JOHAN VAN BENTHEM Program Constructions that
are Safe for Bisimulation*

Abstract It has been known since the seventies that the formulas of modal logic are
invariant for bisimulations between possible worlds models — while conversely, all bisim-
ulation-invariant first-order formulas are modally definable. In this paper, we extend
this semantic style of analysis from modal formulas to dynamic program operations. We
show that the usual regular operations are safe for bisimulation, in the sense that the
transition relations of their values respect any given bisimulation for their arguments. Our
main result is a complete syntactic characterization of all first-order definable program
operations that are safe for bisimulation. This is a semantic functional completeness
result for programming, which may be contrasted with the more usual analysis in terms
of computational power. The ‘Safety Theorem’ can be modulated in several ways. We
conclude with a list of variants, extensions, and further developments.

1. Bisimulation in Modal and Dynamic Logic

In current mathematical theories of computation, ‘bisimulation’ between la-
beled transition systems has become a natural measure for equivalence of
processes. Essentially, a labeled transition system is a set of states with a
family of binary transition relations over these:

(S) {Ra}aEA),
where certain unary predicates over slales may also be present (common

examples are ‘success’ or ‘dead-lock’). Now, the basic process equivalence is
as follows (cf. Park 1981):

DEFINITION. A bistmulation between two labeled transition systems is a
binary relation C between their state sets satisfying ‘atomic harmony’ as
well as two zigzag clauses allowing ‘mutual tracing’ of the process:

(i) if sCés', then s, 8’ validate the same atomic propositions,

(ii) if s C s’ and s R,4t, then there is some t' with s'R,t' and t C't'; and vice
versa.

A ‘computational process’ may now be viewed as a class of labeled transi-
tion systems that is closed under bisimulation. The same notions had al-
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ready emerged in Modal Logic (cf. van Benthem 1976). Bisimulation is the
key semantic invariance for the modal language describing labeled transition
systems, viewed as poly-modal Kripke models, which has the usual Boolean
operators as well as indexed modalities {(a) for each atomic action a € A.
Modal formulas are invariant for bisimulation, in the following sense. When-
ever C is a bisimulation between two models M, M’ with s C's’, we have

M,sEp iff M sE for all modal formulas ¢.
3 LP 3 (p

Atomic harmony (i) provides the induction base here, and the back-and-
forth clauses (ii) are just what is needed here to push the induction through
for the existential modalities. This observation can also be reversed, show-
ing that the above ‘bisimulation invariance’ is indeed the defining semantic
characteristic of the modal formalism. To state the relevant model-theoretic
preservation result, one views the latter formalism as a fragment of the
appropriate first-order description language for Kripke models (using the
well-known ‘standard translation’, cf. van Benthem 1984). Then, we have
the following result:

THEOREM. A first-order formula ¢(z) over labeled transition systems is
invariant for bisimulation if and only if it is definable by means of a modal
formula.

The original proof of this Invariance Theorem is in van Benthem 1976, a
short general version using w-saturated models (cf. Chang & Keisler 1973)
is in van Benthem 1991A.

This style of analysis is preserved when passing from basic Modal Logic
to Propositional Dynamic Logic (Harel 1984), which also descibes complex
transitions (induced by compound ‘programs’) over labeled transition sys-
tems by means of regular program expressions 7, including tests, and their
corresponding modalities (7). Here again, there is invariance of dynamic
formulas ¢ for bisimulations C between two models — but there is also a
new aspect. Intertwined with the old proof, one also has to show that the
usual back-and-forth clauses in bisimulation are inherited by the regular pro-
gram constructions. Indeed, each binary transition relation [r] shows this
behaviour, upward from the atomic ones. More precisely, a joint induction
on programs and formulas shows:

PROPOSITION. If C s a bisimulation between two models M, M', with
sCs', then

(1) s, s’ verify the same formulas of propositional dynamic logic,
(ii) whenever s[n]M¢, then there exists t' with ' [x]M't and s' C'#'.
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This observation motivates the following notion of invariance for pro-
gram operations (where we indulge in a slight abuse of notation, for greater
readability):

DEFINITION. An operation O(Ry,...,Ry,) on programs is safe for bisimu-
lation if, whenever C is a relation of bisimulation between two models for
their transition relations Rj,...,R,, then it is also a bisimulation for the

defined relation O(Ry, ..., Ry).

