136 years and still going strong(?): Cantor's continuum problem

Michael Rathjen

Leverhulme Fellow

Heyting Day 2015

Utrecht, 27. Februar 2015

Dedicated to **Dick de Jongh** and **Anne Troelstra** on the occasion of their 75th birthday

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

The continuum hypothesis, CH

First version: Every infinite $A \subseteq \mathbb{R}$ is either countable or of the same size as \mathbb{R} .

イロン 不得 とくほ とくほ とうほ

The continuum hypothesis, CH

First version: Every infinite $A \subseteq \mathbb{R}$ is either countable or of the same size as \mathbb{R} .

Second version: The cardinality of \mathbb{R} is \aleph_1 (or shorter: $2^{\aleph_0} = \aleph_1$).

Cantor's Set Theory

Cantor's Set Theory

• Cantor founded " Mengenlehre" (set theory) in the years 1874 to 1897.

In 1877 it was called Mannigfaltigkeitslehre.

• Unter einer ,Menge' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die ,Elemente' von M genannt werden) zu einem Ganzen. (1895)

イロト イ押ト イヨト イヨト

• Unter einer ,Menge' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die ,Elemente' von M genannt werden) zu einem Ganzen. (1895)

"By a 'set' we understand any collection M into a whole of definite, well-distinguished objects of our intuition or our thought (which will be called the 'elements' of M)."

• Unter einer ,Menge' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die ,Elemente' von M genannt werden) zu einem Ganzen. (1895)

"By a 'set' we understand any collection M into a whole of definite, well-distinguished objects of our intuition or our thought (which will be called the 'elements' of M)."

Cantor's language seems to suggest that 'collection' (Zusammenfassung) is an operation of the mind; in this case the requirement would be that a structural property be represented to the mind according to which the operation of collection is performed.

In it, Hilbert sketched a 'proof' of *CH*. Instead of \mathbb{R} he considers the set $\mathbb{N}^{\mathbb{N}}$ of all functions from \mathbb{N} to \mathbb{N} .

In it, Hilbert sketched a 'proof' of *CH*. Instead of \mathbb{R} he considers the set $\mathbb{N}^{\mathbb{N}}$ of all functions from \mathbb{N} to \mathbb{N} .

"Wenn wir die Menge dieser Funktionen im Sinne des Kontinuumproblems ordnen wollen, so bedarf es dazu der Bezugnahme auf die **Erzeugung** der einzelnen Funktionen."

イロト イポト イヨト イヨト 三日

In it, Hilbert sketched a 'proof' of *CH*. Instead of \mathbb{R} he considers the set $\mathbb{N}^{\mathbb{N}}$ of all functions from \mathbb{N} to \mathbb{N} .

"Wenn wir die Menge dieser Funktionen im Sinne des Kontinuumproblems ordnen wollen, so bedarf es dazu der Bezugnahme auf die **Erzeugung** der einzelnen Funktionen."

'If we want to order the set of these functions in the way required by the problem of the continuum, we must consider how an individual function is **generated**.'

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Initial cases

Theorem: (Bendixson-Cantor)

If $A \subseteq \mathbb{R}$ is closed, then

$$A = P \cup S$$

<ロト < 同ト < 回ト < 回ト = 三

where P is perfect (closed and has no isolated points), S is countable and $P \cap S = \emptyset$.

Initial cases

Theorem: (Bendixson-Cantor)

If $A \subseteq \mathbb{R}$ is closed, then

$$A = P \cup S$$

where P is perfect (closed and has no isolated points), S is countable and $P \cap S = \emptyset$.

Corollary:

Every closed uncountable $A \subseteq \mathbb{R}$ has the same cardinality as \mathbb{R} .

Analytic sets are continuous images of Borel sets.

Analytic sets are continuous images of Borel sets.

Theorem: (Suslin 1917)

Every uncountable analytic set $A \subseteq \mathbb{R}$ has a perfect subset and thus has the same cardinality as \mathbb{R} .

In particular, CH holds for Borel sets.

Analytic sets are continuous images of Borel sets.

Theorem: (Suslin 1917)

Every uncountable analytic set $A \subseteq \mathbb{R}$ has a perfect subset and thus has the same cardinality as \mathbb{R} .

In particular, CH holds for Borel sets.

Adding strong large cardinal assumptions this can be extended to all sets of reals in the **projective hierarchy** obtained from the Borel sets by applying the operations of complement, countable intersection and union, and taking continuous images.

Def(X) is the set

 $\{Y \subseteq X \mid Y \text{ is definable in } \langle X; \in \rangle \text{ with parameters} \}$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

Def(X) is the set $\{Y \subseteq X \mid Y \text{ is definable in } \langle X; \in \rangle \text{ with parameters}\}$ $L_0 = \emptyset$

Def(X) is the set

 $\{Y \subseteq X \mid Y \text{ is definable in } \langle X; \in \rangle \text{ with parameters} \}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

 $L_0 = \emptyset$ $L_{\alpha+1} = \operatorname{Def}(L_\alpha)$

Def(X) is the set

 $\{Y \subseteq X \mid Y \text{ is definable in } \langle X; \in \rangle \text{ with parameters} \}$

$$L_0 = \emptyset$$

$$L_{\alpha+1} = \text{Def}(L_{\alpha})$$

$$L_{\lambda} = \bigcup_{\xi < \lambda} L_{\xi} \text{ for limits } \lambda$$

Def(X) is the set

 $\{Y \subseteq X \mid Y \text{ is definable in } \langle X; \in \rangle \text{ with parameters} \}$

$$L_{0} = \emptyset$$

$$L_{\alpha+1} = \text{Def}(L_{\alpha})$$

$$L_{\lambda} = \bigcup_{\xi < \lambda} L_{\xi} \text{ for limits } \lambda$$

$$L = \bigcup_{\alpha} L_{\alpha}$$

Def(X) is the set

 $\{Y \subseteq X \mid Y \text{ is definable in } \langle X; \in \rangle \text{ with parameters} \}$

$$L_{0} = \emptyset$$

$$L_{\alpha+1} = \text{Def}(L_{\alpha})$$

$$L_{\lambda} = \bigcup_{\xi < \lambda} L_{\xi} \text{ for limits } \lambda$$

$$L = \bigcup_{\alpha} L_{\alpha}$$

Theorem: (Gödel 1938)

L is a model of **ZF** and of **AC** and the generalized continuum hypothesis. If **ZF** is consistent then so is ZF + AC + GCH.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Cohen invented a method, dubbed **forcing**, whereby a transitive model M of set theory can be enlarged to a model M[G] without adding new ordinals.

Cohen invented a method, dubbed **forcing**, whereby a transitive model M of set theory can be enlarged to a model M[G] without adding new ordinals.

イロン 不得 とくほ とくほ とうほ

Theorem: (Cohen 1963)

If **ZF** is consistent then so are $\mathbf{ZF} + \neg CH$ and $\mathbf{ZF} + \neg \mathbf{AC}$.

(ロ) (型) (E) (E) (E) (O)(C)

Theorem (Cohen; Levy and Solovay 1967): CH is consistent with and independent of all "small" and "large") LCAs that have been considered to date, provided they are consistent with ZF.

Theorem (Cohen; Levy and Solovay 1967): CH is consistent with and independent of all "small" and "large") LCAs that have been considered to date, provided they are consistent with ZF.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Proof. By **Cohen**'s method of forcing.

Theorem (Cohen; Levy and Solovay 1967): CH is consistent with and independent of all "small" and "large") LCAs that have been considered to date, provided they are consistent with ZF.

Proof. By **Cohen**'s method of forcing.

It is consistent for the continuum to be anything not cofinal with ω . This is necessary as by Julius König's Theorem $cf(2^{\aleph_0}) > \aleph_0$.

The dream solution template for determining truth in V

E.g. CH.

The dream solution template for determining truth in V

E.g. *CH*.

Step 1. Produce a set-theoretic assertion Φ expressing a natural and " **intuitively true**" set-theoretic principle.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The dream solution template for determining truth in V

E.g. CH.

Step 1. Produce a set-theoretic assertion Φ expressing a natural and " **intuitively true**" set-theoretic principle.

Step 2. Prove that Φ determines *CH*. That is, prove

$$\Phi \Rightarrow CH$$

or prove that

$$\Phi \Rightarrow \neg CH$$

イロト イポト イヨト イヨト 三日

The Universe View (à la Hamkins)

 Set theory constitutes an ontological foundation for the rest of mathematics.

