
University of Amsterdam

Master Thesis

Task-Based Semantic Evaluation of
Parse Tree Discontinuity

Author:

Stijn de Gooijer

Supervisor:

Dr. W.H. Zuidema

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science in Artificial Intelligence

September 2016

http://www.uva.nl/en/home
http://wzuidema.humanities.uva.nl/

UNIVERSITY OF AMSTERDAM

Abstract

Task-Based Semantic Evaluation of Parse Tree Discontinuity

by Stijn de Gooijer

The concept of discontinuity has historically been addressed in parsing frameworks in a

number of different ways. Some parsing frameworks produce discontinuous parse trees,

while others rely on feature passing in continuous parse trees in order to account for

discontinuity. In this research, we evaluate the influence of discontinuity by comparing

continuous and discontinuous parse trees. We explore two methods of task-based eval-

uation, one based on dynamic semantics and one based on tree-based neural networks,

of which the latter seems most capable of evaluating parse tree discontinuity. We end

up running two semantic classification tasks: sentiment analysis and question classifi-

cation. A tree-based long short-term memory model is trained based on discontinuous

parse trees, as well as based on continuous parse trees. Classification accuracy is then

compared to a baseline of left-branching parse trees and to each other. We find that in

the sentiment analysis task, the discontinuous model has the advantage on the part of

the dataset containing discontinuities. In the question classification task, we find that

both the continuous and the discontinuous model have their strengths: the continuous

model performs better on the fine classification task, while the discontinuous model per-

forms better on the coarse classification task. We conclude that, while it is not always

necessary to model discontinuity, handling discontinuity with the use of discontinuous

constituents does improve semantic task performance in a number of cases.

http://www.uva.nl/en/home

Acknowledgements

I would like to thank Jelle Zuidema, for his insights and supervision. I would also like

to thank Andreas van Cranenburgh and Phong Le for providing me with software and

support for running my experiments. Finally, I would like to thank all members of the

Cognition, Language, and Computation research group for listening to my ideas and

giving feedback.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

1 Introduction 1

1.1 Thesis Contributions . 2

1.2 Thesis Outline . 3

2 Discontinuity in Parse Trees 4

2.1 Linguistic Motivation . 4

2.2 Parsing Discontinuities . 7

2.3 Evaluating the Influence of Discontinuity 8

3 Dynamic Semantics 11

3.1 Discourse Representation Theory . 11

3.2 Evaluating Discontinuity through DRS Construction 13

4 Tree-based Neural Networks 15

4.1 Word Embeddings . 15

4.2 Recurrent and Recursive Neural Networks 16

4.3 The Long Short-Term Memory model . 18

4.4 Evaluating Discontinuity through Tree-LSTM 19

5 Experiments 21

5.1 Experimental Setup . 21

5.1.1 Parse Tree Types . 21

5.1.2 Model and Parameter Tuning . 22

5.1.3 Test set scoring . 22

5.2 Sentiment Analysis . 23

5.2.1 Dataset . 23

5.2.2 Results . 24

5.2.3 Discussion . 25

5.3 Question Classification . 28

5.3.1 Dataset . 28

5.3.2 Results . 30

5.3.3 Discussion . 31

iii

Contents iv

6 Conclusion 33

6.1 Contributions and Future Work . 34

Bibliography 35

Chapter 1

Introduction

Natural language processing algorithms play an important role in making information

universally accessible. If we visit a website that is not available in our native language,

our browser offers us a convenient button that says ”Translate this website to your own

language”. Speech recognition algorithms allow us to input text by just using our voice,

and speech synthesis algorithms allow text to be read back to us over our computer’s

speakers.

In order for a computer to be able to carry out these tasks, it needs to have some sort

of understanding of the language it is processing. Finding the right translation of a

sentence requires careful selection of words and phrases to preserve its original mean-

ing. Correctly recognizing a sentence produced by a human voice requires knowledge

of context to disambiguate between phrases that sound identical but with different tex-

tual representation. Synthesizing speech requires discourse information to identify the

correct words and syllables to stress. Many tasks related to natural language require

advanced understanding of the language to be performed optimally.

There are many techniques to help natural language processing (NLP) algorithms to

achieve this advanced understanding of language. One technique that is widely used

among NLP tasks is parsing. Parsing is the process of identifying the syntactic structure

of a sentence, usually in the form of a constituency-based parse tree or dependency-based

parse tree (see Figure 1.1).

These parse trees can take on different forms based on the grammar formalism used for

parsing, which in turn may affect how well NLP algorithms perform certain tasks. In

this thesis, we will research different types of parse trees through their performance in

specific NLP tasks.

1

Chapter 1. Introduction 2

S

NP

N

Mary

VP

V

drives

NP

DET

a

N

car

(a) Continuous

S

VP

WRB

When

V

arrive?

MD

will

NP

she

(b) Discontinuous

Figure 1.1: Examples of constituency-based parse trees.

1.1 Thesis Contributions

This thesis will focus on comparing two types of parse trees: continous parse trees

and discontinuous parse trees. Continuous parse trees are parse trees which contain

only continuous constituents, usually parsed using a context-free grammar formalism.

Figure 1.1a shows an example of such a parse tree. Discontinuous parse trees allow for

discontinuous constituents, an example of which can be seen in Figure 1.1b. As can be

seen from the figure, these discontinuous constituents lead to crossing branches in the

parse tree.

There are two key differences between the two parse tree types: expressiveness and pars-

ing complexity. Discontinuous parse trees have more expressive power, as discontinuous

constituents allow the modeling of certain linguistic phenomena that are impossible to

model using continuous constituents. However, this comes at the cost of higher parsing

complexity, as the parsing algorithms have to account for possible discontinuities.

Historically, there has been relatively little attention for discontinuous parse trees, com-

pared to continuous parse trees. Several parsing frameworks have been developed for

discontinuous parsing ([1], [2], [3]), and parsing results have been compared to parse

results from continuous parsing frameworks. However, this is usually done based on

bracketing precision and recall, which does not tell us much, since the parse tree struc-

tures are of a different nature.

In this thesis, we evaluate the influence of discontinuity, by using continuous and dis-

continuous parse trees as part of a semantic task and measuring task performance. For

this evaluation, we combine existing techniques that have recently been developed. The

contribution of this thesis is thus the application of previous research in a novel way, in

order to provide new insight in an area in which relately little research has been done.

Chapter 1. Introduction 3

The evaluation method outlined in this thesis makes it possible to evaluate disconti-

nuity a in meaningful way: difference in task performance between parse tree types

will indicate how much discontinuity contributes to helping the NLP algorithm better

’understand’ the text. And this, in the end, is the real goal of parsing text.

1.2 Thesis Outline

This thesis is structured as follows:

• In Chapter 2, we provide background on the concept of discontinuity. We dis-

cuss linguistic phenomena linked to discontinuity, and discuss associated grammar

formalisms and parsing algorithms. We also introduce dynamic semantics and

tree-based neural networks as possible approaches for evaluating the influence of

discontinuity through NLP tasks.

• In Chapter 3, we explore how dynamic semantics could be utilized for evaluating

grammar formalisms. We discuss Discourse Representation Theory and the role of

parse trees in constructing semantic representations of sentences. We also explore

possible NLP tasks based on dynamic semantics for evaluating discontinuity.

• In Chapter 4, we explore tree-based neural networks, focusing on the Long Short-

Term Memory model. We discuss word embeddings, recurrent and recursive neural

networks, and the role of parse trees in these models. We also propose possible

NLP tasks for evaluating discontinuity based on neural network models.

• In Chapter 5, we describe in detail two NLP tasks: sentiment analysis and question

classification. We report experimental setup and results, and discuss the results

in-depth.

• In Chapter 6, we arrive at a conclusion for this research. We summarize the

contributions of the research, and list possible future work on the subject.