Also independently from the preceding modal analysis, safety for bisim-
ulation seems to be an interesting general semantic criterion for admissible
basic programming operations. It is easy to show that, e.g., the regular
operations of relational composition j and choice U (i.e., Boolean union)
have this property. Another example are the standard test relations (p)?
for modal formulas ¢. All these examples reflect the key observations in
the straightforward inductive proof of the previous Proposition. For later
reference, we also mention the safety of one less familiar negation operation,
widely employed in the recent literature on so-called ‘dynamic semantics’
(cf. van Benthem 1996):

~(R) = {(z,y) | £ =y and for no z: TRz} ‘counter-domain’
Now, the following natural question arises:

Is there some companion to the earlier preservation theorem for modal
invariance, characterizing those programming operations that guarantee
safety for bisimulation?

More specifically, one may ask whether the semantic criterion of safety for
bisimulation gives us precisely the regular programming operations that have
been so prominent for independent computational reasons. Again, to make
the question precise, we go to the standard first-order description language
over labeled transition systems — this time, adding arbitrary binary relation
symbols for transition relations. Let us call a programming operation first-
order if can be defined using a formula #(z,y) of this language with two free
variables. All earlier operations are first-order in this sense, witness their
definitions:

(Ry; R9) dz (Rizz A Razy)
(R1URy) RizyV Rozy
~(R) z=1yA-3z Rxz

(P)? r=yA Pz
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The main result of this paper is the following complete semantic charac-
terization:

THEOREM. A first-order relational operation O(Ry,...,Ry) is safe for
bistmulation iff it can be defined using atomic relations Ryzy and atomic
tests (q)? for propositional atoms q in our models, using the three operations
5, ~ and U.

The proof of the Safety Theorem is somcwhat complex — whence we
postpone the main argument until Section 3 below. It turns on a Lemma
which expresses a model-theoretic fact about Modal Logic, namely, a preser-
vation theorem for ‘continuous’ modal formulas. We prove the latter result
separately in Section 2, for its independent interest.

2. Continnous modal formulas

Let us call a modal formula ¢(p) continuous in the proposition letter p if
(with some abuse of notation), the following equivalence holds in each model:

For cach family of subsets {PYier, p(UiciPr) <+ Vies 9(P2).

Examples are p A ¢, {a)p A (b)—q, p V {a)p, and non-examples are —p, [a]p.
We seek a syntactic characterization for this notion. Some precedents exist.
Continuity (properly) implies the well-known property of semantic mono-
tonicity, whose syntactic correlate is definability of ¢ using only positive
occurrences for the proposition letter p. (For first-order predicate logic, this
is the well-known Lyndon Theorem, which also holds for basic modal logic.
Cf. Andréka, van Benthem & Németi 1995.) Thus, we expect some even
stricter syntactic constraint here, which is provided by the following result:

THEOREM. Modulo logical equivalence, the p-continuous modal formaulas
©(p) are all those that can be written as disjunctions of formulas of the
‘existential forms’ ap A p, ag A (a1){ay A p), ag A {a1) (a1 A {a2)(az A p)),
etcetera, where all formulas a; are p-free.

Indeed, for standard predicate logic, a somewhat similar syntactic char-
acterization of Continuity is not hard to find (cf. van Benthem 1986), but
the straightforward argument given there cannot be reproduccd within the
modal fragment.

PrROOF. In one direction, it is easy to check that all forms described are
indeed continuous with respect to the proposition letter p. The hard part,
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as usual, is the converse, which we approach via the following auxiliary
assertion:

CLAIM. A continuous formula ¢ implies the infinite disjunction of all those
modal existential forms as described above which themselves imply ¢ as a
consequence.

Then, by Compactness, ¢ will imply some finite disjunction of these
forms, and hence it will be equivalent to the latter, since it follows from each
disjunct. Thus, it remains to prove the Claim (which is where the real work
lies).