 Set theory constitutes an ontological foundation for the rest of mathematics.

イロン 不得 とくほ とくほ とうほ

• There is a unique absolute background concept of set, instantiated in the cumulative universe of all sets, *V*.

 Set theory constitutes an ontological foundation for the rest of mathematics.

- There is a unique absolute background concept of set, instantiated in the cumulative universe of all sets, *V*.
- Set-theoretic questions (e.g. *CH*) have a definite final answers in *V*.

- Set theory constitutes an ontological foundation for the rest of mathematics.
- There is a unique absolute background concept of set, instantiated in the cumulative universe of all sets, *V*.
- Set-theoretic questions (e.g. *CH*) have a definite final answers in *V*.
- The pervasive independence phenomenon in set theory is due to the weakness of our theories in finding truth, rather than about the truth itself.

 There are diverse distinct concepts of set, each instantiated in a corresponding set-theoretic universe.

- There are diverse distinct concepts of set, each instantiated in a corresponding set-theoretic universe.
- Each universe exists independently in the same Platonic sense as *V* for the proponents of the universe view.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- There are diverse distinct concepts of set, each instantiated in a corresponding set-theoretic universe.
- Each universe exists independently in the same Platonic sense as *V* for the proponents of the universe view.

イロト 不良 とくほ とくほう 二日

• The multiverse view is one of higher-order realism – Platonism about universes.

- There are diverse distinct concepts of set, each instantiated in a corresponding set-theoretic universe.
- Each universe exists independently in the same Platonic sense as *V* for the proponents of the universe view.
- The multiverse view is one of higher-order realism Platonism about universes.
- Set theorists study the models of set theory and how they are connected. They move with agility from one model to another.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

- There are diverse distinct concepts of set, each instantiated in a corresponding set-theoretic universe.
- Each universe exists independently in the same Platonic sense as *V* for the proponents of the universe view.
- The multiverse view is one of higher-order realism Platonism about universes.
- Set theorists study the models of set theory and how they are connected. They move with agility from one model to another.
- Von Neumann in 1925, in view of Skolem's and Löwenheim's insights, considered the unsettling possibility of one universe of set theory sitting inside another, where properties of sets like "finite" and "well-founded" would shift when moving between universes.

Both *CH* and $\neg CH$ are forceable over any model of set theory.

Both *CH* and \neg *CH* are forceable over any model of set theory. **Theorem**. The universe *V* has forcing extensions

Both *CH* and $\neg CH$ are forceable over any model of set theory.

Theorem. The universe *V* has forcing extensions

• $V[G] \models \neg CH$, collapsing no cardinals, adding no new reals.

<ロト <回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Both *CH* and $\neg CH$ are forceable over any model of set theory.

Theorem. The universe *V* has forcing extensions

• $V[G] \models \neg CH$, collapsing no cardinals, adding no new reals.

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

2 $V[H] \models CH$, adding no new reals.

Both *CH* and $\neg CH$ are forceable over any model of set theory.

Theorem. The universe *V* has forcing extensions

- $V[G] \models \neg CH$, collapsing no cardinals, adding no new reals.
- **2** $V[H] \models CH$, adding no new reals.
- Thus we have universes

$$V[G_0] \subset V[G_1] \subset \ldots \subset V[G_n] \subset \ldots$$

such that $V[G_{2i}] \models CH$ and $V[G_{2i+1}] \models \neg CH$, having all the same real numbers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQC

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

• Woodin: *The continuum hypothesis I*; The continuum hypothesis II (2001)

イロン 不得 とくほ とくほ とうほ

- Woodin: *The continuum hypothesis I*; The continuum hypothesis II (2001)
- Woodin: *The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal* (1999) first edition.

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ

- Woodin: *The continuum hypothesis I*; The continuum hypothesis II (2001)
- Woodin: *The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal* (1999) first edition.

イロン 不得 とくほ とくほ とうほ

• Three structures: $H(\omega)$, $H(\aleph_1)$, $H(\aleph_2)$.

- Woodin: *The continuum hypothesis I*; The continuum hypothesis II (2001)
- Woodin: *The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal* (1999) first edition.

- Three structures: $H(\omega)$, $H(\aleph_1)$, $H(\aleph_2)$.
- $H(\omega)$ is essentially $\langle \mathbb{N}, \mathbf{0}, +, \cdot \rangle$.

- Woodin: *The continuum hypothesis I*; The continuum hypothesis II (2001)
- Woodin: *The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal* (1999) first edition.
- Three structures: $H(\omega)$, $H(\aleph_1)$, $H(\aleph_2)$.
- $H(\omega)$ is essentially $\langle \mathbb{N}, \mathbf{0}, +, \cdot \rangle$.
- *H*(ℵ₁) is essentially the structure ⟨𝒫(ℕ), ℕ, 0, +, ·, ∈⟩ of second order arithmetic.

・ロン ・ 母 と ・ ヨ と ・ ヨ と

- Woodin: *The continuum hypothesis I*; The continuum hypothesis II (2001)
- Woodin: *The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal* (1999) first edition.
- Three structures: $H(\omega)$, $H(\aleph_1)$, $H(\aleph_2)$.
- $H(\omega)$ is essentially $\langle \mathbb{N}, \mathbf{0}, +, \cdot \rangle$.
- *H*(ℵ₁) is essentially the structure ⟨𝒫(ℕ), ℕ, 0, +, ·, ∈⟩ of second order arithmetic.
- While *CH* is not expressible in *H*(ℵ₁), it's failure is expressible via a Π₂ of the structure *H*(ℵ₂).

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Woodin 2001: "There are natural questions about H(ℵ₁) which are not solvable from ZFC. However, there are axioms for H(ℵ₁) which resolve these questions, providing a theory as canonical as that of number theory, and which are clearly true. But the truth of these axioms became evident only after a great deal of work."

- Woodin 2001: "There are natural questions about H(ℵ₁) which are not solvable from ZFC. However, there are axioms for H(ℵ₁) which resolve these questions, providing a theory as canonical as that of number theory, and which are clearly true. But the truth of these axioms became evident only after a great deal of work."
- Woodin: "Projective Determinacy is the correct axiom for the projective sets; the ZFC axioms are obviously incomplete and, moreover, incomplete in a fundamental way."

- Woodin 2001: "There are natural questions about H(ℵ₁) which are not solvable from ZFC. However, there are axioms for H(ℵ₁) which resolve these questions, providing a theory as canonical as that of number theory, and which are clearly true. But the truth of these axioms became evident only after a great deal of work."
- Woodin: "Projective Determinacy is the **correct** axiom for the projective sets; the **ZFC** axioms are obviously incomplete and, moreover, incomplete in a fundamental way."
- Woodin: "The only known examples of unsolvable problems about the projective sets, in the context of Projective Determinacy, are analogous to the known examples of unsolvable problems in number theory: Gödel sentences and consistency statements."

(Woodin) The following are equivalent:

ヘロト 人間 とく ヨン 人 ヨン

32

(Woodin) The following are equivalent:

Projective Determinacy.

(Woodin) The following are equivalent:

- Projective Determinacy.
- For each $k \in \mathbb{N}$ there exists a countable transitive set M such that

 $\langle \textbf{\textit{M}}, \in \rangle \models \textbf{ZFC} + \text{``There exist } \textbf{\textit{k}} \text{ Woodin cardinals''}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

and such *M* is countably iterable.

 Woodin: "Are there analogs of these axioms, say, some generalization of Projective Determinacy, for the structure H(\vee{k}_2)?"

- Woodin: "Are there analogs of these axioms, say, some generalization of Projective Determinacy, for the structure H(ℵ₂)?"
- Theorem. (Woodin). Suppose that the axiom Martin's Maximum holds. Then there exists a surjection ρ : ℝ → ℵ₂ such that {(x, y) | ρ(x) < ρ(y)} is a projective set.

- Woodin: "Are there analogs of these axioms, say, some generalization of Projective Determinacy, for the structure H(ℵ₂)?"
- Theorem. (Woodin). Suppose that the axiom Martin's Maximum holds. Then there exists a surjection ρ : ℝ → ℵ₂ such that {(x, y) | ρ(x) < ρ(y)} is a projective set.
- Assuming class many Woodin cardinals there is a transfinite hierarchy which extends the hierarchy of the projective sets; this is the hierarchy of the universally Baire sets. Using these sets, Woodin defined a specific strong logic, Ω-logic.

