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136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



The continuum hypothesis, CH

First version: Every infinite A ⊆ R is either countable or of
the same size as R.

Second version: The cardinality of R is ℵ1 (or shorter:
2

ℵ0 = ℵ1).
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Cantor’s Set Theory

• Cantor founded “ Mengenlehre" (set theory) in the years
1874 to 1897.

In 1877 it was called Mannigfaltigkeitslehre.
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• Unter einer ,Menge’ verstehen wir jede
Zusammenfassung M von bestimmten
wohlunterschiedenen Objekten m unserer Anschauung
oder unseres Denkens (welche die ,Elemente’ von M
genannt werden) zu einem Ganzen. (1895)

“By a ‘set’ we understand any collection M into a whole of
definite, well-distinguished objects of our intuition or our
thought (which will be called the ‘elements’ of M)."

Cantor’s language seems to suggest that ‘collection’
(Zusammenfassung) is an operation of the mind; in this
case the requirement would be that a structural property
be represented to the mind according to which the
operation of collection is performed.
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Hilbert (1925): Über das Unendliche

In it, Hilbert sketched a ‘proof’ of CH. Instead of R he
considers the set NN of all functions from N to N.

„Wenn wir die Menge dieser Funktionen im Sinne des
Kontinuumproblems ordnen wollen, so bedarf es dazu der
Bezugnahme auf die Erzeugung der einzelnen
Funktionen."

‘If we want to order the set of these functions in the way
required by the problem of the continuum, we must
consider how an individual function is generated.’
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Initial cases

Theorem: (Bendixson-Cantor)

If A ⊆ R is closed, then

A = P ∪ S

where P is perfect (closed and has no isolated points), S is
countable and P ∩ S = ∅.

Corollary:

Every closed uncountable A ⊆ R has the same cardinality as R.
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Analytic sets are continuous images of Borel sets.

Theorem: (Suslin 1917)

Every uncountable analytic set A ⊆ R has a perfect subset and
thus has the same cardinality as R.

In particular, CH holds for Borel sets.

Adding strong large cardinal assumptions this can be
extended to all sets of reals in the projective hierarchy
obtained from the Borel sets by applying the operations of
complement, countable intersection and union, and taking
continuous images.
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The constructible hierarchy

Def(X ) is the set

{Y ⊆ X | Y is definable in 〈X ;∈〉 with parameters}

L0 = ∅

Lα+1 = Def(Lα)

Lλ =
⋃
ξ<λ Lξ for limits λ

L =
⋃
α Lα

Theorem: (Gödel 1938)

L is a model of ZF and of AC and the generalized continuum
hypothesis.
If ZF is consistent then so is ZF + AC + GCH.
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Forcing

Cohen invented a method, dubbed forcing, whereby a
transitive model M of set theory can be enlarged to a
model M[G] without adding new ordinals.

Theorem: (Cohen 1963)

If ZF is consistent then so are ZF + ¬CH and ZF + ¬AC.
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What Hope for Gödel’s Program to settle CH?

Theorem ( Cohen; Levy and Solovay 1967): CH is
consistent with and independent of all “small" and “large")
LCAs that have been considered to date, provided they
are consistent with ZF.
Proof. By Cohen’s method of forcing.
It is consistent for the continuum to be anything not cofinal
with ω. This is necessary as by Julius König’s Theorem
cf(2ℵ0) > ℵ0.
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The dream solution template for determining truth in V

E.g. CH.

Step 1. Produce a set-theoretic assertion Φ expressing a
natural and “ intuitively true" set-theoretic principle.

Step 2. Prove that Φ determines CH.
That is, prove

Φ ⇒ CH

or prove that
Φ ⇒ ¬CH
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The Universe View (à la Hamkins)

• Set theory constitutes an ontological foundation for the rest
of mathematics.

• There is a unique absolute background concept of set,
instantiated in the cumulative universe of all sets, V .

• Set-theoretic questions (e.g. CH) have a definite final
answers in V .

• The pervasive independence phenomenon in set theory is
due to the weakness of our theories in finding truth, rather
than about the truth itself.
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The Multiverse View (à la Hamkins)

• There are diverse distinct concepts of set, each
instantiated in a corresponding set-theoretic universe.

• Each universe exists independently in the same Platonic
sense as V for the proponents of the universe view.

• The multiverse view is one of higher-order realism –
Platonism about universes.

• Set theorists study the models of set theory and how they
are connected. They move with agility from one model to
another.

