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Abstract

The Recursive Neural Network (RNN) model and its extensions have been shown
to be powerful tools for semantic composition with successes in many natural
language processing (NLP) tasks. However, in this paper, we argue that the RNN
model is restricted to a subset of NLP tasks where semantic compositionality plays
a role. We propose an extension called Inside-Outside Semantics. In our frame-
work every node in a parse tree is associated with a pair of representations, the
inner representation for representing the content under the node, and the outer
representation for representing its surrounding context. We demonstrate how this
allows us to develop neural models for a much broader class of NLP tasks and for
supervised as well as unsupervised learning. Our neural-net model, Inside-Outside
Recursive Neural Network, performs on par with or better than the state-of-the-art
(neural) models in word prediction, phrase-similarity judgements and semantic
role labelling.

1 Introduction

For several decades, the most successful approaches for modelling word meaning, on the one hand,
and those for modelling semantic composition (needed to compute the meaning of phrases and
sentences), on the other hand, seemed incompatible. Word meanings can be well described with
numerical vectors, often reflecting co-occurrence frequencies with other words in corpora. A rich
and diverse literature has emerge on distributional semantics, with many successes in tasks like
similarity judgements, word sense disambiguation and information retrieval (see [1] for a review).

Semantic composition, on the other hand, has since Montague [2] been modelled using the lambda-
calculus, which is straightforwardly applied to symbolic logics of various sorts, but seems incompat-
ible with vector representations. As recently as 2008, Lenci [1] wrote in a review of distributional
semantics that the issue of how to do semantic composition with vectorial word representations
remained unsolved. Since then, however, a series of papers have appeared proposing a range of
technical solutions for this problem and creating much excitement about the prospects of finally
bridging the two fields. One of the most successful of these new approaches, the Recurrent Neural
Network (RNN) of Socher et al. [3, 4, 5] seems to lend itself well for neural network-based technol-
ogy for language processing, and perhaps even to use as a model of how the hierarchical structure
of language might be processed in the human brain.

In this paper, we discuss the published RNN models in some detail, and show that, at a closer look,
they leave some major challenges unsolved. One such challenge concerns the bottom-up definition
of composition, which reduces the RNN’s usefulness as a framework for NLP. We propose a solution
to this challenge, consisting of an extension, which we call Inside-Outside Semantics. We show that
this allows information to flow top-down as well as bottom-up, and thus to successfully apply the
model to a wide range of NLP tasks. We report results on a word prediction task, a phrase similarity
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Figure 1: (Left) Recursive Neural Network. (Middle) Inside-Outside framework. (Right) Inside-
Outside Recursive Neural Network. Black rectangles correspond to inner representations, white
rectangles correspond to outer representations.

judgement task, and a semantic role labelling task, and show in each task that our new model is on
par with the best n-gram or neural network approach for that specific domain.

2 Recursive Neural Networks

Words in natural language combine according to the principle of compositionality: “The meaning of
a whole is a function of the meanings of the parts and of the way they are syntactically combined”
[6]. In formal semantics, meaning representations are typically computed in a bottom-up manner:
given a constituent xy and a grammar rule R that combines the two linguistic items x and y, then
xy = fR

(
x,y

)
where fR is a composition function. There are different ways to instantiate mean-

ing representations and composition functions. In formal semantics, meaning representations are
typically λ-expressions and the composition function is function application [7]. In recent models
of compositional vector-based semantics, the words meanings are vectors, matrices or tensors, and
a variety of algebraic operators (e.g. vector addition) have been proposed for composition.

Socher and colleagues [3] proposed to learn the composition functions from data, rather than hand-
craft them, and to implement them using feedforward neural networks. The basic idea of their
Recursive Neural Networks is simple. Assume that there is a parse tree (p2 (p1 x y) z) (Figure 1-
left), and that x,y, z ∈ Rn are vectorial representations of the three words x, y and z. We can
then use a standard feedforward neural network which consists of a weight matrix W1 ∈ Rn×n

for left children and a weight matrix W2 ∈ Rn×n for right children to compute the vector for a
parent node in a bottom up manner. The RNN is recursive in the sense that the same weight matrix
is used recursively to compute vector representations for nodes higher up in the tree, until we reach
the root node. Thus, we compute representations for p1 p1 = f(W1x + W2y + b) and for p2
p2 = f(W1p1 +W2z+ b) where b is a bias vector and f is an activation function (e.g., tanh).