Woodin: CH has a truth value

◆□▶★@▶★≣▶★≣▶ ≣ のへで

Woodin: CH has a truth value

 He introduces a new logic called Ω-logic which is based on certain desirable test structures (universal Baire sets).

Woodin: CH has a truth value

- He introduces a new logic called Ω-logic which is based on certain desirable test structures (universal Baire sets).
- Assuming the Strong Ω Conjecture, there are 'good' theories which maximize the Π₂-theory of the structure

 $\langle H(\omega_2), \in, I_{NS}, A \in \mathcal{P}(\mathbb{R}) \cap L(\mathbb{R}) \rangle$

イロン 不得 とくほ とくほう 一日

Woodin: CH has a truth value

- He introduces a new logic called Ω-logic which is based on certain desirable test structures (universal Baire sets).
- Assuming the Strong Ω Conjecture, there are 'good' theories which maximize the Π₂-theory of the structure

$$\langle H(\omega_2), \in, I_{NS}, A \in \mathcal{P}(\mathbb{R}) \cap L(\mathbb{R}) \rangle$$

<ロト < 得 > < き > < き > … き

• All such theories entail $\neg CH$.

Woodin: CH has a truth value

- He introduces a new logic called Ω-logic which is based on certain desirable test structures (universal Baire sets).
- Assuming the Strong Ω Conjecture, there are 'good' theories which maximize the Π₂-theory of the structure

$$\langle H(\omega_2), \in, I_{NS}, A \in \mathcal{P}(\mathbb{R}) \cap L(\mathbb{R}) \rangle$$

イロト イポト イヨト イヨト 二日

- All such theories entail $\neg CH$.
- There is a maximal such theory and in it $2^{\aleph_0} = \aleph_2$ holds.

• Iterative conception of sets

- Iterative conception of sets
- Reflection principles

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Iterative conception of sets
- Reflection principles
- V is ultimately undefinable

- Iterative conception of sets
- Reflection principles
- V is ultimately undefinable
- Fruitfulness: An abundance of **pleasing** and unifying consequences. **MAXIMIZE!**

- Iterative conception of sets
- Reflection principles
- V is ultimately undefinable
- Fruitfulness: An abundance of **pleasing** and unifying consequences. **MAXIMIZE!**
- No contradictions have been found (by very smart people).

イロト 不得 トイヨト イヨト 二日

- Iterative conception of sets
- Reflection principles
- V is ultimately undefinable
- Fruitfulness: An abundance of **pleasing** and unifying consequences. **MAXIMIZE!**
- No contradictions have been found (by very smart people).
- Extension principles: "the theory of legitimate candidates"

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

- Iterative conception of sets
- Reflection principles
- V is ultimately undefinable
- Fruitfulness: An abundance of **pleasing** and unifying consequences. **MAXIMIZE!**
- No contradictions have been found (by very smart people).
- Extension principles: "the theory of legitimate candidates"
- Large cardinals exist by analogy with ω (e.g. strongly compact cardinals).

Gödel's Extrinsic Program (1947)

"There might exist axioms so abundant in their verifiable consequences, shedding so much light upon a whole discipline...that quite irrespective of their intrinsic necessity they would have to be assumed in the same sense as any well-established physical theory." • Woodin: *The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal* (2010) The second edition.

- Woodin: *The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal* (2010) The second edition.
- "Ultimately of far more significance for this book is that recent results concerning the inner model program undermine the philosophical framework for this entire work."

イロト 不良 とくほ とくほう 二日

- Woodin: *The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal* (2010) The second edition.
- "Ultimately of far more significance for this book is that recent results concerning the inner model program undermine the philosophical framework for this entire work."

• "I think the evidence now favors CH."

- Woodin: *The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal* (2010) The second edition.
- "Ultimately of far more significance for this book is that recent results concerning the inner model program undermine the philosophical framework for this entire work."
- "I think the evidence now favors CH."
- "The picture that is emerging now [...] is as follows. The solution to the inner model problem for one **supercompact cardinal** yields the ultimate enlargement of *L*. This enlargement of *L* is compatible with all stronger large cardinal axioms and strong forms of covering hold relative to this inner model."

Another set-theoretic view: Shelah

Another set-theoretic view: Shelah

Saharon Shelah (2003) writes vis à vis $AD^{L(\mathbb{R})}$:

Saharon Shelah (2003) writes vis à vis $AD^{L(\mathbb{R})}$:

 (a) Generally I do not think that the fact that a statement solves everything really nicely, even deeply, even being the best semi-axiom (if there is such a thing, which I doubt) is a sufficient reason to say it is a "true axiom". In particular I do not find it compelling at all to see it as true.

イロト イポト イヨト イヨト 二日

Saharon Shelah (2003) writes vis à vis $AD^{L(\mathbb{R})}$:

- (a) Generally I do not think that the fact that a statement solves everything really nicely, even deeply, even being the best semi-axiom (if there is such a thing, which I doubt) is a sufficient reason to say it is a "true axiom". In particular I do not find it compelling at all to see it as true.
- (b) The judgments of certain semi-axioms as best is based on the groups of problems you are interested in. For the California school, descriptive set theory problems are central. While I agree that they are important and worth investigating, for me they are not "the center". Other groups of problems suggest different semi-axioms at best; other universes may be the nicest from a different perspective.

Step 1. Create a context in which different pictures of V (countable transitive models of **ZFC**) can be compared, the **Hyperuniverse**.

Step 1. Create a context in which different pictures of V (countable transitive models of **ZFC**) can be compared, the **Hyperuniverse**.

Step 2. The comparison of universes evokes intrinsic principles, such as **maximality**, for the choice of **"preferred** universes", giving rise to **axiom-candidates**.

Step 1. Create a context in which different pictures of V (countable transitive models of **ZFC**) can be compared, the **Hyperuniverse**.

Step 2. The comparison of universes evokes intrinsic principles, such as **maximality**, for the choice of **"preferred** universes", giving rise to **axiom-candidates**.

Ultimate goal: If the axiom-candidates following from a given criterion are compatible with set-theoretic practice and, ideally, if there is extrinsic evidence for them, then they are proposed as **new and true axioms** of set theory.

Step 1. Create a context in which different pictures of V (countable transitive models of **ZFC**) can be compared, the **Hyperuniverse**.

Step 2. The comparison of universes evokes intrinsic principles, such as **maximality**, for the choice of **"preferred** universes", giving rise to **axiom-candidates**.

Ultimate goal: If the axiom-candidates following from a given criterion are compatible with set-theoretic practice and, ideally, if there is extrinsic evidence for them, then they are proposed as **new and true axioms** of set theory.

Current work suggests:

"Small large cardinals" exist.

"Large large cardinals" exist only in inner models. The Continuum Hypothesis is false.

The dream solution template for determining truth in V

E.g. CH.

The dream solution template for determining truth in V

E.g. *CH*.

Step 1. Produce a set-theoretic assertion Φ expressing a natural and " **intuitively true**" set-theoretic principle.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The dream solution template for determining truth in V

E.g. CH.

Step 1. Produce a set-theoretic assertion Φ expressing a natural and " **intuitively true**" set-theoretic principle.

Step 2. Prove that Φ determines *CH*. That is, prove

$$\Phi \Rightarrow CH$$

or prove that

$$\Phi \Rightarrow \neg CH$$

イロト イポト イヨト イヨト 三日

Freiling (1986) conducts thought experiments about throwing darts at the real line.

イロン 不得 とくほ とくほ とうほ

Freiling (1986) conducts thought experiments about throwing darts at the real line.

イロン 不得 とくほ とくほ とうほ

Freiling (1986) conducts thought experiments about throwing darts at the real line.

Let \mathbb{R}_{\aleph_0} be the collection of countable subsets of \mathbb{R} .

$$A_{\aleph_0} \quad \forall f : \mathbb{R} \to \mathbb{R}_{\aleph_0} \exists a, b \in \mathbb{R} \left[b \notin f(a) \land a \notin f(b) \right]$$

Freiling (1986) conducts thought experiments about throwing darts at the real line.

Let \mathbb{R}_{\aleph_0} be the collection of countable subsets of \mathbb{R} .

$$A_{\aleph_0} \quad \forall f : \mathbb{R} \to \mathbb{R}_{\aleph_0} \exists a, b \in \mathbb{R} \left[b \notin f(a) \land a \notin f(b) \right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQC

Theorem: (Freiling)

(ZFC) $A_{\aleph_0} \Leftrightarrow \neg CH.$

Why was Freiling's A_{\aleph_0} not accepted as a new axiom?

