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Abstract. In this paper we explore the similarities between a mathe-
matical model of language evolution and several A-life simulations. We
argue that the mathematical model makes some problematic simplifica-
tions, but that a combination with computational models can help to
adapt and extend existing language evolution scenario’s.

1 Introduction

The debate on the origins of language has been dominated by “verbal” theories,
both in scientific publications (see e.g. [3]) and in popular, best-selling books
(e.g. [1]). Recently also mathematical models of the evolution of language, es-
pecially those of Martin Nowak et al., have received much attention (e.g. [6]).
These models are sometimes seen as a validation of the earlier verbal theories.
Steven Pinker, e.g., writes in the accompanying news story of [7] that the paper
shows “the evolvability of [one of] the most striking features of language”, i.e. its
compositionality.

Although we appreciate the major contributions in these books and papers,
we still observe many shortcomings in the proposed theories. Both the verbal
and the mathematical accounts tend to overlook many crucial details. Verbal
theories often underestimate the intricacies of the evolutionary dynamics and
take “evolution” too much as a general problem solver. The mathematical mod-
els often make crucial simplifications that are linguistically poorly motivated.
In particular, both types of theories have shown little appreciation for the im-
portance of the “frequency dependency” of language evolution and the role of
selforganization there-in.

A-life models, on the contrary, have shed light on both the dynamics of
language evolution and the explanatory role of selforganization. However, A-
life models are too often studied as relatively isolated cases, and too seldomly
systematically compared with each other and with mathematical models (the
review papers [8,4] are exceptions, although they unfortunately do not discuss



mathematical models). In this paper we explore the similarities between a re-
cently published mathematical model [6], our own A-life simulations [9] and the
model of Kirby [5]. We believe that such an approach can eventually both avoid
the problematic simplifications of mathematical models, and the ad hoc-ness of
many A-life models. In the conference presentation we will also discuss some
shortcomings of “verbal” theories as revealed by A-life models.

2 The mathematical model

Nowak et al. use in [6] an elegant formalism that is in line with our view that
one should study both the cultural dynamics of language and the evolutionary
dynamics that operate on the parameters of the cultural process. We will discuss
here only the model for cultural dynamics.

Nowak et al. assume that there is a finite number of states (grammar types)
that an individual can be in. Further, they assume that newcomers (infants)
learn their grammar from the population, where more successful grammars have
a higher probability to be learned and mistakes are made in learning. The system
can now be described in terms of the changes in the relative frequencies x; of
each grammar type i in the population:
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In this differential equation, f; is the relative fitness (quality) of grammars
of type 7 and equals f; = > y x;F;;, where Fj; is the expected communicative
success from an interaction between an individual of type ¢ and an individual of
type j. The relative fitness f of a grammar thus depends on the frequencies of
all grammar types, hence it is frequency dependent. The proper way to choose F’
depends on the characteristics of language use (production and interpretation).

Q;; is the probability that a child learning from a parent of type 7, will end
up with grammar of type j. The probability that the child ends up with the
same grammar, ();;, is defined as ¢, the copying fidelity. The proper way to
choose ) depends on the characteristics of language acquisition (learning and
development). (¢ is the average fitness in the population and equals ¢ = 3. x; f;.
This term is needed to keep the sum of all fractions at 1).

The main result that Nowak et al. obtain is a “coherence threshold”: they
show mathematically that there is a minimum value for g to keep coherence
in the population. If ¢ is lower than this value, all possible grammar types are
equally frequent in the population and the communicative success in minimal. If
q is higher than this value, one grammar type is dominant; the communicative
success is much higher than before and reaches 100% if ¢ = 1. Further, Nowak et
al. derive an upper and a lower bound on the number of sample sentences that
a child needs to acquire its parents’ language with the required fidelity gq.



3 A-life models

We argue that computational models that we [9] and others [2] have studied fit
the general format of equation 1 well, but differ significantly in the particular
choices for the representation of language use and language acquisition, i.e. the
functions F' and Q. In the limited space that is available here we will only shortly
mention two examples of interesting, qualitative differences that these choices
bring.

First, for sake of simplicity Nowak et al. assume that all grammars are equally
expressive, and are all equally similar to each other. This has the unrealistic
consequence that the benefits of interacting with another individual (F) are ei-
ther maximal or minimal. We studied a computational model [9] were we used
context-free grammars to represent the linguistic abilities of agents. This formal-
ism can represent “languages” of many different types and levels of expressive-
ness. In that study, we did not model learning explicitly, but in stead assumed
(as in equation 1) that children end up with a slightly different grammar than
their parents.

One of the surprising findings was that once a certain type of language was
established in the population, the language kept changing but remained of the
same type. The language types formed “self-enforcing regimes”, because the lan-
guage present at time ¢ determines which agents will be successful and reproduce
to the next generation, and therefore indirectly determine the language at time
t + 1. We found three such regimes: (i) idiosyncratic, non-syntactic languages,
(ii) compositional languages and (iii) recursive languages. In a population where
a rich but idiosyncratic language is established, syntax could not emerge. This
phenomenon is important for understanding the consequences of the frequency
dependency of language evolution, but is excluded in the simplifications of the
mathematical model.

Second, Nowak et al. consider two extreme possibilities for the learning al-
gorithm, and claim to have found a lower and a upper bound on the number of
training samples that a learning algorithm needs to reach the coherence thres-
hold. However, in their analysis they have not taken into account that the choice
of the grammar that a child has to learn is biased by how well previous genera-
tions have been able to learn and maintain it.

In a follow-up of the study above, we have implemented a variant of the
“iterated learning model” of Kirby [5], in which agents are endowed with a
language-acquisition algorithm to learn the context-free grammars. Kirby found
that in the process of iterated cultural transmission the language adapts itself
to be better learnable by individual agents. Concretely, this means that the
language becomes compositional (syntactic) and that agents are more successful
in learning it than would be expected a priori. We replicated this finding, and can
show that agents in fact need less training samples than Nowak et al. calculate as
a lower bound for maintaining a stable language in the population. The reason
is that not only do individuals evolve to be better at language-learning, but
also do languages evolve to be better learned [1]. Again, this phenomenon is



important for our understanding of the origins of language, but excluded in the
simplifications of the mathematical model.

4 Conclusions

Research on the evolution of language faces two aspects of language that are
particularly important: (i) it is transmitted, at least in part, culturally, and
learned by one individual from the other; (ii) it is a group phenomenon, that
occurs only between individuals and has no apparent value for an individual in
isolation. These aspects make that the fitness of individual is not a function of
its language acquisition system alone, but is dependent on the cultural dynam-
ics and the composition of the group it is in as well. This observation brings
restrictions and opportunities for language evolution scenario’s that are deemed
to be overlooked in both verbal and mathematical theorizing. We conclude that
A-life models can help to evaluate the validity of these scenarios and help to
adapt them, while at the same time mathematical models can help to compare
computational models and to identify common themes between them.
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