Let M,w F ¢. By Continuity in its downward direction, using the fact
that the set V(p) is the union of its singletons, we have M’ w E ¢, where
p holds at only one world. (Note that V(p) can never be empty: since
(M) would imply an empty disjunction, which is a contradiction.) We may
assume that M’ w is generated from w (since ¢ is modal, this makes no
difference in truth value). Thus, let there be a finite path with labeled
transitions w = wo Ry w1 Re ... Ryw, E p from the root to the unique
world where p holds. Let &; be the set of p-free modal formulas that are
true at w;. Via the usual first-order translation, one can also think of all
modal formulas here as first-order ones. Now, the following valid semantic
consequence holds in first-order logic:

SUBCLAIM. @0(1}0), Rixoz1, Dy (.‘T,‘l), ce, Bpp 1wy, &y (’T‘n), Pr, E Q.

If we can show this, then once more by Compactness, a sequence of finite
subsets of the @; will do in the premise — which yields the required existen-
tial form implying ¢ by some straightforward predicate-logical manipulation.
Geuneralizing over all models, then, we have shown that the formula ¢ lo-
cally implies some such existential form everywhere: and hence it implies
their infinite disjunction globally.

PROOF OF THE SUBCLAIM. Consider any model N for the set of formu-
las @g(zo), Rizoz1, P1(Z1), ..., RnZn_1Zn, Pn(z,), with the required n-
sequence vg, v1, . . . , Up, for its free variables starting at v. As in modern proofs
of the preservation theorem for modal formulas with respect to bisimulation
(cf. van Benthem 1991A), we may suppose without loss of generality that

(i) M', N are w-saturated
(we are only dealing with first-order formulas);

(ii) M', N are intransitive trees via some ‘unraveling bisimulation’:
(we are in fact only dealing with modal formulas).
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We can draw these models as indicated, each with a distinguished branch
of length n+1, and the rest of the models lying in disjoint subtrees branching
off from these:

w(p)

Moreover, the following stipulation between states:
z=u if M' zand N,u verify the same L-modal formulas

defines an L-bisimulation between these two models. This may be shown
by the usual zigzag argument on saturated models — as in the proof of the
modal Invariance Theorem. In particular, this stipulation matches corre-
sponding points on the above two special branches, by the definition of the
sets @;. Now, our purpose is to further improve this L-bisimulation to a
(L I+ P)-bisimulation respecting also the propositional atom p, so that we
can transfer the truth of the initial formula (p) from left to right. For this
purpose, judicious geometrical rearrangement will be used on labeled transi-
tion graphs, to produce a situation where the matching on the two branches
is unique (in particular, the final world w, corresponds only to v,), while
subtrees on the left only contain matches in their corresponding subtrees on
the right — and vice versa.

For a start, without loss of generality, we may assume that all bisimula-
tion links occur between worlds at the same levels in the trees (any others
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may be omitted without losing the bisimulation property). Here are the main
steps in our procedure, which works upward along the special branches. As
often in possible worlds semantics, it helps to visualize what is going on
using suitable graph pictures:

(1a) Start with the match wi, v1. Suppose that world w; has links with
other level-one worlds in N, as shown in the following picture:

w n
w v

Then ‘de-couple’ by making a copy of the subtree T', wy on the left,
attaching this to the root w, and matching the former mates of w; on
the right to its copied companion wj (and so on upward in the graph
for the relevant relational successors). This transformation is pictured
below:

wy
un v1
w v
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The result is still an L-bisimulation between the model on the right and
the new enlarged one on the left, while the latter also L-bisimulates
with the original M. Now, in the enlarged model, a duplication occurs
of the single world w, with p, which is not what we want. But applying
the downward half of continuity again, we see that ¢(p) will still hold
at w if we have p true at just one of its two locations. Moreover, by
the isomorphism of copies, we may suppose that this happens at the
original location, without loss of generality.

(1b) Likewise, matches between v; and sisters of w; can be decoupled as

shown in the following picture, which again involves copying, but now
without any special moves for economizing on p-worlds:

T i

(2) The effect of the previous two moves is that the initial match wy, v

has become unique — and we can now repeat the procedure, moving
upward along the special branches until we reach the final match wy,
U, and make that unigue too.