Chapter 2

Discontinuity in Parse Trees

In this chapter, we provide background on the central topic of this thesis: parse tree

discontinuity. We first explain the general concept, and the linguistic context that gives

rise to the need for discontinuity. We do so by discussing natural language examples.

Secondly, we discuss how these discontinuous parse trees may be produced. We discuss

indirect methods such as traces and feature passing, as well as direct parsing methods

involving mildly context-sensitive grammars.

Finally, we take a closer look at why continuous parse trees are so heavily favoured

in state-of-the-art NLP algorithms. We explore different ways to compare continuous

and discontinuous syntax structures. Most importantly, we discuss the use of formal

semantics and neural networks for task-based evaluation.

2.1 Linguistic Motivation

We may define discontinuity as follows: discontinuity is the phenomenon that occurs

when two words or phrases that are directly related are separated by at least one other

word or phrase. This will result in a tree structure with crossing branches. An example

of a discontinuous constituency tree is shown in figure 2.1a. In this case, the phrases

“when” and “arrive” form a verb phrase together, however, the phrases occur on opposite

sides of the sentence. As you can see, this leads to crossing branches. Discontinuity

also presents itself in dependency trees, as shown in Figure 2.1b, although much less

frequently.

Discontinuities occur in most natural languages, if not all. However, there are different

types of discontinuity, and not every language contains every type of discontinuity. The

4

Chapter 2. Discontinuity in Parse Trees 5

S

VP

WRB

When

V

arrive?

MD

will

NP

she

(a) Wh-movement in a constituency-based parse tree

omdat ik Jan de kinderen zag leren zwemmen

(b) Dutch cross-serial dependency in a dependency-based parse tree

Figure 2.1: Examples of discontinuous parse trees.

most prominent types of discontinuity are wh-movement, topicalization, extraposition,

and scrambling.

The first type, wh-movement, can be seen in the example given previously (Figure 2.1a).

Wh-movement appears most commonly in questions. The name wh-movement comes

from the discontinuity that often coincides with interrogative words, which in English

often start with wh- (what, who, which, etc.). This type of discontinuity often occurs

in direct and indirect questions and in relative clauses. Example 2.1 below shows the

sentence as a statement, while 2.2 shows the sentence in question form, which causes

wh-movement to occur.

She will arrive tomorrow. (2.1)

When will she arrive? (2.2)

The second type, topicalization, occurs when a word or phrase is fronted in order to

establish it as the topic of the sentence. An example of topicalization is shown below.

In general, phrases that are subject to wh-movement are also subject to topicalization.

Figure 2.2 shows the parse tree of the sentence before and after topicalization takes

place.

Chapter 2. Discontinuity in Parse Trees 6

S

NP

She

VP

MD

will

V

arrive

PP

tomorrow

(a) Before topicalization

S

VP

PP

Tomorrow,

MD

will

V

arrive

NP

she

(b) After topicalization

Figure 2.2: Parse trees showing discontinuity as a result of topicalization.

She will arrive tomorrow. (2.3)

Tomorrow, she will arrive. (2.4)

Extraposition occurs when an expression appears further to the right of where it would

normally appear. A common occurrence is the it-extraposition, in which case the word

”it” appears as a placeholder for a phrase that appears later in the sentence.

That it rained occurred to me. (2.5)

It occurred to me that it rained. (2.6)

Scrambling occurs in languages that allow freedom in word order. Word order in En-

glish is quite strict, but in other languages like German, scrambling discontinuities are

common. An example is given below, in which the sentence object may appear either

before or after the past participle.

Ich habe versucht dich zu verstehen. (2.7)

Ich habe dich versucht zu verstehen. (2.8)

Note that discontinuity is not limited to the four types described above. Depending on

the language, there may be many more cases in which discontinuity appears. Typically,

about 15 to 25% of sentences ([4]) contain a discontinuity, with the rest being contin-

uous. Freedom in word order is generally the determining factor in the prevalence of

discontinuity, with English falling on the low end of the spectrum.

Chapter 2. Discontinuity in Parse Trees 7

2.2 Parsing Discontinuities

Now that we have established some linguistic context, let us consider how to arrive at a

discontinuous parse tree when presented with a sentence that calls for a discontinuous

constituent.

Context-free grammars (CFGs) are a popular grammar formalism for parsing, as there

is an efficient parsing algorithm available which parses in time complexity O(n3) ([5]).

However, CFGs cannot be used to generated discontinuous parse trees directly, since

production rules do not allow for ’gaps’ between right-hand side constituents. Tradi-

tionally, this problem has been solved by applying either syntactic movement or feature

passing.

The theory of syntactic movement, as often applied in transformational grammars, as-

sumes that a sentence is generated in its canonical form, and then movement takes place

in order to account for discontinuities as mentioned in the previous section. The con-

tituents moved in this way leave behind a trace of some sort in their original location,

with certain linguistic functions of their own. An example is shown below. These traces

are present in some state of the art treebanks, such as the Penn Treebank ([6]). Feature

passing does not assume any movement, but rather assumes that information is passed

through the rest of the tree to connect the ’moved’ constituent and its original parent.

You mean what? (2.9)

What do you mean t? (2.10)

There are, however, a number of discontinuity types that cannot be generated by context-

free grammars, even with the aforementioned mentioned techniques. This was first

confirmed by [7], proving that cross-serial dependencies in Swiss-German cannot be

generated by a context-free grammar. An example of cross-serial dependency in Dutch,

which was also analyzed in [8], is shown in Figure 2.3.

In order to account for these types of discontinuities, we need to move to grammars that

are not context-free. The class of grammar formalisms that can deal with these kinds

of discontinuities, while still being able to produce parse trees in polynomial time, is

called mildly context-sensitive. Examples of mildly context-sensitive grammars include

Tree Adjoining Grammars (TAG) ([9], [10]) and Linear Context-Free Rewriting Systems

(LCFRS) ([11], [12], [1]).

Chapter 2. Discontinuity in Parse Trees 8

S

IN

omdat

VP

NP

ik

VP

NP

Jan

VP

NP

de kinderen

V

zwemmen

V

leren

V

zag

Figure 2.3: Dutch cross-serial dependency in a constituency-based parse tree.

The way this mild context-sensitivity is achieved differs per formalism. TAG allows re-

placing not only leaves of trees with new trees, but also replacing internal nodes. LCFRS

allows production rules to yield not just strings, but tuples of non-adjacent strings. Most

importantly, these formalisms allow the parsing of discontinuous constituents directly.

The result is that these formalisms can generate all types of discontinuity, including

cross-serial dependencies.

And the advantage of directly parsing discontinuities goes beyond the ability to generate

certain obscure linguistic phenomena. Grammar formalisms like LCFRS may also lead

to a much more concise set of production rules, when compared to a CFG. In CFGs,

depending on the way discontinuities are handled, the number of production rules may

’explode’: for every discontinuity, a continuous production rule needs to account for all

possible phrase structures that could occur in the gap. In LCFRS, a single production

rule will suffice to handle a discontinuity.

The mildly context-sensitive grammar formalisms come with a serious drawback though,

in the form of parsing complexity. While parsing with context-free grammars may be

done in time complexity O(n3), parsing algorithms for TAG have time complexity O(n6)

and for LCFRS O(n3k) (where n is the length of the input sentence, and k is the fan-

out)([13]).

2.3 Evaluating the Influence of Discontinuity

As we have seen in the previous section, there are many ways to deal with discontinuity

when parsing. Context-free grammars deal with discontinuity using movement or feature

passing, while mildly context-sensitive grammars are able to deal with discontinuity in

a more principled way by parsing discontinuities directly.