<ロ> (四) (四) (三) (三) (三)

Why was Freiling's A_{\aleph_0} not accepted as a new axiom?

 Mathematicians objected that Freiling's argument was implicitly using the measurability of the set

 $\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y \in f(x)\}$

So they objected from a perspective of deep experience with non-measurable sets and paradoxical compositions and the role of **AC** therein.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Why was Freiling's A_{\aleph_0} not accepted as a new axiom?

 Mathematicians objected that Freiling's argument was implicitly using the measurability of the set

$$\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y \in f(x)\}$$

So they objected from a perspective of deep experience with non-measurable sets and paradoxical compositions and the role of **AC** therein.

- (Sierpinski) If \prec is a well-ordering of $\mathbb R$ of length \aleph_1 then the set

$$S := \{(x, y) \mid x \prec y\}$$

is non-measurable, since it violates the Fubini property:

$$0 = \int_{[0,1]} (\int_{[0,1]} \mathbf{1}_{\mathcal{S}}(x,y) dx) dy = \int_{[0,1]} (\int_{[0,1]} \mathbf{1}_{\mathcal{S}}(x,y) dy) dx = 1$$

D. Mumford in his address to the conference Mathematics towards the Third Millenium held in 1999, speaks of a "beautiful stochastic argument to disprove the continuum hypothesis" and wonders why it "is not universally known and considered on a par with the results of Gödel and Cohen."

D. Mumford in his address to the conference Mathematics towards the Third Millenium held in 1999, speaks of a "beautiful stochastic argument to disprove the continuum hypothesis" and wonders why it "is not universally known and considered on a par with the results of Gödel and Cohen."

He is referring to Freiling's article.

D. Mumford in his address to the conference Mathematics towards the Third Millenium held in 1999, speaks of a "beautiful stochastic argument to disprove the continuum hypothesis" and wonders why it "is not universally known and considered on a par with the results of Gödel and Cohen."

He is referring to Freiling's article.

• Mumford: "it follows that the C.H. is false and we will get rid of one of the meaningless conundrums of set theory. The continuum hypothesis is surely similar to the scholastic issue of how many angels can stand on the head of a pin: an issue which disappears if you change your point of view."

• The *powerset size axiom*, **PSA** asserts that strictly larger sets have strictly more subsets:

• The *powerset size axiom*, **PSA** asserts that strictly larger sets have strictly more subsets:

 $\forall x \,\forall y \, (|x| < |y| \Rightarrow |P(x)| < |P(y)|.$

• The *powerset size axiom*, **PSA** asserts that strictly larger sets have strictly more subsets:

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 $\forall x \,\forall y \, (|x| < |y| \Rightarrow |P(x)| < |P(y)|.$

• Hamkins: "An enormous number of mathematicians, including many very good ones, view the axiom as extremely natural or even obviously true .."

• The *powerset size axiom*, **PSA** asserts that strictly larger sets have strictly more subsets:

 $\forall x \, \forall y \, (|x| < |y| \Rightarrow |P(x)| < |P(y)|.$

- Hamkins: "An enormous number of mathematicians, including many very good ones, view the axiom as extremely natural or even obviously true .."
- Set theorists don't agree. The function κ → 2^κ can exhibit all kinds of "crazy" patterns (Easton).

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

• The *powerset size axiom*, **PSA** asserts that strictly larger sets have strictly more subsets:

 $\forall x \, \forall y \, (|x| < |y| \Rightarrow |P(x)| < |P(y)|.$

- Hamkins: "An enormous number of mathematicians, including many very good ones, view the axiom as extremely natural or even obviously true .."
- Set theorists don't agree. The function κ → 2^κ can exhibit all kinds of "crazy" patterns (Easton).

Cohen's original model of **ZFC** + $\neg CH$ had $2^{\aleph_0} = 2^{\aleph_1}$.

• The *powerset size axiom*, **PSA** asserts that strictly larger sets have strictly more subsets:

 $\forall x \, \forall y \, (|x| < |y| \Rightarrow |P(x)| < |P(y)|.$

- Hamkins: "An enormous number of mathematicians, including many very good ones, view the axiom as extremely natural or even obviously true .."
- Set theorists don't agree. The function κ → 2^κ can exhibit all kinds of "crazy" patterns (Easton).

Cohen's original model of $\mathbf{ZFC} + \neg CH$ had $2^{\aleph_0} = 2^{\aleph_1}$.

Martin's axiom implies $2^{\aleph_0} = 2^{\kappa}$ for all $\kappa < 2^{\aleph_0}$. Martin's Maximum MM and the proper forcing axiom PFA (principles favoured by many set-theorists) also refute PSA.

• The *powerset size axiom*, **PSA** asserts that strictly larger sets have strictly more subsets:

 $\forall x \, \forall y \, (|x| < |y| \Rightarrow |P(x)| < |P(y)|.$

- Hamkins: "An enormous number of mathematicians, including many very good ones, view the axiom as extremely natural or even obviously true .."
- Set theorists don't agree. The function κ → 2^κ can exhibit all kinds of "crazy" patterns (Easton).

Cohen's original model of **ZFC** + $\neg CH$ had $2^{\aleph_0} = 2^{\aleph_1}$.

Martin's axiom implies $2^{\aleph_0} = 2^{\kappa}$ for all $\kappa < 2^{\aleph_0}$. Martin's Maximum MM and the proper forcing axiom PFA (principles favoured by many set-theorists) also refute PSA.

Note that PSA is a consequence of GCH.

• Emil Artin conjectured that for all primes p, the p-adic field \mathbb{Q}_p is C_2 , i.e., every homogeneous polynomial with $n > d^2$, where n is the number of variables and d is the degree, has a nontrivial zero.

- **Emil Artin** conjectured that for all primes *p*, the *p*-adic field \mathbb{Q}_p is C_2 , i.e., every homogeneous polynomial with $n > d^2$, where *n* is the number of variables and *d* is the degree, has a nontrivial zero.
- This conjecture turned out to be false; in fact, Q_p is not C₂ for any p.

イロト 不良 とくほう くほう 二日

- Emil Artin conjectured that for all primes p, the p-adic field \mathbb{Q}_p is C_2 , i.e., every homogeneous polynomial with $n > d^2$, where n is the number of variables and d is the degree, has a nontrivial zero.
- This conjecture turned out to be false; in fact, Q_p is not C₂ for any p.

Theorem: (Ax,Kochen)

For each degree $d \ge 1$, there exists a finite set of primes P(d) such that for all $p \notin P(d)$, if f is a homogeneous polynomial over \mathbb{Q}_p of degree d in n variables such that $n > d^2$, then f has a nontrivial zero in \mathbb{Q}_p^n .

Theorem: (Ax-Kochen Principle)

. Any first-order logical statement about valued fields which is true of all but finitely many of the fields $\mathbb{F}_p((t))$ (of formal Laurent series over \mathbb{F}_p is true of all but finitely many of the fields \mathbb{Q}_p .

Theorem: (Ax-Kochen Principle)

. Any first-order logical statement about valued fields which is true of all but finitely many of the fields $\mathbb{F}_p((t))$ (of formal Laurent series over \mathbb{F}_p is true of all but finitely many of the fields \mathbb{Q}_p .

