) had no
such scoring function. It was left to the user to balance the Explanatory and Falsification
principles.
3. We have also implemented heuristic search procedures that are theoretically less
reliable than that described here but are much faster and in practice about equally
reliable.
4. LISREL VII retains the same architecture but with an altered modification index.
5. LISREL VI outputs a number of other measures that could be used to suggest
modifications to a starting model, but these are not used in the automatic search. See
Costner and Herting 1985.
6. As long as they are not in the list of parameters not to be freed.
7. Since the Lagrange Multiplier statistic, like the modification indices of LISREL VI,

estimates the effect on the χ2 of freeing a parameter, in subsequent sections we will use
the term “modification index” to refer to either of these statistics.
8. EQS allows the user to specify several different types of searches. We have only
described the one used in our Monte Carlo simulation tests.
9. We are indebted to Peter Bentler for suggesting this transformation.
10. We did not provide LISREL or EQS with the values of the parameters in the original
models that generated our covariance matrices because the input to LISREL and EQS
was a pseudocorrelation matrix, not the original covariance matrix. We therefore
provided the programs with the population parameters of transformed models that would
generate the pseudo correlation matrices. The detailed transformations are given in
Spirtes (1990).
11. For LISREL IV, the details of this procedure are described in Glymour et al. 1987.
The same procedure works for LISREL VI with the exception of the Beta matrix. See
Joreskog and Sorbom (1984).
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12. To simplify the calculations, we assumed that the length of the lists output by
TETRAD II for all of the covariance matrices generated by a single model was in each
case equal to the average length of the lists. This is a fairly good approximation in most
cases.
13. The expression “X C Y” means that the error terms for X and Y are correlated, or,
equivalently, that there is an additional, common cause of X and Y.
14. TETRAD II will, on request, automatically generate EQS input files for all models
that it suggests.

Chapter 12
1. Lauritizen’s proposal was given at a lecture at the Santa Fe Institute in 1997. At this
writing, Lauritzen and Richardson are working on the details of the required
parameterization. We thank Thomas Richardson for very helpful discussions.
2. We wish to thank Larry Wasserman, Teddy Seidenfeld, and Jamie Robins for many
valuable conversations on the issue of consistency, although this does not imply that they
endorse any of our conclusions.
3. We are grateful to David Heckerman, Greg Cooper, and Christopher Meek for
permission to use their article.
4. In sections 12.5.1 through 12.5.6, “we” refers to Heckerman, Meek, and Cooper.
5. Bernardo and Smith (1994) provide a summary of likelihoods from the exponential
family and their conjugate priors.
6. Discussions of equivalent sample size can be found in Winkler 1967 and Heckerman et
al. 1995.
7. The algorithm assumes that there are no hidden variables. See section 12.5.5 for a
discussion of hidden-variable models and methods for learning them. A modification of
the PC algorithm has been implemented in Pronel, which can be used in conjunction with
Hugin, a package for updating Bayesian networks and helping users construct Bayesian
networks. BIFROST (Hojsgaard and Thieson 1995) constructs block recursive models
which can also be used in conjunction with Hugin. See http://www.hugin.dk.
8. One of the technical assumptions used to derive this approximation is that the prior is
bounded and bounded away from zero around.
9. The MAP configuration θm depends on the coordinate system in which the parameter

variables are expressed. The MAP given here corresponds to the canonical coordinate
system for the multinomial distribution (see, for example, Bernardo and Smith 1994, pp.
199–202.)
10. In particular, Heckerman (1995) showed that strong likelihood equivalence is not
consistent with parameter independence and parameter modularity.
11. We say as “typically employed” because the FCI and PC algorithms take a
significance level as a parameter. We will assume that for samples of size between 100
and 10000 the significance levels are in the range 0.001 to 0.1.

variables are expressed. The MAP given here corresponds to the canonical coordinate
system for the multinomial distribution (see, for example, Bernardo and Smith 1994, pp.
199–202.)
10. In particular, Heckerman (1995) showed that strong likelihood equivalence is not
consistent with parameter independence and parameter modularity.
11. We say as “typically employed” because the FCI and PC algorithms take a
significance level as a parameter. We will assume that for samples of size between 100
and 10000 the significance levels are in the range 0.001 to 0.1.

