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Abstract

We present a biologically inspired computational framework
for language processing and grammar acquisition, called the
hierarchical prediction network (HPN). HPN fits in the tradi-
tion of connectionist models, but it extends their power by al-
lowing for a substitution operation between the nodes of the
network. This, and its hierarchical architecture, enable HPN
to function as a full syntactic parser, able to emulate context
free grammars without necessarily employing a discrete notion
of categories. Rather, HPN maintains a graded and topologi-
cal representation of categories, which can be incrementally
learned in an unsupervised manner. We argue that the forma-
tion of topologies, that occurs in the learning process of HPN,
offers a neurally plausible explanation for the categorization
and abstraction process in general. We apply HPN to the task
of semi-supervised ‘grammar induction’ from bracketed sen-
tences, and demonstrate how a topological arrangement of lex-
ical and phrasal category representations successfully emerges.

Introduction
Our understanding of the world around us is organized in
categories. There is nothing more basic than categorization
to our thought, reasoning, perception, action, learning and
speech. Categories are necessary for generalization from con-
crete observations to general rules that apply to novel situa-
tions, and to productively use language.

Of course, categories also play a central role in linguistic
theory. The sets of rules that describe grammars are essen-
tially systems of relations between categories. Yet, within
formal linguistics no convincing account exists of how syn-
tactic categories are acquired. Within the tradition of genera-
tive grammar there has been little interest in this question, as
humans are believed to be born equipped with a full fletched
language faculty (a universal grammar) with abstract adult
syntactic categories already in place. A major obstacle for
explaining the incremental acquisition of categories is their
status as set theoretical entities, where category membership
is either true or false, implying that a category exists before it
has any members.

Cognitive linguistics, in contrast, proposes that syntactic
categories are prototype-based, and that category member-
ship is graded (Lakoff, 1987). The acquisition of prototypical
categories can be modelled using a localist connectionist ap-
proach, such as exemplified by the Kohonen self-organizing
map (Kohonen, 1995).

One often cited advantage of Kohonen networks is that
they account for the development of topologies, such as have
been demonstrated not just in the visual system (e.g.. the ori-
entation columns of complex cells, Hubel & Wiesel, 1968),

but everywhere in the brain. Why would the brain invest such
an effort in developing topologies? The most plausible an-
swer, we find, is that the topology in the brain serves to en-
code graded category membership. The brain infers the cate-
gory of a neural assembly from its topological position on the
cortical surface, whether it is for seeing, walking or talking.

Another inspiration for our work comes from theories of
cortical information processing that stress the hierarchical
and columnar organization in the (visual) neocortex, such
as the fragment-based hierarchy approach (Ullman, 2007)
and the Memory Prediction Framework (MPF) (Hawkins &
Blakeslee, 2004). The key elements of the latter framework
are that (i) categories in the neocortex encode temporal se-
quences (of patterns), (ii) the neocortex stores categories in
an hierarchical fashion, (iii) as one goes up in the hierarchy,
categories are formed that are progressively more invariant
and more temporally compressed, (iv) the main function of
the cortex is prediction of future events, and this is achieved
by ‘unfolding’ the temporally compressed categories to the
lower levels.

In the current paper these ideas are generalized for lan-
guage, and integrated in a self-organizing network. The re-
sulting model, besides accounting for the gradedness of cate-
gories, also incorporates the notion of phrase structure.

A neural theory of syntax
Starting point of the research in this paper is the assumption
that there exists a uniform cortical mechanism that under-
lies categorization and processing within different modalities.
The analogy between visual and linguistic processing leads to
a proposal for a neural theory of language processing and ac-
quisition, and a computational implementation thereof, which
we call the Hierarchical Prediction Network (HPN). The the-
ory is founded on the following hypotheses about the neural
representation of a grammar:

There exist cell assemblies in the language area of the cor-
tex that function as neural correlates of graded syntactic
categories1.

These ‘syntactic’ cell assemblies represent temporally com-
pressed word sequences (phrases) which can ‘unfold’ to
predict words or assemblies in a lower level.

The topological and hierarchical arrangement of ‘syntactic’
assemblies in the cortical hierarchy constitutes a grammar.
1We do not actually adhere to a strict separation between syntax

and semantics, but in this work we focus on syntax alone.