• Von Neumann in 1925, in view of Skolem’s and
Löwenheim’s insights, considered the unsettling possibility
of one universe of set theory sitting inside another, where
properties of sets like “finite" and “well-founded" would shift
when moving between universes.
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The multiverse view on CH

Both CH and ¬CH are forceable over any model of set
theory.
Theorem. The universe V has forcing extensions

1 V [G] |= ¬CH, collapsing no cardinals, adding no new reals.
2 V [H] |= CH, adding no new reals.
3 Thus we have universes

V [G0] ⊂ V [G1] ⊂ . . . ⊂ V [Gn] ⊂ . . .

such that V [G2i ] |= CH and V [G2i+1] |= ¬CH, having all the
same real numbers.
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A universe view: Woodin “CH has a truth value"

• Woodin: The continuum hypothesis I; The continuum
hypothesis II (2001)

• Woodin: The Axiom of Determinacy, Forcing Axioms, and
the Nonstationary Ideal (1999) first edition.

• Three structures: H(ω), H(ℵ1), H(ℵ2).
• H(ω) is essentially 〈N,0,+, ·〉.
• H(ℵ1) is essentially the structure 〈P(N),N,0,+, ·,∈〉 of

second order arithmetic.
• While CH is not expressible in H(ℵ1), it’s failure is

expressible via a Π2 of the structure H(ℵ2).

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



A universe view: Woodin “CH has a truth value"

• Woodin: The continuum hypothesis I; The continuum
hypothesis II (2001)

• Woodin: The Axiom of Determinacy, Forcing Axioms, and
the Nonstationary Ideal (1999) first edition.

• Three structures: H(ω), H(ℵ1), H(ℵ2).
• H(ω) is essentially 〈N,0,+, ·〉.
• H(ℵ1) is essentially the structure 〈P(N),N,0,+, ·,∈〉 of

second order arithmetic.
• While CH is not expressible in H(ℵ1), it’s failure is

expressible via a Π2 of the structure H(ℵ2).

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



A universe view: Woodin “CH has a truth value"

• Woodin: The continuum hypothesis I; The continuum
hypothesis II (2001)

• Woodin: The Axiom of Determinacy, Forcing Axioms, and
the Nonstationary Ideal (1999) first edition.

• Three structures: H(ω), H(ℵ1), H(ℵ2).
• H(ω) is essentially 〈N,0,+, ·〉.
• H(ℵ1) is essentially the structure 〈P(N),N,0,+, ·,∈〉 of

second order arithmetic.
• While CH is not expressible in H(ℵ1), it’s failure is

expressible via a Π2 of the structure H(ℵ2).

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



A universe view: Woodin “CH has a truth value"

• Woodin: The continuum hypothesis I; The continuum
hypothesis II (2001)

• Woodin: The Axiom of Determinacy, Forcing Axioms, and
the Nonstationary Ideal (1999) first edition.

• Three structures: H(ω), H(ℵ1), H(ℵ2).

• H(ω) is essentially 〈N,0,+, ·〉.
• H(ℵ1) is essentially the structure 〈P(N),N,0,+, ·,∈〉 of

second order arithmetic.
• While CH is not expressible in H(ℵ1), it’s failure is

expressible via a Π2 of the structure H(ℵ2).

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



A universe view: Woodin “CH has a truth value"

• Woodin: The continuum hypothesis I; The continuum
hypothesis II (2001)

• Woodin: The Axiom of Determinacy, Forcing Axioms, and
the Nonstationary Ideal (1999) first edition.

• Three structures: H(ω), H(ℵ1), H(ℵ2).
• H(ω) is essentially 〈N,0,+, ·〉.

• H(ℵ1) is essentially the structure 〈P(N),N,0,+, ·,∈〉 of
second order arithmetic.

• While CH is not expressible in H(ℵ1), it’s failure is
expressible via a Π2 of the structure H(ℵ2).

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



A universe view: Woodin “CH has a truth value"

• Woodin: The continuum hypothesis I; The continuum
hypothesis II (2001)

• Woodin: The Axiom of Determinacy, Forcing Axioms, and
the Nonstationary Ideal (1999) first edition.

• Three structures: H(ω), H(ℵ1), H(ℵ2).
• H(ω) is essentially 〈N,0,+, ·〉.
• H(ℵ1) is essentially the structure 〈P(N),N,0,+, ·,∈〉 of

second order arithmetic.

• While CH is not expressible in H(ℵ1), it’s failure is
expressible via a Π2 of the structure H(ℵ2).

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



A universe view: Woodin “CH has a truth value"

• Woodin: The continuum hypothesis I; The continuum
hypothesis II (2001)

• Woodin: The Axiom of Determinacy, Forcing Axioms, and
the Nonstationary Ideal (1999) first edition.