ˆ .θm

θm
−
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12. We wish to thank Larry Wasserman for valuable discussions regarding the priors and
the resulting posteriors, although the conclusions about the plausibility of various priors
are our own.
13. The values were calculated by numerical integration in Mathematica. Although on
several of the points Mathematica issued warnings, in no case did the results of several
different methods of numerical integration differ by more than 0.02.
14. For the purposes of comparing the prior suggested by Robins and Wasserman with
some common alternatives, we have changed some minor details about how DAGs are
counted; the results are essentially the same, however.
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14. For the purposes of comparing the prior suggested by Robins and Wasserman with
some common alternatives, we have changed some minor details about how DAGs are
counted; the results are essentially the same, however.
15. Needleman’s regression had 6 independent variables and an R2 of .271. Ours has 3
independent variables with an R2 of .243.
16. Personal communication.

13.

14.

15.
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A: In a graph G, Let A(A,B) be the union of the ancestors of A or B.

Acceptable: Let a total order Ord of variables in a graph G  be acceptable for G if and
only if whenever A ≠ B and there is a directed path from A to B in G , A precedes B in
Ord.

After: In a graph G, vertex X is after vertex Y if and only if there is a directed path from
Y to X in G.

Almost Pure: We say that a measurement model is almost pure if the only kind of
impurities among the measured variables are common cause impurities. An almost pure
latent variable graph is one in which the measurement model is almost pure.

Before: In a graph G, vertex X is before vertex Y if and only if there is a directed path
from X to Y in G.

C.F: See constant factor.

Choke point: In a directed acyclic graph G, if for all T(K,L) in T(K,L) and all T(I,J) in
T(I,J), L(T(K,L)) and J(T(I,J)) intersect at a vertex Q, then Q is an LJ(T(I,J),T(K,L))
choke point. Similarly, if for all T(K,L) in T(K,L) and all T(I,J) in T(I,J), L(T(K,L)) and
all J(T(I,J)) intersect at a vertex Q, and for all T(I,L) in T(I,L) and all T(J,K) in T(J,K),
L(T(I,L)) and J(T(J,K)) also intersect at Q, then Q is an LJ(T(I,J),T(K,L),T(I,L),T(J,K))
choke point. Also see the definition of trek.

Combined graph: See manipulation.

Constant factor: In an LCF or LCT T, if an expression is equal to ce, where c is a
nonzero constant, and e is a product of equation coefficients raised to positive integral
powers, then c is the constant factor (c.f.) of  ce.

Contains: In a directed acyclic graph, directed paths R(U,I) and R(U,J) contain trek T
iff I(T(I,J)) is a final segment of R(U,I) and J(T(I,J)) is a final segment of R(U,J).

D: Given a directed acyclic graph G, D(Xi,Xj) is the set of all directed paths from Xi to Xj.

D-connection: See D-separation.
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Definite discriminating path: In a partially oriented inducing path graph , U is a
definite discriminating path for B if and only if U is an undirected path between X and
Y containing B, B ≠ X, B ≠ Y, every vertex on U except for B and the endpoints is a
collider or a definite noncollider on U, and

(i) if V and V  are adjacent on U, and V  is between V and B on U, then V *→ V  on U,
(ii) if V is between X and B on U and V is a collider on U then V → Y in , else V ←* Y in

,
(iii) if V is between Y and B on U and V is a collider on U then V → X in , else V ←* X
in ,
(iv) X and Y are not adjacent in .

Definite noncollider: A vertex B is a definite noncollider on undirected path U if and
only if either B is an endpoint of U, or there exist vertices A and C such that U contains
one of the subpaths A ← B *–* C, A *–* B → C, or A *–* B *–* C.