Chapter 2. Discontinuity in Parse Trees 9

In the general field of linguistics, context-free grammars are still used much more com-

monly than mildly context-sensitive grammars. One of the reasons for this is the previ-

ously mentioned computational complexity of parsing, which greatly favors context-free

grammars. Another important consideration is the availability of treebanks: while the-

ory on discontinuity has been around for a long time, many treebanks do not contain

discontinuous trees, nor the traces to reconstruct discontinuities. This severely limits

the availability of discontinuous trees, and consequently the ability to train high qual-

ity discontinuous parsers. Discontinuous treebanks do exist, for example the TIGER1

([14]) and NEGRA2 ([15]) treebanks for German. However, generally a lot more research

seems to be done for the English language, in which discontinuity is less prevalent, thus

reducing the urgency to properly deal with discontinuity.

The choice for context-free grammars appears unfortunate, since we already know that

CFGs cannot deal with all linguistic phenomena. In the future, we would like to be able

to perfectly parse every language. And for this, we will need to move beyond context-

free grammars. In an effort to support such a transition, more research is required on

the subject of discontinuity. In this thesis, we contribute by testing different types of

trees in a task-based environment.

While direct parsing tasks may seem like a more suitable way to compare syntax struc-

tures, the different nature of continuous and discontinuous parse trees makes it impossi-

ble to directly and fairly compare the two. We can, however, define a task that utilizes

parse trees, and measure task performance. For example, a text classification task like

sentiment analysis may utilize parse trees in the classification process. Performing the

task once with continuous trees, and then once with discontinuous trees, will objectively

show possible differences between the parse tree types.

We explore two approaches to task-based evaluation: one based on dynamic semantics,

and one based on tree-based neural networks. Dynamic semantics allows us to construct

a logic representation of a sentence, with the help of tree structures. In a classification

task, we can determine if the logic representation of the sentence is constructed correctly

through various tree structures. This approach is explored in Chapter 3.

Using tree-based neural networks, we may perform basically any text classification task.

Word vectors are propagated up through the tree, resulting in a single vector represen-

tation of the sentence, which may then be mapped to a class. The structure of the tree

affects the order in which word vectors are combined, which leads to a different sentence

1The TIGER Treebank is available at the following link: http://www.ims.uni-stuttgart.de/

forschung/ressourcen/korpora/tiger.en.html
2The NEGRA corpus is available at the following link: http://www.coli.uni-saarland.de/

projects/sfb378/negra-corpus/negra-corpus.html

http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.en.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.en.html
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html

Chapter 2. Discontinuity in Parse Trees 10

vector, with possibly a different class as a result. If we take the task of sentiment analy-

sis, for example, the vector may be mapped to a sentiment class. The tree-based neural

network approach is explored further in Chapter 4.

Chapter 3

Dynamic Semantics

In this chapter, we explore how the influence of discontinuity may be evaluated through

dynamic semantics. First, we explain Discourse Representation Theory (DRT), which

is the semantic representation we will be working with. We discuss the benefits of

this semantic representation and how such a representation is constructed for natural

language sentences.

Second, we explore how we may define a task based on tree structures and DRT, that

will help evaluate the influence of discontinuity. In doing so, we will discuss available

datasets, possible algorithms, and related theory.

3.1 Discourse Representation Theory

Discourse Representation Theory is a theory of dynamic semantics. Dynamic semantics

was developed as an adaptation of formal semantics, aiming to account for context

dependence of meaning. The DRT framework was first proposed by [16], and has since

been joined by other dynamic semantic theories like dynamic Montague grammars ([17])

and dynamic predicate logic ([18]). An important change from formal semantics is the

shift towards information as the central concept, rather than truth values.

The main advantage of DRT is how well it handles inter- and intrasential anaphoric

relations between indefinite NPs and personal pronouns. Consider the natural language

example below, followed by its formal semantic representation.

11

Chapter 3. Dynamic Semantics 12

A student participated. He won. (3.1)

∃x[student(x) ∧ participate(x) ∧ win(x)] (3.2)

While the formal semantic representation is correct, the process of generating this rep-

resentation requires treating the full stop between sentences as a conjuction, which is

not correct in all cases. Thus, formal semantics fails to account for these sentences in a

principled way. DRT handles this by representing semantics in two parts: the universe,

which consists of a set of discourse referents, and the conditions, which is a set of con-

ditions. While a DRT representation of a sentence can thus be represented as a tuple of

sets (3.3), a ”box notation” is often used for readability (3.4).

〈{x, y}, {student(x), participate(x), win(y), x = y}〉 (3.3)

x, y

student(x)

participate(x)

win(y)

x = y

(3.4)

There are two main approaches for constructing such a Discourse Representation Struc-

ture (DRS): top-down and bottom-up construction. Both construction methods are

based on parse trees. DRS construction has been defined for many grammar formalisms,

including CFG ([16]) and categorial grammars ([19]), but to our knowledge has not yet

been defined for grammar formalisms with discontinuous constituents like LCFRS.

The top-down approach is based on a number of construction rules, which match certain

parts of a parse tree and converts those into discourse referents and/or conditions. An

example is shown below. Subsequent sentences are constructed within the context of

the previous DRS, allowing personal pronouns to bind to discourse referents defined in

the previous sentence.

Chapter 3. Dynamic Semantics 13

S

NP

DET

A

N

student

VP

V

participated

x

student(x)

S

x VP

V

participated

x

student(x)

participate(x)

(3.5)

The bottom-up approach is a more modern DRS construction algorithm, and is de-

tailed in [20]. The approach breaks DRS construction into two phases: constructing a

preliminary sentence representation, and verifying and merging presuppositions. The

preliminary representation is constructed again based on a parse tree, but this time

starting by assigning semantic representation to the leaves of the tree and combining

these while going up the tree. This bottom-up approach is generally preferred over the

top-down approach, since it handles presuppositions more successfully.

3.2 Evaluating Discontinuity through DRS Construction

As detailed in the previous section, parse trees are a native part of the DRS construction

process, both in the top-down and bottom-up approaches. Evaluation of discontinuity

could take place based on the accuracy of different parse tree types in creating a correct

DRS representation. After all, the success of DRS construction is heavily dependent on

the quality of the underlying parse tree ([21]). We describe two possible tasks, one based

on the top-down approach, and one based on the bottom-up approach.

For the top-down approach, a classification task could be defined, comparing constructed

DRS representations with a golden standard as defined in a DRS-analyzed dataset like

the Groningen Meaning Bank [22]1. Measuring classification accuracy would then pro-

vide insight in the ability of different grammar formalisms to correctly produce a seman-

tic analysis of a sentence.

One roadblock for this approach is the fact that DRS construction is currently undefined

for grammar formalisms with discontinuous constituents. If we would like to perform

1The Groningen Meaning Bank is freely available for download at the following link: http://gmb.

let.rug.nl/

http://gmb.let.rug.nl/
http://gmb.let.rug.nl/

Chapter 3. Dynamic Semantics 14

the experiment as mentioned above, we would need to create a set of DRS construction

rules for a grammar formalism like LCFRS. Additionally, since construction rules are

dependent on parse tree labels, in addition to its structure, the experiment does not

purely evaluate discontinuity. Rather, it evaluates grammar formalisms in general.

It is possible, however, to define an algorithmm for DRS construction that does not

rely on parse tree node labels, but relies only on parse tree structure. In the bottom-

up construction approach, semantic representation of child nodes are combined into

a new semantic representation in the parent node. This is done based on node label

information. However, it is possible to discard label information and simply learn to

combine child nodes representations based on example occurrences in a dataset. This

would allow for DRS construction, independent from node labels.

Unfortunately, preliminary results suggested that the DRS construction rules obtained

using this statistical approach generalize poorly. The number of construction rules

grows almost linearly as the dataset grows, and DRSs for unseen sentences could often

not be constructed due to missing rules. Additionally, a dataset would be required that

contains both continuous and discontinuous parse trees for its sentences (or at least

contains traces in order to reconstruct discontinuities), in addition to DRT semantic

analysis. Learning construction rules on a dataset containing only continuous parse

trees, such as the Groningen Meaning Bank mentioned earlier, would bias task success

towards continuous parse trees.