• Three structures: H(ω), H(ℵ1), H(ℵ2).
• H(ω) is essentially 〈N,0,+, ·〉.
• H(ℵ1) is essentially the structure 〈P(N),N,0,+, ·,∈〉 of

second order arithmetic.
• While CH is not expressible in H(ℵ1), it’s failure is

expressible via a Π2 of the structure H(ℵ2).

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



Completing the axioms for H(ℵ1)

• Woodin 2001: “There are natural questions about H(ℵ1)
which are not solvable from ZFC. However, there are
axioms for H(ℵ1) which resolve these questions, providing
a theory as canonical as that of number theory, and which
are clearly true. But the truth of these axioms became
evident only after a great deal of work."

• Woodin: “Projective Determinacy is the correct axiom for
the projective sets; the ZFC axioms are obviously
incomplete and, moreover, incomplete in a fundamental
way."

• Woodin: “The only known examples of unsolvable
problems about the projective sets, in the context of
Projective Determinacy, are analogous to the known
examples of unsolvable problems in number theory: Gödel
sentences and consistency statements."
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Theorem

(Woodin) The following are equivalent:

1 Projective Determinacy.
2 For each k ∈ N there exists a countable transitive set M

such that

〈M,∈〉 |= ZFC + “There exist k Woodin cardinals"

and such M is countably iterable.
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New Axioms for H(ℵ2)?

• Woodin: “Are there analogs of these axioms, say, some
generalization of Projective Determinacy, for the structure
H(ℵ2)?"

• Theorem. (Woodin). Suppose that the axiom Martin’s
Maximum holds. Then there exists a surjection ρ : R→ ℵ2
such that {(x , y) | ρ(x) < ρ(y)} is a projective set.

• Assuming class many Woodin cardinals there is a
transfinite hierarchy which extends the hierarchy of the
projective sets; this is the hierarchy of the universally Baire
sets. Using these sets, Woodin defined a specific strong
logic, Ω-logic.
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Woodin: CH has a truth value

• He introduces a new logic called Ω-logic which is based on
certain desirable test structures (universal Baire sets).

• Assuming the Strong Ω Conjecture, there are ‘good’
theories which maximize the Π2-theory of the structure

〈H(ω2),∈, INS,A ∈ P(R) ∩ L(R)〉

• All such theories entail ¬CH.
• There is a maximal such theory and in it 2ℵ0 = ℵ2 holds.
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Justifications for set theory & large cardinals

• Iterative conception of sets

• Reflection principles

• V is ultimately undefinable

• Fruitfulness: An abundance of pleasing and unifying
consequences. MAXIMIZE!

• No contradictions have been found (by very smart people).

• Extension principles: “the theory of legitimate candidates"

• Large cardinals exist by analogy with ω (e.g. strongly
compact cardinals).
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Gödel’s Extrinsic Program (1947)

“There might exist axioms so abundant in their
verifiable consequences, shedding so much light upon
a whole discipline...that quite irrespective of their
intrinsic necessity they would have to be assumed in
the same sense as any well-established physical
theory."
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• Woodin: The Axiom of Determinacy, Forcing Axioms, and
the Nonstationary Ideal (2010) The second edition.

• “Ultimately of far more significance for this book is that
recent results concerning the inner model program
undermine the philosophical framework for this entire
work."

• “I think the evidence now favors CH."

• “The picture that is emerging now [...] is as follows. The
solution to the inner model problem for one supercompact
cardinal yields the ultimate enlargement of L. This
enlargement of L is compatible with all stronger large
cardinal axioms and strong forms of covering hold relative
to this inner model."
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Another set-theoretic view: Shelah

Saharon Shelah (2003) writes vis à vis ADL(R):

(a) Generally I do not think that the fact that a statement
solves everything really nicely, even deeply, even being the
best semi-axiom (if there is such a thing, which I doubt) is
a sufficient reason to say it is a “true axiom". In particular I
do not find it compelling at all to see it as true.

(b) The judgments of certain semi-axioms as best is based on
the groups of problems you are interested in. For the
California school, descriptive set theory problems are
central. While I agree that they are important and worth
investigating, for me they are not “the center". Other
groups of problems suggest different semi-axioms at best;
other universes may be the nicest from a different
perspective.
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Sy Friedman’s Hyperuniverse Program (July 2014)

Step 1. Create a context in which different pictures of V
(countable transitive models of ZFC) can be compared, the
Hyperuniverse.
Step 2. The comparison of universes evokes intrinsic
principles, such as maximality, for the choice of
“preferred universes", giving rise to axiom-candidates.
Ultimate goal: If the axiom-candidates following from a
given criterion are compatible with set-theoretic practice
and, ideally, if there is extrinsic evidence for them, then
they are proposed as new and true axioms of set theory.
Current work suggests:
“Small large cardinals" exist.
“Large large cardinals" exist only in inner models.
The Continuum Hypothesis is false.
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“Large large cardinals" exist only in inner models.
The Continuum Hypothesis is false.
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The dream solution template for determining truth in V

E.g. CH.