Definite nondescendant: If �is the FCI partially oriented inducing path graph of G over
O, then X is in Definite-Nondescendants(Y) if and only if there is no semidirected path
from any member of Y to X in .

Definite-SP: For a partially oriented inducing path graph  over O and ordering Ord
acceptable for , V is in Definite-SP(Ord,X) if and only if V ≠ X and there is an
undirected path U in  between V and X such that every vertex on U except for X is a
predecessor of X in Ord, and every vertex on U except for the endpoints is a collider on
U.

Dependent: In an LCT or LCF S , a variable Xi is dependent iff Xi does not have zero
indegree.

Det: Det(Z) is the set of variables determined by any subset of Z.

Determines: A set of variables Z determines the set of variables A, when every variable
in A is a deterministic function of the variables in Z, and not every variable in A is a
deterministic function of any proper subset of Z.

Det-connected: See Det-separation.

Det-separated: If G is a directed acyclic graph over V, Z is a subset of V that does not
contain X or Y, and X ≠ Y, then X and Y are det-separated given Z and Deterministic(V)
if and only if either X and Y are d-separated given Z ∪ Det(Z) in some Mod(G) relative
to Deterministic(V) and Z, or X or Y is in Det(Z); otherwise if X ≠ Y and X and Y are not
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in Z, then X and Y are det-connected given Z and Deterministic(V). If X, Y and Z are
disjoint sets of variables in V, and X and Y are non-empty, then X and Y are det-
separated given Z if and only if every member X of X and every member Y of Y are det-
separated given Z; otherise if X, Y and Z are disjoint sets of variables in V, and X and Y
are non-empty, then X and Y are det-connected given Z and Deterministic(V).

Discriminating path: In an inducing path graph G , U is a discriminating path for B if
and only if U is an undirected path between X and Y containing B, B ≠ X, B ≠ Y, and

(i) if V and V  are adjacent on U, and V  is between V and B on U, then V *→ V  on U,
(ii) if V is between X and B on U and V is a collider on U then V → Y in G , else V ←* Y
in G ,
(iii) if V is between Y and B on U and V is a collider on U then V → X in G , else V ←* X
in G ,
(iv) X and Y are not adjacent in G .

Distributed form: The distributed form of an expression or equation E is the result of
carrying out every multiplication, but no additions, subtractions, or divisions in E. If there
are no divisions in an equation then its distributed form is a sum of terms. For example,
the distributed form of the equation u = (a + b)(c + d)v is u = acv + adv + bcv + bdv.

D-map: An acyclic graph G over V is a D-map of probability distribution P(V) iff for
every X, Y, and Z that are disjoint sets of random variables in V, if X is not d-separated
from Y given Z in G then X is not independent of Y given Z in P(V). However, when D-
map is applied to the graph in an LCT, the quantifiers in the definitions apply only to sets
of non-error variables.

D-Sep: If G  is an inducing path graph over O and A ≠ B, let V ∈ D-SEP(A,B) if and only
if A ≠ V and there is an undirected path U between A and V such that every vertex on U is
an ancestor of A or B, and (except for the endpoints) is a collider on U.

D-separated: If G is a directed acyclic graph with vertex set V, Z is a set of vertices not
containing X or Y, X ≠ Y, and X and Y are not in Z, then X and Y are D-separated given Z
and Deterministic(V) if and only if there is no undirected path U in G between X and Y
such that each collider on U has a descendant in Z, and no other vertex on U is in Det(Z);
otherwise if X ≠ Y and X and Y are not in Z, then X and Y are D-connected given Z and
Deterministic(V). Similarly, if X, Y, and Z are disjoint sets of variables, and X and Y
are non-empty, then X and Y are D-separated given Z and Deterministic(V) if and only
if each pair <X,Y> in the Cartesian product of X and Y are D-separated given Z and
Deterministic(V); otherwise if X, Y, and Z are disjoint, and X and Y are non-empty,
then X and Y are D-connected given Z and Deterministic(V).(Note that this is different
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from d-separation, which begins with a lowercase “d,” and d-connection, which also
begins with a lowercase “d.”)

e: In an LCF F, e(S) is equal to S if S is an independent variable, and it is equal to the
error variable into S if S is not an independent variable.