In the classic setup [8], the sequence of computations the RNN performs is guided by an external,
symbolic control structure that is provided with a parse tree of the sentence. Socher et al. integrate
the RNN’s vector computations with the (greedy) search for the best tree structure for a sentence,
but still need a symbolic control structure to guide the applications of the neural network. Using
Goller & Kuechler’s backpropagation through structure algorithm [8], and training on the syntactic
annotations of the Penn WSJ treebank, Socher et al. obtain promising results on the syntactic pars-
ing task for short sentences. A straightforward variant of the model, called compositional vector
grammars [9], introduces separate weight matrices for grammar rules, and obtains excellent parsing
scores on the Penn WSJ benchmark test.

Some extensions of the RNN have been introduced to further improve the accuracy of the compo-
sition functions. The matrix-vector model (MV-RNN) [4] associates with every node in the tree not
only a length n vector, but also an n×nmatrix. When computing a representation for a composition
xy, the model then multiplies the matrix associated with x with the vector associated with y, and the
matrix associated with y with the vector associated with x, and combines the two resulting vectors as
in the standard RNN. This way, the MV-RNN can exploit the fact that some words/constituents, e.g.
adjectives, play roles as modifiers. One weak point of the MV-RNN is that it requires a large number
of parameters; this problem is addressed with a further extension called neural tensor networks [10].
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Thanks to the successes in NLP tasks such as constituent parsing [9], sentiment analysis [10], RNN
models are now firmly established as a powerful tool for semantic (and syntactic) composition.

However, the RNN framework can still only be applied to a specific subset of natural language
processing problems that involve compositional structure, because of (i) the need for supervision,
i.e. syntactic and semantic annotations needed to compute a training signal, and (ii) the bottom-
up definition of semantic composition. A partial solution to the first problem is provided by an
elegant extension called Recursive Auto-encoders (RAE) [5], which replace the traditional feedfor-
ward neural networks by auto-encoders. The underlying principle of the RAE is that composition
is compression, such that an input is able to be recovered from the output by a decoding function.
In this paper, however, we present an alternative extension of RNN’s for unsupervised learning that
outperforms the RAE on the popular phrase-similarity judgement task by a large margin.

The second problem, that information is allowed to flow bottom-up only, turns out to be greatly
limiting the RNN models’ usefulness to a number of important domains in NLP. First, the RNN
models are not able to be used in ways that parallel major parsing strategies, such as Earley parsing
[11] and left-corner parsing [12], that make use of top-down predictions. Second, the RNN’s cannot
be used either in ways that parallel important classes of top-down generative probability models
such as Eisner’s dependency models [13] and Collins’ phrase-structure models [14]. Third, the
RNN models do not compute representations for the contexts of constituents, even though contexts
are essential for many tasks, such as (i) next or missing word prediction based on preceding or
surrounding context, or (ii) semantic role labelling, where the goal is to assign semantic roles to
constituents based on properties of both the slot (context) and the filler (content).

3 The Inside-Outside Semantics Framework

Believing that a natural solution for the difficulty mentioned above is to be found in the way infor-
mation ‘flows’ in linguistic structures such as parse trees, we propose a framework, Inside-Outside
Semantics. The crucial innovation of our framework is to introduce an architecture that allows
information to flow in parse trees not only bottom-up, as in traditional compositional semantics
frameworks, but also top-down. We accomplish this by adding a second vector to every node that
represents the context surrounding that node (rather than the content under that node). These context
representations can, like content representations, be computed compositionally. But where content
representations are computed bottom-up from a node’s children, context representations are com-
puted top-down from a node’s parent and siblings. The interaction between content and context rep-
resentations in turn makes it possible to devise a new unsupervised learning scheme for estimating
composition functions from raw texts. The interaction, moreover, can be formed based on training
signals in supervised learning tasks such as semantic role labelling, named entity recognition.

