
CLASP Papers in Computational Linguistics

Proceedings of the Conference on Logic and Machine
Learning in Natural Language (LaML 2017)

Simon Dobnik and Shalom Lappin (eds.)

Gothenburg, 12–13 June 2017

∀x
1



ISSN XXXX-XXXX

CLASP Papers in Computational Linguistics

Volume 1: Proceedings of the Conference on Logic and Machine Learning in Natural Language (LaML
2017), Gothenburg, 12–13 June 2017, edited by Simon Dobnik and Shalom Lappin

University of Gothenburg

2017-11-21

e-publication available at:
http://hdl.handle.net/2077/54911

Distribution:

Centre for Linguistic Theory and Studies
in Probability (CLASP)
Department of Philosophy, Linguistics and
Theory of Science (FLOV)
University of Gothenburg
Box 200, SE-405 30 Gothenburg
http://www.clasp.gu.se

CLASP Papers in Computational Linguistics

http://hdl.handle.net/2077/54899

LAML 2017 Website

http://goo.gl/YkXSKg

Acknowledgements

The conference and this volume was supported by a grant from the Swedish Research Council (VR project
2014-39) for the establishment of the Centre for Linguistic Theory and Studies in Probability (CLASP) at
Department of Philosophy, Linguistics and Theory of Science (FLoV), University of Gothenburg.

http://hdl.handle.net/2077/54911
http://www.clasp.gu.se
http://hdl.handle.net/2077/54899
http://goo.gl/YkXSKg


Preface

The past two decades have seen impressive progress in a variety of areas of AI, particularly NLP, through
the application of machine learning methods to a wide range of tasks. With the intensive use of deep learn-
ing methods in recent years this work has produced significant improvements in the coverage and accuracy
of NLP systems in such domains as speech recognition, topic identification, semantic interpretation, and
image description generation.

While deep learning is opening up exciting new approaches to longstanding, difficult problems in com-
putational linguistics, it also raises important foundational questions. Specifically, we do not have a clear
formal understanding of why multi-level recursive deep neural networks achieve the success in learning
and classification that they are delivering. It is also not obvious whether they should displace more tradi-
tional, logically driven methods, or be combined with them. Finally, we need to explore the extent, if any,
to which both logical models and machine learning methods offer insights into the cognitive foundations
of natural language.

The aim of the Conference on Logic and Machine Learning in Natural Language (LAML) was to initiate a
dialogue between these two approaches, where they have traditionally remained separate and in competi-
tion. It included invited talks by Marco Baroni (University of Trento and Facebook AI Research (FAIR)),
Alexander Clark (King’s College London), Devdatt Dubhashi (Chalmers Institute of Technology), Ka-
trin Erk (University of Texas at Austin), Joakim Nivre (Uppsala University), Aarne Ranta (University of
Gothenburg), and Mehrnoosh Sadrzadeh (Queen Mary University of London). In addition, there were
9 peer-reviewed contributing papers that were accepted for presentation. The present volume contains a
selection of extended papers based on the talks from the conference.

Simon Dobnik and Shalom Lappin

Gothenburg, Sweden

November 2017
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Abstract

Natural language processing (NLP) can
be done using either top-down (theory
driven) and bottom-up (data driven) ap-
proaches, which we call mechanistic and
phenomenological respectively. The ap-
proaches are frequently considered to
stand in opposition to each other. Ex-
amining some recent approaches in deep
learning we argue that deep neural net-
works incorporate both perspectives and,
furthermore, that leveraging this aspect of
deep learning may help in solving com-
plex problems within language technol-
ogy, such as modelling language and per-
ception in the domain of spatial cognition.

1 Introduction

There are two distinct methodologies to build
computational models of language or of world in
general. The first approach can be characterised
as qualitative, symbolic and driven by domain the-
ory (we will call this a top-down or mechanistic
approach), whereas the second approach may be
characterised as quantitative, numeric and driven
by data and computational learning theory (we
will call this the bottom-up or phenomenological
approach). In this context we are borrowing the
terminology of phenomenological model from the
literature on the Philosophy of Science where the
term phenomenological model is sometimes used
to describe models that are independent of the-
ory (see for example (McMullin, 1968)), but more
generally is used to describe models that focus on
the observable properties (phenomena) of a do-
main (rather than explaining the hidden mecha-
nisms relating these phenomena) (Frigg and Hart-
mann, 2017). For this paper we use the term
phenomenological model to characterise models

which are primarily driven by fitting to observable
relationships between phenomena in a domain, as
represented by correlations between features in a
dataset sampled from the domain; as opposed to
models that are derived from a domain theory of
the interactions between domain features. The
focus of this paper is to examine and frame the
potentially synergistic relationship between these
distinct analytic methods for natural language pro-
cessing (NLP) in the light of recent advances in
deep neural networks (DNNs) and deep learning.

In historic terms this discussion is recurrent
throughout the history of NLP. For example,
early approaches such as (Shieber, 1986; Alshawi,
1992) are mechanistic in nature as they are based
on logic and other formal approaches such as fea-
tures structures and unification which are tools that
allow formalisation of domain theories. With the
availability of large corpora in mid-1990s there
was a shift to data-driven phenomenological ap-
proaches with a focus on statistical machine learn-
ing methods (Manning and Schütze, 1999; Tur-
ney et al., 2010). This inspired several discus-
sions on the relation between the two approaches
(e.g., (Gazdar, 1996; Jones et al., 2000)). We
share the view of some that both approaches are
in fact in a complimentary distribution with each
other as shown in Table 1 (adapted from a slide
by Stephen Pulman). Mechanistic approaches pro-
vide deep coverage but of a limited domain; out-
side a domain they prove brittle and therefore lim-
ited. On the other hand, phenomenological ap-
proaches are wide-coverage and robust to variation
found in data but provide shallow representation of
language.

Our desiderata is a wide-coverage system with
deep analyses. It was considered that this could be
achieved by a hybrid model but working out such
a model has proven not a trivial task. Systems that
used both approaches treated them normally as in-

1



tech/cov wide narrow
deep our goal symbolic

shallow data-based useless

Table 1: Properties of mechanistic and phe-
nomenological approaches in NLP

dependent black-boxes organised in layers (e.g.
(Kruijff et al., 2007)). However, the marked re-
cent advances in the NLP based on deep (!) neu-
ral networks have made the question of how these
two methodologies should be used, related and in-
tegrated in NLP research apposite.

The choice of a method depends on the goal of
the task for which it is used. One goal for pro-
cessing natural language is to develop useful ap-
plications that help humans in their daily life, for
example machine translation and speech recogni-
tion. In application scenarios where a rough anal-
ysis is acceptable (e.g., a translation that provides
the gist of the message) and large annotated and
structured corpora are available, machine learning
is the methodology of choice to address this goal.
However, where precise analysis is required or
where there is a scarcity of data, a machine learn-
ing approach may not be suitable. Furthermore,
if the goal of processing language is rather moti-
vated by the desire to better understand its cogni-
tive foundations, than a machine learning method-
ology, particularly one based on an unconstrained,
fully connected deep neural networks, is not ap-
propriate. The criticisms of unconstrained neu-
ral network based models (typically characterised
by fully-connected feed-forward multi-layer net-
works) in cognitive science has a long history
(see (Massaro, 1988) inter alia) and often focuses
on (i) the difficultly in analysing in a domain-
theoretic sense how the model works, and (ii) the,
somewhat ironic, scientific short-coming that neu-
ral networks are such powerful and general learn-
ing mechanisms that demonstrating the ability of
a network to learn a particular mapping or a func-
tion is scientifically useless from a cognitive sci-
ence perspective. In particular, as Massaro (1988)
argues, a neural network model is so adaptable
that given the appropriate dataset and sufficient
time and computing power it is likely to be able
to learn mappings that not only support a cogni-
tive theory but also ones that contradict that the-
ory. One approach to address this problem is to in-
troduce domain relevant structural constraints into

the model via the network architecture, early ap-
proaches include (Feldman et al., 1988; Feldman,
1989; Regier, 1996). Indeed, we argue in this pa-
per that one of the important and somewhat over-
looked factors driving the success of research in
deep learning is the specificity and modularity of
deep learning architectures to the tasks they are ap-
plied too.

Contribution: In this paper we evaluate the re-
lation between mechanistic and phenomenologi-
cal models and argue that although it appears that
the former have lost their significance in computa-
tional linguistics and its applications they are still
very much present in the form of formal language
modelling that underlines most of the current work
with machine learning. Moreover, we highlight
that many of the recent advances in deep learn-
ing for NLP are not based on unconstrained neu-
ral networks but rather that these networks have
task specific architectures that encode domain-
theoretic considerations. In this light, the relation-
ship between mechanistic and phenomenological
models can be viewed as potentially more syner-
gistic. Given that many logical theories are de-
fined in terms of functions and compositional op-
erations and neural networks learn and compose
functions, a logic-based domain theory of linguis-
tic performance can naturally inform the structural
design of deep learning architectures and thereby
merge the benefits of both in terms of model inter-
pretability and performance.

Overview: In Section 2, we discuss recent de-
velopments in deep learning approaches in NLP
and situate them within the current debate; then,
in Section 3, we use the computational modelling
of spatial language as an NLP case study to frame
the possible synergies between formal models and
machine learning and set out our thoughts for po-
tential approaches to developing a more synergis-
tic understanding of the formal models and ma-
chine learning for NLP research. In Section 4 we
give our concluding thoughts.

2 Deep Learning: A New Synthesis?

In recent years deep learning (DL) models have
improved or in some cases markedly improved the
state of the art across a range of NLP tasks. Some
of the drivers of DL success include: (i) the avail-
ability of large datasets, (ii) more powerful com-
puters, and (iii) the power of learning and adapt-
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ability of connectionist neural networks. How-
ever, another and less obvious driver of DL is the
fact that (iv) DL network models often have ar-
chitectures that are specifically tailored or struc-
tured to the needs of a specific domain or task.
This fact becomes obvious when one considers
the variety of DL architectures that have been pro-
posed in the literature. For example, a schematic
overview of neural network architectures can be
found at at: http://www.asimovinstitute.

org/neural-network-zoo/ (van Veen, 2016).

2.1 Modularity in Deep Learning
Architectures

There are a large-number of network design pa-
rameters that may be driven by experimental re-
sults rather than domain theory. For example, (i)
the size of the network, (ii) the depth of the layers,
(iii) the size of the matrices passed between the
layers, (iv) activation functions and (v) optimiser
are all network parameters that are often deter-
mined through an empirical trial-and-error process
that is informed by designer intuition (Jozefow-
icz et al., 2016). However, the diversity of current
network architectures extends beyond differences
in these parameters and this diversity of network
architecture is not a given. For example, given
the flexibility of neural networks, one approach to
accommodating structure into the processing of a
network is to apply minimal constraints on the ar-
chitecture and to rely on the ability of the learn-
ing algorithm to induce the relevant structure con-
straints by adjusting the network’s weights.

On the other hand, it has, however, long been
known that pre-structuring a neural network by the
careful design of its architecture to fit the require-
ments of the task results in better generalisation
of the model beyond the training dataset (LeCun,
1989). Understood in this context, DL is assisted
(or supervised!) by the task designer in terms of
a priori background knowledge who decides what
kind of networks they are going to build, the num-
ber of layers, what kind of layers, the connectiv-
ity between the layers and other parameters. DL
is most frequently not using fully connected lay-
ers, instead several kinds of layered networks have
been developed tailored to the task. In this respect
DL models capture top-down domain informed
specification that we have seen with the rule-based
NLP systems. This flexibility of neural networks
is ensured by their modular design which takes

as a basis a single perceptron unit which can be
thought of encoding a simple concept. When sev-
eral units are organised and connected into larger
collections of units, these may be given interpre-
tations that we give to symbolic representations in
rule-based systems. The level of conceptual super-
vision may thus vary from no-supervision when
fully connected layers are used, to weak supervi-
sion that primes the networks to learn particular
structures, to strong supervision where the struc-
ture is given and only parameters of this structure
are trained.

An example of weak supervision are Recurrent
Neural Networks (RNNs) that capture sequence
learning required for language models. The design
of current state-of-the-art RNN language mod-
els is informed by linguistic phenomena such as
short- and long-distance dependencies between
linguistic units. In order to improve the ability of
RNNs to model long-distance dependencies, con-
temporary RNN language models use Long-Short
Memory Units (LSTM) or Gated Recurrent Units
(GRUs) which may be further augmented with at-
tention mechanisms (Salton et al., 2017). The in-
puts and outputs of such networks can be either
characters or words, the latter represented as word
embeddings in vector spaces.

Another example of weakly supervised neural
networks, in the sense that their design is informed
by a domain, are Convolutional Neural Networks
(CNNs) which have their origin in image process-
ing (LeCun, 1989). In CNNs the convolutions are
meant as filters that encode a region of pixels into
a single neural unit which learns to respond to
the occurrence of such pixels as a specific visual
feature. Importantly, the weights associated with
a specific convolution are shared across a group
of neurons such that together the group of neu-
rons check for the occurrence of the visual fea-
tures across the full surface of the image. Addi-
tionally, as objects or entities may occur in dif-
ferent parts of image, to decrease the effects of
spatial continuum, operations such as pooling are
used that encode convolved representations from
various parts of the image. In analogy to learn-
ing visual features, CNNs have also been used for
language modelling to capture different patterns of
characters in strings (Kim et al., 2016).

Specialised networks may be treated as mod-
ules which are sequenced after each other. For
example, the current Neural Machine Transla-
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tion (NMT) architecture is the encoder-decoder
(Sutskever et al., 2014; Bahdanau et al., 2015; Lu-
ong et al., 2015; Kelleher, 2016). This architec-
ture uses one RNN, known as the encoder, to fully
process the input sentence and generate its vector
based representation. This is passed to a second
RNN, the decoder, which implements a language
model of the target language which generates the
translation word by word. Domain theoretic con-
siderations have affected the design how the two
language modelling networks are connected in a
number of ways. For example, an understand-
ing that different languages have different word
orders lead to enabling the decoder to look both
back and forward along the input sentence during
translation. This is implemented by fully process-
ing the input sequence with the first RNN before
translation is generated by the second RNN. How-
ever, the understanding of the need for local de-
pendencies between different sections of the trans-
lation and somewhat a contrary requirement to the
need for a potentially global perspective on the in-
put has resulted in the development of attention
mechanisms within the NMT framework. This
means that DL network architectures modules are
not only sequenced but they are also stacked. A
variant of the NMT encoder-decoder architecture
that replaces the encoder RNN with a CNN has
revolutionised the field of image captioning (Xu
et al., 2015). Figure 1 gives a schematic repre-
sentation of such image captioning systems. The
CNN module learns to represent images as vec-
tor representations of visual features and the RNN
module is a language model whose output is con-
ditioned on the visual representations. We have
already mentioned that CNNs are also used to gen-
erate word representations. These representations
are then passed to a RNN model to predict the next
word in the context of preceding words in the se-
quence (see (Kim et al., 2016)). The advantage
of using a CNN module to learn word representa-
tion is that it enables to capture spelling variation
of morphologically-rich languages or texts from
social media that does not use standard spelling
of words. This and also the preceding examples
therefore illustrate how different levels of linguis-
tic representations are modelled in modular DL ar-
chitectures.

In summary, the design of a DL architectures,
where DL networks are treated as composable
modules, can constrain and guide a number of fac-

tors that are important in representing language
and other modalities, in particular the hierarchi-
cal composition of features and the sequencing of
the representations. Importantly, the neural repre-
sentations that are used in these cases are inspired
by rich work on top-down rule-based mechanistic
natural language processing.

2.2 Phenomenological versus Mechanistic
Models

The ability to treat neural networks as composable
modules within an overall system architecture is
a powerful one. This is because during training
it is possible to back-propagate the error through
each of the system’s modules (networks) and train
them in consort while permitting each module to
learn its distinctive task in parallel with the other
modules in the network. However, the power of
this approach has led to some research being based
on a relatively shallow understanding of domain
theory and most of the work being spent on fit-
ting the hyper-parameters of the training algorithm
through a grid-search driven by experimental per-
formance on gold-standard datasets. The domain
theory is only used to inform the broad outlines of
the system architecture. Using image-captioning
as an example, and at the risk of presenting a car-
icature, this approach may be described as: “we
are doing image-captioning so we need a CNN to
encode the image and an RNN to generate the lan-
guage and we will let the learning algorithm sort
out the rest of the details”.

This theory free, or at least, theory light
approach to NLP research is primarily driven
by performance on gold-standard datasets and
lamentably frequently the analysis of the systems
is limited to the presentation of system results rel-
ative to a state-of-the-art leader-board with rela-
tively little reflection on the how the structure of
the model reflects theoretic considerations. This
focus on performance in terms of accurately mod-
elling the empirical relationship between inputs
and outputs and where the trained model is treated
as a black box aligns with what we describe as
the phenomenological tradition in machine learn-
ing. This can be contrasted with an alternative
tradition within machine learning which is some-
times described as being based on mechanistic
models. Mechanistic models presuppose a do-
main theory and the model is essentially a com-
putational implementation of this domain theory.
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Figure 1: A schematic representation of DL image captioning architectures

To illustrate this difference, contrast for example
the approach to training a support vector machine
classifier where multiple kernels are tested until
one with high performance on a dataset is found
versus the approach to defining the topology of a
Bayesian network in such a way that it mirrors a
theory informed model of the causal relationships
between relevant variables in the domain (Kelleher
et al., 2015). Once the theoretical model has been
implemented, the free parameters of the model can
then be empirically fit to the data.

Consequently, mechanistic models are in-
formed by both top-down theoretical considera-
tions of a task designer but they are also sensitive
to bottom-up empirical considerations, the train-
ing data. Mechanistic models have several advan-
tages, for example: they can be used to test a do-
main theory. If the model is accurate, this pro-
vides evidence that the theory is correct. Assum-
ing the theory is correct, they are likely to outper-
form phenomenological models in contexts where
data is limited.1 The top top-down approach pro-
vides background knowledge that restricts the size
of the training search space.

Traditionally, neural networks have been con-
sidered the paradigmatic example of a phe-
nomenological model. However, viewing neural
networks as component modules within a larger
deep-learning systems opens the door to sophis-
ticated mechanistic deep-learning models. Such
an approach to network design is, however, de-
pendent on the system designer being informed
by domain theory and is therefore strongly super-
vised in terms of background knowledge. An ex-
ample of modular networks where each module is
some configuration of neural units that are tailored
to optimise parameters of a particular task is de-
scribed in (Andreas et al., 2016) who work in the
domain of question answering. The architecture

1See discussion on generative versus discriminative mod-
els in (Kelleher et al., 2015).

learns how to map questions and visual or database
representations to textual answers. In order to an-
swer a question, the network learns a network lay-
out of modules that are responsible for the indi-
vidual steps required to answer the question. For
example, to answer “What colour is the bird” the
network applies the attention module to find the
object from the question, followed by a module
that identifies the colour of the attended region in
the image. The possible sequences of modules are
constrained by being represented as typed func-
tions: in fact the modules translate to typed func-
tional applications through which compositional-
ity of linguistic meaning is ensured as in formal
semantics (Blackburn and Bos, 2005). The sys-
tem learns (using reinforcement learning) a layout
model which predicts the sequence of modules to
produce an answer for a question sentence and an
execution module which learns how to ground a
network layout in the image or database represen-
tation. An extension of this work is described in
(Johnson et al., 2017) where both procedures rely
on less background knowledge. For example, the
system does not use a dependency parser to parse
the input sentence but an LSTM language module
and the modules use a more generic architecture.

The modular networks are in line with the struc-
tured connectionism of (Feldman et al., 1988) and
constrained connectionism of Regier “in which
complex domain-specific structures are built into
the network, constraining its operation in clearly
understandable and analysable ways” (Regier,
1996, p. 2). Regier’s presentation of constrained
connectionism is based on a case study on learn-
ing spatial relations and events. The case study de-
scribes the design and training of a neural network
that receives short movies of 2 two-dimensional
objects, a static rectangle and a circle which is ei-
ther static or moving, as input and the model learns
to predict the correct spatial term to describe the
position and movement of the circle relative to the
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rectangle. For example, a static circle might be de-
scribed as above the rectangle, whereas a moving
circle might move out from under the rectangle.
A crucial aspect of this case study for Regier’s ar-
gument is that the neural network’s architecture is
constrained in so far as it incorporates a number
of structural devices that are motivated by neuro-
logical and psychological evidence concerning the
human visual system, including motion buffers,
angle and orientation computations components,
and boundary and feature maps for objects in the
input. Following (Regier, 1996), in the next sec-
tion we will take spatial language as an NLP case-
study and discuss how domain theory can be used
to extend current deep-learning systems so as to
move them further towards the mechanistic pole
within the phenomenological versus mechanistic
spectrum.

3 Spatial language

Our focus is computational modelling of spatial
language, such as the chair is to the left and close
to the table or go down the corridor until the large
painting on your right, then turn left, which re-
quires integration of different sources of knowl-
edge that affect its semantics, including: (i) scene
geometry, (ii) perspective and perceptual context,
(iii) world knowledge about dynamic kinematic
routines of objects, and (iv) interaction between
agents through language and dialogue and with the
environment through perception. Below we de-
scribe these properties in more detail:

Scene geometry is described within a two-
dimensional or three-dimensional coordinate
frame in which we can represent locations of
objects as geometric shapes as well as angles and
distances between them. Over a given area we
can identify different degrees of applicability of
a spatial description, for example with spatial
templates (Logan and Sadler, 1996; Dobnik
and Åstbom, 2017). A spatial template may be
influenced by perceptual context through the
presence of other objects in the scene known as
distractors (Kelleher and Kruijff, 2005b; Costello
and Kelleher, 2006), occlusion (Kelleher and
van Genabith, 2006; Kelleher et al., 2011), and
attention (Regier and Carlson, 2001).

Directionals such as to the left of require a
model of perspective or assignment of a frame of
reference (Maillat, 2003) which includes a view-
point parameter. The viewpoint may be defined

linguistically from your view or from there but it
is frequently left out. Ambiguity with respect to
the intended perspective of a reference can affect
the grounding of spatial terms in surprising ways
(Carlson-Radvansky and Logan, 1997; Kelleher
and Costello, 2005). However, frequently the in-
tended perspective can be either inferred from the
perceptual context (if only one interpretation is
possible, see for example the discussion on con-
trastive versus relative meanings in (Kelleher and
Kruijff, 2005a)) or it may be linguistically negoti-
ated and aligned between conversational partners
in dialogue (Dobnik et al., 2014, 2015, 2016).

As mentioned earlier, spatial descriptions do not
refer to the actual objects in space but to con-
ceptual geometric representations of these objects,
which may be points, lines, areas and volumes.
The representation depends on how we view the
scene, for example under the water (water ≈ sur-
face) and in the water (water ≈ volume). The in-
fluence of world knowledge goes beyond object
conceptualisation. Some prepositions are more
sensitive to the way the objects interact with each
(their dynamic kinematic routines) while other are
more sensitive to the way the objects relate geo-
metrically (Coventry et al., 2001).

Finally, because situated agents are located
within dynamic linguistic and perceptual environ-
ments they must continuously adapt their under-
standing and representations relative to these con-
text. On the language side they must maintain lan-
guage coordination with dialogue partners (Clark,
1996; Fernández et al., 2011; Schutte et al., 2017;
Dobnik and de Graaf, 2017). A good example
of adaptation of contextual meaning through lin-
guistic interaction is the coordinated assignment
of frame of reference mentioned earlier.

In summary, the meaning of spatial descrip-
tions is dynamic, dependent on several sources of
contextually provided knowledge which provide a
challenge for its computational modelling because
of its contextual underspecification and because it
is difficult to provide and integrate that kind of
knowledge. On the other hand, a computational
system taking into account these meaning compo-
nents in context would be able to understand and
generate better, more human-like, spatial descrip-
tions and engage in more efficient communication
in the domain of situated agents and humans. Fur-
thermore, it could exploit the synergies between
different knowledge sources to compensate miss-

6



ing knowledge in one source from another (Steels
and Loetzsch, 2009; Skočaj et al., 2011; Schutte
et al., 2017).

An example of a mechanistic neural model
of spatial descriptions is described in (Coventry
et al., 2005). Their system processes dynamic vi-
sual scenes containing three objects: a teapot pour-
ing water into a cup and the network learns to op-
timise, for each temporal snapshot of a scene, the
appropriateness score of a spatial description ob-
tained in subject experiments. The idea behind
these experiments is that descriptions such as over
and above are sensitive to a different degree to ge-
ometric and functional properties of a scene, the
latter arising from the interactions between objects
as mentioned earlier. The model is split into three
modules: (i) a vision processing module that deals
with detection of objects from image sequences
that show the interaction of objects, the tea pot,
the water and the cup, using an attention mecha-
nism, (ii) an Elman recurrent network that learns
the dynamics of the attended objects in the scene
over time, and (iii) a dual feed-forward vision and
language network to which representations from
the hidden layer of the Elman network are fed and
which learns how to predict the appropriateness
score of each description for each temporal config-
uration of objects. Each module of this network is
dedicated to a particular task: (i) to recognition of
objects, (ii) to follow motion of attended objects in
time and (iii) to integration of the attended object
locations with language to predict the appropri-
ateness score, factors that have been identified to
be relevant for computational modelling of spatial
language and cognition through previous experi-
mental work (Coventry et al., 2001). The example
shows the effectiveness of representing networks
as modules and their possibility of joint training
where individual modules constrain each other.

The model could be extended in several ways.
For example, contemporary CNNs and RNNs
could be used which have become standard in neu-
ral modelling of vision and language due to their
state-of-the-art performance. Secondly, the ap-
proach is trained on a small dataset of artificially
generated images of a single interactive configu-
ration of three objects.2 An open question is how
the model scales on a large corpus of image de-
scriptions (Krishna et al., 2017) where consider-

2To be fair to the authors, their intention was not to build
an image captioning system but to show that modular net-
works can optimise human experimental judgements.

able noise is added. There will be several objects,
their appearance and location may be distorted by
the angle at which the image is taken, there are no
complete temporal sequences of objects and the
corpora typically does not contain human judge-
ment scores on how appropriate a description is
given an image. Finally, Coventry et al.’s model
integrates three modalities used in spatial cogni-
tion, but as we have seen there are several oth-
ers. An important aspect is grounded linguistic
interaction and adaptation between agents. For
example, (Lazaridou et al., 2016) describe a sys-
tem where two networks are trained to perform
referential games (dialogue games performed over
some visual scene) between two agents. In this
context, the agents develop their own language in-
teractively. An open research question is whether
parameters such frame of reference intended by
the speaker of a description could also be learned
this way. Note that this is not always overtly spec-
ified, e.g. from my left.

Sometimes a mechanistic design of the network
architecture constrains what a model can learn
in undesirable ways. For example, Kelleher and
Dobnik (2017) (in this volume) argue that con-
temporary image captioning networks as in Fig-
ure 1 have been configured in a way that they cap-
ture visual properties of objects rather than spa-
tial relations between them. Consequently, within
the captions generated by these systems the rela-
tion between the preposition and the object is not
grounded in geometric representation of space but
only in the linguistic sequences through the de-
coder language model where the co-occurrence of
particular words in a sequence is estimated. (Dob-
nik and Kelleher, 2013, 2014) show that a lan-
guage model is predictive of functional relations
between objects that spatial relations are also sen-
sitive to but in this case the geometric dimension
is missing. This indicates that the architecture of
these image-captioning systems, although modu-
lar, ignores important domain theoretic consider-
ations and hence are best understood as close to
the phenomenological (black-box) than the mech-
anistic (grey-box) network design philosophy this
paper advocates.

In summary, it follows that an appropriate com-
putational model of spatial language should con-
sist of several connected modalities (for which
individual neural network architectures are spec-
ified) but also of a general network that con-
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nects these modalities, thus akin to the specialised
regions and their interconnections in the brain
(Roelofs, 2014). The challenge of creating and
training such a system is obviously significant,
however one feature of neural network training
that may make this task easier is that it is possi-
ble to back-propagate through a pre-trained net-
work. This opens the possibility of pre-training
networks as modules (sometimes even on different
datasets) that carry out specific theory-informed
tasks and then training larger systems that repre-
sent the full-theory by including these pre-trained
modules components within the system and train-
ing other modules and/or integration layers while
keeping the weights of the pre-trained modules
frozen during training.

4 Conclusion and future research

DNNs provide a platform for machine learning
that permits great flexibility in combining top-
down specification (in terms of hand-designed
structures and rules) and data driven approaches.
Designers can tailor the network structures to each
individual learning problem and therefore effec-
tively reach the goal of combining mechanistic
and phenomenological approaches: a problem that
has been investigated in NLP for several decades.
The strength of DNNs is in the compositionality of
perceptrons or neural units, and indeed networks
themselves, which represent individual classifica-
tion functions that can be combined in novel ways.
This was not possible with other approaches in
machine learning to the same degree with a con-
sequences that these worked more as black boxes.
Finally, although we are not advocating that there
is a direct similarity between DNNs and human
cognition, it is nonetheless the case that DNNs
are inspired by neurons and connectionist organ-
isation of human brain and hence at some high
abstract level they share some similarities, for ex-
ample basic classification units combine to larger
structures, the structures get specialised to mod-
ules to perform certain tasks, and training and
classification is performed across several modules.
Therefore, this might be a possible explanation
that DNNs have been so successful in computa-
tional modelling of language and vision, the sur-
face manifestations of the underlying human cog-
nition, as at some abstract level they represent a
similar architecture to human cognition.
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Abstract

One of the claims of TTR (Type Theory
with Records) is that it can be used to
model types learned by agents in order to
classify objects and events in the world, in-
cluding speech events. That is, the types
can be represented by patterns of neural
activation in the brain. This claim would
be empty if it turns out that the types are
in principle impossible to represent on a
finite network of neurons. We will discuss
how to represent types in terms of neural
events on a network and present a prelim-
inary implementation that maps types to
events on a network. The kind of networks
we will use are closely related to the trans-
parent neural networks (TNN) discussed
by Strannegård.

1 Introduction

Work on TTR, Type Theory with Records,
(Cooper and Ginzburg, 2015; Cooper, 2017;
Cooper, in prep) claims that it can be used to
model types learned by agents in order to classify
objects and events in the world.

In contrast to traditional type theories used in
classical approaches to formal semantics (Mon-
tague, 1973; Montague, 1974), TTR is a rich type
theory inspired by work developing from Martin-
Löf (1984), called “modern type theory” by Luo
(2010),Luo (2011). Traditional type theories pro-
vide types for basic ontological classes (e.g., for
Montague: entities, truth values, time points, pos-
sible worlds and total functions between these ob-
jects) whereas rich type theories provide a more
general collection of types, e.g. in our type theory,
categories of objects such as Tree, types of situa-
tions such as Hugging of a dog by a boy.

Central to a rich type theory is the notion of
judgement as in

(An agent judges that) object a is of type
T .

in symbols, a : T . We say that a is a witness
for T . We build on this notion to put a cogni-
tive spin on type theory, and say that perception
involves a judgement that an object (possibly an
event or, more generally, a situation) belongs to
a certain type. Perception is constrained by the
types to which an agent is attuned. This relates to
ideas about visual perception proposed by Gibson
(1986) which were influential in the development
of situation semantics (Barwise and Perry, 1983).

We relate this simple minded view of percep-
tion to the kind of natural language interpretation
which main stream semantics has taught us about
and propose a view of linguistic evolution which
roots linguistic ability in basic cognitive ability.
The larger project is to do this in a way that incor-
porates results we have obtained from mainstream
formal semantics but also in a way that can provide
useful applications in robotic systems, including
learning theories.

If we adopt this cognitive view of type theory,
it seems that we should accept that the types can
be represented by patterns of neural activation in
the brain. The claim of the cognitive view would
appear to be empty if it turns out that the types
are in principle impossible to represent on a finite
network of neurons. The aim of this paper is to
suggest a way in which types could be represented
neurally in principle rather than to make precise
claims about the nature of their representation in
agents’ brains. Nevertheless it is our hope that the
kind of techniques we are sketching are ultimately
neurally plausible in the sense that they could be
made consistent with what we know about biolog-
ical brains.
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The project we are engaged in here can be called
neuroscience fiction. We cannot yet hope to ob-
serve brain activity corresponding to single types
as conceived of in TTR. Available techniques such
as FMRI do not have fine enough resolution and
there is too much noise of other brain activity to
easily identify exactly which neural activity corre-
sponds to the perception of a situation where, for
example, a boy hugs a dog. We see this work as an
attempt to consider what a top-down approach to
the neuroscience of perception and classification
would be as opposed to the bottom-up approach
which is available in current neuroscience. Basi-
cally the idea is this: in the bottom-up approach
you might show a subject a picture of a boy hug-
ging a dog and see what is common in brain activ-
ity over a large number of trials; on the top-down
approach you create a theoy which makes a pre-
diction of brain activity corresponding to a boy
hugging a dog and you then test the prediction in
subjects shown a picture of a boy hugging a dog.

It will be central to our discussion here that what
is involved in representing types neurally is a neu-
ral event rather than a piece of neural architecture.
We will present a preliminary implementation
(see nu.ipynb on https://github.com/
GU-CLASP/pyttr) that maps types to types of
events on a network. The kind of networks we
will use are closely related to the transparent neu-
ral networks (TNN) discussed by Strannegård and
Nizamani (2016). It may be helpful to empha-
size some of the things we are not doing with this
particular implementation: we are not engaging in
a machine learning exercise but rather addressing
the theoretical question of how types could be rep-
resented in a neurologically plausible network; we
are not addressing the question of recognizing wit-
nesses for types but just initially the representation
of the types themselves. The question of learning
to make judgements that certain situations in the
world are of these types is something where mod-
els of machine learning might be helpful and we
will have some suggestions for how this could be
approached later.

We will make some basic assumptions about
neurons which seem to correspond to basic facts
about typical neurons. A neuron consists of a
body which carries out a computation on the ba-
sis of several inputs received on a number of den-
drites connected to the body. A neuron has a single
axon on which signals can be sent on the basis of

the computation performed on the input received
on the neuron’s dendrites. While the neuron only
has a single axon this axon may be connected to
a large number of dendrites of other neurons by
means of a number of axon terminals branching
from the axon. The connection between an axon
terminal and a dendrite is known as a synapse and
the synapse itself may have some computational
power. The input on a dendrite can correspond to a
real number whereas the output on an axon (based
on a computation of dendritic input) is boolean: ei-
ther the neuron fires or it does not. We can think of
the computation carried out by a synapse as con-
verting a boolean to a real number. A simplified
representation of a neural state is a characteriza-
tion of which neurons have active axons, that is,
which neurons have an output of 1. For a neuron-
scientist this description of what is going on in the
brain may seem like oversimplification to the point
of falsity. However, it will enable us to address
some of the basic formal problems associated with
representing types as neural activation.

