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Intermediate logics



Constructive reasoning

On the grounds that the only accepted reasoning should be
constructive, L. E. J. Brouwer rejected classical reasoning.

Luitzen Egbertus Jan Brouwer (1881 - 1966)



Intuitionistic logic

In 1930’s Brouwer’s ideas led his student Heyting to introduce
intuitionistic logic which formalizes constructive reasoning.

Arend Heyting (1898 - 1980)



Intuitionistic logic

Roughly speaking, the axiomatization of intuitionistic logic is
obtained by dropping the law of excluded middle from the
axiomatization of classical logic.

CPC = classical propositional calculus
IPC = intuitionistic propositional calculus.

The law of excluded middle is not derivable in intuitionistic
logic. So IPC ( CPC.

In fact,
CPC = IPC + (p ∨ ¬p).

There are many logics in between IPC and CPC



Superintuitionistic logics

A superintuitionistic logic is a set of formulas containing IPC
and closed under the rules of substitution and Modus Ponens.

Superintuitionistic logics contained in CPC are often called
intermediate logics because they are situated between IPC and
CPC.

Intermediate logics are exactly the consistent superintuitionistic
logics.

Since we are interested in consistent logics, we will mostly
concentrate on intermediate logics.



Intermediate logics

IPC

CPC

KC
KC = IPC + (¬p ∨ ¬¬p)

weak law of excluded middle

LC
LC = IPC + (p→ q) ∨ (q→ p)

Gödel-Dummett calculus



Varieties of Heyting algebras



Heyting algebras

A Heyting algebra is a bounded distributive lattice (A,∧,∨,0,1)
equipped with a binary operation→, which is a right adjoint of
∧. This means that for each a, b, x ∈ A we have

a ∧ x ≤ b iff x ≤ a→ b.



Equational theories of Heyting algebras

Each formula ϕ in the language of IPC corresponds to an
equation ϕ ≈ 1 in the theory of Heyting algebras.

Conversely, each equation ϕ ≈ ψ can be rewritten as
ϕ↔ ψ ≈ 1, which corresponds to the formula ϕ↔ ψ.

This yields a one-to-one correspondence between
superintuitionistic logics and equational theories of Heyting
algebras.



Varieties of Heyting algebras

By the celebrated Birkhoff theorem, equational theories
correspond to varieties; that is, classes of algebras closed under
homomorphic images, subalgebras, and products.

Garrett Birkhoff (1911 - 1996)



Varieties of Heyting algebras

Thus, superintuitionistic logics correspond to varieties of
Heyting algebras, while intermediate logics to non-trivial
varieties of Heyting algebras.

Heyt = the variety of all Heyting algebras.

Bool = the variety of all Boolean algebras.

Λ(IPC) = the lattice of superintuitionistic logics.

Λ(Heyt) = the lattice of varieties of Heyting algebras.

Theorem. Λ(IPC) is dually isomorphic to Λ(Heyt).

Consequently, we can investigate superintuitionistic logics by
means of their corresponding varieties of Heyting algebras.



Properties of intermediate logics

Axiomatization, the finite model property (fmp) and decidability
are some of the most studied properties of non-classical logics.

(Harrop, 1957) If a logic is finitely axiomatizable and has the
fmp, then it is decidable.

In the 1960’s the research on axiomatization and finite model
property was mostly concerned with particular non-classical
logics.

Since the 1970’s general methods started to develop for classes
of non-classical logics.

One of the important aziomatization methods developed at that
time was the method of Jankov-de Jongh formulas.



Aims of Jankov

The aim of Jankov was to show that there exist continuum
many intermediate logics and to construct intermediate logics
without the finite model property.

Dimitri Jankov



Aims of de Jongh

The aim of de Jongh was to characterize intuitonistic logic
(among all the intermediate logics) via the Kleene slash.

Dick de Jongh



Aims of de Jongh



Aims of de Jongh

The PhD defence of Wim Blok 1976



Jankov formulas



Subdirectly irreducible Heyting algebras
By another theorem of Birkhoff, every variety of algebras is
generated by its subdirectly irreducible members.

Theorem (Jankov, 1963). A Heyting algebra is subdirectly
irreducible (s.i. for short) iff it has the second largest element.

0

s

1



Jankov formulas

Let A be a finite subdirectly irreducible Heyting algebra, s the
second largest element of A.

For each a ∈ A we introduce a new variable pa and define the
Jankov formula χ(A) as the (∧,∨,→,0,1)-description of this
algebra.

χ(A) = [
∧
{pa∧b ↔ pa ∧ pb : a, b ∈ A}∧∧
{pa∨b ↔ pa ∨ pb : a, b ∈ A}∧∧
{pa→b ↔ pa → pb : a, b ∈ A}∧∧
{p¬a ↔ ¬pa : a ∈ A}]→ ps

If we interpret pa as a, then the Jankov formula of A is equal in
A to s, i.e., it is pre-true in A .