Still, there is one more important aspect of human language
that our model has to deal with. It is often claimed that
the only thing special about human language is recursion
(Hauser, Chomsky, & Fitch, 2002). Recursion happens to
be a major stumbling block for most connectionist models
of language. We argue, that all that is needed to explain the
phenomenon of recursion from a cognitive point of view is a
basic ability for neural systems to perform substitution, and
that recursion is an epiphenomenon. It is clear what substitu-
tion means in a symbolic framework, because it is implicitly
assumed that variables are global and their content can be re-
placed. Within a biological context however, which lacks the
notion of variables, it is not so obvious what substitution is,
nor is it trivial, as with the related problem of binding, how
it can be instantiated in a connectionist model for language
processing (Fodor & Pylyshyn, 1988).

In this paper we propose a neural network solution for sub-
stitution that renders HPN potentially much more powerful
than traditional connectionist networks. The price is that we
have to postulate a capacity for the nodes in our network to
transmit and store richer information than just activation lev-
els, as will be detailed in the next section.

Whereas in a symbolic framework substitution relations
between category members are typically assumed to be be in-
nate, in a neurally motivated model of grammar and category
learning the acquisition of substitutability relations (between
nodes in the network) becomes the central question. We hy-
pothesize that a graded measure of substitutability is realized
as a distance between neural assemblies within a meaning-
ful topology. The central claim of this work is thus that lan-
guage acquisition is in essence equivalent to learning a net-
work topology.

HPN architecture
The hierarchical prediction network (HPN) consists of an in-
put layer composed of input nodes on top of which there are
one or more compressor layers with so-called compressor
nodes. The nodes have a fixed position in the network, but
they also develop representations in a virtual space, which
we call the substitution space. The internal representation
is learned through the interactions that take place in the net-
work, and will eventually reflect the distribution of the input
data.

Input nodes interact with the external environment; in the
language domain every input node is assumed to correspond
to a unique word from the lexicon, and it fires whenever this
word is presented within a sentence.

The compressor nodes correspond to sequences of words
(phrases). The name compressor nodes implies that they tem-
porally compress a sequences of nodes from the lower layers
(as was hypothesized by the MPF). Compressor nodes have
two or more ordered slots, with which they form a fixed unit.

An ordered set of slots on a compressor node constitutes a
production. A production is executed by matching each one
of the slots in a fixed order to an input or compressor node

Figure 1: HPN architecture.

through bottom-up activation of the slot. An HPN production
thus resembles a rewrite rule with the exception that its slots
are not associated with any particular non-terminal. When
all of its slots in turn have received bottom-up activation, the
production is completed, and the compressor node fires.

In HPN, the slots fullfill the role of physical substitution
sites where nodes are coupled to each other. Such a local cou-
pling mechanism serves as a neural correlate for substitution
in formal grammars, where substitution is defined globally.
Every slot in HPN offers an independent substitution site in
the context of which a set of nodes are more or less substi-
tutable. Thus, the slots form a basis for a substitution space,
with respect to which the internal representations of both the
input and compressor nodes in HPN are defined. Our imple-
mentation circumvents the need for full connectivity, and at
the same time enables node substitution: when a node fires,
its internal representation is serially transmitted over a single
link to a central switch board (substitution space), where it is
transferred to the slots that best fit the node’s representation.
This is illustrated in Figure 1.

Substitutablity between two nodes is given as some dis-
tance measure on the metric of substitution space. Thus, re-
gions in substitution space define a continuum of categories,
and a node’s representation in substitution space defines its
graded membership to one or more categories.

Another feature that distinguishes HPN from conventional
neural networks is the fact that HPN keeps track of (serial)
activation paths through the network as an input sequence is
processed. Once (and provided) the neural network has ac-
cess to the activation path, it can benefit from information
that is relevant for the internal interpretation of the sequence
with respect to its components, such as feature grouping (for
visual processing) and phrase structure. These are tasks that
conventional neural networks are not good at.