2 The binding problem

In TTR ’hug(a,b)’ is known as a ptype (a type
constructed from a predicate together with its ar-
guments). Intuitively it is a type of situation in
which a hugs b. The binding problem refers to
making sure that one can distinguish between the
type of events where a hugs b, the ptype ‘hug(a,b)’
in TTR, and the type of events where b hugs a,
‘hug(b,a)’ (Shastri, 1999; Kiela, 2011). A mini-
mal solution to this is to designate an event involv-
ing the activation of a single neuron to represent
each of ‘hug’, a and b. A more realistic encod-
ing would most likely be events involving several
neurons for each of these but the activation of a
single neuron will be sufficient for the purposes of
this discussion. An initial proposal for the neural
representation of the ptype might be a neural event
in which each of the neural events associated with
the predicate and the arguments occurs in turn. In
the neural TTR implementation this is displayed
as the history of activation on a network as in:

a 0 0 1 0 0
b 0 0 0 1 0
hug_n 0 1 0 0 0

Here each row indicates a neuron given a con-
venient label in the first column. Subsequent
columns indicate whether the neuron is firing at
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successive time-steps. However, we do not wish
to rely on neurons firing in a certain order but
rather rely on the phasing of neurons with other
neurons in a way similar to that originally sug-
gested by Shastri (1999). This means that we add
neurons that will correspond to predicate and ar-
gument roles and also a neuron that will be active
throughout the neural event coding that the three
separate neural events group together. The pattern
of activity on the network thus looks like this:

a 0 0 1 0 0
b 0 0 0 1 0
hug_n 0 1 0 0 0
ptype2 * 1 1 1 0
rel * 1 0 0 0
arg0 * 0 1 0 0
arg1 * 0 0 1 0

Here the activation of the neuron labelled ‘ptype2’
encodes that a two-argument ptype is represented
from time-steps 2–4 with the relation at time-step
two and the two arguments at the subsequent time-
steps. Thus while we are exploiting the fact that
the ptype is encoded as an event over several time-
steps in order to solve the binding problem, it is no
longer important exactly which order the events
occur in. The 4th–7th rows in this display cor-
respond to what we might call “book-keeping”
neurons which are used to indicate the structure
of represented types, as opposed to the “content”
neurons represented in the first three rows. If the
system discovers during the course of a compu-
tation that not enough book-keeping neurons are
available it will create those needed in order to
carry out the computation. In the implementa-
tion this represents an expansion of the number of
neurons in the network and it is indicated in this
display by the occurrences of ‘*’ in the first col-
umn indicating that these neurons did not exist at
the first time-step. While neurogenesis (structural
plasticity) is a known phenomenon — see Maguire
et al. (2000), Maguire et al. (2006) for a discussion
of the relative sizes of the hippocampus in London
taxi drivers as compared with London bus drivers
— it does not seem reasonable to assume that hu-
man brains actually grow during the course of a
computation in this way, but we might take this
expansion of the network to model a use of previ-
ously unused neurons in order to carry out a novel
computation.

From this simple example, three potential basic
principles of neural representation emerge:

• neural events (with phasing) are important
for neural representation (rather than just
neural architecture or snapshots of the net-
work at a single time-step)

• neural event types can be realized differ-
ently on different networks, cf. Fedorenko
and Kanwisher (2009), Fedorenko and Kan-
wisher (2011). Which neurons are dedicated
to a particular purpose can vary from network
to network and depends in part on the order
in which things are presented to the network.

• We can expect a kind of compositionality in
neural representations. For example, what-
ever pattern of activation a network uses to
represent ‘hug’ (firing of a single neuron or
multiple neurons), that pattern of activation
will occur in phase with a ‘rel’ pattern of ac-
tivation in representing a ptype with ‘hug’.

3 The recursion problem

As a simple illustration of the kind of recursion
needed by linguistic representations we will show
examples where ptypes can occur as arguments
within ptypes as in:

believe(c, hug(a,b))

know(d, believe(c, hug(a,b)))

One aspect of this recursion that can be challeng-
ing for neural representation is that there is in
princple no upper limit on the depth of embedding
that can be obtained. Another challenge is that var-
ious components may be repeated at various points
in the structure as in:

believe(a, believe(b, hug(a,b)))
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Thus the phasing of neurological events in a rep-
resentation of this has to be such that a single ob-
ject can play several distinct roles in the represen-
tation. The technique we developed for coding
ptypes as neurological events in order to solve the
binding problem is in fact adequate to deal with
the recursion problem as well. Here is a trace of a
network event representing believe(c, hug(a,b)):

a 0 0 0 0 1 0 0 0
b 0 0 0 0 0 1 0 0
hug_n 0 0 0 1 0 0 0 0
ptype2 0 1 1 1 1 1 1 0
rel 0 1 0 0 0 0 0 0
arg0 0 0 1 0 0 0 0 0
arg1 0 0 0 1 1 1 1 0
c 0 0 1 0 0 0 0 0
believe_n 0 1 0 0 0 0 0 0
ptype2 * 0 0 1 1 1 0 0
rel * 0 0 1 0 0 0 0
arg0 * 0 0 0 1 0 0 0
arg1 * 0 0 0 0 1 0 0

This is the first time that this network has seen an
embedding of a ptype within a ptype and it there-
fore adds an additional set of book-keeping neu-
rons for a two-place ptype. Note that the ptype2
neuron represented in row 4 is active from time-
step 2 to time-step 7 whereas the ptype2 neuron
in row 10 is active from time-step 4 to time-step 6
within the period of activation of the arg1 neuron
represented in row 7. What we have here is thus
a rather straightforward encoding of structure in
a two-dimensional binary matrix. Given that the
network is capable of growing in order to accom-
modate greater depths of embedding there is in
principle no limit on the depth of embedding that
it can handle except for (in the case of the imple-
mentation) available memory in the computer or
(in the case of a natural brain) availability of neu-
rons that can be dedicated to book-keeping. This
is in contrast to the kind of neural network rep-
resentation of recursion provided by, for example,
Christiansen and Chater (1999) which is limited
to a finite number of embeddings. On the other
hand we have only looked at representation and
said nothing about learning. This makes it diffi-
cult to make any meaningful comparison with the
literature on neural networks at this point.

The importance of recursion and the compo-
sitional approach to neural representation is fur-
ther illustrated by the treatment of dependent types
as functions which return a type, for example a
ptype. Such functions can be of arbitrary depth
(e.g. functions which return a function which re-

turns a type and so on). Also we treat general-
ized quantifiers in terms of ptypes whose argu-
ments are dependent types. Thus we can have a
situation where we have a ptype within which is
a function and within the function is a ptype con-
struction. This is the kind of recursion which is
common in linguistic structure. To illustrate how
this works consider how we can create a dependent
type which returns a ptype in pyttr.

T = DepType(’v’,Ind,
PType(hug,[’v’,’b’]))

print(show(T))

This returns:

lambda v:Ind . hug(v, b)

Thus we have created a function from objects of
type Ind (individual) to the ptype of situations
where that individual hugs b. A neural event which
represents this function has a neural event repre-
senting a ptype (‘ptype2’) temporally included in
a neural event representing a function (‘lambda’):

b 0 0 0 0 1 0 0
hug_n 0 0 1 0 0 0 0
ptype2 0 0 1 1 1 0 0
rel 0 0 1 0 0 0 0
arg0 0 0 0 1 0 0 0
arg1 0 0 0 0 1 0 0
lambda * 1 1 1 1 1 0
dom * 1 0 0 0 0 0
var * 1 0 1 0 0 0
rng * 0 1 1 1 1 0

We can represent the type of situation in which
every dog runs as the ptype:

every(lambda x:Ind . dog(x),
lambda x:Ind . run(x))

This type will be correspond to an neural event as
illustrated in Figure 1.

4 Memory – a simple kind of learning

We have argued above that a good way to deal with
the binding problem and the recursion problem in
representing types in neural networks is to let the
representations be neural events rather than pieces
of neural architecture. The simple-minded idea is
that when an agent classifies an object or event as
being of a certain type the corresponding neural
event will occur in the agent’s brain. While there
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every_n 0 1 0 0 0 0 0 0 0 0 0 0 0
dog_n 0 0 0 1 0 0 0 0 0 0 0 0 0
run_n 0 0 0 0 0 0 0 0 1 0 0 0 0
Ind_n 0 0 1 0 0 0 0 1 0 0 0 0 0
ptype2 * 1 1 1 1 1 1 1 1 1 1 1 0
rel * 1 0 0 0 0 0 0 0 0 0 0 0
arg0 * 0 1 1 1 1 1 0 0 0 0 0 0
arg1 * 0 0 0 0 0 0 1 1 1 1 1 0
lambda * 0 1 1 1 1 0 1 1 1 1 0 0
dom * 0 1 0 0 0 0 1 0 0 0 0 0
var * 0 1 0 1 0 0 1 0 1 0 0 0
rng * 0 0 1 1 1 0 0 1 1 1 0 0
ptype1 * 0 0 1 1 0 0 0 1 1 0 0 0
rel * 0 0 1 0 0 0 0 1 0 0 0 0
arg0 * 0 0 0 1 0 0 0 0 1 0 0 0

Figure 1: “every dog runs”

seem to be good reasons to think of the represen-
tations as events rather than architecture, it seems
initially puzzling how such an agent could store
a type in memory. In the TTR literature we talk
of agents as having types available as resources
which can be used to make judgements about ob-
jects and situations. In particular Cooper et al.
(2015) talk about estimating probabilistic judge-
ments based on previous judgements. How could
such judgements be stored in memory if they are
just represented as neural events?

Our proposed solution uses an idea from TNN
where a single neuron which is top-active in the
sense of TNN (Strannegård and Nizamani, 2016)
can be regarded as encoding a concept since it is
triggered by a complex activity corresponding to
that concept. Here we will turn the idea around
and create a single memory neuron which when
excited will trigger a neural event representing a
type. This is a simple way of “freezing” a neu-
ral event in a network in architectural terms. The
memory neuron must be connected to other neu-
rons in the network in a way so that its activa-
tion will occasion an orderly progression of neural
events in sequence with the correct phasing. This
is achieved by introducing delay neurons (Stran-
negård et al., 2015) which can be used to delay
passing on a signal an arbitrary number of time-
steps. For an interesting account of delay circuitry
in nature see Schöneich et al. (2015). As an illus-
tration Figure 2 shows the trace of a network with
a memory neuron (labelled ‘every dog runs’ in the
display) for the type

every(λx:Ind . dog(x), λx:Ind . run(x))

Delay neurons, like other bookkeeping neurons,
are added as required in the process of creating
the memory. Notice that our treatment of quan-
tification in terms of generalized quantifiers where
the every is a predicate holding between two prop-
erties means that we can reuse our method for
encoding ptypes in this more complex example
involving quantification. Currently memories of
judgements are implemented by activating a neu-
ron represented by an object in phase with the rep-
resentation of a type, though we suspect that some-
thing more like the method used for ptypes will ul-
timately be necessary. Figure 3 shows an example
where a particular event ‘e’ is judged to have the
type in Figure 1. Note that while the neuron la-
belled ‘e:every(dog,run)’ could be said to encode
an Austinian proposition in memory in something
like the sense discussed by Cooper et al. (2015) it
says absolutely nothing about what has to happen
in the world (or in the agent’s peceptual apparatus)
in order for this memory to be formed.

5 Prospects for more complex learning

One way of incorporating learning into this sys-
tem is to interface it to a conventional ma-
chine learning system. We currently plan to
create an interface to the KILLE system (de
Graaf and Dobnik, 2015) which learns classifi-
cations of objects and spatial relations between
objects on the basis of visual input through
Kinect (https://developer.microsoft.

16



every_n 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
dog_n 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
run_n 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Ind_n 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
ptype2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0
rel 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
arg0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
arg1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
lambda 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0
dom 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
var 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0
rng 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0
ptype1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0
rel 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
arg0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
every dog runs 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Delay 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0
Delay 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0
Delay 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
Delay 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0
Delay 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
Delay 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
Delay 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0
Delay 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
Delay 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
Delay 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
Delay 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
Delay 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 2: Running the memory “every dog runs”

com/en-us/windows/kinect) and linguis-
tic input. It seems that it would be straightforward
to map the final linguistic output from KILLE to
a TTR type that could be represented on a net-
work in the way that we have suggested. More
interesting perhaps would be to map lower level
outputs from this system directly to the activity
patterns which neural TTR associates with a type
for a given network. Below is a small example of
an activity pattern generated by neural TTR for a
judgement that a is an individual, that is, a : Ind:

[[(0, ’Ind_n’, 1), (1, ’a’, 1)],
[(0, ’Ind_n’, 0), (1, ’a’, 0)]]

An activity pattern is a list of lists of triples. The
first member of the triple is a unique identifier for
a neuron on a given network. The second member
is the intuitive label for the neuron which is pro-
vided only for the sake of human readibility and
the third boolean value indicates whether the neu-

ron should be turned on or off. Each list of tuples
represents one time-step. It should be a straight-
forward exercise to learn a mapping from Kinect
output to such triples which can then be realized
on the network. This would then be a two-level
system which uses conventional machine learn-
ing possibly involving non-transparent networks
for low level learning and a transparent network
of the kind we have described for high level repre-
sentation. Such systems would raise the question
of how far down it would be possible or desirable
to go before converting to the high level represen-
tations using neural TTR.

Another approach we are considering is to build
basic learning strategies using techniques based on
reinforcement learning into the transparent neural
TTR network. Here the idea would be to simu-
late the embodiment of a network in a body for
which some actions stimulate a pleasure circuit in
the network whereas other actions stimulate a pain
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every_n 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
dog_n 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
run_n 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Ind_n 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
e 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0
ptype2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
rel 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
arg0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0
arg1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
lambda 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0
dom 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
var 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0
rng 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0
ptype1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0
rel 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
arg0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
e:every(dog,run) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Delay 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Delay 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0
Delay 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0
Delay 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
Delay 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0
Delay 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
Delay 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
Delay 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0
Delay 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
Delay 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
Delay 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
Delay 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
Delay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 3: Judgement that every dog runs in e

circuit. The network would evolve in a way that
would avoid painful actions and seek pleasurable
ones.

We suspect that a combination of both of these
strategies might ultimately be useful.

6 Conclusion

In this paper we have suggested a way in which
types as discussed in TTR could be represented
as neural events in a network. Representing types
as neural events rather than neural architecture en-
abled us to give simple-minded solutions to the
problem of binding and the problem of recursion
where the fact that the network can grow (or adjust
itself) during the course of computation seems im-
portant for the latter. We also suggested a way in
which this event approach to representation can be
made compatible with storage in memory by in-

troducing memory neurons which when activated
will give rise to appropriate events. The introduc-
tion of delay circuitry was important for this.

This proposal, rather like formal semantics,
does not say anything about the way in which rep-
resentations of such types could be grounded in
actual experience. In the final section we sug-
gested a couple of strategies for addressing this
and relating it to machine learning and we plan to
explore this in future work.
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Abstract

This paper argues that the judicial use of
formal language theory and grammatical
inference are invaluable tools in under-
standing how deep neural networks can
and cannot represent and learn long-term
dependencies in temporal sequences.

Learning experiments were conducted
with two types of Recurrent Neural Net-
works (RNNs) on six formal languages
drawn from the Strictly Local (SL) and
Strictly Piecewise (SP) classes. The
networks were Simple RNNs (s-RNNs)
and Long Short-Term Memory RNNs
(LSTMs) of varying sizes. The SL and
SP classes are among the simplest in a
mathematically well-understood hierarchy
of subregular classes. They encode lo-
cal and long-term dependencies, respec-
tively. The grammatical inference algo-
rithm Regular Positive and Negative Infer-
ence (RPNI) provided a baseline.

According to earlier research, the LSTM
architecture should be capable of learning
long-term dependencies and should out-
perform s-RNNs. The results of these ex-
periments challenge this narrative. First,
the LSTMs’ performance was generally
worse in the SP experiments than in the SL
ones. Second, the s-RNNs out-performed
the LSTMs on the most complex SP exper-
iment and performed comparably to them
on the others.

1 Investigating Deep Learning

This paper argues that formal language theory and
grammatical inference can provide a systematic
way to better understand the kinds of patterns deep

learning networks (Goodfellow et al., 2016) are
able to learn. The main ideas are illustrated with
experiments testing how well two types of Recur-
rent Neural Networks (RNNs) can learn different
kinds of simple, subregular formal languages with
a grammatical inference algorithm serving as a
baseline.

Using formal languages to investigate the learn-
ing capabilities of neural networks is not without
precedent. Much earlier research also used for-
mal languages to probe the learning capabilities of
neural networks; Schmidhuber (2015, sec. 5.13)
provides a review. Section 2 highlights some of
this work and makes clear our own contribution.

Long-term dependencies in temporal sequences
have a distinguished history in the development of
neural network learning models and in generative
linguistics. Bengio et al. (1994) define long-term
dependencies this way: “A task displays long-term
dependencies if prediction of the desired output
at time t depends on input presented at an earlier
time τ � t.” Many examples of such long-term
dependencies abound in nature and engineering.
For example, generative linguists, beginning with
Chomsky (1956, 1957), have studied the gram-
matical basis of long-term dependencies in natu-
ral languages and have raised the question of how
such dependencies are learned (Chomsky, 1965).

We test simple RNNs (s-RNNs) (Elman, 1990)
and Long Short-Term Memory RNNs (LSTMs)
(Hochreiter and Schmidhuber, 1997) on simple
regular languages which encode local and long-
term dependencies. Readers are referred to Good-
fellow et al. (2016) and Goldberg (2017) for de-
tails of these two types of networks.

A common narrative in the deep learning litera-
ture is that LSTMs are a solution to learning long-
term dependencies, which are problematic for s-
RNNs. For example, Schmidhuber’s (2015) re-
view, which received the first Best Paper Award
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ever issued by the journal Neural Networks, ex-
plains that “Typical deep NNs suffer from the now
famous problem of vanishing or exploding gradi-
ents.” He calls this “the fundamental deep learn-
ing problem of gradient descent.” It is these van-
ishing or exploding gradients that prevent neu-
ral networks like s-RNNs from learning long-term
dependencies. Schmidhuber explains how much
subsequent research was dedicated to overcom-
ing this problem and writes “LSTM-like networks
. . . alleviate the problem through a special archi-
tecture unaffected by it.”

Similarly, writing in Nature, LeCun et al. (2015,
p. 442) say “Although [RNNs] main purpose is to
learn long-term dependencies, theoretical and em-
pirical evidence shows that it is difficult to learn
to store information for very long.” They go on to
write “LSTM networks have subsequently proved
to be more effective than conventional RNNs” be-
cause LSTMs “use special hidden units, the natu-
ral behaviour of which is to remember inputs for a
long time.”

Therefore, we were particularly interested in
understanding how well LSTMs can learn long-
term dependencies within temporal sequences. We
developed training and test data sets for formal
languages drawn from the Strictly Local (SL)
and Strictly Piecewise (SP) classes of formal lan-
guages. As will be explained in more detail in §3,
SL and SP languages are simple regular languages
which only encode local and certain types of long-
term dependencies, respectively.

These formal languages are drawn from well-
understood subclasses of the regular languages
which form a complexity hierarchy (McNaughton
and Papert, 1971; Rogers et al., 2010; Rogers
and Pullum, 2011). These hierarchies measure
the complexity of formal languages not in terms
of automata-theoretic measures, such as the size
of the minimal deterministic automaton, but in-
stead on a model-theoretic basis (Enderton, 2001;
Rogers et al., 2013). In other words, the com-
plexity of a formal language is determined by the
kind of logic and model-theoretic representation
needed to specify it (Rogers and Pullum, 2011).
As Rogers et al. (2013) explain, these classes also
have a cognitive interpretation.

In the experiments, there were six target lan-
guages to learn: three SL and three SP. For each
language, three training sets were prepared, and
for each training set two test sets were prepared,

for a total of 36 test sets. The training and test data
was also controlled for word length so we could
assess the networks’ ability to generalize to strings
longer than the ones in the training sample. The
LSTMs and s-RNNs were trained on both positive
and negative examples. We conducted several ex-
periments, systematically varying the vector sizes
in the networks. These experimental details are
explained in §4.

The results, presented in §5, are unexpected
given the narrative outlined above. The narra-
tive would suggest that the s-RNNs and LSTMs
may perform comparably on the SL experiments,
but that s-RNN performance would be worse than
LSTM performance on the SP experiments due to
the presence of long-term dependencies. Further-
more, since the LSTMs are “unaffected” by the
“fundamental deep learning problem,” we may ex-
pect that the LSTM performance on the SP exper-
iments to be comparable to the ones on the SL ex-
periments.

Neither of these expectations were borne out.
While the RNNs performed above chance in all
of our experiments, they struggled learning the
two most complex SP languages as compared to
the matched SL languages. Furthermore, the s-
RNNs performed comparably to the LSTMs in
many of the SP experiments, and in fact out-
performed the LSTMs on the most complex SP
learning task. Also, both LSTMs and s-RNNs did
relatively poorly on the simplest SL experiment.

When learning fails, it is natural to ask whether
the training data was sufficiently rich for it to be
reasonable for correct inference to take place. For
this reasons, we also ran the grammatical infer-
ence algorithm Regular Positive and Negative In-
ference (RPNI) (Oncina and Garcia, 1992) on the
test sets and examined its output. RPNI provably
infers any regular language, provided the training
data is sufficient. Readers are referred to de la
Higuera (2010) for details on RPNI. When RPNI
is successful, it means there is enough informa-
tion in the training sample for correct inference to
occur, at least for learning algorithms which only
consider regular languages as targets. RPNI’s re-
sults suggest that training data was sufficient in al-
most all of the SP experiments, but only in one-
third of the SL experiments. This one-third in-
cludes the simple SL experiments where the RNNs
struggled. The analysis with RPNI makes it harder
to explain away the poor performance of the RNNs
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on the grounds that the data was insufficient. Sec-
tion 6 discusses this, and other aspects of the re-
sults in more detail.

Our conclusion is that the there is much more
to be learned about the how RNNs represent and
learn long-term dependencies in sequences. We
believe that understanding how RNNs generalize
from their training data will follow from connect-
ing the behavior of RNNs to classes of formal lan-
guages like the ones here.

2 Motivation and background

In the 1990s, many studies aimed to learn for-
mal languages with neural networks. When the
aim was to predict the next symbol of a string
drawn from a regular language, first-order RNNs
were used (Casey, 1996; Smith, A.W., 1989).
The target languages here were based on the
Reber grammar (Reber, 1967). When the aim
was to decide whether a string is grammatical,
second-order RNNs were used (Pollack, 1991;
Watrous and Kuhn, 1992; Giles et al., 1992).
Here the target languages were the regular lan-
guages studied by Tomita (Tomita, 1982). Later
research targeted nonregular languages (Schmid-
huber et al., 2002; Chalup and Blair, 2003). One
striking result established that LSTMs can learn
some context-sensitive formal languages exhibit-
ing long-distance dependencies with uncanny pre-
cision (Prez-Ortiz et al., 2003).

The reasons for making formal languages the
targets of learning are as valid today as they were
decades ago. First, the grammars generating the
formal languages are known. Therefore training
and test data can be generated as desired. Thus,
the scientist can run controlled experiments to see
whether particular generalizations are reliably ac-
quired under particular training regimens.

Importantly, the relative complexity of differ-
ent formal languages may provide additional in-
sight. If it is found that formal languages of one
type are more readily learned than formal lan-
guages of another type in some set of experiments
then the difference between these classes may be
said to meaningfully capture some property un-
available to the RNNs in the experiments. Subse-
quent work may lead to proofs and theorems about
which properties of RNNs lead to the reliable in-
ference of formal languages from certain classes
and which do not. It may also lead to new network
architectures which overcome identified hurdles.

There are two important differences between
the present paper and past research, beyond the
development in neural networks. First, the regu-
lar languages chosen here are known to have cer-
tain properties. The Reber grammars and Tomita
languages were not understood in terms of their
abstract properties or pattern complexity. While
it was recognized some encoded long-term depen-
dencies and some did not, there was little recog-
nition of the computational nature of these formal
languages beyond that. In contrast, the formal lan-
guages in this paper are much better understood.
While subregular distinctions had already been
studied by the time of that research (McNaughton
and Papert, 1971), it went unrecognized how that
branch of computer science could inform neural
network learning.

The second difference is the advances in gram-
matical inference over the past few decades. The
development of RPNI (Oncina and Garcia, 1992)
essentially solved the problem of efficiently learn-
ing regular languages from positive and negative
data. Other results addressed the learning of sub-
regular classes from positive data only (Garcia
et al., 1990; Garcı́a and Ruiz, 2004; Heinz, 2010b;
Heinz et al., 2012). Like the work on subregu-
lar complexity, what these analytical approaches
to learning formal languages offered neural net-
work researchers went unrecognized.

3 Subregular Complexity

Figure 1 shows proper inclusion relationships of
well-studied classes of subregular languages. The
Strictly Local (SL), Locally Testable (LT), and
Non-Counting (NC) classes were studied by (Mc-
Naughton and Papert, 1971). The Locally Thresh-
old Testable (LTT) class was introduced and stud-
ied by (Thomas, 1982). The Piecewise Testable
(PT) class was introduced and studied by (Simon,
1975). The Strictly Piecewise (SP) class was stud-
ied by (Rogers et al., 2010). As many authors dis-
cuss, these classes are natural because they have
multiple characterizations in terms of logic, au-
tomata, regular expressions, and abstract algebra.
Cognitive interpretations of these classes also exist
(Rogers and Pullum, 2011; Rogers et al., 2013).

From the perspective of natural language pro-
cessing, SL is the formal language-theoretic basis
of n-gram models (Jurafsky and Martin, 2008) and
SP models aspects of phonology (Heinz, 2010a).

Next we define these classes, focusing on the
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Figure 1: Subregular language classes with inclusion shown from the top down.

SL and SP classes since languages belonging to
them form the learning targets in the experiments
described in §4.

3.1 Mathematical Notation

Let Σ denote a finite set of symbols, the alphabet,
and Σ∗ the set of elements of the free monoid of
Σ under concatenation. We refer to these elements
both as strings and as words. The ith symbol in
word w is denoted wi. Left and right word bound-
ary markers (o and n, respectively) are symbols
not in Σ. A stringset (also called formal language)
is a subset of Σ∗.

If u and v are strings, uv denotes their con-
catenation. Similarly, if S1, S2 are stringsets then
S1S2 denotes their concatenation and is equal to
{uv | u ∈ S1, v ∈ S2}.

For all u, v, w, x ∈ Σ∗, if x = uwv then then w
is a substring of x. If x ∈ Σ∗w1Σ

∗w2Σ
∗ . . . wnΣ∗

then w is a subsequence of x. A substring (sub-
sequence) of length k is called a k-factor (k-
subsequence). Let factork(w) denote the set of
substrings of w of length k. Let subseqk(w) de-
note the set of subsequences of w up to length
k. The domains of these functions extend to lan-
guages in the normal way.

3.2 Strictly Local Stringsets

A stringset L is Strictly k-Local (SLk) iff when-
ever there is a string x of length k − 1 and strings
u1, v1, u2, v2 ∈ Σ∗, such that u1xv1, u2xv2 ∈ L
then u1xv2 ∈ L. We say L is closed under suf-
fix substitution. L is SL if L ∈ SLk for some k

(Rogers and Pullum, 2011).
As discussed in (McNaughton and Papert,

1971; Rogers and Pullum, 2011), SLk languages
can also be characterized by a finite set of
k-factors as follows. Observe first that for
each k, factork({o}Σ∗{n}) is finite. Let
a SLk grammar be a set of k-factors G ⊆
factork({o}Σ∗{n}). The language of G is the
stringset L(G) = {w | factork(own) ⊆ G}.
Thus, the grammar G is the set of permissible k-
factors. Any k-factor w in factork({o}Σ∗{n})
which is not in G is thus forbidden and conse-
quently all strings containing w as a substring are
not in L(G). Consequently, SL stringsets can
also be defined with grammars that only contain
finitely many forbidden k-factors as we do in §4.
From a logical perspective, SL stringsets can thus
be expressed as the conjunction of negative literals
where literals correspond to a model-theoretic rep-
resentation of strings where the order of the ele-
ments is given by a successor relation (Rogers and
Pullum, 2011).

3.3 Strictly Piecewise Stringsets

A stringset L is Strictly k-Piecewise (SPk) iff
subseqk(w) ⊆ subseqk(L) implies w ∈ L. L is
SP if there is a k such that it belong to SPk; equiv-
alently, L belongs to SP iff L is closed under sub-
sequence (Rogers et al., 2010). SPk stringsets can
also be defined with a finite set of k-subsequences
(Rogers et al., 2010). In fact the parallel to SLk is
near perfect.

Observe the set subseqk(Σ∗) is finite. Let a
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SPk grammar be a set of k-subsequences G ⊆
subseqk(Σ∗). The language of G is the stringset
L(G) = {w | subseqk(w) ⊆ G}. The gram-
mar G is the set of permissible k-subsequences.
Any k-subsequence w in subseqk(Σ∗) which is
not in G is thus forbidden so strings containing
w as a subsequence are not in L(G). Since for
each k, subseqk(Σ∗) is finite, SP stringsets can
also be defined with grammars containing forbid-
den k-subsequences as in §4. From a logical per-
spective, SP stringsets can thus be expressed as
the conjunction of negative literals where literals
correspond to a model-theoretic representation of
strings where the order of the elements is given by
the precedence relation (Rogers et al., 2013).

3.4 Locally and Piecewise Testable Classes
A stringset L is Locally k-Testable (LTk) iff for all
w, v ∈ Σ∗, it is the case that if factork(own) =
factork(ovn) then either w, v ∈ L or w, v 6∈ L.
In other words, membership of a string w in any
LTk stringset is determined solely by the set of k-
factors in w. Similarly, a stringset L is Piecewise
k-Testable (PTk) iff for allw, v ∈ Σ∗, it is the case
that if subseqk(own) = subseqk(ovn) then
either w, v ∈ L or w, v 6∈ L. Here, membership of
a stringw in any PTk stringset is determined solely
by the set of k-subsequences in w. Stringsets are
LT (PT) if there is some k such that they are LTk

(PTk), respectively.
It can be proven that LT (PT) languages are

those equivalent to a Boolean combination of
finitely many SL (SP) formal languages. LT (PT)
are also parameterized by a k value, which corre-
sponds to the largest k-value among the SL lan-
guages they are a Boolean combination of.

From a logical perspective, the LT and PT
classes can be defined with propositional state-
ments over relational structures representing se-
quences where the order relation is given as suc-
cessor and precedence, respectively, as shown in
Figure 1 (Rogers et al., 2013).

3.5 Locally Threshold Testable,
NonCounting, and Regular Classes

A stringset L is Locally Threshold Testable iff
there are two numbers k and t such that for
all strings u, v ∈ Σ∗ and k-factors x ∈
factork({o}Σ∗{n}) if the number of times x
occurs in u is the same as the number of times x
occurs in v whenever this number is less than t or
occurs at least t times in both u and v then either

u, v ∈ L or u, v 6∈ L. In other words, membership
of a string w in any LTTt,k stringset is determined
solely by the number of occurences each k fac-
tor occurs in w, counting them only up to some
threshold t. The LTk class equals LTT1,k.

A stringset L is NonCounting iff there is a k
such that for all w, u, v ∈ Σ∗, if wuv ∈ L then
wuk+1v ∈ L. McNaughton and Papert (1971)
prove languages in the NonCounting class are ex-
actly those definable with star-free generalized
regular expressions and exactly those obtained by
closing LT stringsets under concatenation.

Languages in the LTT and NC classes can be
defined with first-order statements over relational
structures representing sequences where the order
relation is given as successor and precedence, re-
spectively (Thomas, 1982; McNaughton and Pa-
pert, 1971; Rogers et al., 2013). LTT is thus prop-
erly included in NC because successor is first-
order definable with precedence but precedence is
not first-order definable with successor.

Informally, a stringset L is regular if the re-
sources required to decide whether a string u be-
longs to L is independent of the length of u. They
can be defined as those formal languages recog-
nizable by finite-state acceptors. Büchi (1960)
showed these are exactly the stringsets definable
with weak monadic second-order logic with the
order relation given as successor (or precedence,
since the precedence relation is MSO-definable
from successor and vice versa). Stringsets that are
regular but not NonCounting typically count mod-
ulo some n. For example, the stringset which con-
tains all and only strings with an even number of
as is not NonCounting, but regular.

3.6 Further Comment

SL, SP, LT, PT, and LTT classes form infi-
nite hierarchies of language classes based on k
(Rogers and Pullum, 2011; Rogers et al., 2010).
In particular for all k ∈ N, SLk ( SLk+1,
SPk ( SPk+1, LTk ( LTk+1, PTk ( PTk+1

and LTTt,k ( LTTt,k+1. It is also true that
LTTt,k ( LTTt+1,k. Consequently, for any SL
(SP/LT/PT/LTT) stringset, the smallest k value for
which it is SLk (SPk/LTk/PTk/LTTt,k) is another
measure of its complexity.

We analyzed the Reber (1967) and Tomita
(1982) languages and concluded the following.
The Reber grammar is SL3 and the embedded Re-
ber grammar is LT3. Tomita languages 1, 2, 3, 4,
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5, 6, and 7 are SL1, SL2, regular, SL3, regular,
regular, and SP4, respectively.

The subregular hierarchies provide a much
more fine-grained meaning to the term long-term
dependency. For example, SL dependencies are
effectively bounded by a window of size k, but
none of the other classes are limited in this way.
Consequently the distinctions between them dis-
tinguish different kinds of long-term dependen-
cies. This is why we are optimistic that much
these subregular properties can meaningfully in-
form how RNNs represent and learn long-term de-
pendencies.

4 The Experiments

Here we describe the target languages, the training
data, the test sets, the neural network architectures
and RPNI.