Uses *CH* to show that if \mathcal{U} is a non-principal ultrafilter on \mathbb{N} , then _____

$$\prod_{\mathcal{p}} \mathbb{F}_{\mathcal{p}}((t)) / \mathcal{U} \,\cong\, \prod_{\mathcal{p}} \mathbb{Q}_{\mathcal{p}} / \mathcal{U}$$

イロト イポト イヨト イヨト

 Let *H* be a complex Hilbert space and B(H) be the set of all bounded linear operators on *H*. B(H) is a Banach space with norm

$$\parallel A \parallel = \sup\{\frac{\parallel A \nu \parallel}{\parallel \nu \parallel} \mid \nu \neq 0\}$$

where $|| v || = \sqrt{\langle v, v \rangle}$, and the product of two operators being defined to be their composition. Additionally there is an involution $* : \mathcal{B}(H) \to \mathcal{B}(H)$ that takes an operator *A* to its adjoint *A*^{*}, which is characterized by the condition

$$\langle Av, w \rangle = \langle v, A^*w \rangle.$$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

 Let *H* be a complex Hilbert space and B(H) be the set of all bounded linear operators on *H*. B(H) is a Banach space with norm

$$\parallel A \parallel = \sup\{\frac{\parallel A \nu \parallel}{\parallel \nu \parallel} \mid \nu \neq 0\}$$

where $|| v || = \sqrt{\langle v, v \rangle}$, and the product of two operators being defined to be their composition. Additionally there is an involution $* : \mathcal{B}(H) \to \mathcal{B}(H)$ that takes an operator *A* to its adjoint *A*^{*}, which is characterized by the condition

$$\langle Av, w \rangle = \langle v, A^* w \rangle.$$

 An operator A ∈ B(H) is of *finite rank* if its range is finite-dimensional. The closure of the set of all operators of finite rank is the set of *compact operators*, K(H). K(H) is a C*-algebra and it is also a closed two-sided ideal of B(H). • ℓ^2 is the Hilbert space of infinite sequences $\mathbf{z} = (z_1, z_2, z_3, ...)$ of complex numbers z_i such that $\sum_{1}^{\infty} |z_n|^2$ converges, equipped with the inner product $\langle \mathbf{z}, \mathbf{w} \rangle = \sum_{1}^{\infty} z_n \bar{w_n}$.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

- ℓ^2 is the Hilbert space of infinite sequences $\mathbf{z} = (z_1, z_2, z_3, ...)$ of complex numbers z_i such that $\sum_{1}^{\infty} |z_n|^2$ converges, equipped with the inner product $\langle \mathbf{z}, \mathbf{w} \rangle = \sum_{1}^{\infty} z_n \bar{w_n}$.
- The quotient

$$\mathcal{C}(\ell^2) = \mathcal{B}(\ell^2)/\mathcal{K}(\ell^2)$$

equipped with the quotient norm is a C*-algebra called the **Calkin algebra**.

- ℓ^2 is the Hilbert space of infinite sequences $\mathbf{z} = (z_1, z_2, z_3, ...)$ of complex numbers z_i such that $\sum_{1}^{\infty} |z_n|^2$ converges, equipped with the inner product $\langle \mathbf{z}, \mathbf{w} \rangle = \sum_{1}^{\infty} z_n \bar{w_n}$.
- The quotient

$$\mathcal{C}(\ell^2) = \mathcal{B}(\ell^2)/\mathcal{K}(\ell^2)$$

equipped with the quotient norm is a C*-algebra called the **Calkin algebra**.

An automorphism φ of C(ℓ²) is said to be a inner if there exists u ∈ C(ℓ²) such that φ(a) = uau* for all a ∈ C(ℓ²).

- ℓ^2 is the Hilbert space of infinite sequences $\mathbf{z} = (z_1, z_2, z_3, ...)$ of complex numbers z_i such that $\sum_{1}^{\infty} |z_n|^2$ converges, equipped with the inner product $\langle \mathbf{z}, \mathbf{w} \rangle = \sum_{1}^{\infty} z_n \bar{w_n}$.
- The quotient

$$\mathcal{C}(\ell^2) = \mathcal{B}(\ell^2)/\mathcal{K}(\ell^2)$$

equipped with the quotient norm is a C*-algebra called the **Calkin algebra**.

- An automorphism φ of C(ℓ²) is said to be a inner if there exists u ∈ C(ℓ²) such that φ(a) = uau* for all a ∈ C(ℓ²).
- (1977) Are all automorphisms of the Calkin algebra inner?

The Calkin algebra has outer automorphisms.

The Calkin algebra has outer automorphisms.

Theorem: (Farah 2011)

All automorphisms of The Calkin algebra are inner.

イロト イポト イヨト イヨト

The Calkin algebra has outer automorphisms.

Theorem: (Farah 2011)

All automorphisms of The Calkin algebra are inner.

くロト (得) (ほ) (ほ)

The first Theorem uses *CH*.

The Calkin algebra has outer automorphisms.

Theorem: (Farah 2011)

All automorphisms of The Calkin algebra are inner.

The first Theorem uses *CH*.

The second Theorem uses Todorcevic's Axiom *TA* (also known as the Open Coloring Axiom *OCA*).

The Calkin algebra has outer automorphisms.

Theorem: (Farah 2011)

All automorphisms of The Calkin algebra are inner.

The first Theorem uses CH.

The second Theorem uses Todorcevic's Axiom *TA* (also known as the Open Coloring Axiom *OCA*).

Every *ZFC* model has a forcing extension in which *TA* holds.

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト … ヨ

• Weaver 2006: "Interestingly, it appears that C*-algebraists generally tend to regard a problem as solved when it has been answered using *CH*.

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト … ヨ

Weaver 2006: "Interestingly, it appears that C^* -algebraists generally tend to regard a problem as solved when it has been answered using *CH*.

This may have to do with the fact that in most cases the other direction of the presumed independence result would involve set theory at a substantially more sophisticated level".

Conservativity of CH

Conservativity of CH

• (Shoenfield 1961, Platek 1969)

$\mathbf{ZF} + \mathbf{AC} + \mathbf{GCH} \vdash \varphi \ \Rightarrow \ \mathbf{ZF} \vdash \varphi$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

for $\varphi \in \Pi_4^1$.

Conservativity of CH

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

(Shoenfield 1961, Platek 1969)
ZF + AC + GCH ⊢ φ ⇒ ZF ⊢ φ for φ ∈ Π₄¹.
(Platek 1969, Silver, Kripke)
ZFC + GCH ⊢ φ ⇒ ZFC ⊢ φ for φ ∈ Π_∞¹.

Exploring the frontiers of incompleteness

Exploring the frontiers of incompleteness

イロト 不得 トイヨト イヨト 二日

Peter Koellner's Templeton project.

Exploring the frontiers of incompleteness

Peter Koellner's Templeton project.

Solomon Feferman: Is the continuum hypothesis a definite mathematical problem?

Ich setze voraus, dass man wisse, was der Umfang eines Begriffes sei.

I assume that it is known what the extension of a concept is.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Frege: Die Grundlagen der Arithmetik (Breslau 1884) § 68.

Ich setze voraus, dass man wisse, was der Umfang eines Begriffes sei.

I assume that it is known what the extension of a concept is.

Frege: Die Grundlagen der Arithmetik (Breslau 1884) § 68.

In **Frege: Philosophy of Mathematics**, **Dummett**'s diagnosis of the failure of Frege's logicist project focusses on the adoption of classical quantification. He rejects it in favor of the intuitionistic interpretation of quantification over the relevant domains.

(日) (原) (日) (日) (日)

Ich setze voraus, dass man wisse, was der Umfang eines Begriffes sei.

I assume that it is known what the extension of a concept is.

Frege: Die Grundlagen der Arithmetik (Breslau 1884) § 68.

In **Frege: Philosophy of Mathematics**, **Dummett**'s diagnosis of the failure of Frege's logicist project focusses on the adoption of classical quantification. He rejects it in favor of the intuitionistic interpretation of quantification over the relevant domains.

Dummett argues that classical quantification is illegitimate when the domain is given as the objects which fall under an indefinitely extensible concept.

Conceptions of Sets

Conceptions of Sets

Sets are supposed to be **definite totalities**, determined solely by which objects are in the membership relation \in to them, and independently of how they may be defined, if at all.

Conceptions of Sets

Sets are supposed to be **definite totalities**, determined solely by which objects are in the membership relation \in to them, and independently of how they may be defined, if at all.

A is a **definite totality** iff the logical operation of quantifying over *A*, $\forall x \in A P(x)$, has a determinate truth value for each **definite property** P(x) of elements of *A*.

The Structure of all Sets

The Structure of all Sets

V, where V is the universe of all sets, **is not a definite totality**, so unbounded classical quantification over V is not justified on this conception. Indeed, it is essentially indefinite.

•
$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

- $\mathcal{P}(A) = \{X \mid X \subseteq A\}$
- Let A be a set. P(A) may be considered to be an indefinite collection whose members are subsets of A, but whose exact extent is indeterminate (open-ended).

イロン 不得 とくほ とくほ とうほ

- $\mathcal{P}(A) = \{X \mid X \subseteq A\}$
- Let A be a set. P(A) may be considered to be an indefinite collection whose members are subsets of A, but whose exact extent is indeterminate (open-ended).
- Proposed logical framework for what's definite and what's not:

What's definite is the domain of classical logic, what's not is that of intuitionistic logic.