All in all, it appears that evaluating the influence of discontinuity formally using dy-

namic semantics is a challenging proposition. Discontinuous parse trees are currently

not integrated well with leading semantic formalisms like DRT, and as a result, it is

difficult to obtain unbiased results when evaluating discontinuity. Part of the problem

is the fact that corpora with DRT annotation do not contain discontinuous parse trees,

making objective evaluation difficult. As we will see in Chapter 4, tree-based neural

networks offer a much easier way to evaluate discontinuity in parse trees, and will be

used in our experiments as detailed in Chapter 5.

Chapter 4

Tree-based Neural Networks

Neural networks have seen a lot of success in natural language processing recently. One

of the keys to this success is how easily parse tree information may be incorporated into

deep networks. Another important factor is the representation of words as meaningful

vectors, called word embeddings.

In this chapter, we first explain the benefit of word embeddings. Subsequently, we

discuss a number of neural network architectures and their relationship with different

parse tree types. Lastly, we explore possible NLP tasks for evaluating the influence of

discontinuity.

4.1 Word Embeddings

Representing words as vectors is central to the success of neural network models in NLP

tasks. Many NLP techniques, like the dynamic semantics approach discussed in the

previous chapter, treat words as atomic units, ignoring any similarity between words.

Representing words as vectors opens up the possibility to incorporate contextual infor-

mation into words, and offers a natural distance measure in the vector cosine distance.

As an example of how these word embeddings represent meaning, let us consider the

example given in [23]: the words ’king’ and ’queen’ are similar, in the sense that they

both describe a ruler. The difference is that ’king’ is a male ruler, while ’queen’ is female.

If we look at the vectors, we can see that if we compute vector(king)− vector(man) +

vector(woman), we find a vector that is very similar to vector(queen). This indicates

that the word vectors support the meaning as we have just described.

Many methods exist for generating these so-called ’word embeddings’. Some methods

utilize neural network models, others are based on statistical analysis. Every method,

15

Chapter 4. Neural Networks 16

however, is based on word co-occurrences in a corpus as the primary source for learning

these word representations.

Among the current state of the art models is the Global Vectors (GloVe) model [24] 1.

This method utilizes word co-occurrence statistics directly by applying matrix operations

to the original word co-occurrence matrix. Another popular model is the word2vec model

[23] 2, which utilizes CBOW and Skip-gram log-linear models.

It is also possible to optimize word embeddings for specific tasks. [25] proposes a method

for improving word embeddings with regards to sentiment information, using a mix of

unsupervised and supervised techniques. However, for the purpose of our research, we

will stick to the more modern, unsupervised methods mentioned earlier.

4.2 Recurrent and Recursive Neural Networks

Once we have word vector representations, we may employ recurrent neural networks

to generate a vector representation for an entire sentence. This is useful for performing

classification tasks, like, for example, the previously mentioned sentiment analysis task.

Recurrent neural networks may also be generalized to recursive neural networks, which

makes it possible to integrate parse tree information into the learning process.

Recurrent neural networks are defined as having at least one directed ring in its structure.

Formally, the task of reducing a sentence to a single vector for classification purposes

using a recurrent neural network may be defined as follows:

We have a sentence S defined as a sequence of words: S = {w1, w2, ..., wNS
}, where NS

is the number of words in the sequence. Each word is defined by a K-dimensional word

embedding ew = {e1w, e2w, ..., eKw }.

The recurrent neural network combines at each timestep t the previously built hidden

vector ht−1 with the current word embedding wt, resulting in ht:

ht = f(W · ht−1 + V · et) (4.1)

where W and V denote compositional matrices, and function f represents the neural

network application. The desired output, a K-dimensional vector representing the whole

1GloVe code available at this link: http://nlp.stanford.edu/projects/glove/
2word2vec code available at this link: https://code.google.com/p/word2vec/

http://nlp.stanford.edu/projects/glove/
https://code.google.com/p/word2vec/

Chapter 4. Neural Networks 17

h4

h3

h2

h1

e1Mary

Mary

e2saw

saw

e3the

the

e4man

man

(a) Recurrent neural network

eηroot

eη1

e1The

The

e2man

man

eη2

e3saw

saw

e4her

her

(b) Recursive neural network

Figure 4.1: Examples of recurrent and recursive networks. The bolded ’root’ nodes
contain the K-dimensional vector representation of the whole sentence.

sentence, is thus given by hNS
. A visual representation of the recurrent neural network

is seen in Figure 4.1a.

Recurrent neural networks are easily generalized to recursive neural networks, replacing

the incremental left-to-right nature of the recurrent model by a bottom-up approach

that combines child nodes at each node of a parse tree, until the root of the tree is

reached. This means the timesteps of the recurrent model are no longer necessary, and

instead progress is saved per node η. Recursive neural networks may then be defined as:

eη = f(W · eηleft + V · eηright) (4.2)

Figure 4.1b shows a visual representation of the recursive neural network. As was

mentioned, recursive networks are a generalization of recurrent neural networks. The

figure clearly shows why this is the case: recurrent neural networks are equal to recursive

neural networks when a left-branching parse tree is used.

Important to note is that these recursive neural networks seemlessly support discontin-

uous parse trees: at each node, the left and right child is taken as input, regardless of

whether the phrases spanned by these children are next to each other in the sentence or

not. Even trees in which nodes have multiple parents, as generated by range concate-

nation grammars ([26]), are supported, as a single node may be used as input multiple

times without problems.

When performing classification tasks, a softmax layer may be added as the final layer

of the neural network, to compute the probability of assigning a class c to an input x;

in this case the sentence vector.

Chapter 4. Neural Networks 18

4.3 The Long Short-Term Memory model

The Long Short-Term Memory (LSTM) model was originally proposed by [27] as an

extension to the recurrent neural network models discussed in the previous section.

The goal of these models is to improve the handling of long-term dependencies: when

using recurrent neural network models, a large distance between dependents means the

influence of the original dependent is almost completely gone when encountering the

second dependent. This is called the ’vanishing gradient problem’, and is discussed at

length in [28].

LSTM models address this problem by introducing memory state, and a number of

gates: an input, memory, and output gate, respectively denoted as it, ft, and ot. These

gates determine exactly how the new input et influences the current memory state ct,

and what the vector representation for the current timestep, ht, will be. The vector

representation ht will then be given by:

it

ft

ot

lt

 =

σ

σ

σ

tanh

W ·
[
ht−1

et

]
(4.3)

ct = ft · ct−1 + it · lt (4.4)

hSt = ot · ct (4.5)

W in this case is a 4K × 2K dimensional real-valued weight matrix, assuming K-

dimensional word embeddings. Figure 4.2 shows a visual representation of the LSTM

model3.

The idea of LSTM may also be applied to recursive models, in the same way we gener-

alized recurrent models to recursive models. We can define the vector representation eη

at node η as:

eη = zη · (eleft + eright) + (1− zη)e′η (4.6)

e′η = f(W · rη · eleft + V · rη · eright) (4.7)

3This visualization was taken from a blog post by Christopher Olah on LSTM models: http://

colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Chapter 4. Neural Networks 19

Figure 4.2: A visualization of the LSTM model structure.

where rη and zη are the control gates associated with η, given by:

zη = σ(Wz · eleft + Vz · eright) (4.8)

rη = σ(Wr · eleft + Vr · eright) (4.9)

There are a number of variations available of this tree-based version of the LSTM model,

also called Tree-LSTM, which achieve state-of-the-art results on many natural language

classification tasks ([29], [30], [31]). It is, however, also argued that the recurrent version

of the model can achieve similar results in certain cases ([32]).

Different variants of the LSTM model have been proposed, most of which are based on

slight variations on the gating principle. Most notably, Gated Recurrent Unit models

([33]) and Depth-gated LSTM models ([34]) have produced consistently good results. Bi-

directional LSTM models have also been proposed, both for recurrent ([35]) and recursive

([36]) networks. Which variant of the LSTM model is best is debatable; [37] compares

a number of LSTM variants and interestingly finds no significant improvement over the

basic LSTM model. For this reason, we stick to the basic LSTM model, as explained in

this section, for our research and experiments.