We implemented the RNNs with Chainer
(http://chainer.org). RPNI was imple-
mented using Matlab and the gi-toolbox
https://code.google.com/archive/
p/gitoolbox (Akram et al., 2010). The files
we used with Chainer, gi-toolbox, and
the ones we used to prepare the training and test
sets are available online at https://github.
com/enesavc/subreg_deeplearning.

4.1 Target Languages

In this study, six formal target languages were de-
fined in order for training and testing purposes. In
each case, we let Σ = {a, b, c, d}.

Table 1 defines the six formal languages we
used in this study. Each of the SL languages was
defined with four banned substrings and each of
the SP languages was defined with one banned
subsequence. We refer to these six languages by
the class they belong to: SL2, SL4, SL8, SP2, SP4,
and SP8.

These grammars were implemented as finite-
state machines using foma, a publicy available,
open-source platform (Hulden, 2009). The num-
ber of states in the minimal deterministic automa-
ton recognizing these six languages are shown in
Table 1.

4.2 Training data

Training data was generated with foma. For each
language L we generated three training data sets,
which we call 1k, 10k, and 100k because they con-
tained 1,000, 10,000, and 100,000 words, respec-

tively. Half of the words in each training set were
positive examples (so they belonged to L) and half
were negative examples (so they did not belong to
L). Training words were between length 1 and 25.
For the positive examples there were 20, 200, and
2,000 words of each length. For the negative ex-
amples, we wanted to provide 20, 200, and 2,000
words of each length, respectively. However, as
the k value increases, there is no negative data
for shorter words since all shorter words belong
to L. In this case, we generated 20×k, 200×k, and
2,000×k of words of length k, and also 20, 200,
and 2,000 words for the lengths between k+1 and
25. Training words were generated randomly us-
ing foma, so training sets contained duplicates.

4.3 Test sets

For each language L and each training regimen T
for L, we developed two test sets, which we call
Test1 and Test2. Test1 and Test2 contain 1,000,
10,000, or 100,000 words depending on whether
T is 1k, 10k, or 100k, respectively. Half of the test
words belong to L and half do not. Test1 and Test2
only contain novel words. Novel positive words
belong to L but do not belong to the positive ex-
amples in T. Novel negative words neither belong
to L nor to the negative examples in T.

The difference between the two test sets has to
do with word length. Test1 words are no longer
than 25. Test2 words are of length between 26 and
50. Thus while both sets test for generalization,
Test2 importantly checks to what extent the gener-
alizations are independent of word length.

For Test2, we used foma to randomly gener-
ate 20, 200, and 2,000 positive words and negative
words for each length between 26 and 50.

For Test1, we used foma to randomly gener-
ate words whose length was less than 26. Again,
we wanted to generate 20, 200, and 2,000 positive
words and negative words for each length. How-
ever, there may not be positive or negative words
for some of the shorter lengths. This is because
either they do not exist for the target language L,
or because they do exist for L but they also exist
in the training data in which case they would not
be novel. For positive (negative) words, we did
the following. If there was at least one word of a
particular length, we randomly generated 20, 200,
or 2,000 words of that length depending on T. We
also generated extra words of length 25 (specif-
ically 200, 2,000, or 20,000). We concatenated
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Table 1: The six target stringsets with Σ = {a, b, c, d}.
Language Class Forbidden k-factors in target stringsets Minimal DFA size

SL2 ob, aa, bb, an 3
SL4 obbb, aaaa, bbbb, aaan 7
SL8 obbbbbbb, aaaaaaaa, bbbbbbbb, aaaaaaan 15

Language Class Forbidden k-subsequences in target stringsets

SP2 ab 2
SP4 abba 4
SP8 abbaabba 8
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Figure 2: An unrolled RNN for predicting mem-
bership.

these together ordered by length into one file and
then selected the first 500, 5,000, or 50,000 words
to be the positive (negative) words in Test1. In
other words, we effectively padded the Test1 with
words of length 25 when there were no words of
shorter lengths.

The order of the words in the test sets was ran-
domized.

4.4 RNN Architectures
For the LSTMs and s-RNNs, we constructed sim-
ple networks to test the capability of the networks
themselves. First we describe properties of the ar-
chitectures shared by both RNN types (the LSTMs
and s-RNNs) and then we discuss specific aspects
of the LSTMs.

For each input string, the RNNs can be repre-
sented as a connected graph as shown in Figure 2.
The output of the network is the probability of the
input word belonging to the target language.

The output of the embed layer in Figure 2
is known as the distributed representation of the
symbol, which is equivalent to a linear layer (with

no bias) that maps the one-hot vector to a real-
valued vector. The outputs of the recurrent layer
corresponding to each symbol are ignored except
for the last one. The output corresponding to the
last symbol is mapped to a two dimensional vector
through the softmax layer, whose elements repre-
sent the positive and negative probabilities.

Each value of the weights in the embed layer
were independently initialized according to the
normal distribution.

For all the RNNs in this study the vector sizes
of the recurrent layer and the embed layer were
made identical. For each type of RNN, we ex-
amined three networks of varying sizes, which we
call v10, v30, and v100 because the vectors at each
layer are of size 10, 30, and 100, respectively.

For the LSTMs, the standard architecture with
forget gates and without peepholes was used
among the various possible modifications (Greff
et al., 2015). The recurent layer of the LSTMs
includes four fully-connected layers called the in-
put gate, the block input, the forget gate, and the
output gate. The weights of those layers are initial-
ized in the same manner as the embed layer except
for the weights of the forget gate, which were ini-
tialized according to the normal distribution with
mean 1 and variance 1.

4.5 RNN Training

When training the RNNs, the training data was
divided into batches, and the gradient is calcu-
lated for each batch. The strings in each batch are
usually chosen uniformly and randomly to avoid
biased gradients. However, calculations become
inefficient if strings are chosen completely ran-
domly due to large differences in the lengths of
the strings. Thus, we sort all strings first in order
of their lengths, re-order partially, block them and
choose those blocks randomly. The RNNs pro-
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cessed the training data 100 times or ‘epochs.’
Other training parameters are as follows. The

batch size is 128. The L2 norm of the gradi-
ent is clipped with 1.0. The lengths of strings
in each batch are aligned through padding an ad-
ditional symbol whose embedding is fixed to the
zero vector. The optimization algorithm called
Adam (Kingma and Ba, 2014) is applied.

4.6 RPNI

RPNI takes as input a training set of positive
and negative examples and outputs a determinis-
tic finite-state acceptor (DFA), which accepts and
rejects strings.

RPNI itself is deterministic. In other words, if
RPNI is run on the same training data multiple
times, the variance in its performance on the test
sets will be zero. This is because for a given train-
ing set, it will always output the same DFA.

RPNI is a state-merging algorithm. It first
builds a DFA which explicitly accepts and rejects
only the positive and negative examples in train-
ing. This DFA is known as a prefix-tree because
its states are in one-to-one correspondence with
the prefixes of the strings in the training set. It
then conducts a breadth-first traversal of the pre-
fix tree, attempting to successively merge pairs of
states. Two states are merged provided the result-
ing DFA is consistent with training set. Readers
are referred to de la Higuera (2010) for more de-
tails on RPNI and to Heinz et al. (2015) for more
general discussion of state-merging algorithms.

Oncina and Garcia (1992) proved that for each
regular language L there is a finite set S+ of pos-
itive examples and a finite set S− of negative ex-
amples such that RPNI, when given any training
set including S+ and S− as input, will output
a minimal DFA A recognizing L. Furthermore,
RPNI runs in cubic time with respect to the size of
S+∪S−. Additionally, the size of S+∪S− is also
bounded by a polynomial with respect to the size
of A. Readers are referred to de la Higuera (1997)
and Eyraud et al. (2016) for more details on anal-
yses of efficiency in grammatical inference.

5 Results

After each epoch, the RNNs were tested on the
test sets. Inspection of the accuracy trajectories
indicate that accuracy had stabilized in all cases
well before the 100th epoch. Therefore, accuracy
results are reported after the 100th epoch of train-

ing.
The networks were run 10 times and we report

the mean accuracy results on each test set, along
with the standard deviation. RPNI, being deter-
ministic, was only run once. These results for the
LSTMs and the s-RNNs and RPNI are given in
Table 2 for the SL targets and in Table 3 for the
SP targets. In these tables, each row corresponds
to one test set with one training set for one tar-
get stringset. The mean value is given in each cell
to three significant digits. The standard deviation
is given in parantheses to two significant digits.1

Boldfaced numbers in each row indicate the best
performance. Chance performance is 50%.

RPNI successfully output the target grammar in
10 of the 18 training regimens. These were the
SL2 10k, SL2 100k, SL4 100k, SP8 100k, and all
of the SP2 and SP4 training sets.2

First we explain the results generally and then
we make more specific comparisons. In all ex-
periments the LSTMs and s-RNNs scored above
chance indicating some learning took place. How-
ever, their mean results only outperformed RPNI
in 9 of the 36 test sets. These are Test1 and Test2
in the SL4 1k, SL8 1k, SP8 1k and SP8 10k exper-
iments, in addition to Test2 in the SL8 10k exper-
iment.

Also, the accuracies on Test1 and Test2 are
nearly the same for the LSTMs and s-RNNs in
almost all experiments except for the SP8 exper-
iments.3 On every SP8 experiment, the LSTM
and s-RNN mean performance on Test1 is at least
10% higher than the mean performance on Test2
(except for the s-RNNs on the SP8 100k exper-
iments). Thus with few important exceptions,
the generalizations acquired by the LSTMs and s-
RNNs in training extended to longer words with a
similar degree of accuracy.

However, in the SP8 experiments, the notable
drop in accuracy in Test2 as compared to Test1
indicates that the networks failed to generalize to
longer words. In the SP8 1k and 10k experiments,
this failure may be excusable because the RPNI
results are similar. More precisely, the failure of

1This means of course that values close, but not equal to,
one and zero may be shown as one and zero respectively. We
confirm this happens in a few instances.

2Even though the SL8 100k experiments shows RPNI
with an accuracy of 1.000, this is due to the rounding error.
The DFA RPNI output was not identical to the minimal target
DFA.

3The s-RNN performance is worse on Test2 than Test1 in
the SL4 1k experiment.
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Table 2: Accuracy on Target SL Stringsets after 100 Epochs

Training Test LSTM s-RNN RPNI
10 30 100 10 30 100

SL2

1k 1 0.772 (0.09) 0.717 (0.08) 0.711 (0.02) 0.766 (0.11) 0.761 (0.11) 0.762 (0.10) 0.855
2 0.758 (0.09) 0.696 (0.10) 0.685 (0.02) 0.757 (0.15) 0.784 (0.17) 0.768 (0.15) 0.844

10k 1 0.773 (0.17) 0.616 (0.01) 0.666 (0.01) 0.682 (0.15) 0.660 (0.11) 0.649 (0.11) 1.000
2 0.772 (0.19) 0.602 (0.01) 0.650 (0.01) 0.675 (0.16) 0.650 (0.12) 0.639 (0.12) 1.000

100k 1 0.684 (0.15) 0.615 (0.03) 0.644 (0.01) 0.700 (0.14) 0.723 (0.16) 0.620 (0.01) 1.000
2 0.669 (0.16) 0.596 (0.02) 0.624 (0.01) 0.689 (0.16) 0.718 (0.18) 0.601 (0.01) 1.000

SL4

1k 1 0.902 (0.01) 0.907 (0.07) 0.884 (0.06) 0.913 (0.01) 0.956 (0.01) 0.968 (0.01) 0.918
2 0.836 (0.01) 0.890 (0.04) 0.901 (0.02) 0.844 (0.01) 0.896 (0.01) 0.911 (0.01) 0.813

10k 1 0.840 (0.15) 0.856 (0.12) 0.942 (0.08) 0.934 (0.12) 0.982 (0.00) 0.977 (0.01) 0.995
2 0.836 (0.16) 0.852 (0.13) 0.938 (0.08) 0.938 (0.12) 0.993 (0.00) 0.991 (0.00) 0.978

100k 1 0.975 (0.05) 0.917 (0.12) 0.898 (0.10) 0.905 (0.16) 0.989 (0.00) 0.986 (0.00) 1.000
2 0.981 (0.04) 0.923 (0.12) 0.903 (0.10) 0.916 (0.16) 0.995 (0.00) 0.994 (0.00) 1.000

SL8

1k 1 0.981 (0.02) 0.976 (0.04) 0.995 (0.00) 0.989 (0.01) 0.999 (0.00) 0.999 (0.00) 0.991
2 0.976 (0.02) 0.965 (0.03) 0.983 (0.01) 0.991 (0.00) 0.992 (0.00) 0.996 (0.00) 0.966

10k 1 0.931 (0.09) 0.979 (0.02) 0.964 (0.03) 0.995 (0.01) 0.998 (0.00) 0.997 (0.01) 0.998
2 0.980 (0.04) 0.998 (0.00) 0.999 (0.00) 0.998 (0.00) 0.998 (0.00) 0.997 (0.01) 0.994

100k 1 0.909 (0.11) 0.864 (0.12) 0.849 (0.11) 0.995 (0.01) 0.997 (0.00) 0.997 (0.00) 1.000
2 0.976 (0.05) 0.986 (0.02) 0.980 (0.03) 0.999 (0.00) 1.000 (0.00) 1.000 (0.00) 1.000

RPNI in these cases indicates that the training data
itself was plausibly insufficient for accurate learn-
ing to take place. However, this failure of the net-
works in the SP8 100k experiment cannot be so ex-
cused because RPNI scored 100% on both test sets
indicating that the training data was sufficiently
rich for proper inferences to occur.

We are also specifically interested in the LSTM
performance in the SL versus SP experiments.
With the exception of SL2 and SP2 experiments,
there is generally a drop in accuracy for LSTMs
on the SP experiments. This is most evident com-
paring the SP8 experiments with the SL8 experi-
ments. In particular, LSTM mean accuracy on the
SL4 and SL8 test sets were generally better than
their mean accuracy on the SP4 and SP8 test sets.
(The one exception is the comparison of the SL8
1k to the SP8 1k experiments.) This poorer perfor-
mance in the SP experiments challenges the nar-
rative in the deep learning literature that LSTMs
solve the problem of learning long-term depen-
dencies.

We are also interested in comparing the s-RNN
performance between the SL and SP experiments.
Like the LSTMS, the s-RNNs generally performed
worse in the SP 4 and 8 experiments than the SL 4
and 8 experiments.

Next we compare the performance of the
LSTMs to the performance of the s-RNNs in the

SP experiments. Given the narrative that the
LSTM architecture addresses a known problem for
s-RNNs, we expected that the s-RNN performance
would be worse than the LSTM performance on
the SP experiments. However this was not the
case. In fact, the s-RNN results are about the same,
and in some cases superior, perhaps most notably
in the SP8 100k experiments. Consequently, this
result also challenges the deep learning narrative
regarding long-term dependencies.

We conclude this section by mentioning an ad-
ditional striking and unexpected result. The mean
accuracy of the LSTMS and s-RNNs on the SL2
experiments, which are arguably the simplest pat-
terns to learn, were among the worst results in all
the experiments. While the accuracy in the SL2
1k experiments could be due to insufficient train-
ing data (as indicated by the RPNI result), this ra-
tionale is not available in the 10k and 100k ex-
periments. Their performance here suggests that
even the ability of recurrent networks to learn lo-
cal dependencies in formal languages needs fur-
ther study.

6 Discussion

The results above indicate the the neural networks
had the most difficulty in the SL2 and SP8 exper-
iments. Generally when learning fails, the possi-
ble culprits are either a deficiency in the data or
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Table 3: Accuracy on Target SP Stringsets after 100 Epochs

Training Test LSTM s-RNN RPNI
10 30 100 10 30 100

SP2

1k 1 0.847 (0.06) 0.935 (0.07) 0.952 (0.07) 0.910 (0.05) 0.999 (0.00) 0.999 (0.00) 1.000
2 0.873 (0.10) 0.951 (0.08) 0.947 (0.08) 0.976 (0.01) 1.000 (0.00) 1.000 (0.00) 1.000

10k 1 0.734 (0.12) 0.673 (0.04) 0.720 (0.03) 0.937 (0.13) 0.960 (0.08) 0.972 (0.06) 1.000
2 0.723 (0.12) 0.656 (0.04) 0.701 (0.03) 0.934 (0.13) 0.960 (0.08) 0.972 (0.06) 1.000

100k 1 0.680 (0.08) 0.707 (0.10) 0.732 (0.07) 0.974 (0.07) 0.974 (0.07) 0.982 (0.04) 1.000
2 0.665 (0.09) 0.697 (0.12) 0.716 (0.08) 0.977 (0.07) 0.974 (0.08) 0.986 (0.04) 1.000

SP4

1k 1 0.883 (0.06) 0.885 (0.08) 0.775 (0.05) 0.890 (0.05) 0.969 (0.02) 0.988 (0.01) 1.000
2 0.943 (0.04) 0.840 (0.09) 0.749 (0.06) 0.885 (0.06) 0.975 (0.01) 0.985 (0.01) 1.000

10k 1 0.862 (0.13) 0.880 (0.14) 0.853 (0.08) 0.696 (0.05) 0.840 (0.15) 0.903 (0.12) 1.000
2 0.862 (0.14) 0.877 (0.15) 0.843 (0.08) 0.686 (0.05) 0.841 (0.16) 0.900 (0.12) 1.000

100k 1 0.842 (0.13) 0.791 (0.14) 0.720 (0.09) 0.884 (0.14) 0.828 (0.17) 0.895 (0.12) 1.000
2 0.831 (0.13) 0.785 (0.13) 0.716 (0.08) 0.900 (0.15) 0.827 (0.17) 0.902 (0.13) 1.000

SP8

1k 1 0.844 (0.04) 0.863 (0.05) 0.901 (0.01) 0.871 (0.01) 0.885 (0.02) 0.878 (0.01) 0.817
2 0.699 (0.08) 0.627 (0.05) 0.692 (0.03) 0.719 (0.02) 0.663 (0.06) 0.668 (0.03) 0.587

10k 1 0.827 (0.15) 0.798 (0.11) 0.804 (0.04) 0.818 (0.12) 0.856 (0.10) 0.979 (0.02) 0.873
2 0.654 (0.11) 0.672 (0.10) 0.638 (0.05) 0.566 (0.05) 0.646 (0.05) 0.811 (0.08) 0.634

100k 1 0.880 (0.10) 0.927 (0.08) 0.904 (0.08) 0.893 (0.14) 0.978 (0.04) 0.988 (0.01) 1.000
2 0.760 (0.12) 0.802 (0.13) 0.739 (0.09) 0.825 (0.15) 0.909 (0.11) 0.907 (0.09) 1.000

some deficiency in the learning mechanism. The
RPNI results exclude the former rationale for the
SL2 10k, SL2 100k, and SP8 100k experiments.

As for a deficiency in the neural networks, there
are many possible modifications that would ar-
guably improve outcomes. For instance, if the
results are due the networks overfitting then the
networks could be augmented with the dropout
method or could be told to stop training before 100
epochs provided some condition is reached (“early
stopping”).

We explored the possibility of early stopping
and the results are shown in Tables 4 and 5. These
tables repeat the RPNI results for easier compari-
son. Training for the networks were halted at the
epoch which maximized the accuracy of the net-
works on the validation set. The validation set was
a held-out fraction (10%) of the training set that
was randomly selected from the training set. Be-
cause the training set contained duplicates, it is not
the case that every test item in the validation set is
novel, as is the case with Test1 and Test2 items.

These experiments show that the SL2 results
do improve, but not to the level of the other ex-
perimental conditions. There is also improvement
in the SP8 experiments though the difference be-
tween Test1 and Test2 results remains large. We
also experimented with the dropout method (not
shown). Like early stopping, this improved the re-

sults, but not the observed trends described above.

Of course there are other ways to improve the
”learning power” of recurrent neural networks.
The vector sizes can be increased, multiple lay-
ers can be included in the recurrent components,
Kalman filters could be used, and so on. So this is
one avenue of future research.

However, these methods go hand-in-hand with
varying the complexity of the target languages at
different levels of abstraction, such as adding more
forbidden strings to the grammars, increasing the
size of the alphabet, increasing k, or moving up
the subregular hierarchy to more complex classes.
The goal here is not one-upmanship, but to in-
stead get a better understanding of how properties
of RNNs relate to properties of formal language
classes, like the well-understood subregular ones
presented in section 3.

As such, these experiments showed something
very clearly. They showed naive LSTMs have dif-
ficulty with learning a formal language defined by
a forbidden subsequence of length 8 but little to no
difficulty with learning a formal language defined
by forbidden substrings of length 8. The differ-
ence between substring and subsequence—which
reduces logically to the question of whether or-
der is represented in strings with the successor or
precedence relation (Rogers et al., 2013)—is thus
significant for naive LSTMs.
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Table 4: Accuracy on Target SL Stringsets Early Stopping

Training Test LSTM s-RNN RPNI
10 30 100 10 30 100

SL2

1k 1 0.818 (0.03) 0.843 (0.05) 0.923 (0.02) 0.848 (0.06) 0.904 (0.03) 0.930 (0.03) 0.855
2 0.780 (0.06) 0.820 (0.07) 0.905 (0.04) 0.871 (0.10) 0.980 (0.02) 0.992 (0.01) 0.844

10k 1 0.925 (0.07) 0.851 (0.04) 0.875 (0.04) 0.936 (0.05) 0.884 (0.07) 0.729 (0.12) 1.000
2 0.919 (0.09) 0.836 (0.06) 0.835 (0.10) 0.964 (0.07) 0.868 (0.11) 0.753 (0.15) 1.000

100k 1 0.737 (0.14) 0.711 (0.14) 0.730 (0.03) 0.869 (0.15) 0.767 (0.17) 0.625 (0.01) 1.000
2 0.727 (0.15) 0.698 (0.15) 0.711 (0.04) 0.885 (0.17) 0.766 (0.19) 0.605 (0.01) 1.000

SL4

1k 1 0.898 (0.01) 0.939 (0.01) 0.945 (0.01) 0.908 (0.01) 0.945 (0.01) 0.958 (0.01) 0.918
2 0.829 (0.01) 0.888 (0.01) 0.887 (0.00) 0.840 (0.01) 0.883 (0.01) 0.898 (0.01) 0.813

10k 1 0.953 (0.05) 0.956 (0.04) 0.997 (0.00) 0.976 (0.03) 0.982 (0.00) 0.981 (0.00) 0.995
2 0.934 (0.06) 0.932 (0.05) 0.995 (0.01) 0.973 (0.04) 0.989 (0.00) 0.990 (0.00) 0.978

100k 1 0.994 (0.00) 0.973 (0.07) 1.000 (0.00) 0.990 (0.00) 0.990 (0.00) 0.987 (0.00) 1.000
2 0.996 (0.00) 0.975 (0.07) 1.000 (0.00) 0.996 (0.00) 0.996 (0.00) 0.995 (0.00) 1.000

SL8

1k 1 0.966 (0.02) 0.983 (0.01) 0.995 (0.00) 0.962 (0.02) 0.969 (0.01) 0.971 (0.01) 0.991
2 0.971 (0.01) 0.980 (0.02) 0.994 (0.00) 0.969 (0.02) 0.974 (0.01) 0.977 (0.01) 0.966

10k 1 0.990 (0.01) 0.996 (0.00) 0.999 (0.00) 0.998 (0.00) 0.999 (0.00) 0.999 (0.00) 0.998
2 0.994 (0.00) 0.995 (0.00) 0.998 (0.00) 0.997 (0.00) 0.998 (0.00) 0.998 (0.00) 0.994

100k 1 0.993 (0.01) 0.998 (0.00) 1.000 (0.00) 0.999 (0.00) 1.000 (0.00) 1.000 (0.00) 1.000
2 0.994 (0.01) 0.999 (0.00) 1.000 (0.00) 0.999 (0.00) 1.000 (0.00) 1.000 (0.00) 1.000

The successor/precedence difference is also
challenging for s-RNNs, but they are not any more
challenging for s-RNNs than they are for LSTMs.
In fact, s-RNNs outperform LSTMs on many of
the SP experiments.

From these results, it is hard to see how LSTMs
are a solution to learning long-term dependencies,
which are problematic for s-RNNs.

Rodriguez (2001) cautions against underesti-
mating s-RNNs. In this article he argues he shows
“a range of language tasks in which an [s-RNN]
develops solutions that not only count but also
copy and store counting information. In one case,
the network stores information like an explicit
storage mechanism. In other cases, the network
stores information more indirectly. . . ” In short,
despite the well-known exploding and vanishing
gradient problems, s-RNNs can learn to store in-
formation long-term in some circumstances.

So what then explains the unexpected perfor-
mance of s-RNNs? One possibility is the Adam
optimization method (Kingma and Ba, 2014)
which the s-RNNs in these experiments used. This
optimization technique is relatively recent and re-
places the method of stochastic gradient descent
(SGD), which was used in the decades prior to
Adam’s introduction. The narrative regarding
long-term dependencies surrounding LSTMs and
s-RNNs was developed in the context of SGD. So

one hypothesis is that the narrative is conditioned
on the use of SGD as the optimization method,
but that once Adam is used in its place, the ca-
pacity of s-RNNs to learn long-term dependencies
is much improved. In a sense, maybe Adam itself
goes some distance in resolving the vanishing and
exploding gradient problems.

We have begun to test this hypothesis by run-
ning the experiments with SGD instead of Adam.
While we are not yet able to provide a full report,
the result of a single experiment with s-RNNs us-
ing SGD as the optimization method shows a se-
rious decline its performance as shown in Table 6
Obviously, this is an area of current and future re-
search.

Another possibility is highlighted by the fact
that there are different kinds of long-term de-
pendencies. It may be that LSTMs outperform
s-RNNs on long-term dependencies unlike the
Strictly Piecewise ones tested here. As mentioned,
the subregular hierarchies (Figure 1) are partic-
ularly good at distinguishing different types of
long-term dependencies. One contribution of this
paper is the more fine-grained classification of
long-term dependencies that formal language the-
ory and the subregular language classes provide
researchers.

Finally, we return to the discussion of inter-
preting the performance of the neural networks
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Table 5: Accuracy on Target SP Stringsets Early Stopping

Training Test LSTM s-RNN RPNI
10 30 100 10 30 100

SP2

1k 1 0.871 (0.04) 0.954 (0.05) 0.992 (0.00) 0.910 (0.05) 0.994 (0.01) 0.992 (0.01) 1.000
2 0.960 (0.03) 0.989 (0.02) 0.998 (0.00) 0.976 (0.01) 0.998 (0.01) 1.000 (0.00) 1.000

10k 1 0.890 (0.07) 0.941 (0.04) 0.977 (0.02) 0.995 (0.01) 0.981 (0.05) 0.999 (0.00) 1.000
2 0.979 (0.02) 0.990 (0.01) 0.994 (0.01) 1.000 (0.00) 0.984 (0.05) 1.000 (0.00) 1.000

100k 1 0.833 (0.14) 0.819 (0.12) 0.890 (0.08) 0.997 (0.01) 0.999 (0.00) 0.997 (0.00) 1.000
2 0.838 (0.16) 0.805 (0.13) 0.872 (0.09) 1.000 (0.00) 1.000 (0.00) 1.000 (0.00) 1.000

SP4

1k 1 0.881 (0.06) 0.946 (0.04) 0.963 (0.03) 0.887 (0.05) 0.966 (0.02) 0.979 (0.01) 1.000
2 0.950 (0.03) 0.960 (0.03) 0.983 (0.01) 0.883 (0.05) 0.975 (0.01) 0.979 (0.01) 1.000

10k 1 0.899 (0.11) 0.958 (0.07) 0.991 (0.01) 0.935 (0.08) 0.968 (0.04) 0.999 (0.00) 1.000
2 0.926 (0.09) 0.971 (0.05) 0.991 (0.01) 0.954 (0.07) 0.984 (0.02) 1.000 (0.00) 1.000

100k 1 0.943 (0.08) 0.940 (0.08) 0.920 (0.06) 0.942 (0.09) 0.958 (0.09) 0.973 (0.07) 1.000
2 0.928 (0.08) 0.930 (0.09) 0.911 (0.07) 0.951 (0.09) 0.962 (0.08) 0.974 (0.08) 1.000

SP8

1k 1 0.884 (0.02) 0.884 (0.02) 0.903 (0.02) 0.861 (0.01) 0.878 (0.02) 0.857 (0.02) 0.817
2 0.733 (0.03) 0.643 (0.06) 0.688 (0.04) 0.730 (0.01) 0.681 (0.06) 0.625 (0.04) 0.587

10k 1 0.934 (0.05) 0.921 (0.05) 0.959 (0.03) 0.908 (0.02) 0.952 (0.03) 0.991 (0.00) 0.873
2 0.637 (0.08) 0.659 (0.10) 0.704 (0.11) 0.600 (0.08) 0.640 (0.10) 0.837 (0.05) 0.634

100k 1 0.977 (0.04) 0.975 (0.04) 0.980 (0.02) 0.964 (0.05) 0.990 (0.03) 1.000 (0.00) 1.000
2 0.881 (0.11) 0.865 (0.13) 0.864 (0.08) 0.890 (0.08) 0.942 (0.09) 0.984 (0.03) 1.000

in light of the grammatical inference algorithm
RPNI. We argued it was useful to use RPNI to
evaluate the quality of the data. However, this ar-
gument has one potential flaw. RPNI can be said
to measure the sufficiency of the data, at least for
learning mechanisms which are targeting regular
stringsets. If the learning mechanisms are capable
of learning nonregular languages then they may
need more data to learn some regular languages (in
order to distinguish them from some context-free
language for example).

RPNI in a sense “knows” that it is learning regu-
lar stringsets because it only ever builds finite-state
acceptors. There is evidence that RNNs, on the
other hand, can learn some non-regular stringsets
(Rodriguez, 2001; Schmidhuber et al., 2002). Fur-
thermore, it is not known how to build this kind
of a priori knowledge into neural networks. In
other words, the use of RPNI to understand the
quality of the training data is suggestive but not
probative. Nonetheless, in the absence of theoret-
ical learning results of RNNs on nonregular for-
mal languages, using grammatical inference algo-
rithms which provably learn large classes of lan-
guages (like RPNI) may be the best anyone can
do.

7 Conclusion

In this paper, we developed controlled experi-
ments using formal languages for investigating the
ability of RNNs to learn long-term dependencies.
The results are difficult to understand in light of
the dominant narrative in the deep learning litera-
ture regarding the efficacy of LSTMs over s-RNNs
in this learning task.

More generally, the experiments presented here
help show how formal language theory can reveal
the advantages and disadvantages of various RNN
models more clearly than testing with real-world
datasets. The primary reason is that we control
the nature of the target patterns and their complex-
ity. This was illustrated here with the compari-
son of SL and SP languages which encode local
and long-term dependencies, respectively. From
a logical perspective, the only difference between
the SL and SP classes is the way in which order
is represented in strings: SL classes use the suc-
cessor relation and SP classes use the precedence
relation.

Controlled experiments can also include care-
fully designed test sets. Here, through Test1 and
Test2, we could control the test data to better
understand how the RNNs generalize to words
longer than the ones found in training.

We argued these controlled experiments show
there is still some distance to go to understand
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Table 6: s-RNN with SGD Accuracy on Target
Stringsets after 100 epochs

sRNN with SGD

Training v10 v30 v100

Regimen Test1 Test2 Test1 Test2 Test1 Test2

1k 0.7641 0.7228 0.8015 0.7336 0.7362 0.6898

SL2 10k 0.7194 0.6983 0.7752 0.7169 0.9745 0.9981

100k 0.8034 0.7417 0.9713 0.9984 0.9482 0.9968

1k 0.9304 0.8683 0.9072 0.8359 0.8789 0.8134

SL4 10k 0.8234 0.7870 0.8347 0.7977 0.8588 0.8187

100k 0.4738 0.5005 0.8957 0.8492 0.5567 0.5641

1k 0.8191 0.8265 0.8402 0.8564 0.8065 0.8064

SL8 10k 0.5076 0.4951 0.5076 0.4951 0.6441 0.6409

100k 0.7830 0.7789 0.7830 0.7789 0.8079 0.8031

1k 0.7346 0.7331 0.8739 0.9174 0.8370 0.9277

SP2 10k 0.8371 0.8449 0.8400 0.8264 0.9998 1.0000

100k 0.6071 0.5902 0.5696 0.5645 1.0000 1.0000

1k 0.7625 0.7361 0.5744 0.5306 0.6668 0.5991

SP4 10k 0.7270 0.6808 0.6167 0.6331 0.7270 0.6398

100k 0.7038 0.6287 0.5626 0.5582 0.6643 0.5845

1k 0.8160 0.7702 0.1984 0.2882 0.8393 0.7372

SP8 10k 0.6520 0.6201 0.8364 0.6677 0.4504 0.5204

100k 0.8251 0.7505 0.8117 0.7645 0.4409 0.5027

how RNNs, including LSTMs, represent and learn
long-term dependencies in sequential patterns.
We tentatively hypothesized that the optimization
technique Adam may alleviate some difficulties
that s-RNNs may have with long-term dependen-
cies. If correct, this means the source of the prob-
lem was not the s-RNNs per se, but SGD.

Finally, we believe that more controlled exper-
iments of the sort presented here with more com-
plex formal languages and less naive LSTMs and
other kinds of RNNs, in conjunction with learning
algorithms from grammatical inference, are criti-
cal to better understanding the capacity of neural
networks to represent and learn long-term depen-
dencies.
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Abstract

We replicate a result from Bowman, Potts &
Manning (2015), showing success on a task
where neural networks learn logical reason-
ing. We study the solutions the neural net-
works find using visualisation & dimension-
ality reduction techniques. This allows us to
start addressing a key methodological worry:
that without an understanding of how the net-
works solve the task, we cannot determine
whether the networks have learned a general
solution or a large number of ‘local’ approx-
imations. We moreover look in some detail
into the way Bowman et al. constructed their
train and test set, and find that the random
train–test set split does not allow us to distin-
guish between the local and global solutions.
Finally, we identify an alternative test, that,
if past, would demonstrate that the networks
have learned a global solution. We find, how-
ever, that recursive neural networks (the sim-
plest of the models studied) fail this more
stringent test. We conclude that the question
whether neural networks can learn to reason
logically is still open, and deserves a nuanced,
graded answer rather than a binary one.