Axiomatization of varieties of Heyting algebras

Theorem (Jankov, 1963). Let A be a finite s.i. Heyting algebra,
and B be a Heyting algebra. Then

B 6|= χ(A) iff there is a homomorphic image C of B and a Heyting
embedding h : A� C.



Splittings

Jankov formulas are used to axiomatize many varieties of
Heyting algebras.

For example, they axiomatize all splitting varieties of Heyting
algebras.

Splittings started to play an important role in lattice theory in
the 1940s.

A pair (a, b) splits a lattice L if a � b and for each c ∈ L:

a ≤ c or c ≤ b



Splittings

R. McKenzie in the 1970’s revisited splittings when he started an
extensive study of lattices of varieties.

Ralph McKenzie



Splittings

Var(A)

Bool

Heyt + χ(A)

Heyt

Figure: Splitting of the lattice of varieties of Heyting algebras



Splittings

Theorem. For each subdirectly irreducible Heyting algebra A
the pair (Var(A),Heyt + χ(A)) splits the lattice of varieties of
Heyting algebras.



de Jongh formulas



n-Henkin model of IPC

H(n)



n-universal model of IPC

U(n)

n-universal model U(n) consists of the elements of H(n) that
have finitely many successors.

U(n) is dense in H(n).



n-universal model of IPC

U(n) w
ϕw



n-universal model of IPC

U(n) w
ψw



de Jongh formulas

De Jongh formulas ϕw and ψw define point-generated up-sets of
U(n).

In particular, ↑w = V(ϕw) and U(n) \ ↓w = V(ψw)

ψw = ϕw →
∨
u∈S

ϕu

where S is the set of all immediate successors of w.



De Jongh formulas

Theorem (de Jongh, 1968) For any finite rooted frame F there
exists a formula χ(F) such that for any frame G we have

G 6|= χ(F) iff F is a bounded morphic image of a generated
subframe of G.



Disjunction property for intermediate logics

An intermediate logic L has the disjunction property if
L ` ϕ ∨ ψ implies L ` ϕ or L ` ψ.

Theorem. (Lukasiewicz, 1952) IPC has the disjunction property.



Disjunction property for intermediate logics

Conjecture. (Lukaisewicz, 1952) An intermediate logic has the
disjunction property iff L = IPC.

Jan Lukasiewicz (1978-1956)



The disjunction property

The Kreisel-Putnam Logic

KP = IPC + (¬p→ q ∨ r)→ (¬p→ q) ∨ (¬p→ r)

is a proper intermediate logic that has the disjunction property.

Gabbay-de Jongh Logics provide an infinite family of
intermediate logics with the disjunction property.

Wronski proved that in fact there are continuum many
intermediate logics with the disjunction property.



The disjunction property

Theorem (de Jongh, 1968)
Let L be an intermediate logic. Then L = IPC iff for every
formula ϕ, ϕ|Lϕ iff ϕ has the L-disjunction property.



The connection of Jankov and de Jongh formulas



Heyting algebra of up-sets

Up-sets of any poset (intuitionistic Kripke frame) (X,≤) form a
Heyting algebra where for up-sets U,V ⊆ X:

U → V = X − ↓(U − V), ¬U = X − ↓U

Here U is an up-set if x ∈ U and x ≤ y imply y ∈ U and

↓U = {x ∈ X : ∃y ∈ U with x ≤ y}.



Heyting algebra of up-sets

g ¬g

¬¬g ¬¬g→ g
0

g ¬g

g ∨ ¬g¬¬g

¬¬g ∨ ¬g ¬¬g→ g

1



Heyting algebras of up-sets

De Jongh and Troelstra gave a characterization of Heyting
algebras arising from Kripke frames.

Theorem (de Jongh and Troelstra, 1966). A Heyting algebra A
is isomorphic to Up(X) for some poset X iff A is complete and
every element of A is a join of completely join-prime elements.

Corollary. Every finite Heyting algebra is isomorphic to Up(X)
for a finite poset X.



Heyting algebras of up-sets

Anne Troelstra



Arend Heyting and Anne Troelstra



Representation of Heyting algebras

Theorem (Esakia, 1974). Every Heyting algebra is isomorphic
to the Heyting algebra of clopen up-sets of some topological
Kripke frame.

Leo Esakia (1934 - 2010)



Posets dual to s.i. Heyting algebras

0

s

1

A finite Heyting algebra A is s.i. iff the dual poset of A has a
least element, the root.