Step 1. Produce a set-theoretic assertion Φ expressing a
natural and “ intuitively true" set-theoretic principle.

Step 2. Prove that Φ determines CH.
That is, prove

Φ ⇒ CH

or prove that
Φ ⇒ ¬CH

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



The dream solution template for determining truth in V

E.g. CH.
Step 1. Produce a set-theoretic assertion Φ expressing a
natural and “ intuitively true" set-theoretic principle.

Step 2. Prove that Φ determines CH.
That is, prove

Φ ⇒ CH

or prove that
Φ ⇒ ¬CH

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



The dream solution template for determining truth in V

E.g. CH.
Step 1. Produce a set-theoretic assertion Φ expressing a
natural and “ intuitively true" set-theoretic principle.

Step 2. Prove that Φ determines CH.
That is, prove

Φ ⇒ CH

or prove that
Φ ⇒ ¬CH

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



Refuting CH by probabilistic reasoning

Freiling (1986) conducts thought experiments about
throwing darts at the real line.
Let Rℵ0 be the collection of countable subsets of R.

Aℵ0 ∀f : R→ Rℵ0 ∃a,b ∈ R [b /∈ f (a) ∧ a /∈ f (b)]

Theorem: (Freiling)

(ZFC) Aℵ0 ⇔ ¬CH.
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Why was Freiling’s Aℵ0 not accepted as a new axiom?

• Mathematicians objected that Freiling’s argument was
implicitly using the measurability of the set

{(x , y) ∈ R× R | y ∈ f (x)}

So they objected from a perspective of deep experience
with non-measurable sets and paradoxical compositions
and the role of AC therein.

• (Sierpinski) If ≺ is a well-ordering of R of length ℵ1 then
the set

S := {(x , y) | x ≺ y}
is non-measurable, since it violates the Fubini property:

0 =

∫
[0,1]

(

∫
[0,1]

1S(x , y)dx)dy =

∫
[0,1]

(

∫
[0,1]

1S(x , y)dy)dx = 1
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The future in 1999

D. Mumford in his address to the conference Mathematics
towards the Third Millenium held in 1999, speaks of a
“beautiful stochastic argument to disprove the continuum
hypothesis" and wonders why it “is not universally known
and considered on a par with the results of Gödel and
Cohen."
He is referring to Freiling’s article.

• Mumford: “it follows that the C.H. is false and we will get rid
of one of the meaningless conundrums of set theory. The
continuum hypothesis is surely similar to the scholastic
issue of how many angels can stand on the head of a pin:
an issue which disappears if you change your point of
view."
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Another intuitive “truth"

• The powerset size axiom, PSA asserts that strictly larger
sets have strictly more subsets:
∀x ∀y (|x | < |y | ⇒ |P(x)| < |P(y)|.

• Hamkins: “An enormous number of mathematicians,
including many very good ones, view the axiom as
extremely natural or even obviously true .."

• Set theorists don’t agree. The function κ 7→ 2κ can exhibit
all kinds of “crazy" patterns (Easton).
Cohen’s original model of ZFC + ¬CH had 2ℵ0 = 2ℵ1 .
Martin’s axiom implies 2ℵ0 = 2κ for all κ < 2ℵ0 . Martin’s
Maximum MM and the proper forcing axiom PFA (principles
favoured by many set-theorists) also refute PSA.

• Note that PSA is a consequence of GCH.
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Applications of CH I

• Emil Artin conjectured that for all primes p, the p-adic field
Qp is C2, i.e., every homogeneous polynomial with n > d2,
where n is the number of variables and d is the degree,
has a nontrivial zero.

• This conjecture turned out to be false; in fact, Qp is not C2
for any p.

Theorem: (Ax,Kochen)

For each degree d ≥ 1, there exists a finite set of primes P(d)
such that for all p /∈ P(d), if f is a homogeneous polynomial
over Qp of degree d in n variables such that n > d2, then f has
a nontrivial zero in Qn

p.
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Theorem: (Ax-Kochen Principle)

. Any first-order logical statement about valued fields which is
true of all but finitely many of the fields Fp((t)) (of formal
Laurent series over Fp is true of all but finitely many of the fields
Qp.