4.4 Evaluating Discontinuity through Tree-LSTM

As detailed in the previous sections, text classification tasks may be performed based

on neural network analysis, followed by softmax classification. [32] have performed

multiple text classification tasks this way, including sentiment analysis, sentence-target

Chapter 4. Neural Networks 20

matching, and semantic relation classification, successfully comparing different neural

network models. Since our aim is to compare parse tree types, we may set up a similar

experiment, but varying the parse trees while keeping the neural network model constant.

As mentioned, the recursive models support different kinds of parse trees well. Addi-

tionally, the Tree-LSTM model supports long-distance dependencies, making it ideal for

evaluating discontinuity. The Tree-LSTM model is thus a clear choice for our experi-

ments.

The challenge remains to select the right classification tasks to maximally highlight the

influence of discontinuity. We select two tasks: sentiment analysis and question classi-

fication. In sentiment analysis, long distance dependencies may have a large influence

on the classification results. In question classification, discontinuity is very prevalent in

the data, mostly in the form of wh-movement. Details of these tasks will be discussed

in Chapter 5.

All in all, it is clear that tree-based neural networks are well-suited for evaluating the

influence of discontinuity. Therefore, we choose to focus on this approach, rather than

the dynamic semantic approach detailed in Chapter 3. In the next chapter, we detail the

experiments in which we perform and evaluate the previously mentioned classification

tasks, based on tree-based neural networks.

Chapter 5

Experiments

As discussed in Chapter 4, tree-based neural network models are especially well-suited

for comparing different parse tree types. In this chapter, we describe two NLP tasks:

sentiment analysis and question classification. For both these tasks we utilize a long

short-term memory model. We first describe the specifics of this model, and how we

obtain the parse trees for the datasets. Then we discuss the specifics of each task and

the results.

5.1 Experimental Setup

While the datasets for the sentiment analysis task and the question classification task

differ, the way we obtain parse trees is the same for both tasks. The neural network

model, and the process of parameter tuning, is also identical. In this section, we will

explain these parts of the experiment.

5.1.1 Parse Tree Types

The goal of this experiment is to compare continuous and discontinuous parse trees.

These parse trees were obtained using the disco-dop parser1 made by Andreas van Cra-

nenburgh ([2]). The grammars used for generating the continuous and discontinuous

trees were extracted from the Wall Street Journal sections 2-21. This part of the tree-

bank contains traces in the annotation, which makes it possible to convert the originally

continuous parse trees to discontinuous parse trees.

1The disco-dop parser is freely available at https://github.com/andreasvc/disco-dop

21

https://github.com/andreasvc/disco-dop

Chapter 5. Experiments 22

The original (continuous) parse trees that were part of the dataset were discarded in

favor of these newly generated parse trees. This was done to ensure that the trees

generated for both types were based on the same treebank and generated by the same

parsing algorithm. While this does mean that the text is parsed using out-of-domain

grammar, the resulting continuous parse trees were compared to the original parse trees

and did not perform significantly worse (in some cases, task performance was actually

better).

As a baseline for these two parse tree types, we use left-branching parse trees. This

type of parse tree effectively mimics the recurrent neural network model, incrementally

processing each word of the sentence one-by-one.

5.1.2 Model and Parameter Tuning

The model we use is the long short-term memory model. The main reason for using

this model is that it is the first model that solves the vanishing gradient problem, as

discussed in section 4.3. The reason this is important, is that our parse trees do not have

classification at intermediate nodes; class information is only available at the sentence

level, and thus this information needs to be propagated through the entire tree.

We do not make use of newer variants of the LSTM model. While these networks seem

very promising, for the case of this research it seemed appropriate to use a type of

network that is more established in the literature. Hence the choice for the original

LSTM model.

For word embeddings, we use 300-dimensional GloVe word vectors ([24]). From earlier

research ([29], [32]), we see that for these tasks a dimensionality of between 50 and 300

is often used, with higher dimensionality offering better task performance.

The LSTM model parameters that we tune are mini-batch size, number of dimensions,

and learning rate. The parameters are tuned separately for each parse tree type. For

each parameter set, we train fifty models and evaluate them on the development set,

noting the mean score. The parameter set with the highest mean score is the one we

select to generate scores for the test set.

5.1.3 Test set scoring

The results of the experiments are the classification accuracy on the test set for each of

the parse tree types. The classification accuracy is given by 100× #correct
#total . Since there

Chapter 5. Experiments 23

is some randomness involved in training a neural network, the training process is run

multiple times, and the test set score is averaged over multiple runs.

In total, 20 test set scores are generated for each model. For each test set score, the

network is trained 15 times and evaluated on the development set. The network model

with the highest accuracy on the development set is used to generate a score for the test

set. The results reported are the mean and standard deviation of these scores.

5.2 Sentiment Analysis

The first task we discuss is sentiment analysis. Sentiment analysis is the task of iden-

tifying the sentiment of a piece of text. Often the text is classified binarily: positive or

negative. As an example, ”Today was a great day.” would be classified as having a pos-

itive sentiment, while ”The weather today is horrible.” would be classified as negative.

Alternatively, sentiment may be categorized more finely, including multiple positive and

negative categories (e.g. ’very positive’) and optionally a neutral category.

There are a number of reasons for selecting this specific task for comparing syntax

structures. First of all, it is a semantic task. Thus the performance of the task will

tell us about how well each syntax structure type captures meaning. Second, task

performance is easy to measure. Since it is a classification task, performance can be

measured using a simple accuracy measure. This means that different models will be

able to be evaluated and compared objectively. Third, sentiment analysis is a task in

which discontinuity can play an important role in determining the outcome.

Other sentiment analysis approaches include a subjective lexicon, and n-gram modelling

techniques.

5.2.1 Dataset

The dataset we use for our experiment is the Stanford Sentiment Treebank2 ([38]). This

dataset includes text from movie reviews, with five sentiment categories (very positive,

positive, neutral, negative, very negative).

The dataset includes a total of 11,855 sentences, which is split as suggested into a

training set of 8544 sentences, a development set of 1101 sentences, and a test set of

2210 sentences.

2The Stanford Sentiment Treebank is freely available for download at the following link: http:

//nlp.stanford.edu/sentiment/index.html

http://nlp.stanford.edu/sentiment/index.html
http://nlp.stanford.edu/sentiment/index.html

Chapter 5. Experiments 24

The dataset can also be used for binary sentiment analysis by removing the neutral

examples, resulting in 6920 sentences for training, 872 for development, and 1821 for

testing.

An important statistic to note is that for this dataset, 9.76% of sentences contain at least

one discontinuous constituent. This is a quite low amount, which is related to the do-

main: many sentences are just noun phrases, for example ”A deep and meaningful film.”,

and these sentences are adequately described by continuous constituents. This means

that the difference between continuous and discontinuous may not be as pronounced in

this task as we would like.

5.2.2 Results

Table 5.1 shows the results of the sentiment analysis task. Two versions of the task have

been carried out: a binary classification task, classifying sentences as either positive or

negative, and a harder version of the task with five sentiment categories (very positive,

positive, neutral, negative, very negative). The binary task is denoted in the table under

’Coarse’, and the task requiring more fine-grained classification is denoted under ’Fine’.

As we can see from the table, the left-branching baseline is significantly outperformed by

all other models. This confirms that parse tree type does influence the task performance

for this task. When comparing the continuous and discontinuous model, it seems that the

continuous model performs better, however, the difference is not significant (p = 0.169

for the fine task, p = 0.245 for coarse). The mixed model is a combination of the

continuous and discontinuous models, and will be explained later in this section.

Model Fine Coarse

Left-branching 45.5 (0.8) 85.3 (0.6)
Continuous 47.1 (1.0) 86.6 (0.5)
Discontinuous 46.6 (1.2) 86.3 (1.0)
Mixed 46.9 (1.2) 86.4 (0.9)

Table 5.1: Results for the sentiment analysis task. The scores are the percentage of
correctly classified sentences, followed by the standard deviation.