We denote with ixy and oxy the representations of xy’s content and context. Henceforth, we will
call i the inner representation, and o the outer representation. Similarly to the traditional semantic
composition framework, we have ixy = f iR(ix, iy) where f iR is a composition function for inner
representation. To compute outer representations, we use the following formulas

ox = fo1R (oxy, iy) ; oy = fo2R (oxy, ix) (1)

where fojR is the composition function for the outer representation of the j-th child. The rationale
for these equations is that the context of the constituent x consists of the context of the constituent
xy and the constituent y; the outer representation of x is thus a function of the outer representation
of xy and the inner representation of y.

The whole process is depicted graphically in Figure 1-middle, where an arrow indicates that the
representation at its head is a function of the representation at its tail, and solid arrows are for
computing inner representations whereas dotted arrows are for outer representations. Looking at the
graph, we can see that there are two information flows in the tree structure: one from bottom up
and the other from top down. The interaction between these two flows may occur at any node and
depends on the purpose of usage.

Our framework shares some properties with Irsoy and Cardie’s recently proposed bidirectional RNN
model [15], which also adds a second representation, the ‘down vector’, to every node and allows
for information to flow top-down. However, because these down vectors can only be computed after
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all ‘up vectors’ (corresponding to our inner representations) for a tree have been computed first, we
believe that the model is not able to solve any of the three problems mentioned in Section 2. In
our framework, in contrast, inner and outer representations are strictly complementary: the outer
representation for a node x can be computed without knowing the contents under that node.

There are different ways to instantiate representations i,o and composition functions f iR, f
oj
R . In the

next section, we describe our IORNN [16], a neural-network-based instance of the framework. 1

4 The Inside-Outside Recursive Neural Network

We explain the operation of the IORNN in terms of the same example parse tree (p2 (p1 x y) z) as
we used before (see Figure 1-right). For the present paper we assume that an independently given
parser assigns a syntactic structure to an input string. Each node u in the syntactic tree carries two
vectors ou and iu, the outer representation and inner representation of the constituent that is covered
by the node.

Inner representations are computed from the bottom up. We assume for every word w an inner
representation iw ∈ Rn. The inner representation of a non-terminal node, say p1, is given by
ip1

= f(Wi
1ix +Wi

2iy + bi) where Wi
1,W

i
2 are n× n real matrices, bi is a bias vector, and f is

an activation function, e.g. tanh. The inner representation of a parent node is thus a function of the
inner representations of its children.

Outer representations are computed from the top down. For a node which is not the root, say p1,
the outer representation is given by op1

= g(Wo
1op2

+Wo
2iz + bo) where Wo

1,W
o
2 are n× n real

matrices, bo is a bias vector, and g is an activation function. The outer representation of a node (i.e.,
the associative profile of its context) is a function of the outer representation of its parent and the
inner representations of its sisters. If there is information about the external context of the utterance
that is being processed, this information determines the outer representation of the root node oroot.
In our first experiments reported here, no such information was assumed to be available. In this case,
a random value o∅ is chosen and assigned to the root nodes of all utterances. Note that this value is
adjusted by the learning process discussed below.

Training the IORNN is to minimise an objective function J(θ) which depends on the purpose of
usage (see Section 5, 6 and [16]) where θ is the set of parameters. To do so, we compute the
gradient ∂J/∂θ and apply the gradient descent method. The gradient is effectively computed thanks
to back-propagation through structure [8]. We use AdaGrad [17] to update the parameters.