Now, let M* be the enlarged model on the left-hand side (which has p

true only at the end of the special branch), and N* its companion on the
right-hand side with p only true at the end of its special branch. The original
enlarged N is this same model, but with possibly more occurrences of p in
other worlds. By the construction, the model N* (L+P)-bisimulates with

M,
the

such that v matches in both models. Then, our final argument traces
truth of ¢(p) in these successive models as follows:

©(p) still holds at w in the enlarged model M* (because of the construc-

tion),

via the (L+P)-bisimulation between M* and N*, it will transfer to v
in N*,
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e by upward monotonicity [the other side of continuity, which had not been
used so far in this proof], ¢(p) will also hold at v in N,

e by (L+P)-bisimulation, it will also hold at v in N: which was to be
shown. n

3. Proof of the Safety Theorem

Having obtained an explicit syntactic characterization of Continuity, we are
ready to give the proof for our main result. It may be broken up into the
following steps.

The given format is safe

(1) By our earlier observations, each operation of the described kind is safe
for bisimulation. Here are two examples. Composition. Let z R; Sy in M,
and z Cu, with u in Ms. There exists z in M; with xRz and 2S5y. By
bisimulation for R, onc finds a v in M; such that u Rv and zCv. Then, by
bisimulation for S, one finds a w in M3 such that v Sw and y Cw. The latter
is the required R;S-successor of u in Ms. Counterdomain. Let x ~(R)y in
M;: that is, z = y and = has no R-successors. Let zC'u in M. Now,
suppose that v had some R-successor in My. By bisimulation for R, there
would also be a corresponding R-successor for z in My: quod non. Thus,
(u,u) is a matching ~(R)-successor step in Ms.

Safety Stays Inside The Format

(2) Next, let #(z,y) be a first-order operation, in a language L, which is safe
for hisimulation. Note that invariance for bisimulation is really a language-
dependent notion: what matters is if the bisimulation goes back-and-forth
with respect to the atomic binary relations, and whether its matchings of
states respect the relevant unary predicates. Next, choose a new unary
predicate letter P.

CrLAIM. The formula 3y (6(z,y) A Py) is invariant for (L+ P)-bisimulation.

PROOF. Immediate from the safety of 8 for L-bisimulation, plus the obvious
fact that (L+P)-bisimulations are also L-bisimulations. u

(3) By the earlier-mentioned characterization of modal formulas, this means
that the first-order formula Jy (6(z,y) A Py) must be equivalent to some
modal formula ¢(p). Moreover, given the shape of our first-order formula,
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this ¢(p) will be continuous in the proposition letter p. But then, it will be
definable using a disjunction of formulas

ap Aary(ar A ... Alap)(an Ap)...),
where the o; do not contain the proposition letter p.
Now, it is straightforward to check the following assertion:

CrAam. # will be definable using the corresponding union of relations of
the form

(@0)?;a1;5(01)?5 ... san; (an)?

(4) Finally, one can remove possibly complex modal tests in the latter
schema:

Cram.  All complex modal tests ()? can be reduced to atomic ones using
only the regular operations ; and ~.

PRrROOF. This may be done using the following three valid identities to push
all tests inward:

(eAY)?=(0)?7; () (-p)?=r~(0)? ((a)p)? =~ ~(a;(p)?) =

4. Variations and extensions

4.1. Variants of the proof

The modal Safety Theorem was first published in a preprint four years ago
(van Benthem 1993B). In the meantime, the above laborious proof has been
simplified considerably by Marco Hollenberg (cf. Hollenberg 1997). The key
proof step for the preservation theorem about continuous modal formulas
¢(p) compared two models with distinguished paths leading up to some p-
world, that were created via successive model transformations (including
repeated appeals to Compactness, modal tree unraveling, and ‘w-copying’).
But in fact, so-called ‘2-unravelings’ suffice, that is, standard tree unrav-
elings with only two copies of each former node. Also, one merely needs
to maintain the crucial modal equivalence between the successive nodes on
the two distinguished paths in a sequence of decreasing syntactic complex-
ity. (At the root, one requires equivalence for all modal formulas up to
the modal operator depth of ¢ — afterwards, moving up the branches, one
‘counts down’ to at most operator depth zero.) The resulting argument can
be recast without Compactness, appealing only to finite modal Ehrenfeucht
games. In this manner, Hollenberg has specialized the modal Safety Theorem