Typically, many processes run in parallel in the network,
and each is associated with a distinctive path. Different paths
compete with each other for the best internal interpretation
of the sequence. In order to differentiate between alternative
paths (possibly crossing the same node multiple times), HPN



keeps so-called ‘path connectors’ in the slots of every visited
compressor node along the activation path. The path connec-
tors store a pointer to the node that has bound to the slot (the
‘sender node’), together with the ‘time of activation’, which
equals the processed part of the input sequence (the current
position). The path connectors allow to distinguish different
active states of a single HPN node, much like the states in an
Earley chart parser (Earley, 1970). The information needed
to update the state of the nodes (current sentence position and
sender node identity) is transmitted along the activation path,
through the links mentioned before.

The solution for the binding problem in HPN can be as-
cribed to the ability of compressor nodes to temporarily store
(multiple) path connectors. By virtue of locally stored point-
ers from slots to ‘bound’ nodes, HPN is able in principle to
represent parse trees of unlimited depth. An ordered sequence
of such pointers corresponds to a stack in symbolic parsers,
since it constitutes a distributed memory of the productions
and input nodes involved in the parse.

HPN as a syntactic parser
Parsing in HPN takes the form of an interaction between par-
allel bottom-up activation of input and/or compressor nodes
and serial top-down execution of productions, as ordered se-
quences of predictions. The parse starts with bottom-up ac-
tivation of productions whose left slot matches the mean-
ing representation of an activated input node. Slots must be
matched in the correct order, and adjoining slots within a sin-
gle production accept only adjoining portions of the sentence.
(This is why we need to keep track of the ‘time of activation’
in the slots). When all slots of a production are matched, the
compressor node fires, and transmits its internal representa-
tion, such that it in turn can be matched with a slot of another
production. Figure 2 shows some typical parsing scenario’s.

Figure 2: Scenario’s of three HPN parses. i) ((a b c) d e),
ii) (a b (c d e)), iii) (a b ((c d e) f g)).

Although it is possible to implement a parallel version of
the HPN parser, we have implemented a serial version of
HPN that roughly parallels left corner parsing, and uses back-
tracking to search the space of possible parses. Left corner
parsing is a cognitively quite plausible incremental parsing
strategy that combines top-down and bottom-up parsing. For
details, see (Rosenkrantz & Lewis II, 1970).

A parse in HPN is a trajectory through the nodes of the
physical network that binds a set of productions together
through path connectors. A parse is called successful if

1. every successive input word in the sentence is predicted by
one of the productions involved, in the correct order.

2. every slot of every compressor node in the parse is bound
either to an input node (a word), or to the root of another
compressor node (a phrase); there is only a single compres-
sor node with an unbound root.

3. adjoining slots within a production can only be bound to
nodes that processed adjoining portions of the sentence.

A derivation is an ordered sequence of time indexed produc-
tions (states) and bindings, that fully determines the followed
trajectory through the network space upon a successful parse.
As an example we give a derivation for the sentence Sue eats
a sandwich in Table 1.

X1 → 1 2 1 >=< Sue
X2 → 3 4 3 >=< eats
X3 → 5 6 5 >=< a
2 >=< X2 6 >=< sandwich
4 >=< X3

Table 1: A derivation of the sentence Sue eats a sandwich.
Capital letters indicate compressor nodes, italics indicate in-
put nodes, numbers indicate slots, >=< indicates a binding.

Representation of context free grammars
Context-free grammars (CFG) are a special case of an HPN
grammar with a single compressor layer, and they can be
represented as a set of input nodes and compressor nodes
with appropriate meaning representations. We show this by
sketching a conversion procedure from a CFG grammar to an
HPN representation, such that those and only those sentences
that are successfully parsed by the CFG grammar are success-
fully parsed by the HPN grammar. For convenience, we will
represent the nodes and slots as vectors with respect to a ba-
sis of slots. We can then compute the match between a firing
node and a slot as the inner product between their represen-
tations (if the inner product equals 0 then there is no match).

S → NP VP (1.0)
NP → PropN (0.2) ‖ N (0.5) ‖ N RC (0.3)
VP → VI (0.4) ‖ VT NP (0.6)
RC → WHO NP VT (0.1) ‖WHO VP (0.9)
VI → walks (0.5) ‖ lives (0.5)
VT → chases (0.8) ‖ feeds (0.2)
N → boy (0.6) ‖ girl (0.4)
PropN → John (0.5) ‖Mary (0.5)
WHO → who (1.0)

Table 2: Example probabilistic context-free grammar.
Probabilities are indicated in brackets.