Incorporating Grammatical Information The IORNN above uses just four matrices (left/right
for inside, parent/sister for outside) for combining any two nodes. However, Socher et al. [9] and
Hermann & Blunsom [18] find that using different matrices for different grammar rules/categories
greatly improves results. For most of our experiments, we follow this suggestion, using one of the
following types of syntactic representations: [CFG-k], context-free grammar (CFG) derivation with
the k most frequent rules (according to the Penn Treebank section 2-21), the other rules are replaced
by abstract rules X → X ... X; and [CCG], combinatory categorial grammar (CCG) derivation
with all combinatory rules.

Mice

NP

love

(S\NP )/NP
cheese

NP
>

S\NP
<

S

Figure 2: A CCG derivation for the sen-
tence “Mice love cheese”.

CCG [19] is a widely used grammar formalism for se-
mantic applications thanks to its transparent interface
between syntax and semantics [7]. In CCG, a word
or constituent is assigned to a category, which could
be basic (e.g., NP , S) or complex (e.g., NP/NP ,
S\NP ). A complex category defines selectional and
directional combination. For instance, NP/NP im-
plies that any constituent or word in this category can
combine with a noun phrase to it right-hand side in
order to form a new noun phrase. Standard CCG spec-
ifies five basic rules for combination: forward application (fa), backward application (ba), compo-

1See Appendix A for using λ-expressions, as in formal semantics, within our framework.
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sition (comp), coordination (conj), and type raising (tr). Figure 2 shows a CCG derivation for the
sentence “Mice love cheese”.

5 Unsupervised Learning with the IORNN: word prediction and phrase
similarity

In this section, we use the IORNN to learn from data that contain no annotations for the semantics of
compounds. In that sense, the learning is ‘unsupervised’, but note that we will make use of syntactic
structure, both at train time and at test time (using a third party parser).

To demonstrate that the capabilities of the IORNN beyond those of a standard bottom-up RNN, we
apply it to the task of predicting missing words in a sentence. We reason that any fluent speaker of a
language can guess the meaning of an unknown word by making use of the meaning of its context,
and that when s/he correctly predicts the meaning of the unknown word, we can thus assume that s/he
comprehends the meaning of the context. Following this reasoning, we base the composition func-
tion learning task on the word prediction task, which opens up a novel (and much needed) scheme
for unsupervised training of semantic composition models. We therefore evaluate the IORNN both
on the quality of the missing word predictions and on the quality of the semantic composition func-
tions that it learned for the task (by measuring the correlation of semantic similarity judgements of
compounds to those of human subjects).

Using a method proposed by [20], we train the network such that it assigns the correct target word a
score higher than the scores given to other words. The score s(x,ow) given to a candidate word x
for a specific context ow is computed by

u(x,ow) = f(Wu
1ow +Wu

2 ix + bu) ; s(x,ow) = Wsu(x,ow) (2)

where Wu
1 ,W

u
2 are n × k real matrices, Ws is a k × 1 matrix, and bu is a bias vector. (We fix

k = 2n.) Now, the objective function is the ranking criterion with respect to θ:

J(θ) =
∑
s∈D

∑
w∈s

∑
x∈V

max{0, 1− s(w,ow) + s(x,ow)} (3)

where the first sum is over all sentences s in a corpus D, the second sum is over all observed words
w in a sentence, and the third sum is over all candidate words x in the vocabulary V . The final term
will give a value higher than 1 if the score of the candidate is higher than that of the observed word,
and smaller than 1 (but at least 0) if the observed word’s score is higher. To minimize this objective
function, we randomly pick words in the vocabulary as ‘corrupted’ examples and follow the method
given in Section 4.

5.1 Experiments

Table 1: Results in the word predic-
tion task. (Smaller is better.)

NAR
5-gram 1.8%

IORNN [CFG-0] 1.6%
IORNN [CFG-200] 0.8%

We built three IORNNs for three types of derivation [CFG-
0], [CFG-200], and [CCG] (see Section 4). All of them were
initialised with the 50-dim word embeddings2 from [20] and
trained on around 3M sentences longer than 10 words3 in the
British National Corpus (BNC), parsed by the C&C parser
[21] and by the Berkeley Parser [22].