- $\mathcal{P}(A) = \{X \mid X \subseteq A\}$
- Let A be a set. P(A) may be considered to be an indefinite collection whose members are subsets of A, but whose exact extent is indeterminate (open-ended).
- Proposed logical framework for what's definite and what's not:

What's definite is the domain of classical logic, what's not is that of intuitionistic logic.

Classical logic for bounded (Δ₀) formulas.
 Heyting's logic for unbounded quantification.

<□> <@> < => < => < => < => < <</p>

• This is a rough distinction. It has a long history, going back to Aristotle.

- This is a rough distinction. It has a long history, going back to Aristotle.
- One way of formally regimenting this informal distinction is by employing intuitionistic logic for domains for which one is a potentialist and reserving classic logic for domains for which one is an actualist.

- This is a rough distinction. It has a long history, going back to Aristotle.
- One way of formally regimenting this informal distinction is by employing intuitionistic logic for domains for which one is a potentialist and reserving classic logic for domains for which one is an actualist.
- This is the approach Tait takes in his work on reflection principles.

Feferman work on semi-intuitionistic systems of set theory can also be recast in those terms.

Toward Axiomatic Formulations

Toward Axiomatic Formulations

 Restrict quantifiers in the formulas that are supposed to represent definite properties, e.g. in Comprehension or Separation axioms.

イロト イポト イヨト イヨト 三日

Toward Axiomatic Formulations

- Restrict quantifiers in the formulas that are supposed to represent definite properties, e.g. in Comprehension or Separation axioms.
- Quantification over indefinite domains may still be regarded as meaningful, in order to state generic properties, e.g. closure under certain operations performed on sets (e.g. pairing, union etc.).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• Feferman: On the strength of some semi-constructive theories (2012)

- Feferman: On the strength of some semi-constructive theories (2012)
- $T := IKP + LEM_{\Delta_0} + BOS + AC_{full} + MP + \mathbb{R}$ is a set.

- Feferman: On the strength of some semi-constructive theories (2012)
- $T := IKP + LEM_{\Delta_0} + BOS + AC_{full} + MP + \mathbb{R}$ is a set.
- LEM_{Δ_0} is the schema $\varphi \lor \neg \varphi$ for $\varphi \Delta_0$.

- Feferman: On the strength of some semi-constructive theories (2012)
- $T := IKP + LEM_{\Delta_0} + BOS + AC_{full} + MP + \mathbb{R}$ is a set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- LEM_{Δ0} is the schema φ ∨ ¬φ for φ Δ0.
- BOS is the schema (for all formulas φ(x)): If ∀x ∈ a[φ(x) ∨ ¬φ(x)] then ∀x ∈ aφ(x) ∨ ∃x ∈ a¬φ(x).

- Feferman: On the strength of some semi-constructive theories (2012)
- $\mathbf{T} := \mathbf{IKP} + \mathrm{LEM}_{\Delta_0} + \mathrm{BOS} + \mathrm{AC}_{\textit{full}} + \mathrm{MP} + \mathbb{R}$ is a set.
- LEM_{Δ0} is the schema φ ∨ ¬φ for φ Δ0.
- BOS is the schema (for all formulas φ(x)): If ∀x ∈ a[φ(x) ∨ ¬φ(x)] then ∀x ∈ aφ(x) ∨ ∃x ∈ a¬φ(x).
- AC_{*full*} is the schema (for all formulas $\psi(x, y)$): $\forall x \in a \exists y \ \psi(x, y) \rightarrow \exists f [dom(f) = a \land \forall x \in a \varphi(x, f(x))]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Feferman: On the strength of some semi-constructive theories (2012)
- $T := IKP + LEM_{\Delta_0} + BOS + AC_{full} + MP + \mathbb{R}$ is a set.
- LEM_{Δ0} is the schema φ ∨ ¬φ for φ Δ0.
- BOS is the schema (for all formulas φ(x)): If ∀x ∈ a[φ(x) ∨ ¬φ(x)] then ∀x ∈ aφ(x) ∨ ∃x ∈ a¬φ(x).
- AC_{*full*} is the schema (for all formulas $\psi(x, y)$): $\forall x \in a \exists y \ \psi(x, y) \rightarrow \exists f [dom(f) = a \land \forall x \in a \ \varphi(x, f(x))]$
- MP is the schema

$$\neg \neg \exists x \, \theta(x) \to \exists x \, \theta(x)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for $\theta(x) \Delta_0$.

イロン 不得 とくほ とくほ とうほ

The formal version of the conjecture is that

 $\mathbf{T} \not\vdash \textit{CH} \, \lor \, \neg\textit{CH}$

The formal version of the conjecture is that

$$\mathbf{T} \not\vdash CH \lor \neg CH$$

 The theory T has too many axioms. Let T⁻ be T without BOS and LEM_{Δ0}; then

(*)
$$\mathbf{T}^- \vdash BOS + LEM_{\Delta_0}$$

イロン 不得 とくほ とくほ とうほ

The formal version of the conjecture is that

 $\mathbf{T} \not\vdash CH \lor \neg CH$

 The theory T has too many axioms. Let T⁻ be T without BOS and LEM_{Δ0}; then

(*) $\mathbf{T}^- \vdash BOS + LEM_{\Delta_0}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• (*) follows from the observation that AC_{full} implies LEM_{Δ_0} (Diaconescu) and also BOS.

The formal version of the conjecture is that

$$\mathbf{T} \not\vdash CH \lor \neg CH$$

 The theory T has too many axioms. Let T⁻ be T without BOS and LEM_{Δ0}; then

(*)
$$\mathbf{T}^- \vdash BOS + LEM_{\Delta_0}$$

- (*) follows from the observation that AC_{full} implies LEM_{Δ_0} (Diaconescu) and also BOS.
- Note that T proves full Replacement and Strong Collection (considered by Tharp, Beeson, Aczel).

The formal version of the conjecture is that

 $\mathbf{T} \not\vdash CH \lor \neg CH$

 The theory T has too many axioms. Let T⁻ be T without BOS and LEM_{Δ0}; then

(*) $\mathbf{T}^- \vdash BOS + LEM_{\Delta_0}$

- (*) follows from the observation that AC_{full} implies LEM_{Δ_0} (Diaconescu) and also BOS.
- Note that T proves full Replacement and Strong Collection (considered by Tharp, Beeson, Aczel).
- T is quite strong. It proves every theorem of (classical) second order arithmetic. In strength it resides strictly between second order arithmetic and Zermelo set theory.

• Does T satisfy some kind of disjunction property?

イロン 不得 とくほ とくほ とうほ

- Does T satisfy some kind of disjunction property?
- Realizability?

イロン 不得 とくほ とくほ とうほ

- Does T satisfy some kind of disjunction property?
- Realizability?
- What should the realizers be?

イロト 不良 とくほ とくほう 二日

- Does T satisfy some kind of disjunction property?
- Realizability?
- What should the realizers be?
- What kind of realizability?

- Does T satisfy some kind of disjunction property?
- Realizability?
- What should the realizers be?
- What kind of realizability?
- What should the universe for realizability be?

イロト 不良 とくほ とくほう 二日

• There are two versions: For a set A we have L(A) and L[A].

• There are two versions: For a set A we have L(A) and L[A].

イロト 不得 トイヨト イヨト 二日

They can be vastly different. E.g. in general *L*(*A*) ⊭ AC whereas always *L*[*A*] ⊨ AC.

• There are two versions: For a set A we have L(A) and L[A].

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- They can be vastly different. E.g. in general *L*(*A*) ⊭ AC whereas always *L*[*A*] ⊨ AC.
- If $\mathbb{R} \notin L$ then $L \neq L(\mathbb{R})$. However, always $L[\mathbb{R}] = L$.

There are two versions: For a set A we have L(A) and L[A].

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- They can be vastly different. E.g. in general *L*(*A*) ⊭ AC whereas always *L*[*A*] ⊨ AC.
- If $\mathbb{R} \notin L$ then $L \neq L(\mathbb{R})$. However, always $L[\mathbb{R}] = L$.
- Only *L*[*A*] is interesting for our purposes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $L_0[A] = \emptyset$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• $L_0[A] = \emptyset$ $L_{\alpha+1}[A] = \text{Def}^A(L_{\alpha}[A])$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• $L_0[A] = \emptyset$ $L_{\alpha+1}[A] = \text{Def}^A(L_{\alpha}[A])$ $L_{\lambda} = \bigcup_{\xi < \lambda} L_{\xi}[A].$

▲□▶▲□▶▲□▶▲□▶ □ のQで

• $L_0[A] = \emptyset$ $L_{\alpha+1}[A] = \text{Def}^A(L_{\alpha}[A])$ $L_{\lambda} = \bigcup_{\xi < \lambda} L_{\xi}[A].$ $L[A] = \bigcup_{\alpha} L_{\alpha}[A].$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

 For realizers we use codes of Σ₁ partial functions, i.e. Σ₁ definable (with parameters) in the structure ⟨*L*[*A*], ∈, *A*⟩.