E: If X is a random variable, E(X) is the expected value of X.

Equiv(G ): If G  is an inducing path graph over O, Equiv(G ) is the set of inducing path
graphs over the same vertices with the same d-connections as G.

E.C.F: See equation coefficient factor.

Equation coefficient: See linear causal theory, linear causal form.

Equation coefficient factor: In an LCF or LCT T, if an expression is equal to ce, where
c is a nonzero constant, and e is a product of equation coefficients raised to positive
integral powers, then e is the equation coefficient factor(e.c.f.) of ce.

Equivalent to a polynomial: In an LCF, a quantity (e.g., a covariance) X is equivalent
to a polynomial in the coefficients and variances of exogenous variables if and only if
for each LCF F = <<R,M,E>, C, V, EQ,L,Err> and in every LCT S = <<R ,M ,E >,
( ,f,P), EQ ,L ,Err > that is an instance of F, there is a polynomial in the variables in C
and V such that X is equal to the result of substituting the linear coefficients of S in as
values for the corresponding variables in C, and the variances of the exogenous variables
in S as values for the corresponding variables in V.

Error variable: See linear causal theory, linear causal form.

Exogenous: If G is a directed acyclic graph over a set of variables V ∪ W, and V ∩ W =
∅, then W is exogenous with respect to V in G if and only if there is no directed edge
from any member of V to any member of W.

Faithfully indistinguishable: We will say that two directed acyclic graphs, G, G  are
faithfully indistinguishable (f.i.) if and only if every distribution faithful to G is faithful
to G  and vice-versa.

F.I.: See faithfully indistinguishable.

Final segment: In a graph G, a path U of length n is a final segment of path V of length
m iff m ≥ n, and for 1 ≤ i ≤ n+1, the ith vertex of V equals the (m-n+i)th vertex of U.
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I-Map: An acyclic directed graph Gover V is an I-map of probability distribution P(V)
iff for every X, Y, and Z that are disjoint sets of random variables in V, if X is d-
separated from Y given Z in G then X is independent of Y given Z in P(V). However,
when I-map is applied to the graph in an LCT, the quantifiers in the definitions apply
only to sets of non-error variables.

Ind: For a directed acyclic graph G, Ind is the set of independent variables in G.

IndaIJ : IndaIJ is the coefficient of J in the independent equational for I. See also
independent equational.

Independent: In an LCT or LCF S , a variable Xi is independent iff Xi has zero indegree
(i.e., there are no edges directed into it). Note that the property of independence is
completely distinct from the relation of statistical independence. The context will make
clear in which of these senses the term is used.

Independent equational: In an LCF <<R,M,E>, C, V, EQ,L,S> an equation is an
independent equational for a dependent variable Xj if and only if it is implied by EQ
and the variables in R which appear on the r.h.s. are independent and occur at most once.

Inducing path: If G is a directed acyclic graph over a set of variables V, O is a subset of
V containing A and B, and A ≠ B, then an undirected path U between A and B is an
inducing path relative to O if and only if every member of O on U except for the
endpoints is a collider on U, and every collider on U is an ancestor of either A or B. We
will sometimes refer to members of O as observed variables.

Inducing path graph: G  is an inducing path graph over O for directed acyclic graph
G if and only if O is a subset of the vertices in G, there is an edge between variables A
and B with an arrowhead at A if and only if A and B are in O, and there is an inducing
path in G between A and B relative to O that is into A. (Using the notation of chapter 2,
the set of marks in an inducing path graph is {>, EM}.)