In order to better investigate the influence of discontinuity, we repeat the experiment, but

reduce the development and test sets to sentences containing at least one discontinuous

constituent. The results of this experiment can be seen in Table 5.2.

Again, we find that the left-branching baseline is clearly outperformed by the continuous

and discontinuous models. This is the case both for the fine classification task (p =

0.0141 and p = 0.0604 respectively) and the coarse classification task (p = 0.00248 and

p = 4.81 ∗ 10−5 respectively). The difference between the continuous and discontinuous

Chapter 5. Experiments 25

models in the fine task is not significant (p = 0.635). In the coarse task, however, the

discontinuous model significantly outperforms the continuous model (p = 0.0485).

Model Fine Coarse

Left-branching 39.9 (3.9) 76.2 (2.5)
Continuous 42.8 (2.8) 78.6 (1.8)
Discontinuous 42.3 (3.7) 79.8 (1.8)

Table 5.2: Sentiment analysis results of sentences with discontinuous constituents.
The bold font means that the score is significantly greater than all the other scores for

that experiment.

This experiment seems to indicate that discontinuous parse trees may indeed lead to

better task performance, at least for the coarse classification task, yet the previous

experiment finds no significant difference between the continuous and discontinuous

models. One explanation is that the discontinuous model actually performs better,

but the experiment didn’t lead to a significant result. This is plausible, due to the

relatively low number of sentences in the data containing a discontinuous constituent.

Additionally, since the Tree-LSTM model native handles long-distance dependencies

well, we expect the advantage of discontinuous parse trees to be somewhat diminished.

Another explanation is that the grammar used to generate the parse trees for the con-

tinuous model produces higher quality trees for the sentences that do not contain dis-

continuities, since it does not need to account for possible discontinuities. These higher

quality trees would then lead to a better task performance, due to better classification

of the continuous sentences outweighing a lower score on sentences with discontinuities.

In order to further investigate this second explanation, we introduce a new model which

combines the continuous and discontinuous model. This ’mixed’ model utilizes the

discontinuous syntax trees produced by the discontinuous grammar, yet for the sentences

containing no discontinuities uses the trees produced by the continuous grammar. This

model would get the benefit of the both the higher quality continuous trees and correct

analysis of sentences with discontinuities.

The result of this mixed model is reported in Table 5.1. It scores somewhere in between

the continuous and the discontinuous models, however, there is no significant difference

between the mixed model and the continuous or discontinuous model.

5.2.3 Discussion

The fact that the experiment leads to only a small number of significant results makes

it difficult to draw clear conclusions. The conclusions we can draw are the following:

Chapter 5. Experiments 26

• Parse tree structure influences task performance. This becomes clear from the

left-branching baseline being structurally outperformed by the other models.

• Discontinuous parse trees may lead to better task performance. This becomes

clear from the performance of the discontinuous model on the sentences containing

discontinuities.

These conclusions seem to confirm our hypothesis that using discontinuous parse trees

may increase NLP task performance. However, the fact that only one out of four experi-

ments leads to a significant result calls this into question. Why do we not find significant

results in the other experiments?

The main reason for the lack of significant results seem to be the low number of sentences

containing discontinuous constituents. The mixed model explored the possibility of the

continuous model having higher quality continuous trees, however, this did not lead to

a significant result either. All we can say about this is that all the models lie quite

closely together, and that the differences did not become clear through the twenty test

set scores that were calculated per model.

We can, however, look at individual sentences and see what each model does differently.

For every sentence, we registered the predicted sentiment class during each of the twenty

runs, leading to an accuracy score per sentence. By analyzing the accuracy of the

different models on individual sentences, we can pinpoint the sentences that the models

struggle with, or handle well. Table 5.3 shows the sentences with the greatest difference

in accuracy between the continuous and the discontinuous model.

From Table 5.3, we do not immediately find clear differences between the two sets of

sentences. Sentence length is similar, and there seems to be no syntax construction that

is exclusive to either set. What is remarkable, however, is that a simple sentence like

”Excellent acting and direction .” can lead to such a great difference in accuracy between

models. In order to investigate this further, we look at the parse trees of this sentence,

for both models.

Figures 5.1a and 5.1b show the binarized parse trees as used in the experiment, while

figures 5.1c and 5.1d show the original parse trees generated by the parser. The sentence

contains no discontinuities, but seems to be analyzed better by the discontinuous model.

Especially after binarization, the tree of the continuous model becomes a right-branching

tree, while the tree of the discontinuous model retains a more intuitive noun phrase

structure. It should be noted that the choice for right-branching binarization may not

Chapter 5. Experiments 27

Continuous winning

1 What Jackson has accomplished here is amazing on a technical level .
2 It ’s disappointing when filmmakers throw a few big-name actors and

cameos at a hokey script .
3 A long-winded and stagy session of romantic contrivances that never

really gels like the shrewd feminist fairy tale it could have been .
4 If there ’s nothing fresh about Wannabes , which was written by Mr.

DeMeo , who produced and directed the film with Charles A. Adessi,
much of the time the movie feels authentic .

5 Still pretentious and filled with subtext , but entertaining enough at ‘
face value ’ to recommend to anyone looking for something different .

Discontinuous winning

1 Excellent acting and direction .
2 Where last time jokes flowed out of Cho ’s life story , which provided

an engrossing dramatic through line , here the comedian hides behind
obviously constructed routines .

3 By the end , I was looking for something hard with which to bludgeon
myself unconscious .

4 Ostensibly celebrates middle-aged girl power , even as it presents friend-
ship between women as pathetic , dysfunctional and destructive .

5 I did n’t laugh at the ongoing efforts of Cube , and his skinny buddy
Mike Epps , to make like Laurel and Hardy ’n the hood .

Table 5.3: The sentences for which the continuous model achieves higher accuracy are
listed first, followed by the sentences where the discontinuous model outperforms the

continuous model.

have been optimal, as the baseline model for the sentiment analysis task is the left-

branching tree. However, in this case, the right-branching tree does not seem inferior to

the left-branching tree.

Figure 5.2 shows the parse trees for the sentence on which the continuous model out-

performs the discontinuous model by the largest margin. Interestingly, this sentence

does contain a discontinuous constituent, although this discontinuity does not seem like

a determining factor in expressing the sentiment of the sentence. However, other than

this one discontinuity, the trees are identical between the two models, which means

in this case the discontinuous constituent is directly responsible for poor task perfor-

mance. It seems that the modelling of wh-movement does not always lead to better task

performance.

From the analysis of these parse trees, it appears that the continuous model does not

necessarily produce higher quality parse trees for continuous sentences. Continuous

sentences are in some cases analyzed even better by the discontinuous model. In addition,

the modeling of discontinuity with discontinuous constituents does not seem to always

lead to better task performance, reducing any advantage the model may have in this

Chapter 5. Experiments 28

ROOT

Excellent acting and direction .

(a) Continuous, binary

ROOT

Excellent acting and direction .

(b) Discontinuous, binary

ROOT

Excellent acting and direction .

(c) Continuous, original

ROOT

Excellent acting and direction .

(d) Discontinuous, original

Figure 5.1: Example from the sentiment analysis dataset. On this sentence, the
discontinuous model performs better than the continuous model.

area. These factors contribute to the fact that the results of the models lie so closely

together.

5.3 Question Classification

As we have seen in Chapter 2, discontinuity occurs often when a sentence is stated

in the form of a question. This is modeled well with discontinuous constituents, and

thus a question classification task is exceptionally well-suited to explore the influence of

discontinuous constituents on NLP tasks.

Question classification is the task of categorizing a question according to the type of

answer it expects. For example, the question ”Who wrote ’Hamlet’?” expects an answer

in the form of the name of an individual, while the question ”What does palindromic

mean ?” asks for a definition. Classifying questions according to such categories can be

seen as a first step in automated question answering.