- For realizers we use codes of Σ₁ partial functions, i.e. Σ₁ definable (with parameters) in the structure ⟨*L*[*A*], ∈, *A*⟩.
- If e is such a code and a_1, \ldots, a_n are sets in L[A], we use

 $[e]^{L[A]}(a_1,...,a_n)$

for the result of applying the partial function with code e to \vec{a} (if it exists).

- For realizers we use codes of Σ₁ partial functions, i.e. Σ₁ definable (with parameters) in the structure ⟨*L*[*A*], ∈, *A*⟩.
- If *e* is such a code and a_1, \ldots, a_n are sets in L[A], we use

 $[e]^{L[A]}(a_1,...,a_n)$

for the result of applying the partial function with code e to \vec{a} (if it exists).

In this way the structures ⟨*L*[*A*], ∈, *A*⟩ give rise to partial combinatory algebras (pca's) or models of App.

Realizability over $\langle L[A], \in, A \rangle$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Realizability over $\langle L[A], \in, A \rangle$

$$e \Vdash a \in b$$
 iff $a \in b$

 $e \Vdash a = b$ iff a = b

$$e \Vdash \varphi \land \psi$$
 iff $(e)_0 \Vdash \varphi$ and $(e)_1 \Vdash \psi$

 $e \Vdash \varphi \lor \psi$ iff $[(e)_0 = 0 \land (e)_1 \Vdash \varphi]$ or $[(e)_0 = 1 \land (e)_1 \Vdash \psi]$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- $e \Vdash \varphi \to \psi$ iff $\forall d [d \Vdash \varphi \Rightarrow [e]^{L[A]}(d) \Vdash \psi]$
- $e \Vdash \exists x \theta(x)$ iff $(e)_1 \Vdash \theta((e)_0)$
- $e \Vdash \forall x \theta(x)$ iff $\forall a \in L[A] [e]^{L[A]}(a) \Vdash \theta(a)$.

Realizability over $\langle L[A], \in, A \rangle$

$$\begin{array}{lll} e \Vdash a \in b & \text{iff} & a \in b \\ e \Vdash a = b & \text{iff} & a = b \\ e \Vdash \varphi \land \psi & \text{iff} & (e)_0 \Vdash \varphi \text{ and } (e)_1 \Vdash \psi \\ e \Vdash \varphi \lor \psi & \text{iff} & [(e)_0 = 0 \land (e)_1 \Vdash \varphi] \text{ or } [(e)_0 = 1 \land (e)_1 \Vdash \psi] \\ e \Vdash \varphi \rightarrow \psi & \text{iff} & \forall d [d \Vdash \varphi \Rightarrow [e]^{L[A]}(d) \Vdash \psi] \\ e \Vdash \exists x \theta(x) & \text{iff} & (e)_1 \Vdash \theta((e)_0) \\ e \Vdash \forall x \theta(x) & \text{iff} & \forall a \in L[A] [e]^{L[A]}(a) \Vdash \theta(a). \end{array}$$

Above, for a set-theoretic pair $b = \langle u, v \rangle$, we used the notations $(b)_0 = u$ and $(b)_1 = v$. If *b* is not a pair let $(b)_0 = (b)_1 = 0$.

Lemma. If θ is Δ_0 with parameters from L[A], then $\theta \Leftrightarrow \exists e \Vdash \theta$.

Lemma. If θ is Δ_0 with parameters from L[A], then

 $\theta \Leftrightarrow \exists \boldsymbol{e} \Vdash \theta.$

Theorem. **T** $\vdash \theta \Rightarrow \exists e e \Vdash \theta$.

Lemma. If θ is Δ_0 with parameters from L[A], then

 $\theta \Leftrightarrow \exists \boldsymbol{e} \Vdash \theta.$

Theorem. **T** $\vdash \theta \Rightarrow \exists e e \Vdash \theta$.

Theorem 1. We need a more useful result that exhibits the underlying uniformity. If \mathcal{D} is a **T**-derivation of a formula $\psi(x_1, \ldots, x_n)$, one explicitly constructs a hereditarily finite set $e_{\mathcal{D}}$ such that for all A and all $a_1, \ldots, a_n \in L[A]$,

 $[\boldsymbol{e}_{\mathcal{D}}]^{L[\mathcal{A}]}(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n,\mathbb{R}^{L[\mathcal{A}]})\Vdash\psi(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n).$

(日)

Lemma. If θ is Δ_0 with parameters from L[A], then

 $\theta \Leftrightarrow \exists \boldsymbol{e} \Vdash \theta.$

Theorem. **T** $\vdash \theta \Rightarrow \exists e e \Vdash \theta$.

Theorem 1. We need a more useful result that exhibits the underlying uniformity. If \mathcal{D} is a **T**-derivation of a formula $\psi(x_1, \ldots, x_n)$, one explicitly constructs a hereditarily finite set $e_{\mathcal{D}}$ such that for all A and all $a_1, \ldots, a_n \in L[A]$,

 $[\boldsymbol{e}_{\mathcal{D}}]^{\boldsymbol{L}[\boldsymbol{A}]}(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n,\mathbb{R}^{\boldsymbol{L}[\boldsymbol{A}]})\Vdash\psi(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n).$

Another way of expressing the uniformity and effectiveness of e_D is obtained by viewing $\langle L[A], \in, A \rangle$ as an applicative structure. According to this view, e_D is given by an applicative term *t* of the theory **App** such that $t \downarrow$ in L[A], i.e.

$$L[\mathbf{A}] \models \exists \mathbf{e} [t \simeq \mathbf{e} \land \mathbf{e} \Vdash \psi].$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

• Not just any A.

Designing L[A]

- Not just any A.
- Start with a universe V₀ such that

$$V_0 \models \mathbf{ZFC} + 2^{\aleph_0} = \aleph_2.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Can be obtained from any universe V' such that $V' \models \mathbf{ZFC} + \operatorname{GCH}$ (e.g. L) by forcing with $\operatorname{Fn}(\kappa \times \omega, 2)$ where $\kappa = (\aleph_2)^{V'}$.

Designing L[A]

- Not just any A.
- Start with a universe V₀ such that

$$V_0 \models \mathsf{ZFC} + 2^{\aleph_0} = \aleph_2.$$

Can be obtained from any universe V' such that $V' \models \mathbf{ZFC} + \operatorname{GCH}$ (e.g. L) by forcing with $\operatorname{Fn}(\kappa \times \omega, 2)$ where $\kappa = (\aleph_2)^{V'}$.

 We now code the set of reals ℝ via a set A of ordinals in such a way that the set of real numbers of V₀ belongs to L[A]. We thus have

$$\mathbb{R}^{V_0} = \mathbb{R}^{L[A]} \in L[A].$$

The latter is possible as $V_0 \models AC$ (plus some trickery).

Designing L[A]

- Not just any A.
- Start with a universe V₀ such that

$$V_0 \models \mathsf{ZFC} + 2^{\aleph_0} = \aleph_2.$$

Can be obtained from any universe V' such that $V' \models \mathbf{ZFC} + \operatorname{GCH}$ (e.g. L) by forcing with $\operatorname{Fn}(\kappa \times \omega, 2)$ where $\kappa = (\aleph_2)^{V'}$.

We now code the set of reals ℝ via a set A of ordinals in such a way that the set of real numbers of V₀ belongs to L[A]. We thus have

$$\mathbb{R}^{V_0} = \mathbb{R}^{L[A]} \in L[A].$$

The latter is possible as $V_0 \models AC$ (plus some trickery).

Clearly,

$$L[A] \models \neg CH. \quad \text{ for a first set of } for a first set of a firs$$

• $CH := \forall x \subseteq \mathbb{R} [\exists f f : \omega \twoheadrightarrow x \lor \exists f f : x \twoheadrightarrow \mathbb{R}].$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- $CH := \forall x \subseteq \mathbb{R} [\exists f f : \omega \twoheadrightarrow x \lor \exists f f : x \twoheadrightarrow \mathbb{R}].$
- Assume $\mathbf{T} \vdash CH \lor \neg CH$.