Initial segment: In a graph G, a path U of length n is an initial segment of path V of
length m iff m ≥ n, and for 1 ≤ i ≤ n+1, the ith vertex of V equals the ith vertex of U.

Into: In a graph G, an edge between A and B is into A if and only if the mark at the A end
of the edge is an “>.” If an undirected path U between A and B contains an edge into A
we will say that U is into A.

Invariant: If G is a directed acyclic graph over a set of variables V ∪ W, W is
exogenous with respect to V in G, Y and Z are disjoint subsets of V, P(V ∪ W) is a
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distribution that satisfies the Markov condition for G, and Manipulated(W) = X, then
P(Y|Z) is invariant under direct manipulation of X in G by changing W from w1 to w2 if
and only if P(Y|Z,W = w1) = P(Y|Z,W = w2) wherever they are both defined.

Instance: An LCT S is an instance of an LCF F if and only if the graph of S is
isomorphic to the graph of F.

IP: In a directed acyclic graph G, if Y ∩ Z = ∅, W is in IP(Y,Z) (W has a parent that is
an informative variable for Y given Z) if and only if W is a member of Z, and W has a
parent in IV(Y,Z) ∪ Y.

IV: In a directed acyclic graph G, if Y ∩ Z = ∅, then V is in IV(Y,Z) (informative
variables for Y given Z) if and only if V is d-connected to Y given Z, and V is not in
ND(YZ). (This entails that V is not in Y ∪ Z.)

Label: See linear causal theory, linear causal form.

Length: In a graph G, the length of a path equals the number of vertices in the path
minus one.

Last point of intersection: In a directed acyclic graph G, the last point of intersection
of directed path R(U,I) with directed path R(V,J) is the last vertex on R(U,I) that is also
on R(V,J). Note that if G is a directed acyclic graph, the last point of intersection of
directed path R(U,I) with directed path R(V,J) equals the last point of intersection of
R(V,J) with R(U,I); this is not true of directed cyclic paths.

LCF: See linear causal form.

LCT: See linear causal theory.

Linear causal form: A linear causal form is an unestimated LCT in which the linear
coefficients and the variances of the exogenous variables are real variables instead of
constants. This entails that an edge label in an LCF is a real variable instead of a constant
(except that the label of an edge from an error variable is fixed at one.) More formally, let
a linear causal form (LCF) be <<R,M,E>, C, V, EQ,L,Err> where

(i) <R,M,E> is a directed acyclic graph. Err is a subset of R called the error variables.
Each error variable is of indegree 0 and outdegree 1. For every Xi in R of indegree ≠ 0
there is exactly one error variable with an edge into Xi.
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(ii) cij is a unique real variable associated with an edge from Xj to Xi , and C is the set of

cij. V is the set of variables σ i
2
, where Xi is an exogenous variable in <R,M,E> and σ i

2

is a variable that ranges over the positive real numbers.
(iii) L is a function with domain E such that for each e in E, L(e) = cij iff head(e) = Xi and
tail(e) = Xj. L(e) will be called the label of e. By extension, the product of labels of edges
in any acyclic undirected path U will be denoted by L(U), and L(U) will be called the
label of U. The label of an empty path is fixed at 1.
(iv) EQ is a consistent set of independent homogeneous linear equationals in variables in
R. For each Xi in R of positive indegree there is an equation in EQ of the form

Xi = cij
Xj ∈Parents(Xi )

∑ Xj

where each cij is a real variable in C and each Xi is in R. There are no other equations in
EQ. cij is the equation coefficient of Xj in the equation for Xi.