Word Prediction We run the trained networks on the Penn
Treebank, section 22, and compare their performances with a
baseline formed by the Kneser-Ney smoothed 5-gram model4
trained on 300M-word text from the Wikipedia5 (3 times
larger than the BNC corpus). It is worth noting that this model is state-of-the-art in the language
modelling area, outperforms syntax-based language models and thus is a strong baseline to compare

2http://ronan.collobert.com/senna/
3Long contexts are needed for successfully guessing missing words.
4We use the BerkeleyLM at http://code.google.com/p/berkeleylm/.
5http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
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Table 2: Items in the dataset from [23]. The rat-
ings range from 1 (very low similarity) to 7 (very
high similarity).

type phrase 1 phrase 2 rating
v-obj remember name pass time 3
adj-n dark eye left arm 5
n-n county council town hall 4

Table 3: Spearman’s correlation coeffi-
cients of model predictions for the phrase
similarity task.

model adj-n n-n v-obj
RAE 0.20 0.18 0.14

IORNN [CFG-0] 0.38 0.36 0.32
CCAE-B 0.38 0.44 0.34

IORNN [CCG] 0.39 0.40 0.37

against (even if it, unlike the IORNN’s, does not make use of the syntactic structure of sentences at
either train or test time). Predicting the actual word at any location in the sentence is often next to
impossible. We therefore follow standard practice in evaluating these models, and base the evalua-
tion on the rank of the correct word in the list of candidate words (all 130k words in the vocabulary)
ranked by each of the models (Equation 2).

Table 1 shows normalized averaged ranks (NAR, i.e., averaged-rank/|V |, where |V | is the size of
the vocabulary) of target/gold-standard words. Both IORNNs score considerably lower NARs than
the 5-gram model, showing that the IORNN is capable of judging very well how different words fit
the context created by a surrounding utterance.

Phrase Similarity To evaluate the composition functions that are learned in the word prediction
task, we make use of the phrase similarity judgement task. In this task the system considers pairs of
(short) phrases and estimates the semantic similarity within each pair. Its estimations are compared
with human judgements. We used the dataset from [23] which contains 5832 human judgements
on 108 phrase pairs.6 The pairs include noun-noun, verb-object, and adjective-noun combinations;
the ratings range from 1 (very low similarity) to 7 (very high similarity) (see Table 2). The cosine
distance was used to measure semantic similarity d(a, b) = cos(ia, ib) and the Spearman’s correla-
tion coefficient ρ ∈ [−1, 1] was used to measure the difference between model scores and human
judgements.

We compared our IORNNs against two models: the Recursive Auto-encoder (RAE) replicated
by [24], and the Combinatory Categorial Autoencoders (CCAE)-B model proposed by [18]. The
CCAE-B model is similar to the RAE but uses separate weight matrices for each CCG rule. Table 3
shows results. The IORNN [CFG-0] (which, like the basic RAE, does not make use of syntactic cat-
egory information) outperforms the RAE by a large margin. When syntactic category information is
used, in the IORNN [CCG] and CCAE-B, we can observe improvements across the board, with the
IORNN [CCG] outperforming all other models on verb-obj and adj-noun compounds.

6 Supervised Learning with the IORNN: Semantic Role Labelling

Differing from the previous section, in this section we focus on a supervised learning task, namely
semantic role labelling, where we learn from data that does contain semantic annotations. The
interaction between the outer and inner representations at a node is now determined by the semantic
role assigned to the constituent the node covers.

Our benchmark is the CoNLL2005 shared task [25]. In this task, given a sentence and a verb in this
sentence, the system is required to classify every constituent into one of 54 classes, corresponding
to 53 roles or class ‘-NONE-’ (which means the constituent is not an argument). Following the
PropBank formalism, roles A0-5 are assigned to words that are arguments of verbs (e.g., A0 for
agent, experiencer; A1 for patient, theme; and so on.) In addition, there are several modifier tags
such as AM-LOC (locational) and AM-TMP (temporal). The given dataset consists of a train set
(sections 2-21 of the Penn WSJ treebank), a development set (section 24), and a test set (section 23
plus three sections from the Brown corpus). All the sentences were parsed by the Charniak parser
[26]. The task is evaluated by computing the F1 measure.