1 Introduction

Can neural networks learn to reason logically? To
study this question, Bowman et al. (2015) trained
networks on a task involving pairs of simple sen-
tences like ‘all reptiles walk’ and ‘some turtles move’.
In their setup, two recursive neural networks (Tree-
RNNs) are used to compute representations for each
of the sentences, which in turn enter in a simple feed-
forward network (with a softmax output layer) trained
to predict the logical relation between the sentences1.

1For the given pair of sentences, the correct logical relation is
‘forward entailment’, because turtles are a subset of the reptiles,
walking is a type of moving, and ‘all X Y’ entails ‘some V W’ if
V entails W and Y entails W.

Bowman et al. find that their networks can indeed
learn to correctly classify the pairs of sentences from
their artificial data set.

Does this show that neural networks and their as-
sociated learning rules are expressive enough to learn
to perform logical reasoning? This would be an im-
portant conclusion, in light of the debate about the
necessity to assume ‘symbolic’ machinery to account
for such cognitive tasks. However, not only are both
the logic and the neural networks chosen not very
representative for their domains, but there are also a
number of methodological questions that need to be
answered before conclusions can be drawn about the
actual success of Tree-RNNs on the specific task.

In this paper we first replicate the results from
Bowman et al., and then study the solutions the neu-
ral networks find in some detail using visualisation &
dimensionality reduction techniques. This allows us
to start addressing a key methodological worry: that
without an understanding of how the networks solve
the task, we cannot determine whether the networks
have learned a general solution or a large number of
‘local’ approximations. We moreover look in some
detail into the way Bowman et al. constructed their
train and test set, and find that the random train–test
set split does not allow us to distinguish between the
local and global solutions. Finally, we identify an
alternative test, based on identifying logical equiv-
alence, that if past would demonstrate that the net-
works have learned a global solution. As it turns out,
the Tree-RNNs we study in this paper fail this more
stringent test. We conclude that the question whether
neural networks can learn to reason logically is still
open, and, moreover, that this question deserves a nu-
anced, graded answer rather than a binary one.

2 Replication

The task is to predict logical relations that hold be-
tween pairs of sentences that involve monotonicity
reasoning and quantification. Rather than classifying
relations as entailment, contradiction or neither, as
is commonly done, a more informative inventory of
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seven semantic relations by (MacCartney and Man-
ning, 2009) is used. These relations correspond to
five commonly used set-theoretic relations between
non-empty sets (is subset of; equals; is superset of;
intersects with; does not intersect with – depicted on
the top and middle row of Figure 1), and two addi-
tional ones (like ‘intersects with’ and ‘does not inter-
sect with’, but with the extra condition that the union
of the two sets is the universe – depicted on the bot-
tom row of Figure 1).

Coutr 

bt'lckweirJ. 
et"t tcu ( M<vi t 

Figure 1: The seven logical relations by
(MacCartney and Manning, 2009)

All sentences are of the form quantifier
(not) noun (not) verb. Only five nouns and
four verbs occur, together with ten quantifiers, result-
ing in 800 possible sentences. Of each sentence pair,
the logical relation is determined using natural logic
calculus, which we describe in Section 4. In Table 1,
a few training examples are presented2.

A Recursive Neural Network (henceforth: Tree-
RNN) is a neural network that can be shaped af-
ter the syntactic structure of a sentence (Goller and
Kuchler, 1996; Socher et al., 2013; Le and Zuidema,
2014). We follow the architecture and training proce-
dure proposed by (Bowman et al., 2015), who applied
this Tree-RNN to the logical inference task described
above.

The training set-up is displayed in Figure 2. A
Tree-RNN is instantiated for both sentences. The
weights and word embeddings are shared between
them. The networks yield sentence representations,
which are concatenated and fed into a so-called com-
parison layer. This is a higher-dimensional layer that
can be thought of as a representation of the relation
between the two sentences. From this representation,
a softmax classifier predicts the logical relation.

After training, by backpropagating the error from

2We used the original data, courtesy of Bowman et al.,
available at https://github.com/sleepinyourhat/
vector-entailment/releases/tag/W15-R2.

Wcl
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Figure 2: Training set-up

the softmax layer all the way back to the word em-
beddings, classification accuracy on the training data
is 100%. On held-out data, performance varies from
98.9 to 99.5%, over different data splits. These results
are on par with those by (Bowman et al., 2015), who
reported 99.6 and 99.2% accuracy on train and test
set respectively. This is promising, but what have the
networks really learned? As noted by (Bowman et al.,
2015), “interesting analytical questions remain about
how these models encode the underlying logics.”

3 What have the networks really learned?

There are two sets of learned parameters in the Tree-
RNN: the word embeddings, and the composition
function. Moreover, there are weights to connect the
sentence representations to the comparison layer, and
weights that transform the contents of the compari-
son layer to a distribution over the possible classes.
For our analysis we focus on the sentence representa-
tions that emerge, reflecting the combined effects of
the word embeddings and the composition function.

3.1 Dimensionality Reduction

The representations of words and phrases/ sentences
in the Tree-RNNs are 25-dimensional, making them
hard to inspect manually. We applied two dimension-
ality reduction techniques to the data, one linear and
the other non-linear:

PCA (principal components analysis) determines
linear components that best explain the distribution of
the data. By projecting high-dimensional data along
their first principal components, we can visually in-
spect the data. An advantage of this technique is that
an explicit mapping exists from the original space to
the principal components. That is, the analysis can be
applied to a certain set of data-points, for instance all
800 possible sentence representations. The result can
be used to project any data-point in the same space,
such as a word embedding, onto the same principal
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( ( lt two warthogs ) move ) ^ ( ( two ( not turtles ) ) move )
( ( no mammals ) swim ) | ( ( all mammals ) move )
( ( no turtles ) walk ) A ( ( some ( not warthogs ) ) ( not move ) )

Table 1: Example pairs of sentences from the artificial dataset of (Bowman et al., 2015)

components.
t-SNE (t-Distributed Stochastic Neighbor Embed-

ding; (van der Maaten and Hinton, 2008)) is not
restricted to linear projections. It fits a lower-
dimensional (e.g., 2D) manifold to the data-points.
This yields a visualization that may better explain the
relations between the data-points, but there is no map-
ping that can be applied to new data-points after the
manifold has been fitted.

Whichever dimensionality reduction is used, it is
important to remember that we are not looking at the
real data directly. The dimensionality reduction is al-
ways applied using a certain set of data, e.g. the word
embeddings or a set of sentence embeddings. In what
follows, we will specify this set for each diagram.

3.2 Sentence Embeddings

We applied both dimensionality reductions to the rep-
resentations of all (800) possible sentences. The t-
SNE reduction is shown in Figure 3; the PCA reduc-
tion (here using 1st and 4th principal component) in
Figure 4. These plots demonstrate three interesting
features of the way the space of sentence embeddings
gets organized when optimizing for logical reasoning:

(1) From 3a, it is clear that the quantifiers are the
most prominent feature: they determine the primary
clustering of the data in this 2D reduction. (2) The
clusters for two and three; and for lt two and
lt three, largely overlap. This is understandable:
the semantic relations and projectivity behavior of
those respective quantifier pairs is almost identical.
Notably, the clusters corresponding to those pairs as
well as the points belonging to the quantifier no ac-
tually end up in two separate clusters, whereas for the
other quantifiers there are single convex clusters. This
qualitative difference is observed in some (but not all)
other runs too. Interestingly, this division corresponds
to whether the verb of the sentence is negated, as we
can see in Figure 3b. Here, the same reduced data-
points are displayed with the coloring corresponding
to verb identity, using different colors to distinguish
a predicate and its negation. (Plotting the same data-
points using the identity of the noun for coloring did
not yield any useful information. There is some or-
ganization, but no systematic pattern over clusters or
over different runs.)

(3) In some cases, such as for the cluster of some,
negation of the verb correspond to a fixed linear

(a) Colors distinguishing quantifiers

(b) Colors distinguishing verbs

Figure 3: t-SNE applied to all 800 sentence
representations
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shift (the observed order is swim and walk - move
and growl - not swim and not growl - not walk -
not move). In other cases, such as for the cluster
of ‘not most’, the negation has a mirroring effect.
(the order is: not growl - not swim - not move and
not walk - move and walk - swim - growl). A sim-
ilar mirroring effect of negation of the verb exists in
the PCA projection (not shown here). Negation is in
these case thus represented as a geometric operation,
a local mirroring effect (reflectional symmetry), that
allows the networks to generalize it to unseen data.
The network has discovered something general about
the negation of predicates.

(a) Fourth against first component, which exhibit the most
prominent clustering of quantifiers.

(b) Second and third component, which show the most
prominent clustering of verbs.

Figure 4: PCA applied to all 800 sentence
representations

3.3 Logical Relations as linear shifts in the
Representation Space

For every two sentences in the dataset, the logical re-
lation between them is given. When we study in the
PCA representation pairs of sentences for which each
of the 7 logical relations hold, we find that these log-
ical relations are instantiated with a variety of differ-

ent geometric relations in the 2-dimensional projec-
tion. Although this observation is difficult to interpret
(given the high-dimensionality of the sentence vec-
tor space, and the non-linearity of its projections into
the comparison layer), it is in any case not providing
us with evidence in favor of the hypothesis that the
network has learned a unified notion of entailment,
equivalence or contradiction. Figure 5 illustrates this
point. Here a new PCA was applied to the difference
vectors of 6818 sentence pairs (the development set).
In the figure, they are projected along their first two
components. We can certainly distinguish some ten-
dency to cluster in this image, but we do not find a
single cluster per relation. This is similarly the case
in each of the other combinations of the first five prin-
ciple components.

Figure 5: Second against first components of PCA
applied to the difference vectors between

representations of 6818 sentence pairs. The
symmetry in the origin emerges from the fact that for

almost every 〈A,B〉 also 〈B,A〉 is in the dataset.

Our hypothesis is that each of the clusters corre-
sponds to a certain reasoning pattern. Rather than
learning a single transformation that belongs to a log-
ical relation, the network seems to have learned a set
of such transformations. For instance, one transfor-
mation for sentence pairs all x V and some y V.

These visualisations thus suggests that the net-
works compute sentence representations such that ev-
ery sentence gets assigned a different vector, and that
some local generalizability but no global generaliz-
ability arises in the geometric relations between sen-
tences. This leads to a prediction that the networks
only reach their high accuracy, because for every sen-
tence pair in the test set there are one or multiple
similar sentence pairs in the train set with a known
logical relation between them. For instance, the net-
work can predict the logical relation between sen-
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tences in the pair <‘All turtles walk’, ‘Some reptiles
move’>, only because it has seen the label for the pair
<‘All warthogs walk’, ‘Some mammals move’>, or
for < ‘Some reptiles move’,‘All turtles walk’,>, or
for <‘Some mammals move’, ‘All warthogs walk’>
etc. Given this possibility we can see that a random
split between train and test set, where most test set
pairs will have such a ‘near neighbour’, is not the right
approach to distinguish between local generalization
and more global generalization.

Can we falsify this prediction by evaluating
whether the network can also generalize to logical re-
lations for which no similar sentence pairs have been
observed? It turns out that the dataset of (Bowman
et al., 2015) does allow for this possibility, but it re-
quires us to first have a deeper look into the logic they
used.

4 A deeper look into the used logic

The task that the network was applied to, is created in
the tradition of an approach to reasoning called Nat-
ural Logic (Lakoff, 1970; Benthem, 1986). This tra-
dition views reasoning as something that applies di-
rectly to the surface form of language, rather than to
a so-called ‘language of thought’. In practice, this
means that inference relations are computed between
sentences, without mapping them to a different se-
mantic representation, using a calculus. In this sec-
tion, we describe the calculus that was used to create
the dataset. Furthermore, we point out some limita-
tions of this system that may have affected the dataset.

4.1 Calculus

A calculus is described by (MacCartney and Man-
ning, 2009) to compute the relation that holds be-
tween two utterances p (the premise) and h (the hy-
pothesis). The following steps are taken to compute
the inference relation: (1) Determine a sequence of
atomic edits 〈e1, . . . , en〉 that transforms x0 = p
into xn = h (substitution, deletions, and insertions)
where xi = ei(xi−1). (2) For each atomic edit ei:
(a) determine the lexical relation β(ei); (b) project it
through the tree to determine the relation with previ-
ous step β(xi−1, ei) (In this case, only quantifiers and
‘not’ can influence projection); (c) Join the atomic
semantic relations with the previous results to obtain
β(x0, xi).

The information that is required by the calculus to
fulfill the task can be specified in a number of tables.
For step 2(a), the relations between lexical items that
can substitute each other need to be determined. That
is, a table saying that hippos are mammals, and that
barking entails making sound. In step (b), the logical

relation is projected through the tree. For the dataset
at hand, projection has an effect if a relation is under
the scope of a negation, or under a quantifier.

4.2 Limitations

The Natural Logic is not claimed to be a proper logi-
cal system – but for Bowman et al. (2015) it presum-
ably formed a convenient starting point. The calculus
described here is an extension of the so-called mono-
tonicity calculus, and can explain more examples of
entailment. Still, it is much weaker than the log-
ics used in state-of-the-art natural language inference
systems (Mineshima et al., 2016, a.o.), and even has
less deductive strength than first-order logic (Mac-
Cartney, 2009). The dataset of (Bowman et al., 2015)
is based on this natural logic calculus, and only con-
tains sentence pairs for which this calculus yields
an unambiguous statement. We here describe why
the calculus cannot always obtain such a statement,
whereas a sound and complete logical system would
in some cases. Partly, this is related to the order of the
edits made. Moreover, there are reasoning patterns
that are undeniably valid, that the calculus cannot es-
tablish: de Morgan’s laws for quantifiers.

Edit order The principle of the calculus is to look
at semantic relations that belong to local edits, that
are later joined. This sequential process comes with
a drawback. In the calculus, the order in which the
edits are processed can influence the result of the cal-
culation. That is, in some cases the result of the calcu-
lation is a weak statement (a combination of possible
relations), whereas it would be possible to obtain a
stronger result if the edits were made in a different
order.

De Morgan’s laws Of course, equivalence holds
trivially for pairs of identical sentences. However,
there are other pairs of sentences conceivable that
would satisfy equivalence. Here, we list four such
patterns, known as de Morgan’s laws for quantifiers.
Note that there may be other equivalence patterns
conceivable in the grammar.

N V ≡ No N not V
N not V ≡ No N V

Not all N V ≡ Some N not V
Not all N not V ≡ Some N V

Where N and V stand for the same noun and verb in a
pair of sentences. However obvious these relations
may seem, the natural logic calculus in its current
form cannot account for this outcome (MacCartney,
2009). Regardless of the order in which the edits are
applied to form the hypothesis from the premise, the
end result is too weak: to go from all hippos bark to
no hippos not bark the calculus has to go through ei-
ther no hippos bark or all hippos not bark, and in both
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cases looses crucial information (see Table 2).

i xi ei β(ei) β(xi−1, ei) β(x0, xi)
0 all hippos bark
1 no hippos bark SUB(all,no) | | |
2 no hippos not bark INS(not) ∧ | ≡@A^#

0 all hippos bark
1 all hippos not bark INS(not) ∧ | |
2 no hippos not bark SUB(all,no) | | ≡@A^#

Table 2: The calculus fails to predict equivalence.

4.3 Logical Equivalence

Since the natural logic calculus is unable to handle the
de Morgan’s laws, the dataset does not cover cases
of equivalence other than identical sentences. This
represents an opportunity to test the extent to which
the networks may generalize. We have generated all
the 160 sentence pairs in the grammar that instantiate
these laws. Using the trained TreeRNN’s and compar-
ison layer, we find that the networks do not classify
these sentence pairs as ‘equivalent’ above chance lev-
els (nor do they classify them as ‘forward’ or ‘back-
ward entailment’, Michael Repplinger, p.c.).

The sentence representations and linear shifts as-
sociated to these sentences are displayed in Figure 6.
What this graph (and projections on combinations of
other principal components not shown) show, is that
‘equivalence’ is not a unified geometric relation in
the sentence vector space: (1) Equivalent but non-
identical sentences are not mapped to the same or
similar points; (2) Each of the 4 equivalence patterns
(de Morgan laws) corresponds to its own approximate
linear shift in this space (in the projection of figure 6,
with PC4 against PC3, laws 1 and 4 run more or less
parallel, as do laws 2 and 3; however, in a projection
with PC4 against PC1, it is rather laws 1 and 2 and
laws 3 and 4). There doesn’t seem to be global gener-
alizability of the equivalence relation; (3) Within each
of these 4 patterns, the shift for a sentence pair with
one combination of a noun and a verb is quite simi-
lar to the shift for a pair with a different combination
– the equivalence relation might be locally generaliz-
able.

5 Conclusions

We have in this paper replicated the results by (Bow-
man et al., 2015), showing that a Tree-RNN can
learn to solve a logical reasoning task. We analyzed
the learned solution and showed that the Tree-RNN
learns to organize its semantic space such that nega-
tions of verbs are often implemented as a local mir-
roring and shifting (i.e., a geometric relation that al-
lows local generalizability), and that the linear shifts
between sentence representations tend to cluster to-

Figure 6: PCA applied to the representations of all
possible sentences. Difference vectors corresponding

equivalence patterns drawn as colored lines.

gether if the same logical relation holds. However,
there are no unique clusters per logical relation.

So, can neural networks learn logical reasoning?
The answer is unfortunately not an unambiguous
‘yes’ or ‘no’, but something much more nuanced.
First, we must get clear that ‘learning logical reason-
ing’, understood as learning to derive new knowledge
from previously established facts using previously es-
tablished valid reasoning patterns, is all about gener-
alization. The crucial question for any given learn-
ing system is which generalizations it has learned
and which ones it hasn’t. Has it learned that there
is a systematic relationship between mammals and
warthogs, between reptiles and turtles, between mov-
ing and walking (superset-subset relations)? Has it
learned that there is a systematic relationship between
moving and not moving, between pets and not pets?
The answer to these questions seems to be ‘yes’, as
evidenced by the high performance of the classifier
on the test set and the fact that we identified for some
of these logical relations (in particular, negation of
verbs) a corresponding geometric relationship in the
sentence vector space.

Has the system also learned the semantics of the
quantifiers, and thus the way the semantics of a quan-
tified expression depends on the semantics of its con-
stituents (Montague, 1973; Benthem, 1986)? Has it
learned that ‘all’ is upward monotone in its first argu-
ment, but downward monotone in its second argument
(such that for ‘all X Y’ to entail ‘all V W’ it must be
the case that X entails V – same order – but that W en-
tails Y – reversed order)? It appears the answer to this
question is ‘probably not’, at least for the TreeRNN
system that we studied in this paper. We found no ev-
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idence that suggests that the networks have learned
the systematic relationship between different quan-
tifiers (e.g., that everything entailed by ‘some X Y’
must also be entailed by ‘all X Y’, because they have
the same monotonicity profile). Rather, it seems that
the networks have learned relations between quanti-
fiers on a case by case basis - they generalize locally
(nouns and verbs) but not globally (quantifiers). Fur-
ther investigating this conclusion by selectively leav-
ing out classes of sentences from the training data
(rather than sampling at random from all possible sen-
tences) is part of our future work.
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Abstract

This paper examines to what degree cur-
rent deep learning architectures for im-
age caption generation capture spatial lan-
guage. On the basis of the evaluation of
examples of generated captions from the
literature we argue that systems capture
what objects are in the image data but not
where these objects are located: the cap-
tions generated by these systems are the
output of a language model conditioned on
the output of an object detector that cannot
capture fine-grained location information.
Although language models provide useful
knowledge for image captions, we argue
that deep learning image captioning archi-
tectures should also model geometric rela-
tions between objects.

1 Introduction

There is a long-traditional in Artificial Intelligence
(AI) of developing computational models that in-
tegrate language with visual information, see inter
alia.: (Winograd, 1973; McKevitt, 1995; Kelleher,
2003; Gorniak and Roy, 2004; Kelleher and Krui-
jff, 2005a; Brenner et al., 2007; Dobnik, 2009;
Tellex, 2010; Sjöö, 2011; Dobnik and Kelleher,
2016; Schütte et al., 2017). The goal of this pa-
per is to situate and critically examine recent ad-
vances in computational models that integrate vi-
sual and linguistic information. One of the most
exciting developments in AI in recent years has
been the development of deep learning (DL) archi-
tectures (LeCun et al., 2015; Schmidhuber, 2015).
Deep learning models are neural network mod-
els that have multiple hidden layers. The advan-
tage of these architectures is that these models
have the potential to learn high-level useful fea-
tures from raw data. For example, Lee et al. (2009)

report how their convolutional deep belief network
“learns useful high-level visual features, such as
object parts, from unlabelled images of objects
and natural scenes”. In brief, Lee et al. show how
a deep network trained to perform face recognition
learns a hierarchical sequence of feature abstrac-
tions: neurons in the early layers in the network
learn to act as edge detectors, neurons in later lay-
ers react to the presence of meaningful parts of a
face (e.g., nose, eye, etc.), and the neurons in the
last layers of the network react to sensible con-
figurations of body parts (e.g., nose and eyes and
sensible (approximate) offsets between them).

Deep learning models have improved on the
start-of-the-art across a range of image and lan-
guage modelling tasks. The typical deep learn-
ing architecture for image modelling is a convolu-
tional neural network (CNN) (Lecun et al., 1998)
and for language modelling is a recurrent neu-
ral network (RNN), often using long short-term
memory (LSTM) units (Hochreiter and Schmid-
huber, 1997). However, from the perspective of
research into the interface between language and
vision perhaps the most exciting aspect of deep
learning is the fact that all of these models (both
language and vision processing architectures) use
a vector based representation. A consequence of
this is that deep learning models have the poten-
tial to learn multi-modal representations that in-
tegrate linguistic and visual information. Indeed,
inspired by sequence-to-sequence neural machine
translation research (Sutskever et al., 2014), deep
learning image captioning systems have been de-
veloped that use a CNN to process and encode im-
age data and then pass this vector based encoding
of the image to an RNN that generates a caption
for the image. Figure 1 illustrates the components
and flow of data in an encoder-decoder CNN-RNN
image captioning architecture.

The performance of these deep learning image
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Encoder Decoder

CNN
Vector Based
Representation

RNN
“A bird flying
over water”

0 / 0

Figure 1: A schematic of a typical encoder-decoder deep learning image captioning architecture in (Xu
et al., 2015). The photo is different from but similar to the photo in this example. The current photo is by
Jerry Kirkhart (originally posted to Flickr as Osprey Hunting) and is sourced via Wikimedia Commons.
It is used here under the Creative Commons Attribution 2.0 generic licence.

captioning systems is impressive. However, the
question posed by this paper is whether these sys-
tems are actually grounding the semantics of the
entire linguistic caption in the image, and in par-
ticular whether these systems ground the seman-
tics of spatial relations in the image. The rest of
the paper is structured as follows: Section 2 in-
troduces the components of deep learning image
captioning architecture in more detail; following
this, Section 3 reviews the challenges of grounding
language in perception, with a particular focus on
spatial language; the paper concludes in Section
5 by posing the question of whether deep learning
image captioning architectures as currently consti-
tuted are capable of doing justice to the complexity
and diversity of factors that affect the production
and interpretation of spatial language in visually
situated dialogues.

2 The Standard DL Image Captioning
Architecture

As mentioned in Section 1 there are two major
components within current standard deep-learning
image captioning systems, a CNN that processes
the image input and encodes some of the informa-
tion from the image as a vector, and an RNN that
takes the vector representation of the image as an
input and generates a caption for the image. This
section provides an explanation for how each of
these components works: Section 2.1 introduces
the basic architecture of a CNN and Section 2.2
introduces the basic architecture of an RNN and
explains how they can be used to create visually
grounded language models.

2.1 Convolutional Neural Networks
CNNs are specifically designed for image recog-
nition tasks, such as handwritten digit recognition
(Le Cun, 1989). A well-recognised approach to

image recognition is to extract local visual features
and combine these features to form higher-order
features. A local feature is a feature whose ex-
tent within a image is constrained to a small set of
neighbouring pixels. For example, for face recog-
nition a system might first learn to identify fea-
tures such as patches of line or curve segments,
and then learn patterns across these low level fea-
tures that correspond to features such as eyes or
a mouth, and finally learn how to combine these
body-part features to identify a face.

A key challenge in image recognition is creat-
ing a model that is able to recognise if a visual
feature has occurred in the image irrespective of
the location of the feature in the image:

“it seems useful to have a set of fea-
ture detectors that can detect a partic-
ular instance of a feature anywhere on
the input plane. Since the precise lo-
cation of a feature is not relevant to
the classification, we can afford to loose
some position information in the pro-
cess” (Le Cun, 1989, p.14)

For example, a face recognition network should
recognise the shape of an eye whether the eye is in
the top right corner of the image or in the centre
of the image. CNNs achieve this translation in-
variant detection of local visual features using two
techniques:

1. weight (parameter) sharing and
2. pooling.

Recall that each neuron in a network learns a func-
tion that maps from a set of inputs to an output
activation. The function is defined by the set of
weights the neuron applies to the inputs it receives
and learning the function involves updating the
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weights from a set of random initialised values to a
set of values that define a function that the network
found useful during training in terms of predicting
the correct output value. In the context of image
recognition a function can be understood as a fea-
ture detector which takes a set of pixel values as
input and outputs a high-activation score if the vi-
sual feature is present in the set of input pixels and
a low-activation score if the feature is not present.
Furthermore, neurons that share (or use) the same
weights implement the same function and hence
implement that same feature detector.

Given that a set of weights for a neuron defines
a feature detector and that neurons with the same
weights implement the same feature detector, it is
possible to design a network to check whether a vi-
sual feature occurs anywhere in an image by mak-
ing multiple neurons share the same set of weights
but have each of these neurons inspect different
portions of the image in such a way so that to-
gether the neurons cover the whole image.

For example, imagine we wish to train a net-
work to identify digits in images of 10× 10 pix-
els. In this scenario we may design a network so
that one of the neurons in the network inspects the
pixels in the top-left corner of the figure to check
if a visual feature is present. The image at the
top of Figure 2 illustrates such a neuron. This
neuron inspects the pixels (0,0), . . . ,(2,2) and ap-
plies the function defined by the weight vector
< w0, . . . ,w8 >. This neuron will return a high ac-
tivation if the appropriate pixel pattern is present
in the pixels input to the function and low other-
wise. We can now create a copy of this neuron that
uses the same weights < w0, . . . ,w8 > but which
inspects a different set of pixels in the image: the
image at the bottom of Figure 2 illustrates such
a neuron, this particular neuron inspects the pixels
(0,1), . . . ,(2,3). If the visual feature that the func-
tion defined by the weight vector < w0, . . . ,w8 >
occurs in either of the image patches inspected by
these two neurons, then one of the neurons will
fire.

Extending the idea of a set of neurons with
shared weights inspecting a full image results in
the concept of a feature map. In a CNN a feature
map consists of a group of neurons that share the
same set of weights on their inputs. This means
that each group of neurons that share their weights
learns to identify a particular visual feature and
each neuron in the group acts as a detector for that
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Figure 2: Two neurons connected to different ar-
eas in the input image (i.e., with different recep-
tive fields) but which shared the same weights:
w0,w1,w2,w3,w4,w5,w6,w7,w8

feature. In a CNN the neurons within each group
are arranged so that each neuron examines a differ-
ent local region in the image. The set of pixels that
each neuron in the feature map inspects is known
as the receptive field of that neuron. The neu-
rons and the related receptive fields are arranged
so that together the receptive fields cover the en-
tire input image. Consequently, if the visual fea-
ture the group detects occurs anywhere in the im-
age one of the neurons in the group will identify
it. Figure 3 illustrates a feature map and how each
neuron in the feature map has a different receptive
field and how the neurons and fields are organised
so that taken together the receptive fields of the
feature map cover the entire input image. Note
that the receptive fields of neighbouring neurons
typically overlap. In the architecture illustrated in
Figure 3 the receptive fields of neighbouring neu-
rons will overlap by either two columns (for hor-
izontal neighbours) or by two rows (for vertical
neighbours). However, an alternative organisation
would be to reduce the number of neurons in the
feature map and reduce the amount of overlap in
the receptive fields. For example, if the receptive
fields only overlapped by one row or one column
then we would only need half the number of neu-
rons in the feature map to cover the entire input
image. This would of course result in a “two-to-
one under-sampling in each direction” (Le Cun,
1989).

The idea of applying the same function repeat-
edly across an input space by defining a set of neu-
rons where each neuron applies the function to a
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Figure 3: A feature map

different part of the input is very general and can
be used irrespective of the type of function being
applied. CNNs networks often use the same tech-
nique to under-sample the output from a feature
map. The motivation for under-sampling is to dis-
card locational information in favour of generalis-
ing the network’s ability to identify visual features
in a shift invariant manner. The standard way to
implement under-sampling on the output of a fea-
ture map is to use a pooling layer, so called as it
pools information from a number of neurons in a
feature map. Each neuron in a pooling layer in-
spects the outputs of a subset of the neurons in a
feature map, in a very similar way to the way the
neuron in the feature map each has a receptive field
in the input. Often the function used by neurons in
a pooling layer is the max function. Essentially, a
max pooling neuron outputs the maximum activa-
tion value of any of the neurons in the preceding
layer that it inspects. Figure 4 illustrates the ex-
tension of the feature map in Figure 3 with a pool-
ing layer. The output of the highlighted neuron
in the pooling layer is simply the highest activa-
tion across the 4 neurons in the feature map that
it inspects. Pooling obviously discards locational
information at a local level, after pooling the net-
work knows that a visual feature occurred in a re-
gion of the image but does not know where pre-
cisely within the region the feature occurred.

Receptive Fields
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Figure 4: Applying pooling to a feature map

A CNN network is not restricted to only one
feature map or one pooling layer. A CNN net-
work can consist of multiple feature maps and
pooling layers working in parallel where the out-

puts of these different streams of processing are
finally merged to one or more fully connected lay-
ers (see Figure 5). Furthermore, these basic build-
ing blocks of feature maps and pooling layers can
be sequenced in many different ways: the output
of one feature map layer can be used as the input
to another feature map layer, and the output of a
pooling layer may be the input to a feature map
layer. Consequently, a CNN architecture is very
flexible and can be composed of multiple layers of
feature maps and pooling layers. For example, a
CNN could include a feature map that is fed into
a pooling layer which in turn acts as the input for
a second feature map layer which itself is down-
sampled using another pooling layer, and so on,
until the outputs of a layer are eventually fed into
a fully-connected feed-forward layer where the fi-
nal prediction is calculated: feature map→ pool-
ing → feature map → pooling → dots → fully-
connected layer. Obviously with each extra layer
of pooling the network discards more and more lo-
cation information.
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Figure 5: A CNN architecture containing N par-
allel streams of feature maps and pooling layers
feeding into a single fully connected feed-forward
layer

2.2 Recurrent Neural Network Language
Models

Recurrent Neural Networks (RNN)1 are an ideal
neural network architecture for processing sequen-
tial data such as language. Generally, RNN mod-
els are created by extending a feed-forward neu-

1This introduction to Recurrent Neural Networks is based
on (Kelleher, 2016).
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ral network that has just one hidden layer with a
memory buffer, as shown in Figure 6a.

RNNs process sequential data one input at a
time. In an RNN the outputs of the neurons in
the hidden layer of the network for one input are
feed back into the network as part the next input.
Each time an input from a sequence is presented to
the network the output from the hidden units for
that input are stored in the memory buffer over-
writing whatever was in the memory (Figure 6b).
At the next time step when the next data point in
the sequence is considered, the data stored in the
memory buffer is merged with the input for that
time step (Figure 6c). Consequently, as the net-
work moves through the sequence there is a recur-
rent cycle of storing the state of the network and
using that state at the next time step (Figure 6d).

In order to simplify the following figures we do
not draw the individual neurons and connections
but represent each layer of neurons as a rounded
box and show the flow of information between lay-
ers with arrows. Also, we refer to the input layer
as xt , the hidden layer as ht , the output layer as yt ,
and the memory layer as ht−1. Figure 7a illustrates
the use of this schematic representation of layers
of neurons and the flow of information through an
RNN and Figure 7b shows the same network using
the shorter naming convention.

Figure 8 demonstrates the flow of information
through an RNN as it processes a sequence of in-
puts. An interesting thing to note is that there is a
path connecting each h (the hidden layer for each
input) to all the previous hs. Thus, the hidden layer
in an RNN at each point in time is dependent on
its past. In other words, the network has a memory
so that when it is making a decision at time step t
it can remember what it has seen previously. This
allows the model to take into account data that de-
pends on previous data, for example in sequences.
This is the reason why an RNN is useful for lan-
guage processing: having a memory of the previ-
ous words that have been observed in a sequence
of a sentence is predictive of the words that follow
them.

A language model is a computational model that
takes a sequence of words as input and returns a
probability distribution from which the probabil-
ity of each vocabulary word being the next word in
the sequence can be predicted. An RNN language
model can be trained to predict the next word in
a sequence. Figure 9 illustrates how information

flows through an RNN language model as it pro-
cesses a sequence of words and attempts to predict
the next word in the sequence after each input. The
* indicates the next word as predicted by the sys-
tem. All going well ∗Word2 = Word2 but if the
system makes a mistake this will not be the case.

When we have trained a language model we
can make it to “hallucinate” or generate language
by giving it an initial word and then inputting the
word that the language model predicts as the most
likely next word as the following input word into
the model, etc. Figure 10 shows how we can use
an RNN language model to generate text by feed-
ing the words the language model predicts back
into the model.

3 Grounding Spatial Language in
Perception

The symbol grounding problem is the problem of
how the meaning of a symbol can be grounded
in anything other than other meaningless sym-
bols. Harnad (1990) argues the symbolic rep-
resentations must be grounded bottom-up from
two forms of non-symbolic sensor representations:
iconic representations which can be understood as
sensory experience of objects and events, and cat-
egorial representations which are feature detec-
tors that are triggered by invariant features of ob-
jects and events within these sensory experiences.
Given these two foundational non-symbolic rep-
resentations, a grounded symbolic system can be
built up with the elementary symbols of this sys-
tem being the symbolic names or labels of the
object and event categories that are distinguished
within the categorical representations of the agent.
Essentially, the meaning of an elementary symbol
is the categorisation of sensor grounded experi-
ence.