- $CH := \forall x \subseteq \mathbb{R} [\exists f f : \omega \twoheadrightarrow x \lor \exists f f : x \twoheadrightarrow \mathbb{R}].$
- Assume $\mathbf{T} \vdash CH \lor \neg CH$.
- By Theorem 1 there exists an *e* ∈ HF (which does not depend on *A*) such that

 $[e]^{L[A]}(\mathbb{R}^{L[A]}) \Vdash CH \lor \neg CH.$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Proving the conjecture

- $CH := \forall x \subseteq \mathbb{R} [\exists f f : \omega \twoheadrightarrow x \lor \exists f f : x \twoheadrightarrow \mathbb{R}].$
- Assume $\mathbf{T} \vdash CH \lor \neg CH$.
- By Theorem 1 there exists an *e* ∈ HF (which does not depend on *A*) such that

$$[e]^{\mathcal{L}[\mathcal{A}]}(\mathbb{R}^{\mathcal{L}[\mathcal{A}]}) \Vdash CH \lor \neg CH.$$

• Since $L[A] \models \neg CH$ we must have for $d := [e]^{L[A]}(\mathbb{R}^{L[A]})$ that

$$(d)_0 = 1 \land L[A] \models \forall b b \not\models CH.$$

Since the statement "[e]^{L[A]}(ℝ^{L[A]}) ≃ d" is Σ₁^{L[A]}, there exists a π such that

$$d, A, \mathbb{R}^{L[A]} \in L_{\pi}[A] \land L_{\pi}[A] \models [e]^{L_{\pi}[A]}(\mathbb{R}^{L[A]}) \simeq d.$$

• Take a forcing extensions V_1 of V_0 such that

and
$$V_1 \models 2^{\aleph_0} = \aleph_1$$

 $\mathbb{R}^{V_0} = \mathbb{R}^{V_1} \wedge (\aleph_1)^{V_0} = (\aleph_1)^{V_1}.$

<ロ> (四) (四) (三) (三) (三)

• Take a forcing extensions V_1 of V_0 such that

and
$$V_1 \models 2^{\aleph_0} = \aleph_1$$

 $\mathbb{R}^{V_0} = \mathbb{R}^{V_1} \land (\aleph_1)^{V_0} = (\aleph_1)^{V_1}$.

• Force with $(Fn(\aleph_1, 2, \aleph_1))^{V_0}$.

• Take a forcing extensions V_1 of V_0 such that

and
$$V_1 \models 2^{\aleph_0} = \aleph_1$$

 $\mathbb{R}^{V_0} = \mathbb{R}^{V_1} \land (\aleph_1)^{V_0} = (\aleph_1)^{V_1}$

- Force with $(Fn(\aleph_1, 2, \aleph_1))^{V_0}$.
- V₁ has a bijection *h* between ℝ and ℵ₁. Code *h* into a set of ordinals *B* such that B ∩ π = Ø.

イロト 不得 トイヨト イヨト 二日

• Take a forcing extensions V_1 of V_0 such that

and
$$V_1 \models 2^{\aleph_0} = \aleph_1$$

 $\mathbb{R}^{V_0} = \mathbb{R}^{V_1} \land (\aleph_1)^{V_0} = (\aleph_1)^{V_1}$

- Force with $(Fn(\aleph_1, 2, \aleph_1))^{V_0}$.
- V₁ has a bijection *h* between ℝ and ℵ₁. Code *h* into a set of ordinals *B* such that B ∩ π = Ø.

• $L[A \cup B] \models CH$.

• Take a forcing extensions V_1 of V_0 such that

and
$$V_1 \models 2^{\aleph_0} = \aleph_1$$

 $\mathbb{R}^{V_0} = \mathbb{R}^{V_1} \land (\aleph_1)^{V_0} = (\aleph_1)^{V_1}$

- Force with $(Fn(\aleph_1, 2, \aleph_1))^{V_0}$.
- V₁ has a bijection *h* between ℝ and ℵ₁. Code *h* into a set of ordinals *B* such that B ∩ π = Ø.

イロン 不得 とくほ とくほ とうほ

- $L[A \cup B] \models CH$.
- (a) $L[A \cup B] \models \exists b b \Vdash CH$.

• Take a forcing extensions V_1 of V_0 such that

and
$$V_1 \models 2^{\aleph_0} = \aleph_1$$

 $\mathbb{R}^{V_0} = \mathbb{R}^{V_1} \land (\aleph_1)^{V_0} = (\aleph_1)^{V_1}$

- Force with $(Fn(\aleph_1, 2, \aleph_1))^{V_0}$.
- V₁ has a bijection *h* between ℝ and ℵ₁. Code *h* into a set of ordinals *B* such that B ∩ π = Ø.
- $L[A \cup B] \models CH$.
- (a) $L[A \cup B] \models \exists b b \Vdash CH$.
 - $L[A \cup B] \models [e]^{L[A \cup B]}(\mathbb{R}^{L[A \cup B]}) \simeq d$ since $\mathbb{R}^{L[A \cup B]} = \mathbb{R}^{L[A]}$.

• Take a forcing extensions V₁ of V₀ such that

and
$$V_1 \models 2^{\aleph_0} = \aleph_1$$

 $\mathbb{R}^{V_0} = \mathbb{R}^{V_1} \land (\aleph_1)^{V_0} = (\aleph_1)^{V_1}$

- Force with $(Fn(\aleph_1, 2, \aleph_1))^{V_0}$.
- V₁ has a bijection *h* between ℝ and ℵ₁. Code *h* into a set of ordinals *B* such that B ∩ π = Ø.
- $L[A \cup B] \models CH$.
- (a) $L[A \cup B] \models \exists b b \Vdash CH$.
 - $L[A \cup B] \models [e]^{L[A \cup B]}(\mathbb{R}^{L[A \cup B]}) \simeq d$ since $\mathbb{R}^{L[A \cup B]} = \mathbb{R}^{L[A]}$.
 - $L_{\pi}[A] = L_{\pi}[A \cup B].$

• Take a forcing extensions V₁ of V₀ such that

and
$$V_1 \models 2^{\aleph_0} = \aleph_1$$

 $\mathbb{R}^{V_0} = \mathbb{R}^{V_1} \land (\aleph_1)^{V_0} = (\aleph_1)^{V_1}$

- Force with $(Fn(\aleph_1, 2, \aleph_1))^{V_0}$.
- V₁ has a bijection *h* between ℝ and ℵ₁. Code *h* into a set of ordinals *B* such that B ∩ π = Ø.
- $L[A \cup B] \models CH$.
- (a) $L[A \cup B] \models \exists b b \Vdash CH$.
 - $L[A \cup B] \models [e]^{L[A \cup B]}(\mathbb{R}^{L[A \cup B]}) \simeq d$ since $\mathbb{R}^{L[A \cup B]} = \mathbb{R}^{L[A]}$.
 - $L_{\pi}[A] = L_{\pi}[A \cup B].$
 - $L_{\pi}[A] \models (d)_0 = 1$, thus $L[A \cup B] \models (d)_0 = 1$.

• Take a forcing extensions V₁ of V₀ such that

and
$$V_1 \models 2^{\aleph_0} = \aleph_1$$

 $\mathbb{R}^{V_0} = \mathbb{R}^{V_1} \land (\aleph_1)^{V_0} = (\aleph_1)^{V_1}$

- Force with $(Fn(\aleph_1, 2, \aleph_1))^{V_0}$.
- V₁ has a bijection *h* between ℝ and ℵ₁. Code *h* into a set of ordinals *B* such that B ∩ π = Ø.
- $L[A \cup B] \models CH$.
- (a) $L[A \cup B] \models \exists b b \Vdash CH$.
 - $L[A \cup B] \models [e]^{L[A \cup B]}(\mathbb{R}^{L[A \cup B]}) \simeq d$ since $\mathbb{R}^{L[A \cup B]} = \mathbb{R}^{L[A]}$.
 - $L_{\pi}[A] = L_{\pi}[A \cup B].$
 - $L_{\pi}[A] \models (d)_0 = 1$, thus $L[A \cup B] \models (d)_0 = 1$.
 - **CONTRADICTION!** as $L[A \cup B] \models d \Vdash CH \lor \neg CH$, which implies $(d)_0 = 0$ by (a).

dank u wel

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Gelukkig verjaardag!