Duality dictionary in the finite case

Heyting algebras posets
s.i. Heyting algebras rooted posets
homomorphic images up-sets

subalgebras bounded morphic images
Jankov formulas de Jongh formulas



Jankov formulas and the cardinality of the lattice of
intermediate logics



Continuum of intermediate logics

Let A and B be s.i. Heyting algebras. We write A ≤ B if
A ∈ SH(B).

Theorem. If ∆ is an ≤-antichain of finite s.i. algebras, then for
each I, J ⊆ ∆ with I 6= J, we have

IPC + {χ(A) : A ∈ I} 6= IPC + {χ(A) : A ∈ J}.

How can we construct an ≤-antichain of finite s.i. algebras?



Antichains

. . .

Lemma. ∆1 is an ≤-antichain.



Antichains

. . .

Lemma. ∆2 is an ≤-antichain.



Continuum of intermediate logics

Corollary.

1 There are continuum many intermediate logics.

2 In fact, there are continuum many intermediate logics of
depth 3.

3 And there are continuum many intermediate logics of
width 3.



Logics axiomatized by Jankov-de Jongh formulas

CPC = IPC + χ( ),

KC = IPC + χ( ),

LC = IPC + χ( ) + χ( ).



Varieties axiomatized by Jankov formulas

Is every variety of Heyting algebras axiomatized by Jankov
formulas?

A variety V is locally finite if every finitely generated V-algebra
is finite.

Theorem Every locally finite variety of Heyting algebras is
axiomatized by Jankov formulas.

Corollary. Varieties of Heyting algebras of finite depth are
locally finite and hence axiomatized by Jankov formulas.



Finitely generated algebras

However, there are continuum many non-locally finite varieties
of Heyting algebras.

Theorem (Rieger, 1949, Nishimura, 1960). The 1-generated
free Heyting algebra, also called the Rieger-Nishimura lattice, is
infinite.



The Rieger-Nishimura Lattice

0

g ¬g

g ∨ ¬g¬¬g

¬¬g ∨ ¬g ¬¬g→ g

...

1



1-generated free Heyting algebra

0

g ¬g

g ∨ ¬g¬¬g

¬¬g ∨ ¬g ¬¬g→ g

...

1 g ¬g

¬¬g ¬¬g→ g

...
...



Axiomatization of varieties of Heyting algebras

There exist intermediate logics that are not axiomatized by
Jankov-de Jongh formulas.

Problem: Can we generalize the Jankov-de Jongh method to all
intermediate logics?



Canonical formulas



Axiomatization of intermediate logics

The affirmative answer was given by Michael Zakharyaschev via
canonical formulas.

Michael Zakharyaschev



Duality dictionary in the finite case

Heyting algebras posets
s.i. Heyting algebras rooted posets
homomorphic images up-sets

subalgebras bounded morphic images
Jankov formulas de Jongh formulas

? canonical formulas



Canonical formulas and the fmp

We will give an algebraic account of this method.

It turns out that the method of canonical formulas is directly
related to the finite model property of IPC.

The finite model property of IPC for Heyting algebras is
established via locally finite reducts of Heyting algebras.



Locally finite reducts

Although Heyting algebras are not locally finite, they have
locally finite reducts.

Heyting algebras (A,∧,∨,→,0,1).

∨-free reducts (A,∧,→,0,1): implicative semilattices.

→-free reducts (A,∧,∨,0,1): distributive lattices.

Theorem.

(Diego, 1966). The variety of implicative semilattices is
locally finite.

(Folklore). The variety of distributive lattices is locally
finite.



Connection with filtrations

There are two standard methods for proving the finite model
property for modal and intermediate logics: standard filtration
and selective filtration.

Taking the (∧,→,0)-reduct corresponds to selective filtration.

Taking the (∧,∨,0,1)-reduct corresponds to standard filtration.



(∧,→)-canonical formulas

We will use these reducts to derive desired axiomatizations of
varieties of Heyting algebras.

First we will need to extend the theory of Jankov formulas.

Jankov formulas describe the full Heyting signature. We will
now look at the ∨-free reducts.

The homomorphisms will now preserve only ∧, 0 and→. In
general they do not preserve ∨. But they may preserve some
joins.

This can be encoded in the following formula.



(∧,→)-canonical formulas

Let A be a finite subdirectly irreducible Heyting algebra, s the
second largest element of A, and D a subset of A2.

For each a ∈ A we introduce a new variable pa and define the
(∧,→)-canonical formula α(A,D) associated with A and D as

α(A,D) = [
∧
{pa∧b ↔ pa ∧ pb : a, b ∈ A}∧∧
{pa→b ↔ pa → pb : a, b ∈ A}∧∧
{p¬a ↔ ¬pa : a ∈ A}∧∧
{pa∨b ↔ pa ∨ pb : (a, b) ∈ D}]→ ps

Note that if D = A2, then α(A,D) = χ(A).