6http://homepages.inf.ed.ac.uk/s0453356/share
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The new IORNN is very similar to the one proposed in Section 4 except two changes. First, we
add to the inner representation of any word one more bit, indicating whether this word is the target
verb or not. Second, the inner representation of the head word of a constituent is used to compute
the constituent’s inner representation. At the same time, the inner representation of the target verb
is used to compute the outer representation of every constituent7. Therefore, we compute inner and
outer representations as follows

ip1
= f(Wi

1ix +Wi
2iy +Whih + bi) ; op1

= g(Wo
1op2

+Wo
2iz +Wviv + bo) (4)

where Wh,Wv are two n × n real matrices, ih, iv are the inner representations of the head word
of the constituent p1 and of the target verb, respectively. Finally, we use the softmax function to
compute the probability that a constituent p is assigned to a class c

P (c|p) = eu(p,c)∑
c′∈C e

u(p,c′)
where [u(p, c1), ..., u(p, c|C|)]

T = Woop +Wiip + b (5)

C is the set of all classes, Wo,Wi are |C| × n real matrices, b is a |C|-dimensional vector. We use
the method presented in Section 4 to train the network, where the objective function is the cross-
entropy over all constituents, i.e., J(θ) = −

∑
T∈D

∑
p∈T

∑|C|
i=1 ti × log(P (ci|p)) where ti = 1 if

ci is the correct class of p, ti = 0 otherwise; and D is the set of training parse trees.

IORNN-mixture Combining neural networks is a simple way to increase the general performance
[27]. To combinem IORNNs, we simply average the probabilities that the IORNNs assign to a class
c by P (c|p) = 1

m

∑m
i=1 Pi(c|p) where Pi is the probability given by the i-th IORNN.

6.1 Experiment: CoNLL 2005 Shared Task

Table 4: Performance on the SRL task of IORNN
compared with SENNA. IORNN+Charniak.RS is the
IORNN evaluated on the sentences parsed by the self-
trained re-ranked Charniak parser.

Approach F1-valid F1-test
SENNA (w.o. syntax) 72.29 74.15

SENNA – 75.49
IORNN 74.04 73.88

IORNN-mixture – 75.36
IORNN+Charniak.RS 75.78 75.14

IORNN-mixture+Charniak.RS – 77.14

We built an IORNN [CFG-200], ini-
tialised with the Collobert & Weston word-
embeddings [20]. Because the number of
constituents in the class ‘-NONE-’ was sig-
nificantly larger than the numbers of con-
stituents in other classes, we used the sim-
ple pruning algorithm proposed by [28] to
eliminate those constituents that are very
unlikely arguments. We also built an
IORNN-mixture which is a combination of
ten IORNNs that have the same setting.

In this experiment, we compared the
IORNN with SENNA [20], a state-of-the-
art neural net system for POS tagging,
chunking, named entity recognising and se-
mantic role labelling. Differing from our IORNN, SENNA’s neural net uses a convolution layer
to compose representations for the words in a sentence given the target verb position. In addition,
SENNA is biased to produce valid tag sequences, by a mechanism that combines network scores
with transition scores. Finally, SENNA may also make use of syntactic constraints (computed by
its own network). In contrast, in our IORNN, semantic tags are predicted solely on the basis of the
computed inner and outer representations for a given node.

Table 4 reports results. We can see that SENNA without using syntax performed comparably with
IORNN; when syntactic information was included, SENNA outperformed the (single) IORNN. We
conjecture that this is because SENNA is relatively insensitive to errors introduced by automatic
parsers, thanks to its convolution layer and transition matrix. Our IORNN, on the other hand, is
very sensitive to such errors because it relies on the principle of compositionality. The performance
of our system, however, was boosted (by 1.48%) by combining ten IORNNs, yielding comparable
performance as SENNA. Furthermore, by using a better parser (we used the state-of-the-art self-
trained and discriminatively re-ranked Charniak-Johnson parser; [29, 30]) we increased performance
even further (1.26% for IORNN and 1.78% for IORNN-mixture). This confirms the importance of
accurate syntactic parsing in semantic role labelling [31].