Uses CH to show that if U is a non-principal ultrafilter on N,
then ∏

p

Fp((t))/U ∼=
∏

p

Qp/U
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Applications of CH II

• Let H be a complex Hilbert space and B(H) be the set of
all bounded linear operators on H. B(H) is a Banach
space with norm

‖ A ‖= sup{‖Av‖
‖v‖ | v 6= 0}

where ‖ v ‖=
√
〈v , v〉, and the product of two operators

being defined to be their composition. Additionally there is
an involution ∗ : B(H)→ B(H) that takes an operator A to
its adjoint A∗, which is characterized by the condition

〈Av ,w〉 = 〈v ,A∗w〉.

• An operator A ∈ B(H) is of finite rank if its range is
finite-dimensional. The closure of the set of all operators of
finite rank is the set of compact operators, K(H). K(H) is a
C∗-algebra and it is also a closed two-sided ideal of B(H).
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• `2 is the Hilbert space of infinite sequences
z = (z1, z2, z3, . . .) of complex numbers zi such that∑∞

1 |zn|2 converges, equipped with the inner product
〈z,w〉 =

∑∞
1 znw̄n.

• The quotient
C(`2) = B(`2)/K(`2)

equipped with the quotient norm is a C∗-algebra called the
Calkin algebra.

• An automorphism ϕ of C(`2) is said to be a inner if there
exists u ∈ C(`2) such that ϕ(a) = uau∗ for all a ∈ C(`2).

• (1977) Are all automorphisms of the Calkin algebra inner?
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Theorem: (Philips, Weaver 2007)

The Calkin algebra has outer automorphisms.

Theorem: (Farah 2011)

All automorphisms of The Calkin algebra are inner.

The first Theorem uses CH.

The second Theorem uses Todorcevic’s Axiom TA (also
known as the Open Coloring Axiom OCA).

Every ZFC model has a forcing extension in which TA
holds.
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holds.
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••••••••••••••• Weaver 2006: “Interestingly, it appears that C∗-algebraists
generally tend to regard a problem as solved when it has
been answered using CH.

This may have to do with the fact that in most cases the
other direction of the presumed independence result would
involve set theory at a substantially more sophisticated
level".
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Conservativity of CH

1 (Shoenfield 1961, Platek 1969)

ZF + AC + GCH ` ϕ ⇒ ZF ` ϕ

for ϕ ∈ Π1
4.

2 (Platek 1969, Silver, Kripke)

ZFC + GCH ` ϕ ⇒ ZFC ` ϕ

for ϕ ∈ Π1
∞.

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



Conservativity of CH

1 (Shoenfield 1961, Platek 1969)

ZF + AC + GCH ` ϕ ⇒ ZF ` ϕ

for ϕ ∈ Π1
4.

2 (Platek 1969, Silver, Kripke)

ZFC + GCH ` ϕ ⇒ ZFC ` ϕ

for ϕ ∈ Π1
∞.

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



Conservativity of CH

1 (Shoenfield 1961, Platek 1969)

ZF + AC + GCH ` ϕ ⇒ ZF ` ϕ

for ϕ ∈ Π1
4.

2 (Platek 1969, Silver, Kripke)

ZFC + GCH ` ϕ ⇒ ZFC ` ϕ

for ϕ ∈ Π1
∞.

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



Exploring the frontiers of incompleteness

Peter Koellner’s Templeton project.

Solomon Feferman:
Is the continuum hypothesis a definite mathematical
problem?
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Indefinitely extensible concepts

Ich setze voraus, dass man wisse, was der
Umfang eines Begriffes sei.

I assume that it is known what the extension of a
concept is.

Frege: Die Grundlagen der Arithmetik
(Breslau 1884) § 68.

In Frege: Philosophy of Mathematics, Dummett’s
diagnosis of the failure of Frege’s logicist project focusses
on the adoption of classical quantification. He rejects it in
favor of the intuitionistic interpretation of quantification over
the relevant domains.
Dummett argues that classical quantification is illegitimate
when the domain is given as the objects which fall under
an indefinitely extensible concept.
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Conceptions of Sets

Sets are supposed to be definite totalities, determined
solely by which objects are in the membership relation ∈ to
them, and independently of how they may be defined, if at
all.
A is a definite totality iff the logical operation of
quantifying over A, ∀x ∈ A P(x), has a determinate truth
value for each definite property P(x) of elements of A.
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The Structure of all Sets

V , where V is the universe of all sets, is not a definite
totality, so unbounded classical quantification over V is
not justified on this conception. Indeed, it is essentially
indefinite.
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Feferman’s analysis

• P(A) = {X | X ⊆ A}
• Let A be a set. P(A) may be considered to be an

indefinite collection whose members are subsets of A,
but whose exact extent is indeterminate (open-ended).

• Proposed logical framework for what’s definite and what’s
not:

What’s definite is the domain of classical
logic, what’s not is that of intuitionistic logic.