Linear causal theory: Let a linear causal theory be (LCT) be <<R,M,E>, ( ,f,P),
EQ,L,Err> where

(i) ( ,f,P) is a probability space, where  is the sample space, f is a sigma-field over ,
and P is a probability distribution over f.
(ii) <R,M,E> is a directed acyclic graph. R is a set of random variables over ( ,f,P).
(iii) The variables in R have a joint distribution. Every variable in R has a nonzero
variance. E is a set of directed edges between variables in R. (M is the set of marks that
occur in a directed graph, that is, {EM, >}.
(iv) EQ is a consistent set of independent homogeneous linear equations in random
variables in R. For each Xi in R of positive indegree there is an equation in EQ of the
form

Xi = aij
Xj ∈Parents(Xi )

∑ Xj

where each aij is a nonzero real number and each Xi is in R. This implies that each vertex
Xi in R of positive indegree can be expressed as a linear function of all and only its
parents. There are no other equations in EQ. A nonzero value of aij is the equation
coefficient of Xj in the equation for Xi.
(v) If vertices (random variables) Xi and Xj are exogenous, then Xi and Xj are pairwise
statistically independent.
(vi) L is a function with domain E such that for each e in E, L(e) = aij iff head(e) = Xi and
tail(e) = Xj. L(e) will be called the label of e. By extension, the product of labels of edges

Xi = aij
Xj ∈Parents(Xi )

∑ Xj

Xi = cij
Xj ∈Parents(Xi )

∑ Xj
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in any acyclic undirected path U will be denoted by L(U), and L(U) will be called the
label of U. The label of an empty path is fixed at 1.
(vii) There is a subset of S of R called the error variables, each of indegree 0 and
outdegree 1. Note that the variance of any endogenous variable I conditional on any set of
variables that does not contain the error variable of I is not equal to zero.

Linear Representation: A directed acyclic graph G over V linearly represents a
distribution P(V) if and only if there exists a a directed acyclic graph G  over V  and a
distribution P (V ) such that
(i) V is included in V ;
(ii) for each endogenous (that is, with positive indegree) variable X in V, there is a unique
variable X in V \V with zero indegree, positive variance, outdegree equal to one, and a
directed edge from X to X;
(iii) G is the subgraph of G  over V;
(iv) each endogenous variable in G is a linear function of its parents in G ;
(v) in P (V ) the correlation between any two exogenous variables in G  is zero;
(vi) P(V) is the marginal of P (V ) over V.

The members of V \V are called error variables and we call G  the expanded graph.

Linearly implies: A directed acyclic graph G linearly implies AB.H = 0 if and only if

AB.H = 0 in all distributions linearly represented by G. (We assume all partial correlations
are defined for the distribution.)

Manipulate: See manipulation.

Manipulated graph: See manipulation.

Manipulation: If G is a directed acyclic graph over a set of variables V ∪ W, and V ∩
W = ∅, then W is exogenous with respect to V in G if and only if there is no directed
edge from any member of V to any member of W. If GComb is a directed acyclic graph
over a set of variables V ∪ W, and P(V ∪ W) satisfies the Markov condition for GComb,
then changing the value of W from w1 to w2 is a manipulation of GComb with respect to V
if and only if W is exogenous with respect to V, and P(V|W = w1) ≠ P(V|W = w2). We
define PUnman(W)(V) = P(V|W = w1), and PMan(W)(V) = P(V|W = w2), and similarly for
various marginal and conditional distributions formed from P(V). We refer to GComb as
the combined graph, and the subgraph of GComb over V as the unmanipulated graph
GUnman. V is in Manipulated(W) (that is, V is a variable directly influenced by one of the
manipulation variables) if and only if V is in Children(W) ∩ V; we will also say that the
variables in Manipulated(W) have been directly manipulated. We will refer to the
variables in W as policy variables. The manipulated graph, GMan is a subgraph of
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GUnman for which PMan(W)(V) satisfies the Markov Condition and which differs from
GUnman in at most the parents of members of Manipulated(W).

Minimal I-map: An acyclic graph G is a minimal I-map of probability distribution P iff
G is an I-map of P, and no subgraph of G is an I-map of P. However, when minimal I-
map is applied to the graph in an LCT, the quantifiers in the definitions apply only to sets
of non-error variables.