5.3.1 Dataset

For this experiment, we use the question classification dataset that was made available by

Xin Li and Dan Roth ([39]) 3. In the dataset, six main question classes are distinguished:

abbreviation, entity, description, human, location, and numeric. Additionally, each class

3The Question Classification data is freely available for download at the following link: http://

cogcomp.cs.illinois.edu/Data/QA/QC/

http://cogcomp.cs.illinois.edu/Data/QA/QC/
http://cogcomp.cs.illinois.edu/Data/QA/QC/

Chapter 5. Experiments 29

ROOT

WhatJackson has accomplished here is amazing on a technical level .

(a) Continuous, binary

ROOT

What accomplished herehasJackson is amazing on a technical level .

(b) Discontinuous, binary

ROOT

What Jackson has accomplished here is amazing on a technical level .

(c) Continuous, original

ROOT

What accomplished herehasJackson is amazing on a technical level .

(d) Discontinuous, original

Figure 5.2: Example from the sentiment analysis dataset. On this sentence, the
continuous model performs better than the discontinuous model.

Chapter 5. Experiments 30

has multiple subclasses, making for a total of 50 subclasses. This allows us to set

up the experiment similarly to the sentiment analysis experiment, with a fine-grained

classification task (all 50 subclasses) and a coarse version (only the six main classes).

The dataset offers a standard training and test set, but no development set. We randomly

select 10% of the training set for development, leading to a training set of 4906 sentences,

a development set of 546 sentences, and a test set of 500 sentences.

In this dataset, 29.6% of sentences contain at least one discontinuous constituent, which

is more than three times the amount as compared to the sentiment analysis dataset.

This will better highlight the influence of discontinuity in the parse trees.

5.3.2 Results

For the question classification experiment, we repeat the steps we took for the sentiment

analysis experiment: we execute the task both on the original dataset, including the use

of a mixed model, and on a version of the dataset that contains only the sentences that

contain discontinuities. The results can be seen in Table 5.4 and Table 5.5.

From Table 5.4, we find an interesting difference between the fine and the coarse task: for

the fine task, the continuous model significantly outperforms the discontinuous model

(p = 0.0289), while for the coarse task, the discontinuous model wins by a signifi-

cant margin (p = 0.0392). Additionally, the there seems to be no significant difference

between the losing model and the left-branching baseline. The mixed model falls some-

where in between, just as it did in the sentiment analysis experiment.

Model Fine Coarse

Left-branching 76.6 (1.1) 87.8 (0.6)
Continuous 77.8 (1.1) 87.8 (1.0)
Discontinuous 76.9 (1.3) 88.5 (1.0)
Mixed 77.0 (1.3) 88.2 (1.3)

Table 5.4: Question classification results.

On the part of the dataset with discontinuities, the results as reported in Table 5.5 show

the continuous model as having the best task performance in both the fine and coarse

task, altough the difference with the other models is not significant. There is however an

interesting contrast between the results of this experiment as opposed to the sentiment

analysis experiment: for this experiment, task performance increases on the dataset with

discontinuities, whereas sentiment analysis performance went down.

Chapter 5. Experiments 31

Model Fine Coarse

Left-branching 80.8 (2.1) 91.4 (1.6)
Continuous 82.3 (2.5) 93.2 (1.3)
Discontinuous 81.4 (2.1) 92.5 (1.3)

Table 5.5: Question classification results on sentences with discontinuous constituents.

5.3.3 Discussion

The results of the question classification task may be summarized as follows:

• Continuous models perform better on the fine classification task, while discontin-

uous models perform better on the coarse classification task.

• Overall task performance for all models is higher on sentences with discontinuous

constituents.

The fact that the continuous model is outperforming the discontinuous model on the

fine classification task is interesting, especially with the discontinuous model winning

the coarse classification task. We would expect the discontinuous model to perform

especially well on the fine classification task, since the option for discontinuous parse

trees allows a wider range of possible analyses to capture the necessary intracies for

correctly classifying 50 subclasses. However, the results show that the opposite is true,

and the discontinuous model actually shines in the coarse classification task. A possible

explanation for this is that the continuous model is more stable. The discontinuous

model has greater expressive power, but can therefore be somewhat less accurate. The

result, in this case, is a better performance on the coarse task, which doesn’t require as

much accuracy, and a lower performance on the fine task.

An interesting thing to note is that the mixed model does not outperform the continu-

ous or discontinuous models in any of the experiments. This indicates that our initial

assumption that the discontinuous model should perform better on sentences containing

discontinuities, and the continuous model should perform better on sentences without

discontinuities, is wrong. This is also supported by the results of the models on sen-

tences containing discontinuities, which shows no significant difference between models.

We can conclude that the discontinuous model performs better overall on the coarse

classification task, not just on sentences with discontinuities. And the same can be said

of the continuous model, which performs better overall on the fine classification task.

The overall increase in performance on the set of sentences with discontinuities is almost

certainly correlated with the question domain. In questions, discontinuity is often caused

by wh-movement, as explained in section 2.1. Sentences which are able to be analyzed

Chapter 5. Experiments 32

as containing wh-movement, and thus parsed with discontinuous constituents, are most

likely the easier questions to answer. Once sentences get very complex, the wh-movement

may not be as clear, and as such these sentences may end up being parsed with only

continuous constituents. This means that the dataset of discontinuous constituents

contains, on average, questions that are less complex syntactically, and as a result easier

to classify correctly.

Chapter 6

Conclusion

In this research, we have explored the concept of discontinuity, and how discontinuity

presents itself in parse trees, with the goal of evaluating the influence of discontinu-

ity in NLP tasks. We have discussed different linguistic phenomena associated with

discontinuity, and discussed the way different parsing methods deal with this concept.

Subsequently, we introduced both dynamic semantics and tree-based neural network

models as a basis for evaluating discontinuity in NLP tasks. Finally, we carried out sen-

timent analysis and question classification tasks based on the Tree-LSTM neural network

model, comparing the performance of continuous and discontinuous parse trees.

Both the sentiment analysis task and the question classification task show a clear influ-

ence of the parse tree type on task performance. While the different parse tree models

produce quite similar results in general, the continuous and discontinuous models do

produce significant results in a number of cases. In the sentiment analysis task, the

discontinuous model has the advantage on the part of the dataset containing discon-

tinuities. This is according to our expectation that discontinuity is modeled well by

discontinuous constituents. In the question classification task, we find that both the

continuous and the discontinuous model have their strengths: the continuous model

performs better on the fine classification task, while the discontinuous model performs

better on the coarse classification task. It appears that the continuous model produces

somewhat more refined results, while the discontinuous model is more expressive yet

unrefined.

In conclusion, the results do not unambiguously point to discontinuous parse trees as

a better representation of meaning. There are some conditions under which continuous

parse trees actually produce better NLP task results. We can, however, conclude that

discontinuous parse trees have the advantage in a number of NLP tasks, and as such,

33

Chapter 6. Conclusion 34

discontinuity has a noticable influence on NLP task performance that should not be

ignored.

6.1 Contributions and Future Work

In this thesis, we have combined existing methods, including tree-based neural network

models and discontinuous parsing, in a novel way in order to evaluate the influence

of discontinuity in a task-based environment. This work also provides insight into the

interaction between discontinuous parse trees and tree-based neural networks, which to

our knowledge has not been tested before in the literature.

In addition to these contributions, we have also explored the option for evaluation based

on dynamic semantics. While we did not end up testing this, it is worth exploring DRS

construction for mildly context-sensitive grammars. This will allow for evaluation of

grammar formalisms, rather than parse tree structure.