• Classical logic for bounded (∆0) formulas.
Heyting’s logic for unbounded quantification.
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Actualism versus Potentialism

• This is a rough distinction. It has a long history, going back
to Aristotle.

• One way of formally regimenting this informal distinction is
by employing intuitionistic logic for domains for which one
is a potentialist and reserving classic logic for domains for
which one is an actualist.

• This is the approach Tait takes in his work on reflection
principles.
Feferman work on semi-intuitionistic systems of set theory
can also be recast in those terms.
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Toward Axiomatic Formulations

• Restrict quantifiers in the formulas that are supposed to
represent definite properties, e.g. in Comprehension or
Separation axioms.

• Quantification over indefinite domains may still be
regarded as meaningful, in order to state generic
properties, e.g. closure under certain operations
performed on sets (e.g. pairing, union etc.).
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The theory

• Feferman: On the strength of some semi-constructive
theories (2012)

• T := IKP + LEM∆0 + BOS + ACfull + MP + R is a set.

• LEM∆0 is the schema ϕ ∨ ¬ϕ for ϕ ∆0.

• BOS is the schema (for all formulas ϕ(x)):
If ∀x ∈ a [ϕ(x) ∨ ¬ϕ(x)] then

∀x ∈ aϕ(x) ∨ ∃x ∈ a¬ϕ(x).

• ACfull is the schema (for all formulas ψ(x , y)):

∀x ∈ a ∃y ψ(x , y)→ ∃f [dom(f ) = a ∧ ∀x ∈ aϕ(x , f (x))]

• MP is the schema

¬¬∃x θ(x)→ ∃x θ(x)

for θ(x) ∆0.
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Feferman’s Conjecture: CH is not a definite mathematical
problem

The formal version of the conjecture is that

T 6` CH ∨ ¬CH

• The theory T has too many axioms. Let T− be T without
BOS and LEM∆0 ; then

(∗) T− ` BOS + LEM∆0

• (∗) follows from the observation that ACfull implies LEM∆0

(Diaconescu) and also BOS.
• Note that T proves full Replacement and Strong

Collection (considered by Tharp, Beeson, Aczel).
• T is quite strong. It proves every theorem of (classical)

second order arithmetic. In strength it resides strictly
between second order arithmetic and Zermelo set
theory.
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How to verify the conjecture?

• Does T satisfy some kind of disjunction property?

• Realizability?

• What should the realizers be?

• What kind of realizability?

• What should the universe for realizability be?

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



How to verify the conjecture?

• Does T satisfy some kind of disjunction property?

• Realizability?

• What should the realizers be?

• What kind of realizability?

• What should the universe for realizability be?

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



How to verify the conjecture?

• Does T satisfy some kind of disjunction property?

• Realizability?

• What should the realizers be?

• What kind of realizability?

• What should the universe for realizability be?

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



How to verify the conjecture?

• Does T satisfy some kind of disjunction property?

• Realizability?

• What should the realizers be?

• What kind of realizability?

• What should the universe for realizability be?

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



How to verify the conjecture?

• Does T satisfy some kind of disjunction property?

• Realizability?

• What should the realizers be?

• What kind of realizability?

• What should the universe for realizability be?

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



How to verify the conjecture?

• Does T satisfy some kind of disjunction property?

• Realizability?

• What should the realizers be?

• What kind of realizability?

• What should the universe for realizability be?

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



The relativized constructible hierarchy

• There are two versions: For a set A we have L(A) and L[A].

• They can be vastly different. E.g. in general L(A) 6|= AC
whereas always L[A] |= AC.

• If R /∈ L then L 6= L(R). However, always L[R] = L.

• Only L[A] is interesting for our purposes.
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• DefA(X ) := {Y ⊆ X | Y definable in 〈X ,∈,A ∩ X 〉}.

• L0[A] = ∅

Lα+1[A] = DefA(Lα[A])

Lλ =
⋃
ξ<λ Lξ[A].

L[A] =
⋃
α Lα[A].
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Computability over 〈L[A],∈,A〉

• For realizers we use codes of Σ1 partial functions, i.e. Σ1
definable (with parameters) in the structure 〈L[A],∈,A〉.

• If e is such a code and a1, . . . ,an are sets in L[A], we use

[e]L[A](a1, . . . ,an)

for the result of applying the partial function with code e to
~a (if it exists).

• In this way the structures 〈L[A],∈,A〉 give rise to partial
combinatory algebras ( pca’s) or models of App.
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Realizability over 〈L[A],∈,A〉

e  a ∈ b iff a ∈ b
e  a = b iff a = b
e  ϕ ∧ ψ iff (e)0  ϕ and (e)1  ψ

e  ϕ ∨ ψ iff [(e)0 = 0 ∧ (e)1  ϕ] or [(e)0 = 1 ∧ (e)1  ψ]

e  ϕ→ ψ iff ∀d [d  ϕ⇒ [e]L[A](d)  ψ]

e  ∃xθ(x) iff (e)1  θ((e)0)

e  ∀xθ(x) iff ∀a ∈ L[A] [e]L[A](a)  θ(a).