Mod: If G is a directed acyclic graph over V, and Z is included in V, then G  is in
Mod(G) relative to Deterministic(V) and Z if and only if for each V in V

(i) if there exists a set of vertices included in Z that are nondescendants of V in G and that
determine V, then Parents(G ,V)= X, where X is some set of vertices included in Z that
are nondescendants of V in G and that determine V;
(ii) if there is no set X of vertices included in Z that are nondescendants of V in G and
that determine V, then Parents(G ,V) = Parents(G,V).

ND: In a directed acyclic graph G, ND(Y) is the set of all vertices that do not have a
descendant in Y.

Nondescendants: In a directed acyclic graph G, X is in Nondescendants(Y) if and only
if there is no directed path from any member of Y to X in G.

Observed: See inducing path graph, inducing path.

Out of: In a graph G, an edge between A and B is out of A if and only if the mark at the A
endpoint is the empty mark. If an undirected path U between A and B contains an edge
out of A we will say that U is out of A.

Parallel embedding: Directed acyclic graphs G1 and G2 with common vertex set O have
a parallel embedding in directed acyclic graphs H1 and H2 having a common set U of
vertices that includes O if and only if

(i) G1 is the subgraph of H1 over O and G2 is the subgraph of H2 over O;.
(ii) every directed edge in H1 but not in G1 is in H2 and every directed edge in H2 but not
in G2 is in H1.

Path form: If G is a directed acyclic graph, let Let PXY be the set of all directed paths in
G from X to Y. In an LCF S, the path form of a product of covariances IJ KL is the
distributed form of
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IJ KL - IL JK is in path form iff both terms are in path form.� IJ KL - IL JK is in path form
iff both terms are in path form.

Policy variables: See manipulate.

Possible-D-SEP(A,B): If A ≠ B in partially oriented inducing path graph , V is in
Possible-D-Sep(A,B) in  if and only if V ≠ A, and there is an undirected path U between
A and V in  such that for every subpath <X,Y,Z> of U either Y is a collider on the
subpath, or Y is not a definite noncollider on U, and X, Y, and Z form a triangle in .

Possibly d-connecting: If A and B are not in Z, and A ≠ B, then an undirected path U
between A and B in a partially oriented inducing path graph �over O is a possibly d-
connecting path of A and B given Z if and only if every collider on U is the source of a
semidirected path to a member of Z, and every definite noncollider is not in Z.

Possibly-IP: If � is a partially oriented inducing path graph of G over O, then X is in
Possibly-IP(Y,Z) if and only if Y and Z are disjoint, X is in Z, and there is a possibly d-
connecting path between X and some Y in Y given Z\{X} that is not out of X.

Possibly-IV: If  is a partially oriented inducing path graph of G over O, then X is in
Possibly-IV(Y,Z) if and only if X is not in Z, there is a possibly d-connecting path
between X and some Y in Y given Z, and there is a semidirected path from X to a member
of Y ∪ Z.

Possible-SP: For a partially oriented inducing path graph  and ordering Ord acceptable
for , let V be in Possible-SP(Ord,X) if and only if V ≠ X and there is an undirected path
U in  between V and X such that every vertex on U except for X is a predecessor of X in
Ord, and no vertex on U except for the endpoints is a definite-noncollider on U.

Predecessors: For inducing path graph G  and acceptable total ordering Ord, let
Predecessors(Ord,V) equal the set of all variables that precede V (not including V)
according to Ord.

Proper final segment: A path U of length n is a proper final segment of path V of
length m iff U is a final segment of V and U ≠ V.

L R L R L R L RU
RRU

V
RRVUJUIIJ VLVKKL

( ) ( ' ) " "'
' "'"

σ σ2 2

∈∈∈ ∈∈∈
∑∑∑ ∑∑∑















 ( ) ( )

















PPU PPU

490  Glossary490  Glossary



Glossary 491

Proper initial segment: A path U of length n is a proper initial segment of path V of
length m iff U is an initial segment of V and U ≠ V.