Program Constructions . .. 321

to the realm of finite models — following the constructive game methods of
Rosen 1995, who first proved the natural ‘finite model version’ of the original
modal Invariance Theorem.

The Safety Theorem evidently generalizes the modal Invariance Theo-
rem, as invariant formulas correspond uniquely to safe test programs. Start-
ing from this observation, Hollenberg 1996 derives a more general preserva-
tion result for joint invariance and safety, for first-order relational operations
involving arbitrary finite arities. The resulting format is a highly expressive
modal first-order language for specifying program operations.

4.2. Infinitary versions

The above analysis was restricted to programming operations definable in
a first-order formalism. Nevertheless, there are many useful programming
constructions that involve infinitary operations, usually definable in the logic
Loow which extends first-order logic with infinite unions. Examples are reg-
ular Kleene Iteration, but also general Fixed-Point Recursion pp e ¢(p) for
formulas ¢ that are monotone in the proposition p. (Such fixed points always
have explicit solutions by infinite disjunctive ‘unwinding’.) The methods of
previous Sections may be modified to cover this case to some extent. We
give a sketch.

THEOREM. The Loy -formulas that are invariant for bisimulation are pre-
cisely the infinitary modal ones, constructed using arbitrary conjunctions and
disjunctions.

ProorF. We adapt the proof for the Invariance Theorem in van Benthem &
Bergstra 1995 for the infinitary language L1, — which avoids compactness
or saturation. Of course, infinitary modal formulas (defined in the obvious
way) are all invariant for bisimulation. Now, consider the converse. Let ¢(z)
be a formula of Ly without a modal cquivalent. We construct two modcls
M, N with a bisimulation E between them which has a link ¢ E b such that
M E p(a), N E —p(b). This will refute invariance for bisimulation. These
models will be constructed from good triples A, X, A where A describes the
bisimulation, > the model M, and A the model N. But first, some auxiliary
definitions.

(i) By eztended modal formulas over a set of variables X we mean all
formulas of Leo that are constructed using unary atoms Pr (z € X),
Boolean operations (finite or infinite), and existential modal quantifiers
Jy (Rzy A [y/ul]y) (where z,u € X). (One can find a more perspicuous
normal form for such formulas, but we shall not need this.) If | X| = 1,
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these are just ordinary infinitary modal formulas. (ii) For convenience, we
assume that all formulas have negations pushed inside to atoms, leaving
only operators A, V, ¥ 3. (iii) Let pu = max(Ng, |TC(—¢)|), where TC(—y)
is the transitive closure of the formula -, which contains (amongst others)
all its infinitary subformulas. (iv) Choose two disjoint sets C, D of new
individual constants of cardinality ut (a regular cardinal). Henceforth, all
formulas will be C- or D-substitution instances of subformulas of —p. The
total cardinality of this set is again u*. (In counting this size, recall that
formulas of Ly have only finitely many free variables.) (v) Next, we call
two sets of formulas X', A modally inseparable with respect to A if there
is no extended modal formula o over a set of variables X (of cardinality
smaller than u*) with ¥ F a(c) and A F —a(d) — for subsets ¢, d of C, D
where corresponding pairs ¢/z, d/z have the atom cEd in A. (vi) A good
triple A, X, A satisfies the following conditions: all three sets have cardinal-
ity < pt, A consists of bisimulation atoms cEd, ¥ consists of formulas
with constants only from C, and likewise for A and D — while X, A are
modally inseparable with respect to A. The good triples form a set.