Above, for a set-theoretic pair b = 〈u, v〉, we used the
notations (b)0 = u and (b)1 = v . If b is not a pair let
(b)0 = (b)1 = 0.
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Lemma. If θ is ∆0 with parameters from L[A], then

θ ⇔ ∃e  θ.

Theorem. T ` θ ⇒ ∃e e  θ.

Theorem 1. We need a more useful result that exhibits the
underlying uniformity. If D is a T-derivation of a formula
ψ(x1, . . . , xn), one explicitly constructs a hereditarily finite
set eD such that for all A and all a1, . . . ,an ∈ L[A],

[eD]L[A](a1, . . . ,an,RL[A])  ψ(a1, . . . ,an).

Another way of expressing the uniformity and effectiveness
of eD is obtained by viewing 〈L[A],∈,A〉 as an applicative
structure. According to this view, eD is given by an
applicative term t of the theory App such that t ↓ in L[A],
i.e.

L[A] |= ∃e [t ' e ∧ e  ψ].
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Designing L[A]

• Not just any A.

• Start with a universe V0 such that

V0 |= ZFC + 2ℵ0 = ℵ2.

Can be obtained from any universe V ′ such that
V ′ |= ZFC + GCH (e.g. L) by forcing with Fn(κ× ω,2)
where κ = (ℵ2)V ′

.

• We now code the set of reals R via a set A of ordinals in
such a way that the set of real numbers of V0 belongs to
L[A]. We thus have

RV0 = RL[A] ∈ L[A].

The latter is possible as V0 |= AC (plus some trickery).

• Clearly,
L[A] |= ¬CH.
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Proving the conjecture

• CH := ∀x ⊆ R [∃f f : ω � x ∨ ∃f f : x � R].

• Assume T ` CH ∨ ¬CH.
• By Theorem 1 there exists an e ∈ HF (which does not

depend on A) such that

[e]L[A](RL[A])  CH ∨ ¬CH.

• Since L[A] |= ¬CH we must have for d := [e]L[A](RL[A]) that

(d)0 = 1 ∧ L[A] |= ∀b b 6 CH.

• Since the statement “[e]L[A](RL[A]) ' d” is Σ
L[A]
1 , there

exists a π such that

d ,A,RL[A] ∈ Lπ[A] ∧ Lπ[A] |= [e]Lπ[A](RL[A]) ' d .
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Proving the conjecture cont’ed

• Take a forcing extensions V1 of V0 such that

V1 |= 2ℵ0 = ℵ1

and RV0 = RV1 ∧ (ℵ1)V0 = (ℵ1)V1 .

• Force with (Fn(ℵ1,2,ℵ1))V0 .
• V1 has a bijection h between R and ℵ1. Code h into a set

of ordinals B such that B ∩ π = ∅.
• L[A ∪ B] |= CH.

(a) L[A ∪ B] |= ∃b b  CH.
• L[A ∪ B] |= [e]L[A∪B](RL[A∪B]) ' d since RL[A∪B] = RL[A].
• Lπ[A] = Lπ[A ∪ B].
• Lπ[A] |= (d)0 = 1, thus L[A ∪ B] |= (d)0 = 1.
• CONTRADICTION! as L[A ∪ B] |= d  CH ∨ ¬CH, which

implies (d)0 = 0 by (a).

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



Proving the conjecture cont’ed

• Take a forcing extensions V1 of V0 such that

V1 |= 2ℵ0 = ℵ1

and RV0 = RV1 ∧ (ℵ1)V0 = (ℵ1)V1 .

• Force with (Fn(ℵ1,2,ℵ1))V0 .
• V1 has a bijection h between R and ℵ1. Code h into a set

of ordinals B such that B ∩ π = ∅.
• L[A ∪ B] |= CH.

(a) L[A ∪ B] |= ∃b b  CH.
• L[A ∪ B] |= [e]L[A∪B](RL[A∪B]) ' d since RL[A∪B] = RL[A].
• Lπ[A] = Lπ[A ∪ B].
• Lπ[A] |= (d)0 = 1, thus L[A ∪ B] |= (d)0 = 1.
• CONTRADICTION! as L[A ∪ B] |= d  CH ∨ ¬CH, which

implies (d)0 = 0 by (a).

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



Proving the conjecture cont’ed

• Take a forcing extensions V1 of V0 such that

V1 |= 2ℵ0 = ℵ1

and RV0 = RV1 ∧ (ℵ1)V0 = (ℵ1)V1 .