The experiments we have run could be expanded upon in a number of ways. Obviously,

there are more possible NLP tasks that could be evaluated. A good candidate would be a

semantic relation classification task as detailed in [40], which aims to learn long-distance

relationships. It would also be interesting to see the effect of neural network models other

than the Tree-LSTM model. Since the Tree-LSTM model natively handles long-distance

dependencies well, we would expect to see a larger influence of discontinuity in simpler

recusive neural network models. Finally, expanding the experiments to languages other

than English will yield interesting results on the influence of discontinuity in different

languages. We would expect greater influence for languages in which discontinuity is

more prevalent, such as German.

Bibliography

[1] Kilian Evang and Laura Kallmeyer. Plcfrs parsing of english discontinuous con-

stituents. In Proceedings of the 12th International Conference on Parsing Tech-

nologies, pages 104–116. Association for Computational Linguistics, 2011.

[2] Andreas van Cranenburgh and Rens Bod. Discontinuous parsing with an efficient

and accurate dop model. IWPT-2013, page 7, 2013.

[3] Wolfgang Maier and Timm Lichte. Discontinuous parsing with continuous trees.

Proceedings of DiscoNLP, pages 47–57, 2016.

[4] Joakim Nivre and Jens Nilsson. Pseudo-projective dependency parsing. In Pro-

ceedings of the 43rd Annual Meeting on Association for Computational Linguistics,

pages 99–106. Association for Computational Linguistics, 2005.

[5] Daniel H Younger. Recognition and parsing of context-free languages in time n 3.

Information and control, 10(2):189–208, 1967.

[6] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a

large annotated corpus of english: The penn treebank. Computational linguistics,

19(2):313–330, 1993.

[7] Stuart M Shieber. Evidence against the context-freeness of natural language. In

The Formal complexity of natural language, pages 320–334. Springer, 1985.

[8] Riny Huybregts. The weak inadequacy of context-free phrase structure grammars.

Van periferie naar kern, pages 81–99, 1984.

[9] Aravind K Joshi, Leon S Levy, and Masako Takahashi. Tree adjunct grammars.

Journal of computer and system sciences, 10(1):136–163, 1975.

[10] Aravind K Joshi and Yves Schabes. Tree-adjoining grammars. In Handbook of

formal languages, pages 69–123. Springer, 1997.

[11] Krishnamurti Vijay-Shanker, David J Weir, and Aravind K Joshi. Characterizing

structural descriptions produced by various grammatical formalisms. In Proceedings

35

Bibliography 36

of the 25th annual meeting on Association for Computational Linguistics, pages

104–111. Association for Computational Linguistics, 1987.

[12] David Jeremy Weir. Characterizing mildly context-sensitive grammar formalisms.

1988.

[13] Laura Kallmeyer. Parsing beyond context-free grammars. Springer, 2010.

[14] Sabine Brants, Stefanie Dipper, Peter Eisenberg, Silvia Hansen-Schirra, Esther

König, Wolfgang Lezius, Christian Rohrer, George Smith, and Hans Uszkoreit.

Tiger: Linguistic interpretation of a german corpus. Research on Language and

Computation, 2(4):597–620, 2004.

[15] Wojciech Skut, Brigitte Krenn, Thorsten Brants, and Hans Uszkoreit. An annota-

tion scheme for free word order languages. In Proceedings of the fifth conference on

Applied natural language processing, pages 88–95. Association for Computational

Linguistics, 1997.

[16] Hans Kamp. A theory of truth and semantic representation. Formal semantics-the

essential readings, pages 189–222, 1981.

[17] Jeroen AG Groenendijk, Martin Johan Bastiaan Stokhof, et al. Dynamic montague

grammar. 1990.

[18] Jeroen Groenendijk and Martin Stokhof. Dynamic predicate logic. Linguistics and

philosophy, 14(1):39–100, 1991.

[19] Jonathan Calder, Ewan Klein, and Henk Zeevat. Unification categorial grammar: A

concise, extendable grammar for natural language processing. In Proceedings of the

12th conference on Computational linguistics-Volume 1, pages 83–86. Association

for Computational Linguistics, 1988.

[20] Hans Kamp and Uwe Reyle. From discourse to logic; introduction to the modelthe-

oretic semantics of natural language. 1993.

[21] Hans Kamp, Josef Van Genabith, and Uwe Reyle. Discourse representation theory.

In Handbook of philosophical logic, pages 125–394. Springer, 2011.

[22] Valerio Basile, Johan Bos, Kilian Evang, and Noortje Venhuizen. Developing a

large semantically annotated corpus. In LREC, volume 12, pages 3196–3200, 2012.

[23] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Bibliography 37

[24] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global

vectors for word representation. Proceedings of the Empiricial Methods in Natural

Language Processing (EMNLP 2014), 12:1532–1543, 2014.

[25] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and

Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings of

the 49th Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies-Volume 1, pages 142–150. Association for Computational

Linguistics, 2011.

[26] Pierre Boullier. Range concatenation grammars. In Proceedings of the 6th Inter-

national Workshop on Parsing Technologies, pages 53–64. International Conference

on Parsing Technologies, 2000.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997.

[28] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradi-

ent flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.

[29] Phong Le and Willem Zuidema. Compositional distributional semantics with long

short term memory. arXiv preprint arXiv:1503.02510, 2015.

[30] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved seman-

tic representations from tree-structured long short-term memory networks. arXiv

preprint arXiv:1503.00075, 2015.

[31] Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. Long short-term memory over

tree structures. arXiv preprint arXiv:1503.04881, 2015.

[32] Jiwei Li, Dan Jurafsky, and Eudard Hovy. When are tree structures necessary for

deep learning of representations? arXiv preprint arXiv:1503.00185, 2015.

[33] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-

tions using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

[34] Kaisheng Yao, Trevor Cohn, Katerina Vylomova, Kevin Duh, and Chris Dyer.

Depth-gated lstm. arXiv preprint arXiv:1508.03790, 2015.

[35] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11):2673–2681, 1997.

Bibliography 38

[36] Ozan Irsoy and Claire Cardie. Bidirectional recursive neural networks for token-

level labeling with structure. arXiv preprint arXiv:1312.0493, 2013.

[37] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutńık, Bas R Steunebrink, and

Jürgen Schmidhuber. Lstm: A search space odyssey.

arXiv preprint arXiv:1503.04069, 2015.

[38] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Man-

ning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic

compositionality over a sentiment treebank. In Proceedings of the conference on em-

pirical methods in natural language processing (EMNLP), volume 1631, page 1642.

Citeseer, 2013.

[39] Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the 19th inter-

national conference on Computational linguistics-Volume 1, pages 1–7. Association

for Computational Linguistics, 2002.

[40] Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid

Ó Séaghdha, Sebastian Padó, Marco Pennacchiotti, Lorenza Romano, and Stan

Szpakowicz. Semeval-2010 task 8: Multi-way classification of semantic relations

between pairs of nominals. In Proceedings of the Workshop on Semantic Evalu-

ations: Recent Achievements and Future Directions, pages 94–99. Association for

Computational Linguistics, 2009.

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Thesis Contributions
	1.2 Thesis Outline

	2 Discontinuity in Parse Trees
	2.1 Linguistic Motivation
	2.2 Parsing Discontinuities
	2.3 Evaluating the Influence of Discontinuity

	3 Dynamic Semantics
	3.1 Discourse Representation Theory
	3.2 Evaluating Discontinuity through DRS Construction

	4 Tree-based Neural Networks
	4.1 Word Embeddings
	4.2 Recurrent and Recursive Neural Networks
	4.3 The Long Short-Term Memory model
	4.4 Evaluating Discontinuity through Tree-LSTM

	5 Experiments
	5.1 Experimental Setup
	5.1.1 Parse Tree Types
	5.1.2 Model and Parameter Tuning
	5.1.3 Test set scoring

	5.2 Sentiment Analysis
	5.2.1 Dataset
	5.2.2 Results
	5.2.3 Discussion

	5.3 Question Classification
	5.3.1 Dataset
	5.3.2 Results
	5.3.3 Discussion

	6 Conclusion
	6.1 Contributions and Future Work

	Bibliography