Next,we state some closure conditions on good triples. The first of these
are familiar from the use of infinitary ‘consistency properties’ for describ-
ing consistent diagrams of models (cf. Keisler 1971), whence we omit their
detailed proofs. Let A, X, A be a good triple.

e adding to X' all conjuncts of an infinitary conjunction in X again gives a
good triple, and the same holds for infinitary conjunctions in A. (This
addition does not affect modal separation, and it keeps the cardinality
of X below ut.)

e adding to X all substitution instances of a universally quantified formula
in 2, with respect to all constants from C already occurring in X, again
gives a good triple, and the same holds for universal quantifiers in A.

e each infinitary disjunction in 5 has at least one disjunct that can be
added to X' to produce a good triple, and the same holds for A. (If
each disjunct leads to a modal separation for the extended triple, their
disjunction will separate the original triple. Here, we need extended
modal formulas, as the constants involved may be different. Also, some
care is needed by choosing disjoint sets of variables for each disjunct.)

e each existentially quantified formula in ¥ has a substitution instance
with some constant ¢ that is new to X and A which can be added to X
to form a good triple, and the same holds for A. (Notice that the new
constant cannot trigger new modal separations, since it has no available
bisimulation atoms.)
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The next requirements build in atomic harmony and zigzags for the
bisimulation E:

e if cE,d € A and Pc € X, then 4, X, AU {Pd} is good. (If modal &
separates X and A U {Pd}, then Pz A a separates the original X', A.)
And vice versa for A.

e ifcEd € A and Rec' € X, there is an atom d' new to A, X, A such that
AU{dEd}, X, AU{Rdd'} is a good triple — and vice versa. (If some
modal « separates X and A U {Rdd'}, then Oza separates the original
X, A)

Finally, we construct our models. We enumerate all ‘tasks’ at hand,
with ‘fair scheduling’. Tasks have the form of either C-(D-)formulas, to be
verified in the model M (N), or bisimulation atoms plus R-successor atoms,
to be matched in the opposite model. The total number of these tasks is p*
(by a simple cardinality calculation) — and hence we can enumerate them
in a sequence T, (o < ut), so that each task occurs cofinally often. Now, we
construct a corresponding sequence of good triples, starting with an initial
triple

{cEd}, {p(c)}, {-wld)}.

The latter is good, as modal scparation would imply modal definability for
@: quod non. Now, at each stage o, we take the component-wise union
of all previous triples, and add formulas according to the scheduled task
(if relevant), via the above closure properties. The final result is again a
triple A*, X*, A*. This defines two models M, N (over domains consisting
of those constants from C, D, respectively, which occur in X*, A*) plus a
binary relation F between them in the obvious way. An easy induction shows
that

o (C-formulas are in X iff they are true in M, and likewise for D-formulas
and N.

e F is a bisimulation between M and N. |

This is a heavy-duty argument, which becomes quite cumbersome when
spelt-out in full formal detail (cf. van Benthem 1997A for some spin-off,
though). A more elegant proof of the infinitary modal Invariance Theorem
is given in Barwise & van Benthem 1996, using a Lindstréom-type argu-
ment crucially involving the so-called Boundednesss Theorem for Lo.,. The
latter replaces the appeals to Compactness in the standard proofs. (In-
terestingly, this analysis naturally yields interpolation theorems, too -— and
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modal invariance becomes a special case of generalized ‘consequence under
bisimulation’.) In particular, van Benthem 1997B provides an infinitary
generalization of our main Safety Theorem:

THEOREM. A relational operation O(Ry,. .., Ry,) which is definable in Loy,
is safe for bisimulation if it can be defined from atomic relations Ry,xy and
atomic tests (q)? for propositional atoms q in our models, using only the
three operations 3, U and ~, where the unions may now be infinitary.

Invariance and Safety theorems also make sense for the countably infini-
tary language L1, (cf. Keisler 1971, van Benthem 1991A, van Benthem
& Bergstra 1995). But such results would still leave a substantial question
for infinitary programming constructions. What is the semantic extra of the
regular operations, over their safety for bisimulation? The correct view here
may be that safety gives a semantic space of reasonable program operators,
where infinite union is natural — whereas further restrictions to p-calculus
or regular programs suggest a differently motivated subhierarchy inside this
semantic space, motivated by additional considerations of computational
complexity.