• Force with (Fn(ℵ1,2,ℵ1))V0 .

• V1 has a bijection h between R and ℵ1. Code h into a set
of ordinals B such that B ∩ π = ∅.

• L[A ∪ B] |= CH.
(a) L[A ∪ B] |= ∃b b  CH.
• L[A ∪ B] |= [e]L[A∪B](RL[A∪B]) ' d since RL[A∪B] = RL[A].
• Lπ[A] = Lπ[A ∪ B].
• Lπ[A] |= (d)0 = 1, thus L[A ∪ B] |= (d)0 = 1.
• CONTRADICTION! as L[A ∪ B] |= d  CH ∨ ¬CH, which

implies (d)0 = 0 by (a).

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



Proving the conjecture cont’ed

• Take a forcing extensions V1 of V0 such that

V1 |= 2ℵ0 = ℵ1

and RV0 = RV1 ∧ (ℵ1)V0 = (ℵ1)V1 .

• Force with (Fn(ℵ1,2,ℵ1))V0 .
• V1 has a bijection h between R and ℵ1. Code h into a set

of ordinals B such that B ∩ π = ∅.

• L[A ∪ B] |= CH.
(a) L[A ∪ B] |= ∃b b  CH.
• L[A ∪ B] |= [e]L[A∪B](RL[A∪B]) ' d since RL[A∪B] = RL[A].
• Lπ[A] = Lπ[A ∪ B].
• Lπ[A] |= (d)0 = 1, thus L[A ∪ B] |= (d)0 = 1.
• CONTRADICTION! as L[A ∪ B] |= d  CH ∨ ¬CH, which

implies (d)0 = 0 by (a).

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



Proving the conjecture cont’ed

• Take a forcing extensions V1 of V0 such that

V1 |= 2ℵ0 = ℵ1

and RV0 = RV1 ∧ (ℵ1)V0 = (ℵ1)V1 .

• Force with (Fn(ℵ1,2,ℵ1))V0 .
• V1 has a bijection h between R and ℵ1. Code h into a set

of ordinals B such that B ∩ π = ∅.
• L[A ∪ B] |= CH.

(a) L[A ∪ B] |= ∃b b  CH.
• L[A ∪ B] |= [e]L[A∪B](RL[A∪B]) ' d since RL[A∪B] = RL[A].
• Lπ[A] = Lπ[A ∪ B].
• Lπ[A] |= (d)0 = 1, thus L[A ∪ B] |= (d)0 = 1.
• CONTRADICTION! as L[A ∪ B] |= d  CH ∨ ¬CH, which

implies (d)0 = 0 by (a).

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



Proving the conjecture cont’ed

• Take a forcing extensions V1 of V0 such that

V1 |= 2ℵ0 = ℵ1

and RV0 = RV1 ∧ (ℵ1)V0 = (ℵ1)V1 .

• Force with (Fn(ℵ1,2,ℵ1))V0 .
• V1 has a bijection h between R and ℵ1. Code h into a set

of ordinals B such that B ∩ π = ∅.
• L[A ∪ B] |= CH.

(a) L[A ∪ B] |= ∃b b  CH.

• L[A ∪ B] |= [e]L[A∪B](RL[A∪B]) ' d since RL[A∪B] = RL[A].
• Lπ[A] = Lπ[A ∪ B].
• Lπ[A] |= (d)0 = 1, thus L[A ∪ B] |= (d)0 = 1.
• CONTRADICTION! as L[A ∪ B] |= d  CH ∨ ¬CH, which

implies (d)0 = 0 by (a).

136 YEARS AND STILL GOING STRONG(?): CANTOR’S CONTINUUM PROBLEM



Proving the conjecture cont’ed

• Take a forcing extensions V1 of V0 such that

V1 |= 2ℵ0 = ℵ1

and RV0 = RV1 ∧ (ℵ1)V0 = (ℵ1)V1 .

• Force with (Fn(ℵ1,2,ℵ1))V0 .
• V1 has a bijection h between R and ℵ1. Code h into a set

of ordinals B such that B ∩ π = ∅.
• L[A ∪ B] |= CH.

(a) L[A ∪ B] |= ∃b b  CH.
• L[A ∪ B] |= [e]L[A∪B](RL[A∪B]) ' d since RL[A∪B] = RL[A].

• Lπ[A] = Lπ[A ∪ B].
• Lπ[A] |= (d)0 = 1, thus L[A ∪ B] |= (d)0 = 1.
• CONTRADICTION! as L[A ∪ B] |= d  CH ∨ ¬CH, which

implies (d)0 = 0 by (a).
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