The description “meaningless” in the defini-
tion above (originally made by (Harnad, 1990))
should be discussed in relation to the work in dis-
tributional semantics (Turney et al., 2010) which
has been used very successfully for computational
representation of meaning. The reason why dis-
tributional semantic representations work is that
word contexts capture indirectly latent situations
that co-occuring words are all referring to. Distri-
butional semantic models are built from grounded
language (which is therefore not “meaningless”) it
is only that grounded representations are not in-
cluded in the model. Grounding is expressed indi-
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Figure 6: The flow of data between the memory buffer and the hidden layer in a recurrent neural network

rectly through word co-occurrences.

(Roy, 2005) extends Harnad’s approach by set-
ting out a framework of semiotic schemas that
ground symbolic meaning in a causal-predictive
cycle of action and perception. Within Roy’s
framework meaning is ultimately grounded in
schemas where each schema is a belief network
that connects action, perception, attention, cat-
egorisation, inference, and prediction. These
schemas can be understood as the interface be-
tween the external world (reached through the ac-
tion and perception components of the schemas)
and the agents internal cognitive processes (atten-
tion, categorisation, inference, and prediction).

Spatial language is an interesting case study in
grounding language in perception because linguis-
tic descriptions of perceived spatial relations be-

tween objects are intrinsically about the world and
as such should be grounded within an agent’s per-
ception of that world (Dobnik, 2009; Kelleher and
Costello, 2009). The most common form of spatial
language discussed in the literature is a locative
expression. A locative expression is composed of
a noun phrase modified by a prepositional phrase
that specifies the location of the referent of the
noun phrase relative to another object. We will use
the word target object to refer to the object whose
position is being described and the term landmark
object to refer to the object that the target object’s
location is described relative to2, the annotations

2The literature on locative expressions uses uses a variety
of terms to describe the target and the landmark objects, for
a review see (Kelleher, 2003; Dobnik, 2009). Other terms
found in the literature for the target object include: trajector,
local object, and figure object. Other terms used to describe
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on the following example locative expression il-
lustrates this terminology:

T he big red book︸ ︷︷ ︸
Target

on the table︸ ︷︷ ︸
Landmark︸ ︷︷ ︸

Prepositional
Phrase︸ ︷︷ ︸

Noun Phrase︸ ︷︷ ︸
Locative Expression

Previous work on spatial language has revealed
a range of factors that impinge on the interpre-
tation of locative expressions. An obvious com-
ponent in the grounding of a spatial description
is the scene geometry and the size and shape of
region described by the spatial term within that
geometry. The concept of a spatial template is
used to describe these regions and several exper-
iments have revealed how these templates vary
across spatial terms and languages, e.g., (Logan
and Sadler, 1996; Kelleher and Costello, 2005;

the landmark object include: reference object, relatum, and
ground.
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Figure 8: An RNN unrolled in time
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Figure 9: RNN language model unrolled in time

Dobnik and Åstbom, 2017).
It has also been shown that the geometry of a

spatial template for a given preposition is affected
by a number cognitive and contextual factors, in-
cluding:

• perceptual attention (Regier and Carlson,
2001; Burigo and Knoeferle, 2015; Kluth and
Schultheis, 2014),
• the viewer’s perspective on the landmark(s)

(Kelleher and van Genabith, 2006),
• object occlusion (Kelleher et al., 2011),
• frame of reference ambiguity and align-

ment between the landmark object and refer-
ence frames (Carlson-Radvansky and Logan,
1997; Burigo and Coventry, 2004; Kelleher
and Costello, 2005),
• the location of other distractor objects in the

scene (Kelleher and Kruijff, 2005b; Costello

Output:

Input:

⇤Word2 ⇤Word3 ⇤Word4 · · · ⇤Wordt+1

h1 h2 h3 · · · ht

Word1

0 / 0

Figure 10: Using an RNN language model to gen-
erate a word sequence

48



and Kelleher, 2006; Kelleher et al., 2006),
• and the richness of the perceptual context

(Dobnik and Åstbom, 2017).

The last point is related to the fact that factors
affecting semantics of spatial descriptions go be-
yond scene geometry and include the functional
relationships between the target and the landmark
(Coventry, 1998; Coventry et al., 2001; Coventry
and Garrod, 2004) and force dynamics within the
scene (Coventry et al., 2005; Sjöö, 2011). These
functional relations can be captured as mean-
ings induced from word distributions (Dobnik and
Kelleher, 2013, 2014). Another important factor
of (projective) spatial descriptions is their contex-
tual underspecification in terms of the assigned
frame of reference which is coordinated through
dialogue interaction between conversational par-
ticipants (Dobnik et al., 2015). It is therefore
based on their coordinated intentions in their in-
teraction.

The research in spatial language semantics
highlights its multifaceted nature. Spatial lan-
guage draws upon (i) geometric concepts, (ii)
world knowledge (i.e., an understanding of func-
tional relationships and force dynamics), and (iii)
perceptual and discourse cues. Thus in order for a
computational system to adequately model spatial
language semantics it should accommodate all or
most of these factors.

4 Spatial Language in DL

The question that this paper addresses is whether
deep learning image captioning architectures as
currently constituted are capable of grounding
spatial language within the images they are cap-
tioning. The outputs of these systems are impres-
sive and often include spatial descriptions. Fig-
ure 1 (based on an example from (Xu et al., 2015))
provides an indicative example of the performance
of these systems. The generated caption in this
case is accurate and what is particularly interest-
ing is that it includes a spatial description: over
water. Indeed, the vast majority of generated cap-
tions listed in (Xu et al., 2015) include spatial de-
scriptions, some of which include:3

• “A woman is throwing a frisbee in a park”
• “A dog is standing on a hardwood floor”

3The emphasis on the spatial descriptions were added
here.

• “A group of people sitting on a boat in the
water”.

The fact that these example captions include
spatial descriptions and that the captions are of-
ten correct descriptions of the input image begs the
question of whether image captioning systems are
actually learning to ground the semantics of these
spatial terms in the images. The nature of neural
network systems makes it difficult to directly anal-
yse what a system is learning, however there are
a number of reasons why it would be surprising
to find that these systems were grounding spatial
language. First, recall from the review of ground-
ing in Section 3 that spatial language draws on a
variety of information, including:

• scene geometry,
• perceptual cues such as object occlusion,
• world knowledge including functional rela-

tionships and force dynamics,
• and coordinated intentions of interacting

agents.

Considering only scene geometry, these image
captioning systems use CNNs to encode the rep-
resentation of the input image. Recall from Sec-
tion 2.1 that CNNs discard locational information
through the (down-sampling) pooling mechanism
and that such down-sampling may be applied sev-
eral times within a CNN pipeline. Although it is
possible that the encoding generated by a CNN
may capture rough relative positions of objects
within a scene, it is likely that this encoding is
too rough to accommodate the level of sensitiv-
ity of spatial descriptions to location that experi-
mental studies of spatial language have found to
be relevant (cf. the changes in acceptability rat-
ings in (Logan and Sadler, 1996; Kelleher and
Costello, 2005; Dobnik and Åstbom, 2017) as a
target object moved position relative to the land-
mark). The architecture of CNNs also points to
the fact that these systems are unlikely to be mod-
elling perceptual cues. CNNs essentially work by
identifying what an object is through a hierarchi-
cal merging of local visual features that are pre-
dictive of the object type. These local visual fea-
tures are likely to be features that are parts of the
object and therefore frequently co-occur with the
object label. Consequently, CNNs are unlikely to
learn to identify an object type via context and
viewpoint dependent cues such as occlusion. Fi-
nally, neither a CNN nor an RNN as currently
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used in the image description tasks provide mech-
anisms to learn force-dynamics or functional re-
lationships between objects (cf. (Coventry et al.,
2005; Battaglia et al., 2013)) nor do they take into
account agent interaction. Viewed in this light
the current image captioning systems appear to
be missing most of the key factors necessary to
ground spatial language. And, yet they do appear
to generate reasonably accurate captions that in-
clude spatial descriptions.

There are a number of factors that may be con-
tributing to this apparent ability. First, an inspec-
tion of the spatial descriptions used in the gen-
erated captions reveals that they tend to include
topological rather than projective spatial preposi-
tions (e.g., on and in rather than to the left of and
above): in a forest, in a park, in a field, in the field
with trees, in the background, on a bed, on a road,
on a skateboard, at a table. These spatial descrip-
tions are more underspecified with regard to the lo-
cation of the target object relative to the landmark
object than projective descriptions which also re-
quire grounding of direction within a frame of ref-
erence. Topological descriptions are semantically
adequate already if the target is just proximal to
the landmark and hence it is more likely that a
caption will be acceptable. Furthermore, it is fre-
quently the case that given a particular label for
a landmark it is possible to guess the appropri-
ate preposition irrespective of the image and/or the
target object type or location. Essentially the task
posed to these systems is to fill the blanks with one
of at, on, in:

• TARGET a field,
• TARGET the background,
• TARGET a road,
• TARGET a table.

Although the system may get some of the
blanks wrong it is likely to get many of them right.
This is because the system can use distributional
knowledge of words which captures some ground-
ing indirectly as discussed in Section 3. Indeed,
recent research has shown that co-occurrence of
nouns with a preposition within a corpus of spa-
tial descriptions can reveal functional relations be-
tween objects referred to by the nouns (Dobnik
and Kelleher, 2013, 2014). Word co-occurrence is
thus highly predictive of the correct preposition.
Consequently, language models trained on im-
age description corpora indirectly model partially

grounded functional relations, at least within the
scope of the co-occurrence likelihood of preposi-
tions and nouns.

The implication of this is that current image
captioning systems do not ground spatial descrip-
tions in the images they take as input. Instead, the
apparent ability of these systems to frequently cor-
rectly use spatial prepositions to describe spatial
relations within the image is the result of the RNN
language model learning to predict the most likely
preposition to be used given the target and land-
mark nouns where these nouns are predicted from
the image by the CNN.

There is a negative and a positive side to this
conclusion. Let’s start with the negative side.
The distinction between cognitive representations
of what something is versus where something is
has a long tradition in spatial language and spa-
tial cognition research (Landau and Jackendoff,
1993). These image captioning systems would ap-
pear to be learning representations that allow them
to ground the semantics of what. But they are
not learning representations that enable them to
ground the semantics of where. Instead, they rely
on the RNN language model to make good guesses
of the appropriate spatial terms to use based on
word distributions. The latter point introduces the
positive side. It is surprising how much and how
robustly semantic information can be captured by
distributional language models. Of course, lan-
guage models cannot capture the geometric rela-
tions between objects, for example they are not
able to distinguish successfully the difference in
semantics between the chair is to the left of the ta-
ble and the chair is to the right of the table as left
and right would occur in exactly the same word
contexts. However, as we argued in Section 3 spa-
tial language is not only spatial but also affected
by other sources of knowledge that leave an im-
print in the word distributions which capture re-
lations between higher-level categorical represen-
tations built upon the elementary grounded sym-
bols (Harnad, 1990). It follows that some categor-
ical representations will be closer to and therefore
more grounded in elementary symbols, something
that has been shown for spatial language (Coven-
try, 1998; Coventry et al., 2001; Coventry and
Garrod, 2004; Dobnik and Kelleher, 2013, 2014).
In conclusion, it follows that successful compu-
tational models of spatial language require both
kinds of knowledge.
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5 Conclusions

In this paper we examined the current architecture
for generating image captions with deep learn-
ing and argued that in its present setup they fail
to ground the meaning of spatial descriptions in
the image but nonetheless achieve a good perfor-
mance in generating spatial language which is sur-
prising given the constraints of the architecture
that they are working with. The information that
they are using to generate spatial descriptions is
not spatial but distributional, based on word co-
occurrence in a sequence as captured by a lan-
guage model. While such information is required
to successfully predict spatial language, it is not
sufficient. We see at least two useful areas of fu-
ture work. On one hand, it should be possible to
extend the deep learning configurations for image
description to take into account and specialise to
learn geometric representations of objects, just as
the current deep learning configurations are spe-
cialised to learn visual features that are indicative
of objects. The work on modularity of neural net-
works such as (Andreas et al., 2016; Johnson et al.,
2017) may be relevant in this respect. On the other
hand, we want to study how much information can
be squeezed out of language models to success-
fully model spatial language and what kind of lan-
guage models can be built to do so.
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Abstract

Functional Distributional Semantics is a
framework that aims to learn, from text,
semantic representations which can be in-
terpreted in terms of truth. Here we make
two contributions to this framework. The
first is to show how a type of logical
inference can be performed by evaluat-
ing conditional probabilities. The sec-
ond is to make these calculations tractable
by means of a variational approximation.
This approximation also enables faster
convergence during training, allowing us
to close the gap with state-of-the-art vector
space models when evaluating on seman-
tic similarity. We demonstrate promising
performance on two tasks.

1 Introduction and Background

Standard approaches to distributional semantics
represent meanings as vectors, whether this is
done using the more traditional count vectors (Tur-
ney and Pantel, 2010), or using embedding vec-
tors trained with a neural network (Mikolov et al.,
2013). While vector space models have advanced
the state of the art in many tasks, they raise ques-
tions when it comes to representing larger phrases.
Ideally, we would like to learn representations that
naturally have logical interpretations.

There have been several attempts to incorporate
vectors into logical representations, and while we
do not have space for a full literature review here,
we will mention two prominent lines of research.
Coecke et al. (2010) and Baroni et al. (2014) pro-
pose a tensor-based approach, where vectors are
combined according to argument structure. How-
ever, this leaves open the question of how to per-
form logical inference, as vector spaces do not
provide a natural notion of entailment. Indeed,

Grefenstette (2013) proved that quantifiers cannot
be expressed using tensor calculus. Garrette et al.
(2011) and Beltagy et al. (2016) incorporate a vec-
tor space model into a Markov Logic Network, in
the form of weighted inference rules (the truth of
one predicate implying the truth of another). This
approach requires existing vectors, and assumes
we can interpret similarity in terms of inference.

In contrast to the above, Emerson and Copes-
take (2016) (henceforth E&C) introduced the
framework of Functional Distributional Seman-
tics, which represents the meaning of a predicate
not as a vector, but as a function.

To define these functions, we assume a seman-
tic space X , each point representing the features
of a possible individual. We refer to points in X as
‘pixies’, intuitively ‘pixels’ of the space, to make
clear they are not individuals – two individuals
may be represented by the same pixie. Further dis-
cussion of model theory will be given in forthcom-
ing work (Emerson and Copestake, 2017) (hence-
forth E&C-forth). We take X to be a vector space,
each dimension intuitively representing a feature.

A semantic function maps from the space X to
the range [0, 1]. This can be interpreted both in the
machine-learning sense of a classifier, and in the
logical sense of a truth-conditional function.1 In
the machine learning view, a semantic function is
a probabilistic classifier for a binary classification
task – each input x ∈ X is either an instance of the
predicate’s class, or it is not. In the logical view,
a semantic function specifies what features a pixie
needs to have in order for the predicate to be true
of it – that is, the predicate’s truth conditions.

1We take a probabilistic approach, where a predicate has a
probability of truth for any pixie. We believe this is a strength
of the model, as it can model fuzzy boundaries of concepts.
However, we could also use semantic functions in a more tra-
ditional logic, by assigning truth when the function’s value
is above 0.5, and falsehood otherwise. This is equivalent to
turning the probabilistic classifier into a ‘hard’ classifier.
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This is related to probabilistic type judgements
in the framework of Probabilistic Type Theory
with Records (TTR) (Cooper, 2005; Cooper et al.,
2015). Working within TTR, Larsson (2013) ar-
gues in favour of representing perceptual concepts
as classifiers of perceptual input. While TTR rep-
resents situations in terms of situation types, a se-
mantic function model defines a semantic space
without reference to any types or predicates.

Schlangen et al. (2016) take a similar view, rep-
resenting meanings as image classifiers. Zarrieß
and Schlangen (2017) use a distributional model to
help train such classifiers, but do not directly learn
logical representations from distributional data.

Our approach to logical inference is related
to the work of Bergmair (2010) and Clarke and
Keller (2015), who use fuzzy truth values and
probabilistic truth values, respectively. However,
neither incorporate distributional data.

In contrast to the above, a semantic function
model can be trained on a parsed corpus. By defin-
ing a generative model, we can apply unsupervised
learning: optimising the model parameters to max-
imise the probability of generating the corpus data.

Our model can be trained on a corpus anno-
tated with Dependency Minimal Recursion Se-
mantics (DMRS) (Copestake et al., 2005; Copes-
take, 2009). This represents the meaning of a sen-
tence as a semantic dependency graph that has a
logical interpretation. An example DMRS graph
is shown in Fig. 1 (ignoring quantifiers, and ignor-
ing properties such number and tense). Note that,
as these are semantic dependencies, not syntactic
dependencies, active and passive voice sentences
can be represented with the same graph. This de-
pendency graph could be generated by the proba-
bilistic graphical model shown in Fig. 2. The gen-
erated predicates are at the bottom: q might corre-
spond to a verb, p its subject, and r its object. The
dependency links (ARG1 and ARG2) are at the top.

Rather than generating the predicates directly,
we assume that each predicate is true of a latent,
unobserved pixie. For example, the DMRS graph
for the dog chased the cat has three pixies, corre-
sponding to the dog, the chasing event, and the cat.
We can define a generative model for such sets of
pixies (the top row of Fig. 2), assuming each link
corresponds to a probabilistic dependence; intu-
itively, different kinds of events occur with dif-
ferent kinds of arguments. In machine learning
terms, this forms an undirected graphical model.

dog chase cat
ARG2ARG1

Figure 1: A simplified DMRS graph, illustrating
the type of data observed during training. This
graph would correspond to sentences like The dog
chased the cat, or Cats are chased by dogs.

y zx
ARG2ARG1

∈ X

tc, x tc, y tc, z

∈ {⊥,>} |V |

p q r

∈ V

Figure 2: A probabilistic graphical model for
Functional Distributional Semantics (E&C Fig. 3).
Each node denotes a random variable, but only the
bottom row is observed. The plate (middle row)
denotes repeating variables across the vocabulary.
Top row: latent pixies x, y, and z, lying in a
semantic space X . Their joint distribution is de-
termined by the DMRS links ARG1 and ARG2.
Middle row: each predicate c in the vocabulary V
is probabilistically true or false for each pixie.
Bottom row: for each pixie, we observe exactly
one predicate, probabilistically chosen out of all
predicates that are true of the pixie.

We generate the predicates in three stages (from
top to bottom in Fig. 2). First, we generate a set of
pixies, with DMRS links specifying probabilistic
dependence. Second, we use the semantic func-
tions for all predicates to generate a truth value for
each predicate applied to each pixie. Third, for
each pixie, we generate a single predicate out of
all true predicates. The separation of pixies and
truth values gives us a connection with logical in-
ference, as we will see in §2.1.

For a DMRS graph with a different structure,
we can define a similar graphical model. For ex-
ample, for an intransitive sentence, with just a verb
and its subject, we can remove the right-hand col-
umn of Fig. 2. The model parameters are shared
across all such graphs, so we can train our model
on a heterogenous set of DMRS graphs.

We follow E&C, and implement this model as
shown in Fig. 3. The semantic space X consists of
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∈ {0, 1}N

∈ {0, 1} |V |

p q r

∈ V

Figure 3: Implementation of the model in Fig. 2.
Top row: pixies are binary-valued vectors, form-
ing a CaRBM. For each link, connections be-
tween the dimensions of the two pixies determine
how likely they are to be active at the same time.
Middle row: each semantic function is a
one-layer feedforward network, with a single
output interpreted as the probability of truth.
Bottom row: for each pixie, we generate exactly
one predicate, as in Fig. 2.

sparse binary-valued vectors, where a small fixed
number of dimensions are 1, and the rest 0. In-
tuitively, each dimension is a ‘feature’ of a pixie,
and only a small number are present. The joint dis-
tribution over pixies is given by a Cardinality Re-
stricted Boltzmann Machine (CaRBM) (Swersky
et al., 2012). The semantic functions are one-layer
feedforward networks, with a sigmoid activation
so the output is in the range [0, 1]. The probability
of generating a predicate (bottom row) is weighted
by the observed frequency of the predicate.

2 Theoretical Contributions

2.1 Logical Inference

The model in Fig. 2 contains, in the middle row, a
node for the truth of each predicate for each pixie.
Using these nodes, we can convert certain logical
propositions into statements about probabilities.

For example, we might be interested in whether
one predicate implies another. For simplicity, con-
sider a single pixie x, as shown in Fig. 4. Then,
the logical proposition ∀x ∈ X , a(x)⇒ b(x)
is equivalent2 to the statement P (tb,x|ta,x) = 1.

2More precisely, the equivalence requires the logic to have
‘existential import’: Every A implies that some A exists.
This follows from the definition of conditional probability
P (B|A) = P (A ∧B)/P (A), only defined if P (A) 6= 0

Intuitively, conditioning on ta,x means restrict-
ing to those pixies x for which the predicate a
is true. If the probability of tb,x being true is 1,
then the predicate b is true for all of those x.
Similarly, ∃x ∈ X , a(x) ∧ b(x) is equivalent to
P (tb,x|ta,x) > 0. Furthermore, classical rules of
inference hold under this equivalence. For exam-
ple, from P (tb,x|ta,x) = 1 and P (tc,x|tb,x) = 1,
we can deduce that P (tc,x|ta,x) = 1. This is pre-
cisely the classical Barbara syllogism. A proof is
given in Appendix A.

In practice, when training on distributional data,
the conditional probability P (tb,x|ta,x) will never
be exactly 0 or 1, because the model only imple-
ments soft constraints. Nonetheless, this quantity
can be very informative: if it is 0.999, then we
know that if a(x) is true, it is almost always the
case that b(x) is also true. So, it represents the
degree to which a implies b, in an intuitive sense.

Separate from this notion of inference, we can
also consider the similarity of two latent pixies – if
a is true of x, and b is true of y, how many features
do x and y share? If a and b are antonyms, the
truth of one will not imply the truth of the other,
but the pixies may share many features.

As Copestake and Herbelot (2012) note, distin-
guishing synonyms and antonyms requires check-
ing whether expressions are mutually exclusive.
We do not have access to such information in our
training data, and such cases are inconsistently an-
notated in our test data (see §3.1). Nonetheless, the
model allows us to make such a distinction, which
is an advantage over vector space models. Exploit-
ing this distinction (perhaps by using coreference
information) would be a task for future work.

To calculate P (tb,x|ta,x), we must marginalise
out x, because the model actually defines the
joint probability P (x, tb,x, ta,x). This is analo-
gous to removing bound variables when calculat-
ing the truth of quantified expressions in classi-
cal logic. Quantifiers will be discussed further by
E&C-forth. However, marginalising out x requires
summing over the semantic space X , which is in-
tractable when X has a large number of dimen-
sions. In §2.2, we introduce a variational approxi-
mation to make this calculation tractable.

In the general case, there are multiple pixie vari-
ables. This opens up the possibility of inferring
what is true of one pixie, given what is true of an-
other. For example, we might be interested in what
is true of a verb’s arguments, which we could ex-
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x

ta, x tb, x

Figure 4: Logical inference for a single pixie x,
and two predicates a and b. We have a joint distri-
bution between x and the truth values ta,x and tb,x,
which lets us consider logical inferences in terms
of conditional probabilities, such as P (tb,x|ta,x),
the probability of b being true, given that a is true.

y zx
ARG2ARG1

ta, x tb, y tc, z

td, x

Figure 5: Logical inference for three pixies and
four predicates of interest: we know whether
a, b, c are true of x, y, z, respectively, and we
would like to infer whether d is true of x. The
distribution for td,x depends on all the other truth
values, because it is indirectly connected to them
via the latent pixies.

plore with the three-pixie graph in Fig. 5. We can
ask questions such as: if the predicate paint is true
of an event, what predicates are true of its argu-
ments? A good model might answer that for the
ARG1 pixie, artist and person are likely true, while
democracy and aubergine are likely false.

Just as with the one-pixie case, there is an
equivalence between logical propositions and
statements about probabilities. For example,
∃x, y ∈ X , a(y) ∧ b(x) ∧ ARG1(y, x) is equiva-
lent to P (tb,x|ta,y) > 0. Note that ARG1 does not
correspond to a random variable – it is instead rep-
resented directly by the structure of the graphical
model (the edges in the top row of Fig. 2 and the
middle row of Fig. 5). As before, this conditional
probability is never going to be exactly 0 or 1, but
it is nonetheless a useful quantity when perform-
ing approximate inference, as we will see in §3.2.

x

Figure 6: Variational inference for Fig. 4. Exactly
calculating the distribution of x given ta,x is in-
tractable, but we can use a mean-field approxima-
tion. The dotted lines indicate approximate infer-
ence, and the solid lines indicate inference from
the mean-field pixie vector.

Figure 7: Variational inference for Fig. 5. The
ARG1 and ARG2 links are not explicitly repre-
sented, but the mean-field probabilities are op-
timised to approximate the joint distribution in-
duced by the links. Each dimension has an inde-
pendent probability, but they are jointly optimised,
so they depend on all truth values for all pixies.

2.2 Variational Inference

As explained in the previous section, we can ex-
press certain logical propositions as conditional
probabilities, but calculating these probabilities
exactly is intractable, as it involves summing over
the semantic space, which grows exponentially
with the number of dimensions. Furthermore, we
need to calculate similar conditional probabilities
when training the model in the first place.

Instead of summing over the entire space, E&C
proposed summing over a small number of care-
fully chosen pixies, using a Markov Chain Monte
Carlo method. However, this algorithm is slow
for two reasons. Firstly, many iterations of the
Markov chain are required before the samples are
useful. Secondly, even if we are not summing over
the entire space, many samples are still needed,
because the discrete values lead to high variance.
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In this section, we introduce a variational infer-
ence algorithm, where we directly approximate the
distribution over pixies that we need to calculate,
and then optimise this approximation. This makes
the calculations in the previous section tractable,
and also makes training more efficient.

The distribution we need to approximate is
P (x|tc,x), the probability that a latent pixie x has
particular features, given the truth of some pred-
icate c. We use a mean-field approximation: we
assume that each dimension has an independent
probability qi of being active, as shown in (1). The
approximate probability Q(x) is simply the prod-
uct of the probabilities of each dimension. Fur-
thermore, we assume that each of these probabili-
ties depends on the average activation of all other
dimensions (i.e. the mean field activation).

P (x|tc,x) ≈ Q(x) =
∏

i|xi=1

qi
∏

i|xi=0

(1− qi) (1)

For Q to be a good approximation, it needs to
be close to P . We can measure this using the
Kullback-Leibler divergence from Q to P .3 Min-
imising this quantity is also done in the Expecta-
tion Propagation algorithm (Minka, 2001). How-
ever, a semantic function model is not in the expo-
nential family, making it difficult to apply Expec-
tation Propagation directly.

Given this mean-field approximation Q(x), we
have a a mean-field vector qi. This vector is not
in X , because each dimension is now a value in
the range [0, 1], rather than taking one of the val-
ues 0 or 1. It represents a ‘typical’ pixie for these
truth values. Furthermore, we have implemented
semantic functions as one-layer neural networks,
and each weight in the network can be multiplied

3Variational Bayes minimises the KL-divergence in the
opposite direction – that is, the KL-divergence from P to Q.
However, for the above approximation, this is infinite: if
the number of active units is not equal to the fixed cardi-
nality, then P (x|tc,x) = 0 but Q(x) 6= 0, giving infinite
Q(x) logP (x|tc,x). Furthermore, while Variational Bayes
prefers ‘high precision’ approximations (areas of high Q are
accurate), we will prefer ‘high recall’ approximations (areas
of high P are accurate). This is appropriate for two reasons.
Firstly, in areas where the number of active units is wrong,
Q is bound to be too high, but if we want to sample from Q,
we can avoid these areas by using belief propagation, as ex-
plained by Swersky et al. (2012). Secondly, in areas where
the number of active units is correct, Q will be much higher
than P only if there is a dependence between dimensions that
Q cannot capture, such as if P is a multi-modal distribution.
Because of the definition of an RBM, such a dependence is
impossible within one pixie, and combined with the simple
form of our semantic functions, such a dependence will be
rare between pixies.

by a value in the range [0, 1] just as easily as it can
be multiplied by 0 or 1. Since a mean-field vector
defines a distribution over pixies, applying a se-
mantic function to a mean-field vector lets us ap-
proximately calculate the probability that a predi-
cate is true of a pixie drawn from this distribution.

Differentiating the KL-divergence with respect
to qi, and using the above idea that we can ap-
ply semantic functions to mean-field vectors, we
can derive the update rule given in (2), with a full
derivation given in Appendix B. This updates the
value of qi, while holding the rest fixed. Here,
x(+i) is the mean-field vector where unit i is fixed
to be on, x(−i) is the mean-field vector where unit i
is fixed to be off, tc is the semantic function for the
predicate c, D is the number of dimensions of X ,
and C is the number of active units. Optimising Q
can then be done by repeatedly applying this up-
date rule across all dimensions.

qi =

(
1 +

D − C

C

tc
(
x(−i))

tc
(
x(+i)

)
)−1

(2)

This update rule looks at how likely the predi-
cate c is to be true when the dimension xi is ac-
tive, and when it is not. If c is much more likely
to be true when xi is active, then qi will be close
to 1. If c is much more likely to be true when xi
is inactive, then qi will be close to 0. If there is no
difference at all, then qi will be C/D, the expected
probability if all dimensions are equally likely.

We can apply this to logical inference, to calcu-
late P (tb,x|ta,x), as shown in Fig. 6. We first find
the mean-field vector for x, conditioning on the
truth of a. This approximates P (x|ta,x). Then, we
evaluate the semantic function for b on this mean-
field vector. This approximates P (tb,x|ta,x).

For multiple pixies, the process is similar, as
shown in Fig. 7. We have one mean-field vec-
tor for each pixie, and we optimise these together.
The only difference to the update rule is that, as
well as considering how activating one dimension
changes the probability of a predicate being true,
we also have to consider how likely this dimension
is to be active, given the other pixies in the graph.
This leads to an extra term in the update rule, as
exemplified in (3), where there is a link from x
to y. The link has weights Wij which control how
likely it is that xi and yj are both active.

qi =

(
1 +

D − C

C

tc
(
x(−i))

tc
(
x(+i)

)e−ΣjWijyj

)−1

(3)
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Model SimLex Nouns SimLex Verbs WordSim Sim. WordSim Rel.
Word2Vec .40 .23 .69 .46
SVO Word2Vec .44 .18 .61 .24
Semantic Functions .46 .19 .60 .14

Table 1: Spearman rank correlation with average annotator judgements. Note that we would like
to have a low score on the final column (which measures relatedness, rather than similarity).

Model Development Test
Word2Vec, Addition .50 .47
Semantic Functions .20 .16
Word2Vec and Sem-Func Ensemble .53 .49

Table 2: Mean average precision on the RELPRON development and test sets. Note that this Word2Vec
model was trained on a more recent (and hence larger) version of Wikipedia, to match Rimell et al.

3 Experimental Results4

Finding a good evaluation task is difficult. Lexical
similarity tasks do not require logical inference,
while tasks like textual entailment require a level
of coverage beyond the scope of this paper. We
consider two tasks: lexical similarity, as a simple
benchmark, and the RELPRON dataset, which lets
us explore a controlled kind of inference.

We trained our model on subject-verb-object
(SVO) triples extracted from WikiWoods5, a
parsed version of the July 2008 dump of the En-
glish Wikipedia, distributed by DELPH-IN. This
resource was produced by Flickinger et al. (2010),
using the English Resource Grammar (Flickinger,
2000, 2011), and the PET parser (Callmeier, 2001;
Toutanova et al., 2005), with parse ranking trained
on the manually treebanked subcorpus WeScience
(Ytrestøl et al., 2009).

Our source code is available online.6 The Wiki-
Woods corpus was pre-processed using the Python
packages pydelphin7 (developed by Michael
Goodman), and pydmrs8 (Copestake et al., 2016).

To speed up training, we initialised our model
using random positive-only projections, a simple
method for producing reduced-dimension count
vectors (QasemiZadeh and Kallmeyer, 2016).
Rather than counting each context separately, ev-
ery context is randomly mapped to a dimension, so
each dimension corresponds to the total count of
several contexts. These counts can then be trans-

4A fuller set of results, with further discussion, will be
given by E&C-forth.

5http://moin.delph-in.net/WikiWoods
6http://github.com/guyemerson/sem-func
7http://github.com/delph-in/pydelphin
8http://github.com/delph-in/pydmrs

formed into PPMI scores. As with normal PPMI-
based count vectors, there are several hyperparam-
eters that can be tuned (Levy et al., 2015) – how-
ever, as we are using these vectors as parameters
for semantic functions, it should be noted that the
optimal hyperparameter settings are not the same.

We compare our model to two vector space
models, also trained on Wikipedia. Both use
Mikolov et al. (2013)’s skipgram algorithm with
negative sampling. “Word2Vec” was trained on
raw text, while “SVO Word2Vec” was trained on
the same SVO triples used to train our model. We
tested these models using cosine similarity.

3.1 Lexical Semantic Similarity

To measure the similarity of two predicates a
and b, we use the conditional probability described
in §2.1, and illustrated in Figs. 4 and 6. Since this
is an asymmetric measure, we multiply the condi-
tional probabilities in both directions, i.e. we cal-
culate P (ta,x|tb,x)P (tb,x|ta,x).

We evaluated on two datasets which aim to cap-
ture similarity, rather than relatedness: SimLex-
999 (Hill et al., 2015), and WordSim-353 (Finkel-
stein et al., 2001), which Agirre et al. (2009) split
into similarity and relatedness subsets. Results are
shown in Table 1.9 For each dataset, hyperparam-
eters were tuned on the remaining datasets. As
WordSim-353 is a noun-based dataset, it is possi-
ble that performance on SimLex-999 verbs could
be improved by optimising hyperparameters on a
more appropriate development set.

Note that we would like a low correlation on the

9Performance of Word2Vec on SimLex-999 is higher than
reported by Hill et al. (2015). Despite correspondence with
the authors, it is not clear why their figures are so low.
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relatedness subset of WordSim-353. In the real
world, related predicates are unlikely to be true
of the same pixies (and the pixies they are true of
are unlikely to even share features). For predicates
which are true of similar but disjoint sets of pixies,
annotations in these datasets are inconsistent. For
example, SimLex-999 gives a low score to (aunt,
uncle), but a high score to (cat, dog). The seman-
tic function model achieves the lowest correlation
on the relatedness subset.