Another way to go has been suggested by Gerard Renardel (p.c.). Re-
strict attention to some suitable effective fragment of L,14,, and then charac-
terizc the regular operations as the safe ones definable inside that fragment.
An alternative take on ‘computability’ would restrict infinitary program op-
erations to those that can be defined explicitly via fized-point operators. An
elegant illustration of this strategy is the so-called modal ‘p-calculus’, i.e.,
modal logic with the above-mentioned unary fixed-point operators. A modal
Invariance Theorem was proved in Janin & Walukiewicz 1996, stating that
formulas from monadic second-order logic are invariant for bisimulation iff
they are definable in the p-calculus. The dissertation Hollenberg 1997 pro-
vides a ‘safety companion’ to the latter result.

4.3. Invariance and safety with state parameters

The following simple refinement of our results turns out useful in several ap-
plications. For instance, in the literature on process logics, labeled transition
systems often come with a distinguished ‘root’ sg, standing for the starting
state of the process:

(Sa {Ra}aEA)a 50)'

In the definition of ‘bisimulation’, one then adds the requirement that the
roots be related. The previous results can be extended to this case, too, with
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the following modifications. First, the modal language is to be enriched to
deal with this new feature, by introducing an operator GOTO,y,, ¢ ‘reset-
ting’ evaluation to the root:

M, s E GOTOppet iff M, sy E .

Some obvious valid interchange principles govern the use of this operator
(cf. the “Now” operator in temporal logic), allowing some normal forms. An
easy adaptation of the proof for the Invariance Theorem to this enriched
modal language gives the following result:

THEOREM. A first-order formula @(z) over labeled transition systems is
invariant for root-to-root bisimulation if and only if it is definable by a modal
formula using ordinary modalities as well as GOTOroor .

The new formulas may be used to force two roots to have the same
modal types, so that they will stand in the bisimulation constructed. Next,
concerning the Safety Theorem, the crucial new addition to our repertoire
is the following binary relation of root resetting, which is always safe for
root-to-root bisimulations:

Azy ey = sg.

This is the natural binary relation for the modality GOTO,o0 . All earlier
arguments go through with this addition, which will allow us to enforce a
root-to-root bisimulation in the crucial part of the Continuity Lemma of
Section 2. Thus, mutatis mutandis, we obtain:

THEOREM. A first-order relational operation O(Ry,. .., Ry,) is safe for root-
to-root bisimulation if and only if it can be defined using atomic relations
R,zy as well as root resetting, atomic tests (q)? for propositional atoms q in
our models, using the three operations ;, U and ~.

These outcomes can be generalized to the case where further states be-
come distinguished parameters in labeled transition systems, leading to ad-
ditional fixed links in our bisimulations. In this case, for each of these states
Y, one adds a modal operator GOTO, and a resetting relation RES, to the
syntactic repertoire, just as for the above root.

4.4. Process algebra and respect for bisimulation

Our analysis has been confined to ‘internal’ description languages for labeled
transition systems, with modal statements concerning single states, and dy-
namic logic programs moving between states. But the literature on Process
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Algebra uses ‘external’ formalisms describing operations creating new LTSs
out of old ones (cf. Milner 1980). Examples are operations like action prefiz,
making a process X = aY from Y by adding a new root and joining it to
the root of Y by one a-arrow, or choice making a process X =Y + Z out of
Y, Z by adding a new root and letting it have the union of all initial tran-
sitions from the roots of Y, Z. There exists a hierarchy of more complex
constructions over LTSs, such as product, various forms of parallel merge and
operators defined by recursion. Here too, Safety makes sense. A ubiquitous
constraint on process-algebraic operations O is ‘respect for bisimulation’.
This says that, if Y, Y’, Z, Z’, ... are bisimilar, then so are O(Y, Z,...) and
O(Y', Z',...). But even stronger intuitions are at work here, amounting to
this:

“Any given list of bisimulations for the arguments can be transformed
uniformly into a bisimulation for the values of the LTS operation.”