PMan(W)(V): See manipulate.

PUnman(W)(V): See manipulate.

Pure Latent Variable Graph: A pure latent variable graph is a directed acyclic graph
in which each measured variable is a child of exactly one latent variable, and a parent of
no other variable.

Random coefficient linear causal theory: The definition of a random coefficient
linear causal theory is the same as that of a linear causal theory except that each linear
coefficient is a random variable independent of the set of all other random variables in
the model.

Rigidly statistically indistinguishable: If directed acyclic graphs G and G  are strongly
statistically indistinguishable and every parallel embedding of G and G  is strongly
statistically indistinguishable then structures G and G  are rigidly statistically
indistinguishable (r.s.i.).

R.S.I.: See rigidly statistically indistinguishable.

Semi-directed: A semidirected path from A to B in partially oriented inducing path
graph  is an undirected path U from A to B in which no edge contains an arrowhead
pointing toward A, that is, there is no arrowhead at A on U, and if X and Y are adjacent on
the path, and X is between A and Y on the path, then there is no arrowhead at the X end of
the edge between X and Y.

Source: See trek.

SP: For inducing path graph G  and acceptable total ordering Ord, W is in SP(Ord,G ,V)
(separating predecessors of V in G  for ordering Ord) if and only if W ≠ V and there is an
undirected path U between W and V such that each vertex on U except for V precedes V
in Ord and every vertex on U except for the endpoints is a collider on U.

S.S.I.: See strongly statistically indistinguisable.

Strongly statistically indistinguishable: Two directed acyclic graphs G, G  are strongly
statistically indistinguishable if and only if they have the same vertex set V and every
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distribution P on V satisfying the Minimality and Markov Conditions for G satisfies those
conditions for G , and vice-versa.

Substituable: In an inducing path or directed acyclic graph G that contains an undirected
path U between X and Y, the edge between V and W is substitutable for U(V,W) in U if
and only if V and W are on U, V is between X and W on U, G contains an edge between V
and W, V is a collider on the concatenation of U(X,V) and the edge between V and W if
and only if it is a collider on U, and W is a collider on the concatenation of U(Y,W) and
the edge between V and W if and only if it is a collider on U.

T: See trek.

Termini: See trek.

Trek: A trek T(I,J) between two distinct vertices I and J is an unordered pair of acyclic
directed paths from some vertex K to I and J respectively that intersect only at K. The
source of the paths in the trek is called the source of the trek. I and J are called the
termini of the trek. Given a trek T(I,J) between I and J, I(T(I,J)) will denote the path in
T(I,J) from the source of T(I,J) to I and J(T(I,J)) will denote the path in T(I,J) from the
source of T(I,J) to J. One of the paths in a trek may be an empty path. However, since the
termini of a trek are distinct, only one path in a trek can be empty. T(I,J) is the set of all
treks between I and J. T(I,J) will represent a trek in T(I,J). S(T(I,J)) represents the source
of the trek T(I,J).

Undirected: In a graph G, Let V be in Undirected(X,Y) if and only if V lies on some
undirected path between X and Y.

Unmanipulated graph: See manipulation.

UX: In an LCF S, UX is the set of all independent variables that are the source of a

directed path to X. (Note that if X is independent then X ∈ UX since there is an empty

path from every vertex to itself.)

UXY: In an LCF S, UXY is UX ∩ UY.

Weakly faithfully indistinguishable: Two directed acyclic graphs are weakly faithfully
indistinguishable (w.f.i.) if and only if there exists a probability distribution faithful to
both of them.
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Weakly statistically indistinguishable: Two directed acyclic graphs are weakly
statistically indistinguishable (w.s.i.) if and only if there exists a probability distribution
meeting the Minimality and Markov Conditions for both of them.

W.F.I.: See weakly faithfully indistinguishable.

W.S.I.: See weakly statistically indistinguishable.
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