Compared to E&C, the gap between the seman-
tic function model and the vector space models has
essentially been closed. Which model performs
best is inconsistent across the evaluation datasets.
This shows that the previously reported lower per-
formance was not due to a problem with the model
itself, but rather with an inefficient training algo-
rithm and with poor choice of hyperparameters.

3.2 RELPRON

The RELPRON dataset was produced by Rimell
et al. (2016). It consists of ‘terms’ (all nouns),
each paired with up to ten ‘properties’. For exam-
ple, a telescope is a device that astronomers use,
and a saw is a device that cuts wood. All prop-
erties are of this form: a hypernym of the term,
modified by a relative clause with a transitive verb.
For each term, the task is to identify the properties
which apply to this term. Since every property fol-
lows one of only two patterns, this dataset lets us
focus on semantics, rather than parsing.

A model that captures relatedness can achieve
good performance on this dataset – Rimell et al.
found that the other argument of the verb was the
best predictor of the term (e.g. astronomer predicts
telescope). Logically speaking, these predicates
do not imply each other. However, Rimell et al.
included confounders for a model relying on re-
latedness – e.g. a document that has a balance is
an account, not the quality of balance. In all of
their models, this was the top-ranked property for
balance. By combining a vector model with our
model, we hoped to improve performance.

We tested our model using the method de-
scribed in §2 and illustrated in Figs. 5 and 7: for
each term and property, we find the probability of
the term being true, conditioned on all predicates
in the property. Results are given in Table 2. As
noted in §3.1, our model does not capture related-
ness, and it performs below vector addition. How-
ever, the ensemble outperforms the vector space

model alone. This improvement is not simply due
to increasing the capacity of the model – increas-
ing the dimensionality of the vector space did not
yield this improvement.

Furthermore, inspecting the differences in pre-
dictions between the vector space model and the
ensemble, it appears that there is particular im-
provement on the confounders included in the
dataset, which require some kind of logical infer-
ence. In our ensemble model, for the term bal-
ance, the top-ranked property is no longer the con-
founder document that has a balance, but instead
the correct property quality that an ear maintains.

4 Conclusion

We can define probabilistic logical inference in
Functional Distributional Semantics, and effi-
ciently calculate it using variational inference. We
can use this to improve performance on the REL-
PRON dataset, suggesting our model can learn
structure not captured by vector space models.
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A Logical equivalence

A.1 Proof of general case
Syllogisms are classically expressed in set-
theoretic terms. A quantified proposition of the
form Q A are B, where Q is some quantifier,
gives constraints on the sizes of the sets A ∩B
and A \B, and says nothing about the size of B.

For the quantifier ∃, we have:

|A ∩B| > 0

For the quantifier ∀, we have the following,
where the second constraint assumes existential
import:

|A \B| = 0

|A ∩B| > 0

From these definitions, we can use standard set
theory to prove all and only the valid syllogisms.
To show equivalence with our probabilistic frame-
work, we first note that sizes of sets form a mea-
sure (the ‘counting measure’), and probabilities
also form a measure. The above conditions are all

constraints on sizes of sets being zero or nonzero,
so it suffices to show that the sizes and probabili-
ties are equivalent in the measure-theoretic sense:
they agree on which sets have measure zero.

First, we note that P (B|A) = P (A∩B)
P (A) is de-

fined only when P (A) > 0, which will give us
existential import.

For ∃, we have:

P (B|A) = P (A ∩B)

P (A)
> 0

P (A ∩B) > 0

We can say nothing further about the probabil-
ity P (A \B) = P (A)− P (A ∩B), which may
be zero or nonzero, just as in the classical case.

For ∀, we have:

P (A ∩B)

P (A)
= 1

P (A ∩B) = P (A)

P (A ∩B) = P (A ∩B) + P (A \B)

P (A \B) = 0

And we also have:

P (A \B) + P (A ∩B) = P (A) > 0

P (A ∩B) > 0

This demonstrates the equivalence.

A.2 Example

We can prove the Barbara syllogism as follows:

P (B|A) = 1 =⇒ P (A \B) = 0,

P (A) > 0

P (C|B) = 1 =⇒ P (B \ C) = 0

P (A \ C) = P (A ∩B \ C) + P (A \B \ C)

≤ P (B \ C) + P (A \B)

= 0

P (A ∩ C) = P (A)− P (A \ C)

= P (A) > 0

=⇒ P (C|A) =
P (A ∩ C)

P (A)
= 1
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B Derivation of update rule

We are trying to optimise Q to minimise the KL-
divergence from Q(x) to P (x|tc,x):

DKL(P ||Q) =
∑

x

P (x|tc,x) log
P (x|tc,x)
Q(x)

=
∑

x

P (x|tc,x)
(
logP (x|tc,x)− logQ(x)

)

Note that the first term is independent of Q. To
iteratively optimise one parameter qi at a time, we
take the derivative:

∂

∂qi
DKL(P ||Q) = − ∂

∂qi

∑

x

P (x|tc,x) logQ(x)

=
∑

x|xi=1

P (x|tc,x)
1

qi
−
∑

x|xi=0

P (x|tc,x)
1

1− qi

Now we can rewrite P (x|tc,x) as the following.
If there is just one pixie, then we can assume a
uniform prior over x. For D dimensions, of which
C are active, there are

(
D
C

)
different vectors.

P (x|tc,x) =
P (x)P (tc,x|x)

P (tc,x)

=
tc(x)(

D
C

)
P (tc,x)

Note that
(
D
C

)
P (tc,x) is constant in x. Setting

the derivative to 0, we have:

∑

x|xi=1

tc(x)
1

qi
=
∑

x|xi=0

tc(x)
1

1− qi

Summing over all x is intractable, but we can
approximate this sum using mean-field vectors
for x. For most values of x, tc(x) will be close
to 0, and the regions of interest will be near the
mean-field vectors. Let x(+i) denote the mean-
field vector when xi = 1 and the total activation of
the remaining dimensions is C − 1, and let x(−i)

denote the mean-field vector when xi = 0 and the
total activation of the remaining dimensions is C.
Both of these vectors can be approximated using
the values of qj for j 6= i, scaled so that their sum
is correct. Then we have:
(
D−1
C−1

)
tc(x

(+i))
1

qi
≈
(
D−1
C

)
tc(x

(−i))
1

1− qi

tc(x
(+i))

1

qi
≈ D−C

C
tc(x

(−i))
1

1− qi

Re-arranging for qi yields the following, which
is the optimal value for qi, given the other dimen-
sions qj , and given the above approximations:

qi ≈
(
1 +

D − C

C

tc
(
x(−i))

tc
(
x(+i)

)
)−1

In the above derivation, we assumed a uniform
prior over x, which meant that P (x|tc,x) ∝ tc(x).
If there are links between pixies, then this no
longer holds, and we instead have P (x) being de-
termined by the RBM weights, which gives the
following, where we sum over all links x

l−→ y,
from the pixie x to another pixie y with label l.
Each link type l has weights W (l)

jk (and for incom-
ing links, we simply take the transpose of this ma-
trix). For clarity, we do not write bias terms.

P (x|tc,x) ∝ tc(x) exp
∑

x
l−→ y

∑

j,k

W
(l)
jk xjyk

So to amend the update rule, we replace tc(x)
with the above expression, which gives:


1 +

D − C

C

tc
(
x(−i)) exp∑W

(l)
jk x

(−i)
j yk

tc
(
x(+i)

)
exp

∑
W

(l)
jk x

(+i)
j yk



−1

Now note that this ratio of exponentials can be
rewritten as:

exp
∑

W
(l)
jk

(
x

(−i)
j − x

(+i)
j

)
yk

For dimensions j 6= i, the difference between
the two mean-field vectors will be small, so if∑

k W
(l)
jk yk is on average close to 0, the above ex-

pression will be dominated by the value at j = i.
So, we can approximate it as:

exp−
∑

x
l−→ y

∑

k

W
(l)
ik yk

This gives the following update rule, which re-
duces to (3) in the case of a single link:


1 +

D−C
C

tc
(
x(−i))

tc
(
x(+i)

) exp−
∑

x
l−→ y

∑

k

W
(l)
ik yk




−1
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Abstract

Explainable Machine Translation (XMT)
is an instance of Explainable Artificial In-
telligence (XAI). An XAI program does
not only return an output, but also an ex-
planation of how the output was obtained.
This helps the user to assess the reliability
of the result, even if the AI program itself
is a black box. As a promising candidate
for explanations in MT, we consider inter-
lingual meaning representations—abstract
syntax trees in the sense of Grammati-
cal Framework (GF). An abstract syntax
tree encodes the translatable content in a
way that enables accurate target language
generation; the main problem is to find
the right tree in parsing. This paper in-
vestigates a hybrid architecture where the
tree is obtained by a black box robust
parser, such as a neural dependency parser.
As long as the parser returns a tree from
which the target language is generated in a
trusted way, the tree serves as an explana-
tion that enables the user to assess the re-
liability of the whole chain of translation.

1 Introduction

A Machine Translation (MT) system converts text
or speech from one language to another. In typi-
cal situations, the user of MT knows only one of
the languages; otherwise, no translation would be
needed. This raises a question: how can the user
be sure that the translation is correct, if she has no
way to check it? This problem is real because the
quality of MT is so low: the state of the art seldom
reaches higher than 50% accuracy in the standard
BLEU scale (Wu et al., 2016). Typical errors in
MT include:

• incorrect grammar in the output (e.g. agree-
ment and word order errors)

• words omitted from the output (e.g. the nega-
tion word missing)

• words interpreted in wrong senses (e.g. bat
rendered as in “baseball bat” instead of “fly-
ing mammal”)

In recent years, NMT (Neural Machine Trans-
lation) has improved the average BLEU scores,
in the best cases from the 30’s to the 40’s (Wu
et al., 2016). Improvements have been observed,
in particular, in grammaticality, resulting in bet-
ter fluency of the output. At the same time, NMT
may produce output that has little to do with the
original message, since it may omit words more
freely than previous methods, invent new words,
and make “sense” of senseless input (e.g. mis-
spellings) in arbitrary ways. Reliability is thus an
even more serious issue with NMT than with older
MT techniques.

The problem is similar to many other AI tech-
niques using neural networks: for instance, the
problem of creating sense from nonsense is well
known in image recognition (Nguyen et al., 2015).
The common factor is the black-box character of
neural techniques: as there are no explicit rules, it
is hard to know how the system “reasons” when
producing its output. It is also hard to “fix bugs”
in a holistic system: feeding in more data, tuning
the parameters, or improving the algorithms may
improve the average scores, but it gives no guar-
antees to correct any particular errors.

Now that AI techniques are used for more and
more mission-critical tasks, the demand of relia-
bility increases. XAI (eXplainable Artificial Intel-
ligence) is an initiative in this direction (Gunning,
2017). If ordinary AI stays content with outputs
from black boxes, XAI wants to have explanations
together with the outputs (see Figure 1.) :

• Why is the result this and not something else?
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• How reliable is this result?
The explanation should be some kind of evidence
that the user can inspect and understand, and it
should make explicit the reasons why the system
has made its decisions.

XAI has been promoted as a new idea in the
field of AI, even as “the next big disruptive tech-
nology” (Prevett, 2017). However, the general
idea that programs should produce explanations is
older. It is known as certifying algorithms: al-
gorithms that don’t just yield a result, but also a
certificate that can be inspected by the user and
that justifies the result (McConnell et al., 2011). In
the best case, the certificate can even be mechan-
ically checked by an independent program, which
decides whether the certificate really justifies the
output; see Figure 2.

An an example, consider an expert system that
has a large knowledge base to which the user can
pose questions. The system may be too large
and complex to have a logically sound and com-
plete proof search. Therefore it may use heuristics
and probabilistic reasoning to deliver answers. If
the system just delivers the answers, it cannot be
trusted in any situation. But if every answer is ac-
companied by an explanation, its reliability can be
assessed case by case. In the best case, the ex-
planation may be a logically valid proof, and a
checking program can automatically confirm the
correctness of the answer. In some other cases, the
program may just display a sequence of reasoning
steps, and tell the user which steps are uncertain.

In this paper, we propose XMT (eXplainable
Machine Translation) as kind of MT, just like XAI
more generally is a kind of AI. We approach the
problem as an instance of certifying algorithms:
what kind of certificates could there be for MT?
How could they be verified mechanically, and how
could they serve as explanations to a user who
knows only one of the languages involved?

2 Explanations vs. certificates vs. proofs

Certifying algorithms should be distinguished
from verified algorithms. The idea of verifi-
cation, or proof of correctness, is much older,
dating back the 1960’s (Burstall, 1969; Hoare,
1969). A verified algorithm has a total proof of
correctness—a proof that guarantees every input-
output instance. Certifying algorithms deliver
proofs of individual instances only. They are use-
ful in situations where total correctness is hard to

prove, but proofs of instances are possible. This
is often the case with complicated programs, as
well as programs whose correctness depends on
external components such as compilers and hard-
ware. Certificates can be delivered by black-box
programs, such as neural networks or proprietary
binary-only programs. They are particularly use-
ful in programs that are known not to be totally
correct but still useful. MT programs typically
have many of these characteristics.

In addition to the distinction between total and
instance-based correctness, there is the dimen-
sion of formal vs. informal. In the original set-
up of (McConnell et al., 2011), certificates are
formal objects that can be mechanically checked
by programs. In XAI, explanations need not be
formal, but they must be understandable by hu-
mans. In some cases, one and the same expla-
nation/certificate can serve both purposes: for in-
stance, a formal proof can be both checkable by a
machine and understandable by a trained logician.
If the evidence is not conclusive but probabilistic,
human inspection is crucial when assessing the se-
riousness of the weak points.

The two dimensions of evidence are summa-
rized in Table 1. In the top-left corner, we have
proofs in the sense of program verification. Be-
low that, we have formal certificates for instances.
These types of evidence are applicable in situa-
tions where the input-output relation can be for-
mally defined. Since this is not always the case
in AI, explanations in XAI are informal evidence
that apply to instances of a program.

But there is also a sense in which entire pro-
grams can have informal evidence. This is often
referred to as “correct by construction”, or “cor-
rect by design”, or, in special cases, “correct by
definition”. An example of this is the grammar of
a programming language, from which the parser of
the language is derived. In the case of a program-
ming language, the grammar defines the language.
There is no question of it being incorrect: it is cor-
rect by definition. The parser, on the other hand,
can be correct by proof—typically via a proof of
an algorithm that derives the parser from the gram-
mar.

Any software system necessarily contains parts
that are not provable, but correct only in the in-
formal sense, if at all. The reason is the same as
in all mathematics: since proofs cannot be circu-
lar, some things must be assumed as axioms. An
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Figure 1: Ordinary black box AI vs. explainable AI.

Figure 2: Certifying algorithms, according to (McConnell et al., 2011).

evidence formal informal
for program proof correctness by construction
for instance certificate explanation

Table 1: The two dimensions of evidence for a program.
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axiom system should be convincing in some infor-
mal way. It should also be as small as possible—
both in the sense of being simple and easy to un-
derstand, and in the sense of not assuming things
that could be proved.

3 Explanations in machine translation

The traditional MT pipeline follows a sequence of
steps shown in Figure 3. A trend in NMT has been
to abandon this pipeline in favour of an end-to-end
procedure (Lee et al., 2016). Thus some of the
best-performing NMT systems convert character
strings of the source language to character strings
of the target language. They don’t assume even
the most rudimentary linguistic abstractions, such
as words. From a theoretical AI point of view,
this makes some sense: end-to-end systems may
be better models of the intuitive behaviour of hu-
mans, under the assumption that humans’ knowl-
edge of language is implicit and not based on lin-
guistic concepts. From the engineering point of
view, however, end-to-end translation is problem-
atic:

• it can make mistakes that could be easily
avoided by well-established linguistic knowl-
edge;

• its functioning is hard to understand, predict,
and improve;

• it leaves no trace (intelligible to humans) of
how the translations are obtained.

By not using established linguistic knowledge, an
end-to-end black box system is in conflict with
the scientific ideal of assuming as little as possi-
ble and proving as much as possible. In its sim-
plest form, this ideal says: don’t guess if you
know (Tapanainen and Voutilainen, 1994). It is
a virtue of the traditional pipeline that it builds
on known things and minimizes guessing. From
this pipeline, it is moreover possible to extract ex-
planations of decisions made at different stages.
These explanations can help engineers to improve
the program and users to assess the realiability of
each translation.

The pipeline in Figure 3 is based on the
Vauquois triangle, which was originally used as
a classification of MT systems (Vauquois, 1968).
Thus “lexical transfer” makes only a lexical analy-
sis of the source, and generates the target by look-
ing up dictionary equivalents. We have marked
this method as “highly uncertain”, because it is
not at all sure that it ends up with correct senses

of words, not even correct parts of speech, and the
result is likely to be grammatically a mess. “Syn-
tactic transfer” climbs to the level of syntax trees
before generating the output, and achieves better
grammaticality. But this method is still “uncer-
tain”, because it may select a wrong interpretation
of the input and also miss idiomatic translations.
Full correctness is only guaranteed on the high-
est level, semantic interlingua, which represents
the intended meaning precisely. The semantic in-
terlingua moreover makes it easier to generate id-
iomatic output, because it doesn’t need to repli-
cate the same syntactic structures as the source
language.1

While the certainty of transfer rises when we go
up to higher levels, the analysis leading to those
levels gets increasingly uncertain. Thus lexical
analysis, in the sense of morphology, is for many
languages a solved problem, modulo misprints
and unknown words. Syntactic parsing, which in
our diagram includes part-of-speech disambigua-
tion, is an uncertain process, because syntax is
not so well understood as morphology, and also
because it involves disambiguation based on su-
perficial information. The final step, semantic in-
terpretation is even more uncertain, since seman-
tics is even less well understood than syntax, and
since disambiguation may require any amount of
non-linguistic context and world knowledge (Bar-
Hillel, 1964; Kay, 1997). Moreover, the interlin-
gua itself has an uncertain status, because there is
no known interlingua that expresses with formal
precision everything that a natural language can
express.2

The interlingua can be made complete in
the special case of controlled natural lan-
guages (CNL), which address limited and well-

1 The lowest level, character transfer, is the current state of
the art in NMT. From the explanation point of view, it could
be marked as completely uncertain, as it doesn’t deliver any
explanation understandable to humans.

2 It was Descartes who proposed in 1629 that translation
be done via a mathematically precise interlingua such that “in
a single day one can learn to name every one of the infinite
series of numbers, and thus to write infinitely many different
words in an unknown language. The same could be done for
all the other words necessary to express all the other things
which fall within the purview of the human mind.” (Letter to
Mersenne, (Descartes, 1984)) His experience from creating
analytic geometry may have convinced him that such preci-
sion is possible beyond numbers. But his final conclusion
was not optimistic: “do not hope ever to see such a language
in use. For that, the order of nature would have to change so
that the world turned into a terrestrial paradise; and that is too
much to suggest outside of fairyland.”
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Figure 3: The reliability of the main steps in a translation pipeline, adapted from the Vauquois triangle.

understood domains (Kuhn, 2014; Ranta and An-
gelov, 2010). For a CNL, it is even possible to
make the analysis of source language correct by
proof, if the parser is obtained from the grammar
by a provably correct algorithm.

However, the problem of ambiguity can arise
even in CNLs, especially in multilingual CNL sys-
tems: a concept believed to be unambiguous when
the language is designed can turn out ambigu-
ous when the next language is added. To give
a very simple example, the pronoun you in En-
glish has many counterparts in other languages
(singular, plural, polite, masculine, feminine). A
CNL that aims to be both controlled and semantic-
preserving must introduce different interlingual
concepts for these. At the same time, if it also
aims to be natural, it cannot require English to use
different expressions for these concepts. In the re-
sulting CNL system, some form of disambiguation
is therefore needed when translating from English
to other languages. The only guarantee can ulti-
mately be user interaction; many examples of this
are shown in (Kay, 1997).

Since the pipeline in Figure 3 contains uncertain
parts, it does not solve the problem of translation.
But it does suggest what parts to focus on, and it
defines checkpoints that can be used in explain-
ing the output. The first thing to notice is that all
uncertainty lies on the left side, in analysing the
source language. When all information is in place

in the semantic interlingua, generating the target
language can be performed by mechanical rules
of linearization in a generation-oriented gram-
mar formalism. The linearization grammar can be
made correct by construction. This is of course a
substantial task, and it can therefore be hard to get
rid of all bugs, but there is no inherent uncertainty
like in the analysis part.

The usual way cope with the uncertainty of deep
analysis is to give up and proceed with direct trans-
fer instead. The first MT systems typically did this
with morphological analysis followed by lexical
transfer and synthesis (Hutchins, 2000). Apertium
(Forcada et al., 2011) is a contemporary approach
in this tradition, showing that the approach works
reasonably well for closely related languages such
as Spanish and Catalan. More recently, statisti-
cal machine translation (SMT) usually starts with
words identified by tokenization rather than mor-
phological analysis (Brown et al., 1990). But there
is also a variant, Factored SMT, which uses mor-
phologically tagged lemmas (Koehn and Hoang,
2007). The transfer component is in both cases
based on word alignments, mappings between
source and target language words, which are in-
ferred statistically from parallel texts. Other vari-
ants of SMT use alignments between phrases
(short sequences of words, identified by statis-
tical means rather than by grammars) (Och and
Ney, 2004), or even between syntax trees (Chiang,
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2007).
In all of the above-mentioned systems, trans-

lation goes through intermediate steps that could
serve as explanations. In phrase-based SMT, for
instance, one can look at the way in which the
translation is built from aligned phrases. If an
alignment looks wrong, it gives a hint that there
might be an error in the translation, while it is
more difficult to get explanations that convinc-
ingly show that the translation is correct. Until re-
cently, a development was seen in SMT towards
higher levels of abstraction and use of linguis-
tic knowledge (hybrid systems) (Koehn, 2010).
This development was stopped abruptly by NMT,
which has been moving to the opposite direction
(Lee et al., 2016). However, the possibility to in-
spect the process is an advantage of SMT over
NMT that remains when NMT achieves better av-
erage scores.

4 Interlingua as explanation

An interlingual meaning representation can serve
as a certificate in the sense of (McConnell et al.,
2011). Its linearization back to the source lan-
guage then works as a checker, which can validate
the translation even if the interlingua is obtained
by an uncertain method such as machine learning.
Figure 4 shows the architecture of an XMT system
based on these components.

However, this kind of certificate is only a partial
guarantee of translation correctness. It can show
that the interlingua expression is one possible in-
terpretation of the input, but it does not guarantee
that it is the correct one. How can we know that
it is? How can it serve as an explanation to a user
who only knows one of the languages?

The best situation is the one where the user
knows the source language and understands the in-
terlingua. She can then compare the interlingua
expression with the input and judge whether it is
a correct interpretation; in the case of ambiguities,
she can select the one that is correct. The user
can thus rely on the translation even if she doesn’t
know the target language.

Translating from a known to an unknown lan-
guage is the position of producers of information.
A producer starts with a text originally written in
her own language and translates it to other lan-
guages to reach new audience. Examples of pro-
ducers are companies translating their web pages
or user manuals and authorities translating legal or

administrative information. As producers, they are
responsible for the translations that they publish,
and the quality requirements are therefore high.
For this reason, the state of the art in the pro-
ducer scenario is manual translation (with some
help from computers), because automatic MT is
not good enough. However, interlingual trans-
lation is a possible technique in many producer
cases, because the content to be translated can be
limited so that a CNL can be created for it. Once
a CNL is in place, it can be linearized to many
target languages, which is another typical need of
producer translation.

Much of current MT research and most of me-
dia publicity have focused on MT for consumers
of information. A consumer starts with a text writ-
ten in a foreign language, typically on the internet,
and tries to find out what the text is about. No-one
is responsible for the translation, and consumers
are expected to be aware of its unreliability. Thus
if a negation word is dropped and the message is
turned to its opposite, neither the producer of the
original information nor the provider of the trans-
lation system can be blamed. In the producer sce-
nario it could lead to a disaster for both the pro-
ducer and the translator.

In this paper, our main focus is on the producer
scenario, which is the best fit for both the goals of
XMT and the methods we are going to propose.

Figure 5 gives an example of how an interlin-
gual expression can explain translation. It shows
a screen dump from the mobile GF Offline Trans-
lator (Angelov et al., 2014), whose principles will
be explained in the Section 5. The screen dump
shows three ways to translate a sentence from En-
glish to Swedish, resulting from three senses of
the verb work. They are shown as raw interlin-
gual expressions, where one can discern the con-
stants work 1 V work 2 V, and work on V2.
One can also see that the first two sentences treat
on the floor as an adverbial modifier, whereas in
the third sentence, the floor is the complement of
the two-place verb work on.

Raw interlingual expressions might not say
much to the end user, but they can be made
more readable with some engineering, so that the
user can select which translation she considers the
closest match to the original. Figure 6 shows
an example, where the interlingua expressions
are converted to graphical syntax trees, and the
word sense constants are mapped to their Word-
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Figure 4: A hybrid XMT architecture using interlingua, grammatical knowledge, and black box parsing.

Figure 5: Translation alternatives from English to Swedish and their interlingual expressions: a screen
dump from GF Offline Translator.
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Net sense explanations.3

Yet another form of explanation, accessible to a
user who knows at least some other language than
the source language, is to use that language as ref-
erence. For example, if the translation is from En-
glish to Swedish and the user knows English and
German, she can inspect the German translation to
assess the correctness of the Swedish translation.
Since the same tree is the source of both Swedish
and German translations, she can trust that the
Swedish translation expresses the same meaning
as the German one.4

5 Translation in GF

Grammatical Framework, GF (Ranta, 2004, 2011)
is a grammar formalism designed for interlin-
gual translation and other multilingual applica-
tions. The interlingua is called abstract syntax,
following the tradition of compiler construction,
where abstract syntax is an intermediate represen-
tation between the source and target languages.
The interlingua is not fixed: instead, GF provides a
notation for defining new abstract syntaxes. Tech-
nically, an abstract syntax is a free algebra, whose
elements are nested function applications, similar
to LISP terms. Examples are shown in Figure 5
above, using the formal notation of GF, and in Fig-
ure 6, as graphical visualizations.

An abstract syntax is defined by a set of cate-
gories (such as NP, VP) and a set of constructor
functions, such as

fun PredVP : NP -> VP -> Cl

which takes as its arguments a noun phrase (NP)
and a verb phrase (VP) and returns a clause (Cl).

In addition to the abstract syntax, a GF gram-
mar has a set of concrete syntaxes, which specify
how abstract syntax trees are linearized to strings
in some actual languages (usable as both source
and target). Technically, a concrete syntax is a ho-
momorphism (compositional mapping) from the
abstract syntax algebra to a system of tuples of
strings (similar to feature structures in some other

3 http://wordnetweb.princeton.edu/.These
explanations are at the time of writing available in a devel-
opment version of GF Offline Translator.

4 This method is not 100% reliable if the reference lan-
guage has the same ambiguities as the source language, but
different from the target language. For instance, translating
from English to Chinese with German as reference would
miss cases where the parser makes wrong PP attachments:
the ambiguities are the same in English and German, but in
Chinese, different attachments result in different word orders.

formalisms). The tuples represent linguistic varia-
tion such as inflection tables, free word order, and
discontinuous constituents. At its simplest, lin-
earization returns just strings. For instance, predi-
cation could just concatenate the NP with the VP:

lin PredVP np vp = np ++ vp

However, natural languages usually also need to
express subject-verb agreement. Moreover, they
need to keep the main constituents of a clause sep-
arate until a higher-level construction decides their
order: whether for instance the subject precedes
the verb (as in Germanic main clauses) or follows
it (as in inverted questions). This variation is ex-
pressed by using tuples of strings, which in GF
source code are expressed by user-friendly nota-
tion for records and projections:

lin PredVP np vp = {
subj = np.s ! Nom ;
verb = vp.verb ! np.agr ;
obj = vp.obj
}

The use of tuples makes GF concrete syntax equiv-
alent to PMCFG (Parallel Multiple Context-Free
Grammars, (Seki et al., 1991; Ljunglöf, 2004)).
PMCFG enjoys very efficient linearization (of
usually linear time complexity), while the pars-
ing problem is also solvable polynomially. Thus
PMCFG falls in the category of mildly context-
sensitive grammars, which are widely consid-
ered adequate for natural languages (Kallmeyer,
2010).5 In GF, this has been confirmed in prac-
tice by implementing a large number of different
languages (33 at the time of writing) with a com-
mon abstract syntax in the GF Resource Grammar
Library, GF-RGL (Ranta, 2009b).

The GF-RGL is intended to cover the most im-
portant syntactic structures of natural languages,
such as predication (PredVP shown above), com-
plementation, coordination, noun phrase construc-
tion, relative clauses, questions, and imperatives.
It can be compared with the Core Language En-
gine (Rayner et al., 2000), LinGO Matrix (Bender
and Flickinger, 2005), and ParGram (Butt et al.,
2002). But due to the abstract/concrete syntax
distinction, it can use shared representations for

5According to some definitions, mildly context-sensitive
includes MCFG but not PMCFG, where the “P” means that
reduplication of constituents is permitted. In our experi-
ence, reduplication is crucial when describing semantic con-
structions such as intensification. The parsing complexity
of PMCFG is still polynomial and weaker than full context-
sensitivity.
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work 1: (v) function, work, operate, go, run (perform as expected when applied) “The washing machine
won’t go unless it’s plugged in”; “Does this old car still run well?”; “This old radio doesn’t work
anymore”
work 2: (v) work (exert oneself by doing mental or physical work for a purpose or out of necessity) “I
will work hard to improve my grades”; “she worked hard for better living conditions for the poor”
work on: (v) work, work on, process (shape, form, or improve a material) “work stone into tools”;
“process iron”; “work the metal”

Figure 6: A visualization of translation alternatives with WordNet sense explanations.
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different languages more aggressively. The struc-
tures used in Universal Dependencies, UD (Mc-
Donald et al., 2013) have shown to be very simi-
lar to those in GF-RGL—sufficiently similar to en-
able effective mappings between GF and UD trees
(Kolachina and Ranta, 2016). As we will see in
Section 7, the GF-UD connection provides a new
way to build hybrid MT systems. But let us first
take a look at how GF alone is used in translation.

The applications of GF have typically addressed
the producer scenario. The GF grammar then de-
fines a CNL with a few hundred or thousand ab-
stract syntax functions. These functions are built
with semantics in mind. They may for instance
express logical predicates, operating on semantic
categories (Saludes and Xambo, 2011). Thus one
might in a CNL for mathematics define

fun Equal : Int -> Int -> Prop

to express the equality of integers as a two-place
propositional function. Such an abstract syntax al-
lows for a more accurate semantic interpretation
and reasoning than the raw RGL syntax. It also al-
lows abstraction over linguistically different ways
to express the predicate. Thus Equal can be ex-
pressed in many different ways in a mathematical
text:

• adjective-complement predication: x is equal
to y

• collective predication: x and y are equal
• nominalization: the equality of x and y
• formula: x = y

The rationale for translation is that different lan-
guages may favour different ways of expressing
the same predicates. Selecting these ways is left to
the concrete syntax. The semantic interlingua can
therefore support idiomatic translations, which is
a useful property even in cases where no reason-
ing is targeted. The MOLTO Phrasebook (Ranta
et al., 2012) is an example of this, collecting a set
of everyday phrases with widely varying syntactic
realizations.

A CNL-based abstract syntax does not use the
RGL as interlingua, but the RGL plays an impor-
tant role in making the technology productive. It
serves as a library to the CNL implementor, so that
she doesn’t need to care about low-level linguistic
details (morphology, agreement, word order), but
gets these details from the RGL (Ranta, 2009a).
The linearization rules for the CNL are written as
mappings of semantic CNL trees to syntactic RGL
trees. For instance, the rule corresponding to x and

y are equal maps the logical predication (Equal
x y) to a syntactic predication where the noun
phrase conjunction of x and y becomes the sub-
ject of the verb phrase formed from the adjective
equal. It could be written as follows:

lin Equal x y =
PredVP
(ConjNP and_Conj x y)
(CompA "equal")

6 Scaling up GF translation

GF was originally not expected to scale up to
the consumer scenario, where semantic interlin-
guas can’t be constructed in any foreseeable fu-
ture. However, in recent years, improved pars-
ing technology (Angelov and Ljunglöf, 2014) and
the availability of open-source multilingual lexica
(Virk et al., 2014) have made it possible to use GF
in open-domain translation as well. The perfor-
mance is still behind the state of the art in SMT
and NMT in terms of BLEU scores for major lan-
guages (Kolachina and Ranta, 2015). But the GF
method does have some advantages:

• the interlingual architecture needs only n+1
components for n languages to cover all lan-
guage pairs, instead of n(n+1) as in transfer-
based systems;

• grammar-based systems don’t need large
training data, which helps the treatment of
under-resourced languages;

• the interlingual and rule-based architecture is
compact enough to be run off-line on mobile
devices;

• the translation process can be traced, con-
trolled, debugged, and adapted due to its
modular and transparent structure.

This paper is mainly an elaboration on the last-
mentioned property. The transparency of the GF
translator has been mainly exploited by MT devel-
opers. But the need for XMT puts the user in fo-
cus: how to use the interlingual representation as
a certificate of translation, and as an explanation
that the user can inspect?

A simple kind of feedback, which has been in
the GF Offline Translator from the beginning, is a
classification of translations by using colours. The
colours correspond to the level of analysis that the
translation is based on:

• Green translations use the semantic interlin-
gua.
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• Yellow translations use the syntactic analy-
sis trees of RGL, when the input cannot be
parsed to the semantic interlingua.

• Red translations use chunks, which are
phrases of different sizes varying from single
words to complete sentences, and used when
the input cannot be completely parsed syntac-
tically.

The colours reflect the different levels in the
Vauquois triangle (Figure 5): semantic interlin-
gua, syntactic transfer, lexical transfer. But there
is one difference: all levels use an interlingua
rather than transfer. This makes it possible to in-
spect them more thoroughly than if the analysis
was merely in terms of the source language. For
example, the interlingua on the lowest level, the
chunk interlingua, builds shallow trees from ab-
stract word senses. Displaying these senses tells
more about the translation than just showing mor-
phological analyses of the source language, as in
traditional lexical transfer.

Furthermore, using the interlingua minimizes
the amount of guessing in the translation proce-
dure. In Figure 3, the entire transfer (lexical or
syntactic) is uncertain. But assuming that the syn-
thesis of target language from the interlingua is
certain, only “half of the translation” remains un-
certain: the analysis part. This gives us a new pic-
ture of the architecture, shown in Figure 7.