(∧,→)-canonical formulas

Theorem. Let A be a finite s.i. Heyting algebra, D ⊆ A2, and B a
Heyting algebra. Then

B 6|= α(A,D) iff there is a homomorphic image C of B and an
(∧,→,0)-embedding h : A� C such that h(a ∨ b) = h(a) ∨ h(b)
for each (a, b) ∈ D.

Theorem (G.B and N.B., 2009). Every variety of Heyting
algebras is axiomatized by (∧,→,0)-canonical formulas.

We show that for each formula ϕ there exist finitely many
A1, . . . ,Am and Di ⊆ A2

i such that

IPC + ϕ = IPC + α(A1,D1) + · · ·+ α(Am,Dm)



Duality dictionary in the finite case

Heyting algebras posets
s.i. Heyting algebras rooted posets
homomorphic images up-sets

subalgebras bounded morphic images
Jankov formulas de Jongh formulas

(∧,→,0)-canonical formulas canonical formulas



Subframe formulas

α(A,A2) = χ(A).

α(A, ∅) is called a subframe formula.

Subframes play the same role here as submodels in model
theory.

Theorem. Let A be a finite s.i. algebra and XA its dual space. A
Heyting algebra B refutes α(A) iff XA is a subframe XB.

(∧,→)-embeddability means that we take subframes of the dual
space.

There are continuum many logics axiomatized by such formulas.

All subframe logics have the finite model property.

Zakharyaschev showed that subframe formulas are equivalent
to (∧,→)-formulas.



NNIL-formulas

NNIL-formulas are propositional formulas that do not allow
nesting of implication to the left (Visser, van Benthem, de
Jongh, Renardel de Lavalette, 1995)

Albert Visser Johan van Benthem



NNIL-formulas

Gerard R. Renardel de Lavalette



NNIL-formulas and subframe formulas

Theorem (V, vB, dJ, RdL, 1995). NNIL formulas are exactly
those intuitionistic formulas that are preserved under
submodels.

Theorem. (de Jongh, N.B., 2006). NNIL formulas are
(semantically) equivalent to subframe formulas.



(∧,∨)-canonical formulas

We can also develop the theory of (∧,∨)-canonical formulas
γ(A,D) using the→-free locally finite reduct of Heyting
algebras.

The theory of these formulas is different than that of
(∧,→)-canonical formulas.

Theorem (G.B. and N.B., 2013). Every variety of Heyting
algebras is axiomatized by (∧,∨)-canonical formulas.



(∧,∨)-canonical formulas

Let A be a finite s.i. Heyting algebra, let s be the second largest
element of A, and let D be a subset of A2. For each a ∈ A,
introduce a new variable pa, and set

Γ = (p0 ↔ ⊥) ∧ (p1 ↔ >)∧∧
{pa∧b ↔ pa ∧ pb : a, b ∈ A} ∧∧
{pa∨b ↔ pa ∨ pb : a, b ∈ A} ∧∧
{pa→b ↔ pa → pb : (a, b) ∈ D}

and

∆ =
∨
{pa → pb : a, b ∈ A with a 66 b}.

Then define the (∧,∨)-canonical formula γ(A,D) associated
with A and D as

γ(A,D) = Γ→ ∆.



(∧,∨)-canonical formulas

If D = A2, then γ(A,D) = χ(A). If D = ∅, then γ(A, ∅) = γ(A)

Theorem. Let A be a finite s.i. Heyting algebra. A Heyting
algebra B refutes γ(A) iff XA is an order-preserving image of XB.

These formulas, called stable formulas, are counterparts of
subframe formulas.

There are continuum many logics axiomatized by stable
formulas.

Recently, (de Jongh and N.B., 2014) defined ONNILLI formulas
(only NNILL to the left of implication).

ONNILLI formulas are (semantically) equivalent to stable
formulas.



Modal logic generalizations



Connection with filtrations

There are two standard methods for proving the finite model
property for modal and intermediate logics: standard filtration
and selective filtration.

Taking the (∧,→,0)-reduct corresponds to selective filtration.

Taking the (∧,∨,0,1)-reduct corresponds to standard filtration.

Modal analogues of (∧,→,0)-canonical formulas for transitive
modal logics (extensions of K4) are algebraic analogues of
Zakharyaschev’s canonical formulas for transitive modal logics.

Whether canonical formulas can be extended to all modal logics
was left as an open problem.



Connection with filtrations

Selective filtration works well only in the transitive case.

In the non-transitive case one needs to employ standard
filtration.

The approach built on algebraic understanding of the standard
filtration leads to a new axiomatization of all normal modal
logics via stable canonical rules.

This method already has a number of applications: gives robust
proof theoretic systems of modal logic, gives a new proof of
decidability of admissible rules.



All this developments originated in the works of Jankov, de
Jongh and Troelstra!



Thank you Dick and Anne!