7Making use of head words and target verbs is consistent with the head-driven parsing theory of [14].
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7 Top-down prediction with the IORNN: Dependency parsing

In this section we briefly consider the use of the IORNN in top-down prediction tasks, such as needed
for Earley-style parsing and left-corner parsing, but also for defining neural models to replace top-
down generative probability models such as those of Collins [14] (generating phrase-structure trees)
and Eisner [13] (generating dependency structures). We limit ourselves here to Eisner’s generative
model, but similar observations hold for the other applications.

Eisner’s generative model is simple. Every sentence is assumed to have a single head word, gen-
erated from ROOT. This head word then first generates 0 or more dependents to its left, and then
generates 0 or more dependents to its right. Each of the dependents recursively generates left and
right dependents as well, until no more words are generated. Eisner considered a number of variants
of this generative story, and defined ways to estimate the probabilities of each step in generating a
full dependency structure from counts in a training corpus, smoothed using back-off. At each of
these steps we have a partial dependency tree (the “conditioning context”, representing the results
of the generation process up to this point), and a representation of the dependent we are about to
generate (the “event”).

Can we define a neural network model to estimate these probabilities, to replace the counting and
back-off? This requires a neural representation of the conditioning context, and a neural represen-
tation of the event. In a standard RNN the latter is available (the vector representation of the word
or subtree), but the former is not. In the IORNN, on the other hand, we can use the outer repre-
sentation as a representation of the conditioning context, and train a softmax classifier to compute
the required conditional probabilities. In [16] we describe the technical details of such a model, the
approximations needed to make it efficient, and state-of-the-art results in dependency parsing using
the IORNN as a reranker on the output of the third-party MST-parser [32]. For the purposes of this
paper, where we discuss the range of applications that the Inside-Outside Semantics opens up for
neural models, it suffices to note that the IORNN can successfully implement top-down prediction.

8 Conclusion

We have proposed the Inside-Outside Semantics framework in which every node in a parse tree is
associated with a pair of representations, the inner representation for representing the contents under
the node, and the outer representation for representing its surrounding context. Thanks to adding the
context representations, information can flow not only bottom-up but also top-down in parse trees.

The Inside-Outside Recursive Neural Network was presented as an instance of the framework, where
both representations are instantiated as high-dimensional vectors and composition functions are
feedforward networks trained on large datasets. By exploiting the interaction between context and
content representations, we have shown that the IORNN is capable of performing a wide range of
NLP tasks that the RNN and its extensions are not.

We demonstrated how the IORNN can be used in the word prediction, learning composition func-
tions from raw texts, and semantic role labelling tasks. Our IORNN outperformed the Kneser-Ney
smoothed 5-gram model, which is state-of-the-art in the language modelling area, in the word pre-
diction task. It also achieved better results than the RAE by a large margin in the phrase similarity
evaluation. In the semantic role labelling task, our IORNN performed comparably with the state-
of-the-art neural-net-based system for NLP, named SENNA. This empirical results establish that
Inside-Outside Semantics offers a promising framework for applying RNN to NLP tasks that re-
quire paying attention to the hierarchical structure of sentences and predictions based on context.
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A Inside-Outside Semantics Framework with λ-Expressions

We will demonstrate how the IOS framework works with λ-expressions as in formal semantics. First
of all, we rely on the fact that the content and context of a constituent must be strongly correlated in
the sense that we can predict the content thanks to the context. For instance, given the world model
M = {Tom loves cheese, mice love cheese, mice hate cats}, and the context “mice love X”, we can
infer that X ∈ {cheese}. Therefore, we hypothesise that, given a world model M , M |= opip must
hold for any constituent p, for instance icheese = cheese and ocheese = λy.love(mice, y).