7 Combining grammars and machine
learning

Parsing in GF is, theoretically, always available as
the inverse of linearization (Ranta, 2004; Ljunglöf,
2004). However, it is not always practically appli-
cable in translation. The input can contain typos
and grammatical errors, unusual word orders, or
just rare constructions that the grammarian hasn’t
thought about. In the three-layer GF translator
(Figure 7) this may result in the use of the low-
est, “red” level more often than desired. This has
led to a need to find alternatives to automatically
derived grammar-based parsers.

An alternative parser can even be a black box,
such as a neural network, as long as it deliv-
ers an interlingual expression as certificate. The
automatic checking of the certificate by back-
linearization will not work quite as usual, if the in-
put does not exactly match the grammar, but it can
be decided to be “close enough”. What is more
important, the abstract syntax tree itself can serve

as an explanation to the human.
In addition to robustness, alternative parsers

may provide better disambiguation than native GF
parsing. The current model used in GF is based
on probabilities extracted from the Penn treebank
(Marcus et al., 1993; Angelov, 2011). These prob-
abilities are defined on abstract syntax trees and
can therefore work for many languages, but they
cannot be assumed to be as good as probabili-
ties from language-specific treebanks. What is
more, the probability model is context-free, in the
sense that it is defined for individual abstract syn-
tax functions, not to their combinations.

A natural way to build an alternative parser is to
exploit the similarity of GF and UD (Kolachina
and Ranta, 2016; Ranta and Kolachina, 2017).
Figure 8 shows a GF tree and the corresponding
UD trees in English and French. The UD trees are
derived mechanically from the GF tree by means
of dependency configurations. A dependency
configuration is an assignment of labels to each of
the arguments of every abstract syntax function.
For instance, the predication function has the con-
figuration

PredVP : NP -> VP -> Cl
-- nsubj head

saying that the NP argument contains the nsubj
and the VP argument contains the head. In Fig-
ure 8, the non-head labels resulting from the con-
figurations are marked below each construction.
All non-marked branches correspond to head la-
bels. The UD tree is constructed in the following
way:

1. Starting from a leaf U, go up until a non-head
label L is reached.

2. Starting from the sister head branch of this
label, follow the head branches until a leaf
V is reached.

3. Create a dependency arc from V to U labelled
with L.

For example, cat N becomes in this way the
nsubj dependent of see V2 in Figure 8. The
same method finds the heads and labels of all other
leaves as well. To generate the final UD trees, the
concrete syntax lexicon is used with word forms
determined by agreement relations in the original
concrete syntax.

Converting GF trees to UD trees is mechani-
cal and deterministic. It is for the most part uni-
formly definable in terms of the abstract syntax,
even though individual languages also need some
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Figure 7: The reliability of different levels of interlingual translation, adapted from the Vauguois triangle.
The interlinguas (chunk, syntactic, semantic) are increasingly reliable as sources of target language gen-
eration. The analysis methods leading from the source language to the interlingual trees are increasingly
incomplete. The generation of target language is always reliable from a given interlingual tree.

Figure 8: The relation between GF abstract syntax trees and UD dependency trees in English and French.
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Figure 9: A partially interpreted UD tree, the corresponding GF tree, and linearizations to English,
Finnish, and Swedish, with problematic subtrees marked in red.
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concrete syntax configurations to cover syncate-
gorematic words such as copulas and tense auxil-
iaries (Kolachina and Ranta, 2016).

Converting UD trees to GF is a reversal of the
GF to UD conversion. It is a non-deterministic
search problem, which needs both disambigua-
tion and back-up for structures not covered by the
grammar (Ranta and Kolachina, 2017). But the us-
age of UD as front-end to GF parsing has several
potential advantages over raw GF parsing:

• the space of disambiguation is narrowed
down by the UD tree;

• the probability model of UD model is (cur-
rently) better than the GF model;

• the parser can recover from grammar errors
such as agreement errors;

• the parts not covered by the grammar are at-
tached to subtrees of the UD trees instead of
being completely unanalysed chunks.

Figure 9 shows an example of UD-based trans-
lation from English to Swedish and Finnish, as
well as back-linearization to English. The sub-
tree with label parataxis is not covered by the
GF grammar used; hence, it is attached to the GF
tree as an element of the Backup category. The
UD tree itself can be shown as an explanation,
with red colour marking the problematic part. But
the GF tree gives even more information; for in-
stance, it shows that the word order is interpreted
in the sense of “linear order” rather than “order in
a restaurant”, which is a wrong interpretation.

8 Conclusion

We have outlined some problems and solutions
for XMT, Explainable Machine Translation, as a
special case of XAI, Explainable Artificial Intel-
ligence. The main problem addressed is that MT
in general is unreliable, and its users have a hard
time telling when to trust it. The XMT solution
is to deliver explanations together with the trans-
lation output. Such an explanation can be gener-
ated from an interlingual tree, which formalizes
the meaning of the input and from which the out-
put can be generated by trusted algorithms. The
interlingual tree itself is a formal object that can
be checked automatically by translating it back to
the input. In this sense, XMT is an instance of
certifying algorithms.

However, the automatic checking by back-
translation can only guarantee that the translation
is one possible intepretation of the input. It doesn’t

prove that it is the correct one, if the input is am-
biguous with respect to the interlingua. To assess
the correctness of the interpretation, the only way
that ultimately works is to let a human decide. For
this purpose, XMT generates human-readable ex-
planations from the interlingua, such as graphical
visualizations of trees and glosses for the word
senses. But there are more things to do on this
front, in particular to provide user-friendly ways
to compare large numbers of ambiguities, which
is a common problem in parser-based translation.

We have presented GF (Grammatical Frame-
work) as a formalism that supports XMT, as it per-
forms translation via an interlingual abstract syn-
tax tree. GF has proved to work in highly mul-
tilingual settings with over 30 parallel languages,
whenever the domain of translation can be re-
stricted to a CNL (Controlled Natural Language).
Scaling up GF translation to open domains is pos-
sible by using syntactic and chunk-based interlin-
guas as backups for the CNL. However, the per-
formance of such systems is not yet on the level
of statistical and neural systems for many lan-
guages. The new proposal in this paper is a hy-
brid translation system where UD parsing (Uni-
versal Dependencies) is used as a robust front end
to GF-based linearization. UD parsers are neural
networks or more traditional classifiers trained by
machine learning methods. Even though the re-
sulting parser is a black box, it can be safely in-
tegrated in a GF-based system, because it gener-
ates interlingual expressions that can be partially
checked by a machine and fully inspected by hu-
mans.
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Abstract

We investigate an end-to-end method for
automatically inducing task-based dia-
logue systems from small amounts of
unannotated dialogue data. The method
combines an incremental, semantic gram-
mar formalism - Dynamic Syntax (DS)
and Type Theory with Records (DS-TTR)
with Reinforcement Learning (RL), where
language generation and dialogue man-
agement are treated as one and the same
decision problem. The systems thus
produced are incremental: dialogues are
processed word-by-word, shown in prior
work to be essential in supporting more
natural, spontaneous dialogue. We hy-
pothesised that given the rich linguistic
knowledge present within the grammar,
our model should enable a combinatori-
ally large number of interactional varia-
tions to be processed, even when the sys-
tem is trained from only a few dialogues.
Our experiments show that our model can
process 70% of the Facebook AI bAbI
data-set - a set of unannotated dialogues
in a ‘restaurant-search’ domain even when
trained on only 0.13% of the data-set (5 di-
alogues). This remarkable generalisation
property results from the structural knowl-
edge and constraints present within the
grammar, and highlights limitations of re-
cent state-of-the-art systems that are built
using machine learning techniques only.

1 Introduction

Meaning is highly activity-specific, in that the ac-
tion that a particular sequence of words is taken to
perform, together with any perlocutionary effect
that action might give rise to, is severely underde-

termined in the absence of a particular overarch-
ing activity, or a ‘language-game’. Wittgenstein
famously argued that the structure of a language-
game, or how actions fit together to form a co-
herent whole, is irreducible. Arguably, this is the
most unyielding obstacle facing not only theoret-
ical approaches to pragmatics, but also dialogue
system developers today. This suggests that partic-
ular dialogue structures are emergent, learned, and
very frequently adjusted during interaction (Mills
and Gregoromichelaki, 2010; Mills, 2011; Healey,
2008)

Despite this, recent and ongoing work in for-
mal dialogue modelling suggests that not only lan-
guage processing mechanisms, but also certain ba-
sic principles of contextual dynamics in dialogue
do generalise across domains (Ginzburg, 2012;
Kempson et al., 2016; Eshghi et al., 2015; Kemp-
son et al., 2015; Purver et al., 2010). Even in a
simple domain, there’s a lot of interactional varia-
tion that does not ultimately affect the overall com-
municative goal of a dialogue. For example, the
dialogues in Fig. 1 (specifically the top two rows,
where the lexicon is held constant) all lead to a
context in which the user wants to buy a phone
by LG. These dialogues can be said to be prag-
matically synonymous for this domain. Arguably,
a good model of interactional dynamics should be
able to capture this synonymy.

In this paper, we show, using an implemented
system (Anon; Anon) that given Dynamic Syntax
and Type Theory with Records (DS-TTR) (Kemp-
son et al., 2001; Eshghi et al., 2012; Eshghi et
al., 2015) as a low-level, incremental model of in-
teractional and contextual dynamics, one can see
dialogue acts, together with their associated local
dialogue structures and procedural conventions as
emergent and learned from interaction; and thus
that fully incremental dialogue systems can be
bootstrapped from raw, unannotated example suc-
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USR: I would like an LG lap-

err, phone
SYS: okay.

USR: I would like a
phone by LG.

SYS: sorry a what?
USR: a phone by LG.
SYS: okay.

SYS: what would you like?
USR: an LG phone
SYS: okay.

SYS: what would you like?
USR: a phone
SYS: by which brand?
USR: LG
SYS: okay

SYS: you’d like a ...?
USR: a phone
SYS: by what brand?
USR: LG.
SYS: okay

SYS: so would you like a computer?
USR: no, a phone.
SYS: okay. by which brand?
USR: LG.
SYS: okay.

L
ex

ic
al

USR: I want an LG phone.
SYS: okay.

USR: Can I have
an LG phone?

SYS: Sure.

SYS: What do you want to buy?
USR: a phone
SYS: by which make?
USR: LG
SYS: Okay.

Figure 1: Some Interactional and Lexical Variations in a Shopping Domain

cessful dialogues within a particular domain.
The model we present below combines DS-

TTR with Reinforcement Learning for incremen-
tal word selection, where dialogue management
and language generation are treated as one and the
same decision/optimisation problem, and where
the corresponding Markov Decision Process is au-
tomatically constructed. We show using the Face-
book AI bAbI dataset, that the model can process
70% of the whole dataset, when trained on a very
small fraction, 0.12% (5 dialogues), of the data-
set. This remarkable generalisation power results
from the linguistic knowledge and insight present
within the grammar as a model of interactional
dynamics and highlights the limitations of state-
of-the-art, bottom-up machine learning techniques
that do not exploit such models.

1.1 Dimensions of Pragmatic Synonymy

There are two important dimensions along which
dialogues can vary, but nevertheless, lead to very
similar final contexts: interactional, and lexical.
Interactional synonymy is analogous to syntac-
tic synonymy - when two distinct sentences are
parsed to identical logical forms - except that it oc-
curs not only at the level of a single sentence, but
at the dialogue or discourse level - Fig. 1 shows ex-
amples. Importantly as we shall show, this type of
synonymy can be captured by grammars/models
of dialogue context.

Lexical synonymy relations, on the other hand,
hold among utterances, or dialogues, when differ-
ent words (or sequences of words) express mean-
ings that are sufficiently similar in a particular
domain or activity - see Fig 1. Unlike syntac-
tic/interactional synonymy relations, lexical ones
can often break down when one moves to an-
other domain: lexical synonymy relations are do-

main specific. Here we do not focus on these, but
merely note that lexical synonymy relations can
be captured using Distributional Methods (see e.g.
Lewis & Steedman (2013)), or methods akin to
Eshghi & Lemon (2014) by grounding domain-
general semantics into the non-linguistic actions
within a domain.

2 Dynamic Syntax (DS) and Type Theory
with Records (TTR)

Dynamic Syntax (DS) a is a word-by-word incre-
mental semantic parser/generator, based around
the Dynamic Syntax (DS) grammar framework
(Cann et al., 2005) especially suited to the frag-
mentary and highly contextual nature of dialogue.
In DS, words are conditional actions - semantic
updates; and dialogue is modelled as the inter-
active and incremental construction of contextual
and semantic representations (Eshghi et al., 2015)
- see Fig. 2. The contextual representations af-
forded by DS are of the fine-grained semantic con-
tent that is jointly negotiated/agreed upon by the
interlocutors, as a result of processing questions
and answers, clarification requests, acceptances,
self-/other-corrections etc. The upshot of this is
that using DS, we can not only track the seman-
tic content of some current turn as it is being con-
structed (parsed or generated) word by word, but
also the context of the conversation as whole, with
the latter also encoding the grounded/agreed con-
tent of the conversation (see e.g. Fig. 2, and see
Eshghi et al. (2015); Purver et al. (2010) for de-
tails of the model). Crucially for our model below,
the inherent incrementality of DS together with
the word-level, as well as cross-turn, parsing con-
straints it provides, enables the word-by-word ex-
ploration of the space of grammatical dialogues,
and the semantic and contextual representations
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that result from them.
These representations are Record Types (RT,

see Fig. 2) of Type Theory with Records (TTR,
(Cooper, 2005)), useful for incremental specifi-
cation of utterance content, underspecification, as
well as richer representations of the dialogue con-
text (Purver et al., 2010; Purver et al., 2011; Es-
hghi et al., 2012). For reasons of lack of space,
we only note that the TTR calculus provides, in
addition to other operations, the subtype check-
ing operation, ⊑, among Record Types (RT), and
that of the Maximally specific Common Super-
type (MCS) of two RTs, which both turn out to
be crucial for the automatic construction of our
MDP model, and feature checking (for more detail
on the DS-TTR Hybrid, see (Eshghi et al., 2012;
Hough and Purver, 2014)).

3 The overall BABBLE method

We start with two resources: a) a DS-TTR parser
DS (either learned from data (Eshghi et al., 2013),
or constructed by hand), for incremental language
processing, but also, more generally, for tracking
the context of the dialogue using Eshghi et al.’s
model of feedback (Eshghi et al., 2015; Eshghi,
2015); b) a set D of transcribed successful dia-
logues in the target domain.

Overall, we will demonstrate the following
steps (see (Kalatzis et al., 2016) for more details):

1. Automatically induce the MDP state space,
S , and the dialogue goal, GD, from D;

2. Automatically define the state encoding func-
tion F : C → S ; where s ∈ S is a (binary)
state vector, designed to extract from the cur-
rent context of the dialogue, the semantic fea-
tures observed in the example dialogues D;
and c ∈ C is a DS context, viz. a pair of TTR
Record Types: ⟨cp, cg⟩, where cp is the con-
tent of the current, PENDING clause as it is
being constructed, but not necessarily fully
grounded yet; and cg is the content already
jointly built and GROUNDED by the inter-
locutors (loosely following the DGB model
of (Ginzburg, 2012)).

3. Define the MDP action set as the DS lexicon
L (i.e. actions are words);

4. Define the reward function R as reaching GD,
while minimising dialogue length.

We then solve the generated MDP using Rein-
forcement Learning, with a standard Q-learning

method, implemented using BURLAP (Mac-
Glashan, 2015): train a policy π : S → L, where L
is the DS Lexicon, and S the state space induced
using F. The system is trained in interaction with a
(semantic) simulated user, also automatically built
from the dialogue data (see (Kalatzis et al., 2016)
for details).

The state encoding function, F As shown in
figure 2 the MDP state is a binary vector of size
2 × |Φ|, i.e. twice the number of the RT fea-
tures. The first half of the state vector contains the
grounded features (i.e. agreed by the participants)
ϕi, while the second half contains the current se-
mantics being incrementally built in the current di-
alogue utterance. Formally:
s = ⟨F1(cp), . . . , Fm(cp), F1(cg), . . . , Fm(cg)⟩;
where Fi(c) = 1 if c ⊑ ϕi, and 0 otherwise. (Recall
that ⊑ is the RT subtype relation).

4 Dialogue Turn Prediction

We have so far induced two prototype dialogue
systems, one in an ‘electronic shopping’ domain
(as exemplified by the dialogues in Fig. 1) and
another in a ‘restaurant-search’ domain showing
that incremental dialogue systems can be auto-
matically created from small amounts of dialogue
transcripts - in this case both systems were in-
duced from a single successful example dialogue.

In this paper however, our focus is not on
building dialogue systems per se, but on study-
ing and empirically quantifying the interactional
and structural generalisation power of the DS-TTR
grammar, and that of symbolic, grammar-based
approaches to language processing more gener-
ally.

We therefore here set ourselves the task of pre-
dicting the system’s turn in a particular dataset
(see below) given the dialogue so far up to that
turn. Our method for doing this is as follows:

Given a particular set of example successful di-
alogues, D, in a domain, the rules for predicting
a particular interlocutor’s turns - in this case, the
system’s turns - are automatically extracted from
D using only the DS-TTR parser, and F, the state-
encoding function described above: the dialogues
in D are parsed and encoded using F incremen-
tally. All the states immediately prior to a system’s
turn, si = F(c) – where c is a DS context – are
recorded, and mapped to what the system ends up
saying in those (encoded) contexts - for more than
one training dialogue there may be more than one
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Grounded Semantics (cg) Pending Semantics (cp) Dialogue so far



x2 : e
e2=like : es
x1=US R : e
p2=pres(e2) : t
p5=sub j(e2,x1) : t
p4=ob j(e2,x2) : t
p11=phone(x2) : t





x2 : e
e2=like : es
x1=US R : e
p2=pres(e2) : t
p5=sub j(e2,x1) : t
p4=ob j(e2,x2) : t
p11=phone(x2) : t
x3 : e
p10=by(x2,x3) : t
p9=brand(x3) : t
p10=question(x3) : t



SYS: What would you like?
USR: a phone
SYS: by which brand?

RT Feature (ϕi):
[

x10 : e
p15=brand(x10) : t

][
e3=like : es
p2=pres(e3) : t

]
x10 : e
x8 : e
p14=by(x8,x10) : t




e3=like : es
x5=usr : e
p7=sub j(e3,x5) : t




x8 : e
e3=like : es
p6=ob j(e3,x8) : t



F1 ↓ F2 ↓ F3 ↓ F4 ↓ F5 ↓
State:

⟨ Pending: 1, 1, 1, 1, 1, ⟩
Grounded: 0, 1, 0, 1, 1

Figure 2: Semantics to MDP state encoding with RT features

candidate (in the same context/state). The rules
thus extracted will be of the form:
strig → {u1, . . . , un}, where ui are user turns.

We also observe here that the above method re-
spects the turn ordering encountered in the data, or
more generally the order in which semantic incre-
ments are added to context. This is because states
are composed not only of the semantic features of
the current turn, but also that of the history of the
conversation. And thus they capture the contex-
tual boundary at which a user turn is being gener-
ated or a system turn monitored (e.g. in the bAbI
‘restaurant-search’ domain, a state might capture
the fact that the user has already provided the cui-
sine type and the location of the restaurant).

5 Evaluation: measuring the
generalisation power of the grammar

To measure the generalisation power of the DS-
TTR dialogue model empirically, we use the above
prediction method, rather than the full Reinforce-
ment Learning method described earlier. To en-
able future comparison to other methods, the Face-
book AI, bAbI dataset was chosen for this purpose
- though we do not compare our results with others
in this paper.

5.1 The bAbI data-set

This is a set of 4000, goal-oriented dialogues be-
tween two interlocutors in the domain of restau-
rant search. Here we tackle Task 1 only where in
each dialogue the system asks the user about their
preferences for the properties of a restaurant (slots,
four of them in total), and each dialogue results in

an API call which contains the values of each slot
obtained. Other than the explicit API call notation,
there are no annotations in the data whatsoever.

5.2 Experiment
As noted, rather than applying the full Babble
method as described, we only apply the method
described in section 4. We then use this to predict
a system response, by parsing and encoding a test
dialogue up to the point immediately prior to the
system turn. This results in a triggering state, strig,
which is then used as the key to look up the sys-
tem’s response from the rules constructed as per
section 4. The returned response is then parsed
word-by-word as normal, and this same process
continues for the rest of the dialogue. This method
uses the full machinery of DS-TTR & our state-
encoding method - the DyLan model - and will
thus reflect the generalisation properties that we
are interested in.

5.3 Number of interactional variations
captured

Here we establish, as an example of the power of
the method implemented, a lower-bound on the
number of dialogue variants that can be processed
based on training from only 1 example dialogue.
Consider the training dialogue (which has only 2
‘slots’ and 4 turns) below:

SYS: What would you like?
USR: a phone
SYS: by which brand?
USR: by Apple

Parsing this dialogue establishes (as described
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above) a dialogue context that is required for suc-
cess. The DS grammar is able to parse and gen-
erate many variants of the above turns, which
lead to the same dialogue contexts being created,
and thus also result in successful dialogues. To
quantify this, we count the number of interac-
tional variants on the above dialogue which can
be parsed/generated by DS, and are thus automati-
cally supported after training the system on this di-
alogue. Note that we do not take into account pos-
sible syntactic and lexical variations here, which
would again lead to a large number of variants that
the system can handle.

The DS grammar can parse several variants of
the first turn, including overanswering (“I want an
Apple laptop”), self-repair (“I want an Apple lap-
top, err, no, an LG laptop”), and ellipsis (“a lap-
top”), whose combinatorics give rise to 16 differ-
ent ways the user can respond (not counting lexi-
cal and syntactic variations). These variations can
also happen in the second user turn. If we con-
sider the user turns alone, there are at least 256
variants on the above dialogue which we demon-
strate that the trained system can handle. If we
also consider similar variations in the two system
turns (ellipsis, questions vs. statement, utterance
completions, continuation, etc), then we arrive at
a lower bound for the number of variations on the
training dialogue of 8,192.

This remarkable generative power is due to the
generalisation power of the DS grammar, com-
bined with the system’s DM/NLG policy which is
created by searching through the space of possible
(successful) dialogue variants.

6 Conclusion and ongoing work

We show how incremental dialogue systems
can be automatically bootstrapped from small
amounts of successful seed dialogues in a do-
main, combining Dynamic Syntax and Type The-
ory with Records with Reinforcement Learning.
The method allows Dialogue Act conventions to
emerge and be learned in (simulated) interaction,
rather than be specified or annotated in advance.
This method allows rapid domain transfer – sim-
ply collect some example (successful) dialogues
in a ‘slot-filling’ domain, and retrain. Further-
more, as we have argued, it supports learning from
very small datasets because of the generalisation
power inherent in the DS-TTR grammar model.
At present this is fully automated, and only re-
quires checking that the DS lexicon covers the in-

put data. We are currently applying this method
to the problem of learning (visual) word meanings
(groundings) from interaction.
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Abstract

This position paper outlines a framework
for accommodating formal models of in-
cremental scope processing in probabilis-
tic terms through corpus annotation. The-
ories of scope ambiguity resolution en-
compass a number of overlapping and po-
tentially conflicting strategies, including
underspecification, quantifier raising, and
employment of world-knowledge. Con-
sidering the conflicting evidence for the
specific roles that these strategies play and
the relationships between them, it may
be possible to mediate their relationships
through a probabilistic model that includes
weights for each factor at each time step.
This, however, requires the development
of corpus resources. Here we propose the
representation of scope specification oper-
ations as “decision tags” in future scope
corpus annotation efforts.

1 Introduction

1.1 Motivation

The goal of this paper is to explore the possi-
bility of a computational account of incremen-
tal scope ambuigity recognition and resolution via
corpus annotation. The ability to handle ambigu-
ity and multiple prediction is a core emphasis of
present day natural language processing. Insofar
as this intersects with psycholinguistic modeling,
it most often involves using probabilistic reason-
ing to represent parsing “decisions” at the pho-
netic/orthographic, semantic, and syntactic levels.
Depending on how theory-rich the psycholinguis-
tic model is, one major question is how to repre-
sent probability inside a formalism and theory that
constrains prediction. When applied to dialog sys-

tems, the formalism includes constraints for inter-
action with some relevant domain of knowledge.

Ambiguity, its identification, and its resolution
cut across linguistic levels of representation. But
the manner in which ambiguity appears is qualita-
tively different depending on the level of represen-
tation and the family of phenomena. Prepositional
phrase attachment ambiguities operate on repre-
sentations of surface syntax; resolution is achieved
by settling on a particular syntactic connection.
The characterization of scope ambiguities from
linguistic theory tend to assume that the syntax is
already decided; the ambiguity resides in connec-
tions drawn outside of syntactic structure and is re-
solved through selection of multiple semantic re-
lations licensed by the same parse. The represen-
tation of scope ambiguity resolution therefore re-
quires adaptation of existing techniques to scope-
specific structure. From the perspective of strict
incrementality, only a small amount of work has
been done in this domain.

Recent advances in machine learning tech-
niques, such as the trend towards deep learning
and neural networks, attempt to acquire implicit
representations of structure with increasingly min-
imal structure directly encoded in the input data,
such as character-based approaches (Kim et al.,
2016). Interpreting post hoc what structure is ac-
tually learned from the model weights is an open
research question. Nevertheless, when the goal
is to model a particular set of linguistic phenom-
ena, some amount of phenomenon-specific struc-
ture may be required in the evaluation and train-
ing data. If the goal is to let the learning sys-
tem acquire as much structure as it can, then the
challenge is to find a sufficiently rich but theory-
neutral data annotation scheme.

The phenomenon of ambiguous scope is in-
teresting from both psycholinguistic and a nat-
ural language processing perspectives. Linguis-
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tic theory has identified interpretive constraints
over scope ambiguity that stem from either from
syntactic structure or logical rules, depending on
the perspective of the theorist (Ruys and Winter,
2011). These constraints are not readily visible
in the surface string, but their operation may shed
light on the processing difficulty phenomena of in-
terest to psycholinguistics.

From an NLP perspective, the world is mov-
ing in the direction of increasingly domain-general
conversational systems that will have to be able to
handle the ambiguities that humans handle in or-
der to reduce the human burden of interacting with
these systems. Koller and Thater (2010) showed
with a German newswire corpus that vast prolifer-
ations of possible scope readings can be extracted
from sentences in isolation from pragmatic con-
text.

In the remainder of this paper, we will explore
the underlying modeling challenge of incremen-
tal scope ambiguity resolution, mention some psy-
cholinguistic and formal approaches to represent-
ing it, and finally describe a corpus annotation
scheme that represents scope ambiguity resolution
as a sequence of interpretive “decisions”.

1.2 Scope and processing

Consider the following sentences:

(1) a. Every child climbed a tree.
b. Every jeweller appraised a diamond.

These sentences contain the “textbook” universal-
existential quantifier scope ambiguity. (1-a) yields
either the linear scope interpretation, in which for
each child, there is a tree that that child climbed,
or the inverse scope interpretation, in which there
is a single tree that all the children climbed.
(1-b) yields the same possibilities of interpreta-
tion. However, in (1-a), the pragmatics of trees and
children suggests that the trees were distributed
among the children, rather than there being a sin-
gle tree. As diamonds are rare, (1-b) may support
the inverse interpretation more easily.

Precisely when and how the processor makes
decisions of quantifier scope interpretation has not
been closely studied from a computational per-
spective to this point. Even from a psycholinguis-
tic perspective, a focus on the time course of scope
interpretation update has only a limited literature
(section 2.1). But scope interpretation update re-
quires many of the same elements that other forms

of long-distance processing do (e.g., attachment
ambiguity resolution) such as recall of prior con-
stituents.

Now consider the presence of another NP after
the subject.

(2) a. Every child a teacher picked climbed a tree.
b. Every jeweller a customer selected ap-

praised a diamond.

There are two possible effects, in terms of incre-
mental processing, of inserting an additional inter-
vener. One possible effect is that language users
have more difficulty computing the pragmatics of
the child-tree and diamond-jeweller relations be-
cause of the increased distance between them.
Non-exclusively, another possible effect is that the
intervening element itself changes the pragmatics
of the listener’s judgement, such as the reduction
in the size of the set of children through selection
by a teacher.

In theories such as Dependency Locality The-
ory (DLT; Gibson, 2000), the more intervening
discourse referents, the higher the difficulty in
processing the sentence. In this case, however,
where language users may perceive a difference
in pragmatics between “child-tree” and “jeweller-
diamond”, to what extent would an intervening el-
ement such as “teacher” or “customer” alter or in-
terfere with these judgements? More specifically,
how is this affected by the time-course of process-
ing? How early are anticipated scopes selected?
Answering these types of questions is part of the
motivation for a computational approach to incre-
mental scope ambiguity resolution.

1.3 Scope decisions

Traditionally, theoretical lingusitics has dealt with
the question of syntactic and semantic ambiguity
in terms of identifying the available interpreta-
tions of a given structure and has had less of a fo-
cus on the chosen interpretation that the language
user has. Even the garden-path sentences that are
used in psycholinguistic experimentation tend to
produce the strongest effects when the sentences
are given out of context. In the incremental resolu-
tion of representational ambiguities, both of these
types of interpretive events have to be modeled:
the point at which the parser decides an ambiguity
may occur, and the point at which the ambiguity is
resolved.

This may take place before all constituents are
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even available. “Every child”, for example, may
already bias the processor to linear or inverse
scope interpretations of quantifiers that follow,
well before the quantifier has arrived, simply due
to pragmatic biases in the kinds of situations that
one tends to find children.

Quantifier scope phenomena are typically rep-
resented atop a general-purpose syntactic and se-
mantic formalism. We propose to represent the
process of scope interpretation in parallel with
syntactic and semantic structure-building, as a
series of “scope decisions” that indicate the es-
tablishment of scope domains and the update
of scopes within them. This approach permits,
among other things, an agnostic approach to the
question of underspecification, representing when
the knowledge is available to decide on prece-
dence, but leaving it up to the learning system or
the formalism to choose the timing of the decision.
It also permits incremental scope processing to be
converted to a sequence-labelling task, allowing
a wide variety of approaches to be applied, from
parsing based on rich formalism to n-gram tagging
models.

2 Background

2.1 Experimental work

Experimental work in incremental scope process-
ing has largely existed in response to theoreti-
cal work on scope resolution that emphasized the
availability of interpretations from the parse of the
sentence. This theoretical work, including theo-
ries such as Quantifier Raising (QR; e.g., Koster-
Moeller et al., 2007), holds that complex “algo-
rithmic” processes operate on sentences parses
to allow the establishment of multiple interpreta-
tions. The experimental question is, therefore, the
extent to which these processes can be observed in
human linguistic behaviour, such as through pro-
cessing difficulty measures—or, otherwise, the ex-
tent to which scope decisions are made by the sys-
tem based on pragmatic constraints and lexically-
encoded world-knowledge.

Early work (Kurtzman and MacDonald, 1993)
explored the possibility that scope may be princi-
pally specified by the linear order of quantifier ap-
pearance, with results that dismissed a direct lin-
ear order preference. More recent work (Paterson
et al., 2008) explored the possibility of competi-
tion between surface order and pragmatic factors
in deciding scope precedence. Dwivedi (2013)

did a series of self-paced reading studies that sug-
gest that the processor actually only computes
scope-relevant structure shallowly to start with
and relies on an underspecified representation;
instead, the processor employs world-knowledge
and only uses algorithmic processing as a last re-
sort. Dotlačil and Brasoveanu (2015) used a three-
quantifier experiment design with eye-tracking to
show that quantifiers are already assigned partly-
specified relations by linear order.

This evidence paints a mixed picture of what
drives scope processing, with the likely answer be-
ing that a combination of all the aforementioned
factors are involved. Learning how to combine
these factors is an advantage of applying machine
learning to this task.

2.2 Formal work
Most efforts in developing incrementality-friendly
semantic representations do not focus directly on
scope. However, Dynamic Syntax includes a un-
derspecified approach to representing the detec-
tion of scope constraints during the syntactic parse
(Gregoromichelaki, 2006). Minimal Recursion
Semantics (MRS; Copestake et al., 2005) uses a
neo-Davidsonian approach (Parsons, 1990) for a
fully underspecified representation of quantifier
scope. Sayeed (2016) adapts a combination of a
neo-Davidsonian and a QR-based approach to the
possibility (Dotlačil and Brasoveanu, 2015) that
scope relations may not be fully underspecified.

2.3 Corpora
Annotation of scopes in corpora is uncommon,
but it has recently been accomplished by Ander-
Bois et al. (2012) by annotating the LSAT Logic
Puzzles, which gives 497 observations of ambigu-
ous quantifier scopes and their resolutions as “nar-
row” or “wide”. This annotation did not focus
on the incremental or processing aspects of quan-
tifier scope resolution. A similar effort was ac-
complished by Higgins and Sadock (2003), who
tagged 893 sentences from the Penn Treebank.
Manshadi et al. (2011) tagged 2500 sentences
from a text editor instruction manual that includes
annotations for sentences with multiple interacting
quantifier scope domains.

Where the application requires it, researchers
have annotated corpora for other types of scope
interactions at a larger scale and used them in
machine-learning efforts. For example, the Bio-
Scope corpus (Vincze et al., 2008) contains de-
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tailed annotations of negation and uncertainty in
biomedical texts considered 20,000 sentences and
found and annotated 10% of them for scope cues
that had a potential effect on meaning. Coun-
cill et al. (2010) used product reviews and anno-
tated 679 sentences with negation annotations, us-
ing these and the BioScope sentences to success-
fully train a negation scope detection system.

3 Annotation proposal

3.1 Scope operations as decision tags

Since corpora are lifeblood of probabilitic mod-
eling, the remainder of this paper will focus on
proposing a general framework for annotation of
ambiguous scope that takes into account incre-
mentality.

In order to do this we identify a set of relevant
operations in a model of incremental scope pro-
cessing. One or more of these operations is acti-
vated whenever a processing unit (either a word or
a phrase, depending on the granularity of the in-
cremental parsing model) enters the system. From
an annotation perspective, the application of one
of these operations is represented as a “decision
tag”.

Decision tags take one of three forms: ∆, ∆(Γ),
or ∆(Γ,Ψ). ∆ is the operation itself, one of:

• Quantifier introduction (T) – a quantified
phrase enters the system, requiring a label for
the quantifier and variable.