1. Create a separate HPN production for every non-
unary rule expansion, and assign unique and orthogo-
nal representations to its slots. (For example, S →
(1000000000) (0100000000)). The representation of the
compressor nodes will be determined later.

2. For every non-unary production in the CFG, change the
representations of all non-terminals occurring on its right



hand side by adding the slot vectors (as assigned in step 1)
with which they are associated (using vector addition);

3. For every unary production in the CFG, copy or add the
representation of the non-terminal on the left hand side to
the representation of the non-terminal or terminal on the
right hand side (do this recursively).

4. Assign the appropriate non-terminal representation to the
roots of HPN productions, and create input nodes using
the representations computed in step 3. Discard all unary
productions, and unused non-terminals.

The conversion procedure is illustrated in Figure 3 (using in-
formal notation, and with unary productions added for clar-
ity), for the CFG grammar with recursive relative clauses
shown in Table 2.

Figure 3: Conversion procedure from CFG to HPN. The slot
indices reflect their only non-zero component.

One can easily check that given these representations there
is only one way for HPN to parse for example the sentence
boy who lives chases Mary.

It is easy to modify the conversion procedure such that it
converts a probabilistic context free grammar (PCFG) into a
probabilistic HPN. To do so, during the construction of node
representations (step 2 and 3) one must multiply the repre-
sentation of the left hand side by the probability of their re-
spective expansion in the PCFG. The inner product between
a node and a slot representation now gives the probability of
their binding, and the product of the probabilities of all bind-
ings involved in an HPN derivation gives the HPN parse prob-
ability. Table 3 gives the ‘probabilistic’ node representations
(assuming the HPN productions of Figure 3). It can be shown
that, using this conversion procedure, for any sentence gen-
erated by the example artificial grammar, every PCFG parse
has an HPN counterpart with the same phrase-structure and
the same probability.

Learning
While in the previous section we have shown that a syntax can
be represented in HPN, the added value of the connectionist
approach is in its ability to actually learn syntactic represen-
tations. Within the symbolic paradigm learning syntactic cat-

Compressor nodes
X2 (NP) (.3 0 0 0 0 .3 0 .3 0 0 0)
X3 (VP) (0 .6 0 0 0 0 0 0 0 0 .6)
X4 (RC) (0 0 0 .1 0 0 0 0 0 0 0)
X5 (RC) (0 0 0 .9 0 0 0 0 0 0 0)
Input nodes
John = Mary = (.1 0 0 0 0 .1 0 .1 0 0 0)
lives = walks = (0 0 0 0 .5 0 0 0 .5 0 0)
boy = (.3 0 0 .6 0 .3 0 .3 0 0 0); girl = (.2 0 0 .4 0 .2 0 .2 0 0 0)
chases = (0 0 0 0 .8 0 0 0 .8 0 0); feeds = (0 0 0 0 .2 0 0 0 .2 0 0)
who = (0 0 0 0 0 0 1 0 0 1 0)

Table 3: Node representations for probabilistic HPN.

egories from context is a discrete process: a familiar strategy
is to merge two words into a single category when they ap-
pear in similar contexts (Stolcke & Omohundro, 1994). One
of the advantages of defining category membership by means
of a topology is that it allows category meanings to change
continuously while learning.

In order to induce a meaningful topology, one must some-
how induce the meaning representations from the distribution
implicit in the corpus. HPN uses a similar strategy as above
to identify meaningful relations between two words, but it
makes the words more substitutable in a gradual way, rather
than discretely, by decreasing their distance in substitution
space upon encountering similar contexts.

In HPN parsing and learning are complementary, as node
representations are dynamically adapted after every parse.
Following is a sketch of the algorithm:

1. Initialization. Create input nodes with random represen-
tations for every distinct word in the corpus. Specify the
number of productions of each size (i.e., number of slots),
and create a compressor node with random representation
for each production. Initialize all slot representations or-
thogonally to each other.