Combinatory Categorial Grammar (CCG) [19] is a widely used grammar formalism for semantic
applications thanks to its transparent surface between syntax and semantics [7]. In our terminology,
it provides an elegant method to compute inner representations. However, it does not specify the
operations needed to compute outer representations. To do so, we will introduce extensions for its
combinatory rules.

Combinatorial Categorial Grammar In a CCG, a word or constituent is assigned to a category,
which could be basic (e.g., NP , S) or complex (e.g., NP/NP , S\NP ). A complex category
defines selectional and directional combination. For instance, NP/NP implies that any constituent
or word in this category can combine with a noun phrase to it right-hand side in order to form a new
noun phrase. Standard CCG specifies five basic rules for combination: forward application (fa),
backward application (ba), composition (comp), coordination (conj), and type raising (tr) (see the
first and second columns of Table 5). Figure 3 shows a CCG derivation for the sentence “mice love
cheese”.

Table 5: The five basic CCG combinatory rules (the first and second columns) and their extensions
for computing outer representations (the third column). p, l, r, c respectively denote parent, left-
child, right-child, and child.

Rule Inner (parent) Outer (children)
(fa) X/Y Y ⇒ X ip = ilir ol = λP.op (P ir)

or = λP.op (ilP )
(ba) Y X\Y ⇒ X ip = iril ol = λP.op (irP )

or = λP.op (P il)
(comp) X/Y Y/Z ⇒ X/Z ip = λx.(il(irx)) ol = λP.op (λx.(P (irx)))

or = λP.op (λx.(il(Px)))
(conj) X conj X ′ ⇒ X ′′ ip = λx.(ilx ∧ irx) ol = λP.op (λx.(Px ∧ irx)))

or = λP.op (λx.(ilx ∧ Px)))
(tr) A⇒ X/(X\A) ip = λR.(Ric) oc = λP.op (λR.(RP ))

Extended rules From the hypothesis thatM |= opip must hold for any constituent p, we postulate
a more strict constraint: opip = oqiq for all constituents p, q, which is equivalent to the constraint

ocic = opip ∀c ∈ C(p), where C(p) is the set of children of p (6)

Therefore, we add formulas in the third column of Table 5 to the CCG rules. To prove that these
formulas satisfy the constraint in Equation 6, for an arbitrary child node, simply applying the outer
representation to the inner representation and then using the beta reduction, we will get opip.

In order to see how those formulas work, let’s consider a simple example of the sentence “Mice love
cheese” (Figure 3). First of all, because this sentence stands alone, λP.P is assigned to the outer
representation of the whole sentence, which means that the truth of this sentence solely depends
on its own meaning. Then, using the formulas given in Table 5 we compute the outer and inner
representations for each constituent.

The first thing we can see is that, given the world model M above, all (inner,outer) pairs satisfy
the requirement M |= oi. Secondly, it turns out that those outer representations are intuitive. For
instance, the outer representation of the word “cheese” oc = λx.love(mice, x) perfectly intuitively
matches the context “mice love –”: the missing word/constituent must represent an object x that
makes the predicate love(cheese, x) true.
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> fa

< ba

S\NP/NP
ol = λP.P cheese mice
il = λyλx.love(x, y)

lovemice
im = mice

om = λx.love(x, cheese)
NP

cheese
ic = cheese

oc = λy.love(mice, y)
NP

S\NP
oS\NP = λP.P mice

iS\NP = λx.love(x, cheese)

S
oS = λP.P

iS = love(mice, cheese)

Figure 3: CCG parse tree and inner, outer representations for the sentence “Mice love cheese”.

One application for this might be to represent questions. Since a question can be seen as the context
of an unknown object/information, we can use the IOS framework to represent a question by con-
verting it to a non-question sentence containing a blank corresponding to the unknown constituent.
The outer representation of the unknown constituent therefore can be used as the representation for
the question. Another application is to be a base for formal-semantics-liked compositional distribu-
tional semantics approaches, e.g. [33], to compute context representations.
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