We can lift the earlier analysis to this area, with a possible hierarchy of no-
tions of safety, depending on what one means by ‘uniformity’. The resulting
syntactic characterization of Safety would introduce various new formats of
definition for process-algebraic operations. (For further discussion of this
‘logical space’, including a special modal logic for external LTS-operations,
cf. van Benthem 1993.) Here, we just state one partial result. Algebraic op-
erations of action prefix and choice may be analyzed inside single LTSs after
all, by identifying processes with states (standing for their full ‘generated
submodels’). Thus, a definition for a new algebraic operation z = O(y, z,...)
involves a stipulation, for each atomic action R,, which successors are going
to occur for the new root z. E.g., we have

Action Prefix Rozu = u=y
Ryzu = L for all b distinct from a
Choice Rozu := RpyuV Rpzu for all atomic actions a

Let us call operations that are first-order definable in this format R,zu :=
0o (u,y, 2, . ..) elementary operations. Moreover, our two sample process op-
erations satisfy

Respect for Bisimulation

“Fach bisimulation on the arguments automatically becomes a bisimu-
lation for the values upon the mere addition of a link between the two
new roots.”

For a negative example, giving the new root the intersection (rather than
the union) of all successors for its argument roots does not respect bisimu-
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lation. Now, the (parametrized) Safety Theorem characterizes all algebraic
operations in this format.

THEOREM. The elementary process operations respecting bisimulation are
precisely those that can be defined in the format Ryxu = 6,(y,u) where
8 (8, 1) 1s a syntactic description of a safe operation, allowing resetting rela-
tions for the argument parameters, with y’ substituted for its first argument.

ProoF. In one direction, it is easy to see that these forms define strictly
safe operations. Conversely, we need a technical observation, saying essen-
tially that the unary predicate satisfied by u given some fixed z has an
obvious ‘zigzag behaviour’ under bisimulation:

CLAIM. A schema of definition § defines a strictly safe operation if and
only if the relation Asu e 6(u,y,z2,...) (i.e., ‘jump to some successor of the
new root’) is safe for bisimulation in our earlier sense, using the earlier
parametrized format with distinguished states for the relevant argument
roots y,2,...

Now, we can describe these operations exhaustively via the earlier Safety
Theorem, in its parametrized form. Moreover, as the above relation does
not depend on its first argument, an arbitrary parameter (say, y) may be
substituted for the first variable in the resulting schema of definition §(s, u),
which yields the promised format of definition. n

It is easy to see that Action Prefix and Choice indeed fall under the
preceding description:

u=y [y/s] RES,
Royu V Ryzu [y/s] ((RES, ; a)U(RES; ; a}),

whereas ‘Intersection’ would need an irreducible conjunction which is beyond
this format.

This simple syntactic description is only a first step toward a more ambi-
tious classification of process-algebraic operations. In particular, the latter
may involve constructions of new states out of old ones, usually employing
ordered pairs or sequences. Over these, more complex new transition re-
lations may then be defined, e.g. for parallel merges. In response to the
first version of this paper, as well as an unpublished follow-up (van Benthem
1993A, 1993B), Marco Hollenberg (1995A, 1997) has produced a number of
remarkable extensions and refinements. He generalizes the above notions
of safety and respect for bisimulation, and their corresponding modal de-
finability to first-order languages that manipulate tuples of objects up to
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some fixed length over so-called ‘product structures’, and then proves very
general classification theorems. The resulting format of definition covers all
the usual ACP-style process-algebraic operations — while Hollenberg’s ar-
guments and outcomes are also of independent modal and model-theoretic
interest.

4.5. Invariance, safety and logicality

Safety for bisimulation implies well-known semantic constraints on intuitive
‘logicality’, such as ‘invariance for permutations’ of individual domains. In-
deed, the style of analysis in this paper suggests a more general view on
arbitrary logical operations, as guaranteeing computability within the se-
mantic framework established by some proces equivalence {(bisimulation, po-
tential isomorphism, isomorphism, ....). Chapter 5 of van Benthem 1996
has a general discussion of logical constants as process operations, presenting
safety for bisimulation as lying at one end of a whole spectrum of semantic
invariances to this effect.
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