2. Parsing. For every sentence, let HPN compute the most
probable parse (as explained above). Recover the produc-
tions and bindings involved, using the path connectors.

3. Learning. For every binding adjust the representation of
‘winning node’ n that participated in slot s according to
∆n = λ ∗ s, with (decreasing) learning rate λ. Also, ad-
just the representations of the nodes in the neigborhood h
of the ‘winning nodes’, in proportion to their distance in
substitution space.

As can be inferred from the learning step, the internal rep-
resentations of words and syntactic categories are gradually
changed from concrete (i.e., not correlated with other node
representations) to abstract, when they participate in more
slots. Two lexical nodes that often participate in the same
slot(s) will be gradually merged into a single part of speech
category. By shrinking the neighborhood, and decreasing
λ with time, as in a Kohonen network, a topology over
node representations is incrementally induced in substitution
space, based on the corpus distribution.



Evaluation
The learning algorithm was evaluated on the artificial lan-
guage of Table 2. We generated at random 1000 distinct sen-
tences with until 5 levels of recursion from the CFG grammar,
and split these in a training corpus of 800 sentences (with
brackets included) and a test corpus of 200 sentences (with-
out brackets). We initialized the HPN network by creating 10
productions with 2 slots, and 5 productions with 3 slots, and
we set all compressor and input node representations to ran-
dom initial values. The learning rate decreased from λ = 0.3
to λ = 0.05 and the neighborhood from h = 10 to h = 0.01.
Figure 4 shows the representations of the input nodes after
learning has completed (scaled to two dimensions using Mat-
lab’s cmdscale). Also shown are the average compressor
node representations that map to the symbolic labels of the
gold standard parses (NP, etc.). From the figure it can be seen

Figure 4: Substitution space with HPN node representations

that the nouns, proper nouns, intransitive and transitive verbs
cluster into postag categories, and some of the higher order
categories are mapped in substitution space between words
with which they are intuitively substituted. To test whether
the induced HPN grammar had indeed developed useful rep-
resentations, we let it parse the test corpus with, and evaluated
precision (UP) and recall (UR) of the found constituents. The
resulting values of UP=UR=0,864 indicate that the induced
HPN grammar approximates the original grammar to a fair
degree.

Unlike connectionist models that are trained with error
back-propagation, training with HPN is scalable to realistic
size corpora, and can be done in a single pass through the
data. This created the opportunity to evaluate HPN on the Eve
corpus from the CHILDES database (MacWhinney, 2000).
Figure 5 shows very preliminary results on 2000 consecu-
tive child utterances from the second half of the Eve corpus,
where we used the brackets available from the dependency
annotation. The interesting clusters are accentuated. Note,
that for this experiment an earlier version of the algorithm
was used, that did not employ a neigborhood function.

Relation to other modelling work
Unsupervised induction of syntactic labels has been done in
the ‘symbolic’ paradigm, with best results through Bayesian

Figure 5: Representations of Eve’s 100 most frequent words

Model Merging (Stolcke & Omohundro, 1994; Borensztajn
& Zuidema, 2007). HPN shares the division of work be-
tween the syntagmatic and the paradigmatic components of
the model (e.g., the chunk operator is replaced by compressor
nodes). A drawback of all symbolic approaches to categoriza-
tion, which is inherent to the discrete nature of the categories,
is that they suffer from the lack of well-motivated criteria for
preventing over-generalization, and for deciding on category
boundaries. These problems are mitigated in HPN, with the
assumption of a continuous substitution space.

Most connectionist work on sentence processing has been
carried out in the tradition of Elman’s Simple Recurrent Net-
work (SRN) (Elman, 1991), using variations of fully dis-
tributed multi-layer perceptron networks and error backprop-
agation. Such networks do not employ a notion of categories
at all, and consequently are not suited for capturing phrasal
structure. Much attention has been paid to the abilities of
the SRN to deal with ‘quasi-recursion’ (Tabor, 2000; Chris-
tiansen & Chater, 1999). Typically, a word prediction task is
used, and a similar artificial grammar as ours. There is reason
to believe, that because of its architecture HPN will perform
well on this task with highly recursive sentences, but bench-
mark tests still remain to be done.

HPN and SRN take a very different approach in their treat-
ment of time: the SRN learns temporal sequences by feeding
the activation of the hidden layer at time t-1 back to a so-
called context layer. As a consequence of the linear history,
the internal (word) representations formed in the hidden layer
of the SRN are approximately Markovian. In contrast HPN,
inspired by (Hawkins & Blakeslee, 2004), uses hierarchical
temporal compression, and therefore maintains a non-linear
representation of a word’s history. HPN constructs its word
representions depending on an optimal phrasal decomposi-
tion of the sentence: the context of a word depends on the
slot position that the word is bound to within a certain HPN
production. Moreover, unlike SRN’s, HPN maintains explicit
representations of higher order syntactic constituents, which
in turn constitute part of the context for the terminals.

Yet another class of connectionist models of syntactic
processing emulates symbolic parser behavior by proposing



mechanisms for translating the concept of compositionality
into a connectionist setting, such that compositional struc-
tures can be represented. Examples of these are Harmony
Theory (HT) (Prince & Smolensky, 1997), and derivatives of
RAAM (Pollack, 1990), such as SPEC (Miikkulainen, 1996).
In our opinion, in brief, the problem with the proposed archi-
tectures is that, in contrast to HPN, they are not capable of au-
tonomously finding structural (tree) representations, without
relying on external or innate knowledge of the node mean-
ings. HPN, rather than constructing compositional represen-
tations, deconstructs sentences into tree-like representations
because it is confined to map their interpretations onto the hi-
erarchical and topological structure of the network. As such,
HPN offers a biologically motivated explanation for the ori-
gin of compositionality, that suggests that the superficially
compositional structure of language (as well as vision) arises
from the hierarchical processing that takes place in the brain.

Discussion and Conclusions
We have presented a novel connectionist network, the Hier-
archical Prediction Network. A key innovation of HPN is
its ability to temporarily bind the nodes in the network (by
means of pointers), and thereby provide a neural substrate
of substitution. This is a significant achievement, because
it equips HPN with a mechanism for some kind of ‘vari-
able’ manipulation, and with the ability to represent system-
atic relations over ‘variables’ (i.e., HPN exhibits systematic-
ity). The lack of this ability has been a major source of cri-
tique against the suitability of classical connectionist models
to deal with language processing (Fodor & Pylyshyn, 1988).
The fact that the nodes of the network can engage in meaning-
ful relations makes HPN much more powerful than conven-
tional neural networks, since it transforms HPN into a struc-
tured knowledge base (i.e., a grammar) rather than a loose
collection of nodes (e.g., see (Marcus, 2001)).

By virtue of a mechanistic explanation for substitution,
HPN creates a synthesis between the traditional connection-
ist and symbolist frameworks. Yet, even though HPN bor-
rows some notions from the parsing field, its implementation
is fully connectionist: HPN’s internal representations are in-
duced from arbitrary initial representations, and all interac-
tions are local. We believe that the main contribution of our
work is therefore that it formulates sufficient conditions for
a connectionist solution of the structure encoding problem.
Major departures from the symbolic paradigm are that the
classical notion of a category is replaced by that of a graded
topology, within which neighboring nodes are substitutable,
and that ‘rules’ (the HPN productions) have local rather than
global scope.

HPN simulates the fact that categories emerge gradually,
and their meaning grows incrementally with time from con-
crete to abstract, as the nodes associated with the category in-
tegrate in the network topology. Such a strategy makes HPN
very well suited as a model for language acquisition, because
it offers a plausible explanation for the tricky question of how

syntactic categories can be bootstrapped from scratch.
Empirical research in child language acquisition seems

largely to support such an approach to learning. In
Tomasello’s theory of Usage Based Grammar (UBG)
(Tomasello, 2003) the gradual acquisition of syntactic cat-
egories is referred to as item-based learning: in the early
developmental stages linguistic constructions are typically
learned case-by-case, often around specific verbs, without
reference to a general syntactic category. Only gradually chil-
dren learn to generalize across constructions, when they ac-
quire an adult-like grammar that uses system-wide syntac-
tic categories. HPN seems to offer a promising direction for
modeling grammar acquisition in this tradition.
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