• Relation creation (R) – two scope operators
enter into a (possibly underspecified) scope
precedence relationship.

• Specification (S) – an underspecified relation
is given a specified precedence is selected
between two scope operators. Specification
subsumes relation creation when they happen
at the same time. Specification can also hold
multiple times for the same set of operators

• Null (N) – the word or phrase is not involved
in a scope relation.

Γ is one of:

• a quantifier along with an identifier for the
variable being quantified, usually as a sub-
script. E.g., ∀1. This applies to the trigger
introduction (T) operation.

• two quantifiers being brought into a possible
relation. E.g., ∀1 = ∃2 (underspecified rela-
tion). This applies to the relation creation (R)
operation.

• the relation between two quantifiers being
specified. E.g., ∀2 > ∃2 (specified relation,
where ∀2 precedes ∃2 in the scope order).
This applies to the specification (S) opera-
tion.

Ψ is a term that represents the factor that “jus-
tifies” the decision and applies to the establish-
ment of the scope relation (R) or its specification
(S). This is the most flexible one, and depends on
the theoretical biases of the annotation exercise.
We propose the following two to start, but these
are non-exhaustive and can include, e.g., weighted
combinations of them:

• Syntactic/structural (X) – the scope operation
was applied because algorithmic or formal
constraints require an interpretation to hold
at that point.

• Pragmatic/knowledge-based (P) – the scope
operation was applied because of information
about the world or discourse context applied
by the processor.

This form of annotation has the advantage of be-
ing flexible: perhaps we only need or can obtain
the decisions being made, but not their contents.

3.2 Illustrating the process
These operations can be illustrated by the follow-
ing sentence. Using words as our incremental
units, we take the basic example sentence above
and step through it word by word. At the begin-
ning of the derivation, the scope database is empty.

(3) ‖
‖

Every child climbed a tree

When the first word enters the system, we get:

(4) a. Every
T(∀1)

‖
‖

child climbed a tree

The system can commit to the existence of a par-
ticipant in the scope relation. The actual noun does
not activate the scope system, although it will pro-
vide information during later decision making: it
will receive an N, which does not imply that it is ir-
relevant, since most machine learning systems will
also use features of the string:
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(5) a. Every
T(∀1)

child
N

‖
‖

climbed a tree

The verb “climbed” is transitive, so it heralds the
presence of another NP that could potentially en-
ter into a scope relation with “every child”. How-
ever, once again, this annotation is not exclusive
of other data sources (parses, treebanks), and only
augments that information with what is explicitly
known about scope.

(6) a. Every
T(∀1)

child
N

climbed
N

‖
‖

a tree

The appearance of the definite article after the
transitive verb, however, is evidence that some-
thing has a scope relation with “every child”, but
there is not enough evidence to make a full deci-
sions. This is annotated as relation creation (R),
which subsumes T:

(7) a. Every
T(∀1)

child
N

climbed
N

a
R(∀1 = ∃2,X)

‖
‖

tree

Finally, “tree” enters the system, giving enough
information to specify the relation. In this case,
pragmatics favours the linear scope, hence the P
justification term:

(8) a. Every
T(∀1)

child
N

climbed
N

a
R(∀1 = ∃2,X)

tree
S(∀1 > ∃2,P)

‖
‖

We now have a record for the most constrained
way in which a parser can use given scope and
lexical information to decide incrementally on the
scopes in the given sentence.

Consider the intervening element introduced in
(2-a). This may be annotated as:

(9) a. Every
T(∀1)

child
N

a
S(∀1 > ∃2,X)

teacher
N

picked
N

climbed
N

a
R(∀1 = ∃3,X)

tree
S(∃3 > ∀1,P)

In other words, the annotator may decide that on
syntactic grounds, the parser could favour a linear
scope interpretation of “a teacher”, and then be-
cause of the restriction placed on “every child”, an
inverse scope for “a tree” may be required.

Annotation may thus proceed on an experimen-
tal basis, where annotators are treated as subjects
and their differences considered factors in an ex-
perimental model, or a corpus containing gold
standard data may be required, wherein annota-
tors must strive for high agreement. This approach

to annotation is flexible enough to handle both re-
quirements.

4 Conclusions and future work

Quantifier scope ambiguity resolution is a long-
distance, within-sentence semantic phenomenon
that offers opportunities for research into the pro-
cess of incremental human sentence comprehen-
sion as well as challenges in building domain-
general, increasingly realistic conversational sys-
tems. A corpus annotation format that specificallly
focuses on incremental update is necessary in or-
der to exploit recent techniques in statistical NLP
that can be applied to this type of modeling task.

In this position paper, we proposed one such
annotation approach after justifying the need for
such with some background in the recent history
of research into scope processing. We recog-
nize that developing corpus resources is labour-
intensive and sometimes expensive, so it is best
to propose a scheme for discussion in the relevant
research community and then use that feedback
to move on to the next steps: collecting relevant
texts, constructing annotation interfaces, training
annotators, and so on. We also had the goal of
developing an annotation scheme that had multi-
ple levels of detail, so that even if lower levels of
detail have data sparsity problems, we would still
have rich annotation at the higher level of scope
decision-making.

Insofar as previous efforts at scope annotation
have been successful, we are optimistic that an
incrementality-focused annotation process can be
likewise successful. Annotation interface design
is the key element in successfully developing this
type of corpus. Another area of future work is
connecting this annotation to general-purpose syn-
tactic or semantic representations such as MRS or
Dynamic Syntax. An important challenge in anno-
tation development will be an assessment of the re-
liability of the annotation, considering the subtlety
of the scope annotation task; a major part of this
challenge is the choice of the right agreement mea-
sure and the text bounds over which agreement is
to be assessed.
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György Móra, and János Csirik. 2008. The bio-
scope corpus: biomedical texts annotated for uncer-
tainty, negation and their scopes. BMC bioinformat-
ics 9(11).

91



Stretching the Meaning of Words:
Insights for Context-Sensitive Lexical Semantic Models

Elisabetta Jezek
Università di Pavia
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Abstract

We offer an evidence-based linguistic
analysis of the phenomenon of seman-
tic coercion, i.e. the phenomenon through
which the meaning of a word is stretched
in context due to the meaning of the co-
occurring selecting words. We focus on
examples of predicate-argument combina-
tions, in which the stretching of meaning
is triggered by the predicate and targets
the semantic type of its arguments. We
claim that semantic coercion phenomena
are both constrained and graded and we
validate this assumption through a data-
driven investigation based on both cor-
pus evidence and human judgements. We
contend that the evidence of the existence
of constraints on coercion phenomena is
an argument in favour of the view that
there exists a context-independent lexical
meaning distinct from conceptual knowl-
edge and pragmatic inference. Overall,
our study supports the view that logi-
cally driven and machine learning meth-
ods based on distribution and probabil-
ity are both equally essential to model
the interplay between semantics, pragmat-
ics and cognition in natural language phe-
nomena such as the context-sensitivity of
word meaning. We focus on the Italian
language but our findings and results are
valid crosslinguistically.

1 Introduction

In this paper we offer an evidence-based lin-
guistic analysis of the phenomenon of seman-
tic coercion1, i.e. the phenomenon through which

1Coercion as a tool of theoretical analysis has been used
in several areas of grammar and frameworks, starting from

the meaning of a word is stretched in context
due to the meaning of the co-occurring select-
ing words. We focus on examples of predicate-
argument composition, in which the stretching of
meaning targets the semantic type of the argu-
ment. We claim that semantic coercion phenom-
ena are both constrained and graded and we val-
idate this assumption through a data-driven in-
vestigation based on both corpus evidence and
human judgements. We contend that the evi-
dence of the existence of constraints on coercion
phenomena is an argument in favour of of the
view that there exists a context-independent lex-
ical meaning distinct from conceptual knowledge
and pragmatic inference. Overall, our study sup-
ports the view that logically driven and machine
learning methods based on distribution and proba-
bility are both indispensable to model the interplay
between semantics, pragmatics and cognition in
natural language phenomena such as the context-
sensitivity of word meaning. We focus on the Ital-
ian language but our findings and results are valid
crosslinguistically.

The structure of the paper is the following. Af-
ter providing evidence of the variety of context-
dependency on the interpretation of words (sec-
tion 2), and offering a survey of the different views
with respect to the interplay between lexicon and
cognition (section 3), in section 4 and 5 we present
the claims that coercion phenomena are both con-
strained and graded, and corroborate them with
corpus evidence and with data of human judg-
ments we collected for this purpose (section 6).
We conclude in section 7 by making a plea for
moderate minimalisms for lexical semantic mod-
els and by advocating that modelling the interplay
between semantics, pragmatics and cognition in

aspectual coercion in Moens and Steedman (1988). We refer
here most directly to the work on semantic type coercion by
Pustejovsky (2011).
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natural language phenomena such as the context-
sensitivity of word’s meaning requires a hybrid
architecture which combines logically driven and
machine learning methods based on distribution
and probability.

2 Evidence for context-sensitive lexical
semantics

Words are able to take on a different meaning de-
pending on the context in which they are used. The
coexistence of many possible meanings for a word
is traditionally referred to as polysemy, and it is
conceived as a list of established senses stored in
the lexical entry. This is also the standard way dic-
tionaries are put together.

The checklist theory on meaning, however, has
long proved inadequate to account for the range
and types of contextual variations in interpreta-
tion that words display in actual use. Focusing
on the class of nouns, and on local linguistic con-
text, these variations include - and are not limited
to - properties of objects denoted by words com-
ing into the foreground as in (1a), where a spe-
cific part of the car is referenced by the predi-
cate screech (the wheels), contextual coercions as
in (1b), where an event (flight) is contextually in-
terpreted as the artefact through which it is per-
formed (aircraft), hidden events as in (1b), where
before introduces a temporal requirement related
to dessert, which is resolved by adding eating to
the default interpretation, and inherent polysemy
as in (1d), where two interpretations of the same
word (book) are triggered in the same linguistic
context by two different predicative expressions,
on the shelf (pointing at the physical aspect of
book) and boring (pointing at the informational
content).

(1) a. The car screeched down the road.
b. The flight landed safely at about 9 a.m.
c. We took a break before dessert.
d. The book on the shelf is boring.

In particular, metonymy shifts of the kind in
(1b), appear to be widespread and systematic
across languages. Extensive corpus data collected
for Italian within the T-PAS project2 using the cor-

2The T-PAS project builds a resource of corpus-derived
predicate-argument structures for Italian, such as [Human]-
subj raggiunge ‘reaches’ [Location]-obj) for linguistic analy-
sis and NLP tasks (Jezek et al., 2014). The repository con-
sists of 4241 T-PASs for a total of 1000 average polysemy
verbs. The project includes the construction of an inventory
of corpus-derived type mismatches in argument positions.

pus pattern analysis methodology (Hanks, 2013)
shows that argument coercions are spread un-
evenly among verb classes, i.e. certain verbs tend
to be more coercive than others, , and that certain
kinds of shifts are more widespread than others. A
selection of shifts is summarized in Table 1:

Source Type Target Type
Artifact Event
Artifact Human
Artifact Location
Event Location
Human Artifact (Vehicle)

Table 1: Coercion Shifts

The data below provides corpus evidence for
the shifts indicated in Table 1. First, the verb
class of the target predicate is provided (for exam-
ple, aspectual verbs); second, the typed predicate-
argument structure (T-PAS) of the verb is speci-
fied, based on which the shift was detected. Fi-
nally, both an example of matching and an ex-
ample of mismatching are given; in the examples,
the relevant syntactic role is marked in italics (for
example, the role of object in the case of inter-
rompere). Mismatch is used as a neutral term that
registers the lack of correspondence between the
type specified in verb template (corresponding to
a specific verb sense), and the semantic type of the
noun in the instance. Formulae such as Artifact
as Event mark that the source is interpreted as the
target in the context of use.

(2) Aspectual Verbs
[Human]-subj interrompe [Event]-obj
Arriva Mirko e interrompe la conversazione.
‘Mirko arrives and interrupts the conversa-
tion’ (matching)
Luisa ha interrotto la pillola.
Luisa interrupted the pill’ (mismatch,
Artifact as Event)

(3) Communication Verbs
[Human]-subj annuncia [Event]-obj
Lo speaker annuncia la partenza.
‘The speaker announces the departure’
(matching)
L’altoparlante annunciava l’arrivo del treno.
‘The loudspeaker announced the arrival of
the train’ (mismatch, Artifact as Human)

(4) Directed motion verbs
[Human]-subj raggiunge [Location]-obj
Abbiamo raggiunto l’isola alle 5.

93



‘We reached the island at 5’ (matching)
Ho raggiunto il semaforo e ho svoltato a de-
stra.
‘I reached the traffic light and turned right’
(mismatch, Artifact as Location)

(5) Directed motion verbs
[Human]-sub arriva (Adv[Location])
Ormai col buio sono arrivata a una radura.
‘It was already dark when I arrived at a clear-
ing” (matching)
Gli invitati arrivano alla cerimonia in ri-
tardo.
‘The guests arrive late at the ceremony’
(mismatch, Event as Location)

(6) Motion using a vehicle
[Flying Vehicle]-subj atterra
(Adv[Location])
Il nostro aereo atterra alle 21.
‘Our plane lands at 9pm’ (matching)
Il pilota è regolarmente atterrato senza
problemi.
‘The pilot landed regularly with no prob-
lems’ (mismatch, Human as Artifact)

In order to account for the pervasiveness and het-
erogeneity of contextual meaning variations such
as those shown in (1)-(6), it is evident that a
context-sensitive model of lexical semantics is
needed, incorporating two main standpoints: first,
semantic flexibility is a property of natural lan-
guage; the meaning of each word is expected to
vary from occurrence to occurrence as a function
of the interaction with the other words it com-
bines with, and of the situation of utterance (Reca-
nati, 2012); second, context-sensitivity is not con-
fined to words with functional roles (traditionally
verbs and adjectives), but extends e.g. to nouns
(see Pustejovsky’s qualia theory).

But how does such a model look like? And
what is the best model (formal, distributional,
probabilistic) to predict the observed contex-
tual variation in word meanings? Can a sin-
gle model serve both linguistic and computational
purposes? To what extent statistics about word
context and exploitation of co-occurrence infor-
mation (distributionally-represented knowledge)
can serve as a proxy for semantic grounding – and
how can it inform us about compositionality in
language? We argue that a basic requirement of a
context-sensitive lexical semantic model is, above
all, a clear standpoint with respect to the interplay

between the lexicon, cognition and pragmatic pro-
cesses, which we address below.

3 Lexicon, cognition and pragmatic
processes: an overview

By common consent, words denote classes of enti-
ties and are associated with conceptual categories,
for example a dog denotes an animal, a table de-
notes an artifact, bread denotes a kind of food,
a park denotes a location, run denotes a process,
and so forth. A conceptual category may be an-
alyzed as a set of salient attributes or properties
(Baroni and Lenci, 2008), for example the con-
cept dog has properties: breathes, barks, wags
its tail, has fur, and so forth. But which proper-
ties of a concept are genuinely distinctive and en-
ter into the lexical make-up of a word and which
ones do not? There are deep controversies regard-
ing what piece of information associated with a
word should enter into its definition, and consti-
tute what is called its lexical information. Tra-
ditionally, it is assumed that so-called encyclope-
dic/commonsense/real world knowledge should be
excluded (Marconi, 1997).

The distinction between lexical information and
real world knowledge is intuitive but difficult to
draw. According to some scholars, it is not even
necessary. Others believe it should be conceived
as a continuum rather than a dichotomy. In our
view, opinions differ because there is no consensus
about what criteria must be satisfied for a piece of
information to qualify as encyclopedic knowledge
instead of linguistic meaning, or vice versa.

Those who make a distinction take different po-
sitions on the subject (Jezek, 2016). According
to the minimalist position, nothing of what we
know about, say, the entity called dog is part of
the context-independent lexical information asso-
ciated with the word dog, except for those features
that are necessary to define it as a domestic animal
(as opposed to a wild one) and allow us to distin-
guish it from other entities falling into the same
category. According to the maximalist position,
the opposite is instead true, that is, the lexical in-
formation associated with the word dog incorpo-
rates our knowledge that dogs can be aggressive
(and therefore bite and attack), that they have an
acute sense of smell, that they like to chase cats,
and so on. This additional knowledge about dogs
is what we know from our individual experience
and perception. A radical position is that taken by
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those who hold that the distinction between lexical
information and encyclopedic knowledge is arti-
ficial or useless, and should be eliminated. Ac-
cording to this position, what words do is give us
access to concepts, and all the properties that en-
ter into the constitution of a concept can in prin-
ciple be exploited in language through the use of
words. The contexts in which words are used de-
termine which property/ies of the concept is/are
activated in the specific case. The lexicon is in-
terpreted as the access node into the vast repos-
itory of information associated with conceptual
categories. This position is dominant in cogni-
tive semantics and pragmatics, such as Relevance
Theory (Sperber and Wilson (1995) and Carston
(2002)), where context-dependency is dealt with
at the conceptual level. Finally, meaning elimi-
nativism - the most radical version of contextu-
alism discussed in (Recanati, 2004) - maintains
that we don’t need abstract schemes in the form
of context-independent linguistic meaning as in-
put to the composition process. This can pro-
ceed without the help of conventionalized context-
independent word meanings. Meaning elimina-
tivism gets rid of abstract meaning in favour of
observed occasion of particular uses.

4 Stretching the meaning of words

We argue that the position according to which
there is no distinction between lexical meaning
and conceptual content and that the construction
of interpretation is entirely a matter of context,
is not tenable, and language models which follow
this view are deemed to fail in accounting for se-
mantic composition in natural language.3 There
are at least three different types of arguments for
this claim.

First, if we allow that context does all the work
required to obtain the assignment of explicit se-
mantic values to word occurrences, the range of
interpreted values assignable to a given lexical en-
try is in principle unlimited; in this perspective,
there is nothing preventing speakers from uttering
a word instead of another in their speech, which is
obviously not the case.

As for argument two, there clearly is stability in
the assignment of semantic values to lexical items
across speakers. Moreover, language users con-

3See Asher and Pustejovsky (2005) for previous literature
backing up this claim, with focus on modelisation; on mean-
ing eliminativism, Gasparri (2013).

verge in their judgments regarding conditions of
applications of words. Both these aspects support
the idea that lexical meanings have a robust psy-
chological reality.

Third, there are constraints to the way we can
stretch the meaning of words in the context of use;
these constraints do not appear to be systemati-
cally predictable on the basis of conceptual knowl-
edge, suggesting that constraints operate not only
at the cognitive level but also at the lexical seman-
tics level, and there exists a distinction between
the two.

To clarify this claim, consider the the concepts
expressed by the following words and the relations
existing among them: museo ‘museum’, quadro
‘painting’ and collezione ‘collection’:4 museo de-
notes both the LOCATION where paintings are
stored, and the INSTITUTION which is in charge
of exhibiting them; quadro is the prototypical OB-
JECT associated with the EXHIBIT event; specif-
ically, the participant playing the role of Theme;
finally, collezione refers to a GROUP of accumu-
lated paintings, usually considered as a whole be-
cause of the way it was put together (either by the
same owner, or according to a particular property).
The concepts expressed by these three words are
clearly related: specifically, there exists a con-
tainment relation between quadro and museo, a
part of relation between quadro and collezione,
and a relation of participation between quadro and
the relational concept expressed by EXHIBIT.

Consider now the linguistic contrasts in (7),
where → signals a successful coercion:

(7) a. “Il museo apre alle alle 9.00”.
‘The museum opens at 9.00
b. →“La collezione apre alle 9.00.
‘The collection opens at 9.00.
b. *“I quadri aprono alle 9.00”.
‘The paintings open at 9.00’.

In (7a) the noun museo ‘museum’ is contextu-
ally interpreted as the institution; the co-occuring
verb aprire selects for an underlying agent en-
abling an activity (making the service of exhibit
available, in this case).5 We retrieved 1627 of hits

4In the following, words are reported in italics, whereas
concepts, following an established tradition in cognitive lin-
guistics - cf. Carston (2002) - are in small caps. We restrict
ourself to signalling the concepts and relations we deem im-
portant for the present discussion.

5We do not analyse this contextual interpretation of museo
as a coercion, because we assume that the type associated

95



of such examples in the ItTenTen 2016 corpus,
consisting in 4.9 billion words6. The number of
hits retrieved from the corpus confirms that com-
binations associated with this interpretation of mu-
seum are not only attested but also conventional in
the use of the language.

Also the noun collezione in (7b) is interpreted
as an institution, although the number of corpus
instances retrieved in this case are much lower.7

The analysis we propose for this example is that
the contextual interpretation of collection as IN-
STITUTION hosting exhibitions is a successful co-
ercion triggered by the verb aprire.

Consider now (7c), in which the noun quadro
does not appear to licence the interpretation of
institution, that is, coercion to Institution is not
successful. We retrieved no hits of such cases
from the corpus8. While this interpretation cannot
be ruled out exclusively based on absence in cor-
pus evidence, it is certainly not the norm (Hanks,
2013), as is the case with museum and, to a lesser
extent, with collection.

The analysis of the sets of examples discussed
here provide us with several pieces of evidence.
First, there exist constraints to the way we can
stretch the meaning of words, which are not neces-
sarily motivated cognitively: indeed, words which
are cognitively related such as collezione and
quadro (being collection a word that denotes both
the act and the result of gathering together a num-
ber of painting) exhibit in the data different se-
mantic behaviors in composition with respect to
the extent to which their meaning can be stretched.
One might argue that this is related to conventions
in language; we content that this is precisely the
argument in favour of distinguishing conceptual
knowledge from the actual knowledge associated
with lexical items of a specific language. Second,
it is plausible to assume that different types of con-
straints are active in semantic composition, an is-
sue we address in the following.

with the noun museo is a complex type, that is, a single type
made up by different components (Asher and Pustejovsky,
2005), and that the underlying compositional operation in this
case differs from ordinary coercions. This position can of
course be a matter of debate.

6The hits are obtained by the following CQL query
[lemma=”museo”][]0,4[lemma=”aprire”][tag=”PRE.*”] run
on the corpus through the Sketch Engine tool (Kilgarriff et
al., 2014).

7446 hits retrieved from the ItTenTen 2016 corpus using
the query [lemma=”collezione”][]0,4[lemma=”aprire”].

80 hits in the EnTenTen corpus, consulted through the fol-
lowing query: [lemma=”collezione”][]0,4[lemma=”aprire”].

4.1 Types of constraints operating on word
combinations

We claim that there are at least three types of
constraints on word combinations, even if when
violated they produce the same result, namely
word combinations which are ruled out as odd
or interpreted only if the meaning of one of the
members is stretched contextually, as in the case
of coercion.

Conceptual or ontological constraints. These
constraints on word combinations derive from the
inherent properties of the word’s referents - and
the way we conceptualize them - of which we are
aware as a result of our experience of the world,
experience that we tend not to contradict when
we speak. It is on the basis of this type of con-
straint that expressions such as “Bananas chase
democracy” are not interpretable, at least in the
actual world we live in.9 A combination of words
that violates this type of constraints expresses
a conceptual conflict, which cannot be resolved
in any way, because it is inconsistent from an
ontological point of view, that is, from the point
of view of how the world is and how we perceive
and conceptualize it. Conceptual/ontological
restrictions determine which words are semanti-
cally compatible with each other and which ones
are not, i.e. they are the basic level at which
compatibility among words is established.

Lexical constraints. Lexical constraints are
similar to ontological constraints - their violation
results in conflicting word combinations - but
their nature is different, because they are based
on a lexical conflict rather than an ontological
one. A lexical conflict concerns the way in which
a certain concept is lexicalized in a language.
There exist a number of examples in different
languages that support this claim (Jezek (2016),
190). For our current purposes consider It. “Luca
calzava una cravatta rossa” ‘Luca “calzava” a red
tie’, a combination which is not acceptable in
Italian (0 hits in It TenTen. 2016 corpus) because
it violates the lexical constraints that links the
verb calzare, hyponym of indossare ‘wear’, to a
specific subtype of clothes accessories, namely
scarpe ‘shoes” and guanti ‘gloves”; in other

9We set aside in this discussion speculations about possi-
ble words, which certainly constitute an interesting perspec-
tive on the phenomenon of stretching outlined here.
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words, calzare can be said of shoes and gloves
(as in “Luca calzava gli scarponi da sci” ‘Luca
was wearing his ski boots’) but not of ties. The
conflict that arises from the violation of a lexical
constraint, as in the example above, can be easily
resolved by substituting the “conflicting” verb
for a hypernym/super-ordinate with a looser
restriction. For example, in the case of calzare,
with the hyperonym indossare (’to wear’ used for
clothing in general).

Constraints institutionalized by conventional-
ity of use. This type of constraint can neither be
directly ascribed to ontological constraints (there-
fore, it is not conceptual), nor to obvious relations
between word meanings which tend to co-occur.10

That is to say, word combinations on which these
constraints apply are not predictable only on the
basis of the conceptual category or of the meaning
associated with the words involved, as the other
two types above. Rather, they are restricted by a
constraint rooted in language use, that is, in the
tendency of languages to express a given content
by means of preferential word pairs, although in
several cases other combinations are in principle
possible from a semantic perspective. These con-
ventionalized or institutionalized word pairs are
often referred to as “collocations” in the linguistic
literature, or “multiwords”, if lexical substitution
and syntactic modification of the constituents is
blocked (Sag et al., 2002); they are felt by speak-
ers as a typical way of saying a certain thing, i.e.
as combinations characterized by a certain degree
of conventionality. An example is It. avere paura,
lit. ‘to have fear’ (140.283 hits in the ItTenTen
corpus)11 vs. the less likely avere tristezza (45
hits in the same corpus) lit. ‘to have sadness’: the
most appropriate combination in latter case would
be provare tristezza ‘to feel sadness’ (289 hits).

5 Graded coercion phenomena

We claim that besides being constrained, coer-
cion phenomena are graded, that is, they vary de-
pending on how much the lexical content is ex-
ploited or enriched in the context of use.12 Fol-

10This type of constraint is not directly relevant in our
present discussion, but we briefly introduce it for complete-
ness.

11The corpus was queried through the Sketch Engine with
the following CQL: [lemma=”avere”][lemma=”paura”].

12The idea that there exists different types of coercion op-
erations has already been explored and formalized in the lit-

lowing Pustejovsky and Jezek (2008), gradability
can be approached in terms of “span” of coercion
mechanisms, i.e., what semantic shifts are possi-
ble (given a certain starting point); what can be
coerced into what else; how easily this may occur
etc. In predicate-argument composition this span
can be ‘measured’ by comparing the type expec-
tation of a given predicate with the list of argu-
ment types it occur with in the data. Consider the
following example of the It. verb ascoltare ‘lis-
ten’ and assume that in its basic sense it selects for
sound. Corpus data (from Pustejovsky and Jezek
(2008)) show that ascoltare combines with a va-
riety of argument fillers, only a small subpart of
which are pure sounds (we restrict ourselves to a
selection of these types):

(8) ascoltare ‘listen’ (sound)
Object
sound: voce ‘voice’, rumore ‘noise’, eco
‘echo’
sound and information: musica ‘music’,
canzone, ‘song’, jazz ‘jazz’; concerto ‘con-
cert’
event (natural): vento ’wind’, onda ‘wave’
event (involving sound production): respiro
‘breathing’, battito ‘beat’ , pianto ‘cry’
event and information (speech act):
annuncio ‘announcement’, conversazione
‘conversation’, lezione ‘lecture’
media artifact: radio ‘radio’
music artifact: CD, disco ’disk’, album
sound makers artifact: campana ‘bell’,
sirena ‘siren’
human (who writes music): Mozart, Bach
human (emitting sound): ragazzo ‘boy’,
cliente ‘costumer’; cantante ‘singer’ body
parts (emitting sound): corpo ’body’

What is interesting is that all nouns in (8) which
are neither sounds nor types of sounds are rein-
terpreted as such when composed with ascoltare:
media artifacts (radio), music artifacts (disc),
sound makers artifacts (bell), events involving
sound production (cry), speech acts (announce-
ment), animals (bird), humans (singer, Mozart),
erature. In Pustejovsky’s lexical semantic framework, for
example (cf. Asher and Pustejovsky (2005) and Pustejovsky
(2011), coercion is modelled as a two-layered mechanism:
coercion by exploitation, in which part of the context avail-
able in the lexical item is exploited, and coercion by intro-
duction, where the argument’s type is wrapped with the type
the predicate requires, enriching the information of the argu-
ment denotation. The notion of gradience introduced here is
related to but not overlapping this distinction.
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body parts (body) and so on. It is clear that al-
though all the coercions in (8) entail recomputing,
they do not all involve the same amount of com-
putation; it appears necessary to assume that the
exploitation of the semantic content of the argu-
ments involves different degrees, and that coercion
is gradable; some shifts are easier than others; it
is easier to shift from a source which is conceptu-
ally/ontologically close to the target than from one
which is far. Conversely, source-target shifts in
which the distance is bigger are cognitively more
complex and less frequent.

6 Human judgments on gradability and
constraints

In order to assess whether gradience of coercion
phenomena is reflected in judgments of native
speakers,13 we run an experiment to obtain human
judgements on a total of 100 verb-object and subj-
verb partially contextualised dyads, where 2 anno-
tators were asked to rate how literal the interpreta-
tion of the highlighted noun in the given dyad was,
within a span of 1 (literal) to 5 (shifted in context),
and a tag for semantically not acceptable (odd).
We proposed the task as follows: how literal is the
interpretation of the highlighted word in the con-
texts below? Rate it from 1 (literal) to 5 (shifted in
context) and use the last column if you think the
example is semantically odd or non interpretable.
Drawing from Shutova et al. (2010), we provided
the annotators with the following additional guide-
lines: For each phrase, establish the meaning of
the noun in the context of the phrase. Try to imag-
ine a more “basic” meaning of the noun in other
contexts. If you can establish a basic meaning dis-
tinct from the meaning of the noun in this context,
it is likely to be used non literally. The dyads con-
sist of corpus-derived examples of matching (42)
and mismatching (58) taken from the study in sec-
tion 2 and from the Italian section of the dataset
of the SemEval 2010 Task 7 on argument coercion
(Pustejovsky et al., 2010). Additional examples
were constructed manually with the goal of test-
ing acceptability. Verbs included in the data are
coercive in at least one of their meanings. Table

13We agree with Lau et al. (2016) that although the mere
existence of gradient human judgments cannot be taken as
conclusive evidence against a categorical classification of lin-
guistic knowledge: nevertheless we regard them as indicators
that certain aspects of linguistic knowledge might be better
represented as a probabilistic rather than as a categorical sys-
tem.

1 presents the sample of the annotated data for the
verb annunciare ‘announce’: the noun under focus
is the one in subject position that is assumed to be
typed as [[Human]] by the selecting verb.

Table 2: Sample of the annotated data

Interannotator Agreement. The two annotators
marked the same judgements in 57 cases out of
the 100 proposed (57% of observed agreement).
The agreement (IAA) we computed using Cohen’s
Kappa14 is 0.38.15 Given the variability of the
possibility, we believe that this value is fair. We
also tried to collapse extreme categories, merging
the two mostly literal categories (1-2) and the least
literal (4-5). We obtained an observed agreement
of 68% and a K equal to 0.39.

Qualitative analysis. Overall, the results show
that the two annotators express a variety of graded
judgments on coercions when allowed to do so by
the task.

Both annotators make extensive use of tag 1 (52
tags for ANN 1 and 49 tags for ANN 2), and their
agreement on this tag - identifying the most literal
reading - is higher than on any other tag (41 agree-
ment on tag 1; 6 on tag 2; 2 on tag 3; 4 on tag 4, 1
on tag 5; 3 on odd).

Importantly, agreements on tag 1 do not in-
clude conventionalized coercions such as the ones
in (9)16:

(9) a. “aprire il vino rosso in anticipo”
‘open the red wine in advance’ (tag 3, 4)
b. “finire il bicchiere prima di andarsene”
‘finish the glass before leaving’ (tag 4, 4)
c. “divorare Asterix”
‘devour Asterix’ (tag 3, 5)

14As is well known, Cohen’s kappa (K) takes into account
the possibility of the agreement occurring by chance; in fact
the formula subtracts the probability of agreement by chance
from the observed agreement.

For details see (Artstein and Poesio, 2008).
15I am indebted to Anna Feltracco for this calculus.
16In the example, we specify the tags used by the two an-

notators
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d. “Freuds e’ in edicola”
‘Freud is at the newsstand’ (tag 5, 5)
e. “Washington ha annunciato un pro-
gramma di aiuti”
‘Washington announced an aid campaign’
(tag 4,5)
f. “L’altoparlante annuncia ritardi a catena”
‘The loudspeaker announces successive de-
lays’ (tag 5,5)

This suggest that despite their frequency, con-
ventionalized coercions such as those in (9) are
still recognized - albeit to a different degree - as
non literal uses of the word by native speakers.

On the other hand, in the context of raggiun-
gere ‘reach’, the artefact semaforo ‘traffic light’ is
tagged as literal by both annotators, supporting the
hypothesis that this is a very “light” form of coer-
cion, if at all; the property of being localized is
inherent to all physical objects and under “coer-
cive” contexts such as directed motion verbs they
are easily interpreted as locations (see example 4).

The largest variation between the two annota-
tors is to be found in tags higher than 1. In this
respect we noted that compared to ANN 2, ANN1
underused tag 3 (total of 5 annotations), perhaps
under the suggestion that it is a “neutral” score and
does not disambiguate clearly between literal and
non literal.

Finally, there is agreement between the anno-
tators on the oddness (tag: odd) of the following
two expressions, validating the corpus-based anal-
ysis in section 4, according to which the It. noun
quadro is not successfully used as coercion to In-
stitution.

(10) a. “i quadri aprono alle 9.00”.
‘The paintings open at 9.00’
b. “visitare i quadri”.
‘visit the paintings’

Perhaps the most notable observation, when
looking at the entire dataset, is that although the
annotations span over all degrees, their total be-
tween 1 and 3 (151) is much higher than the to-
tal between 3 and 5 (55). In light of the ra-
tio between selection and coercion in the dataset
(42/58), this result suggest that coercion mecha-
nisms is perhaps not perceived as highly non literal
by speakers, whereas this could not be the case
with metaphor uses; this insight is left for future
investigation.

7 Conclusions: A plea for Moderate
Minimalism

We have claimed that stretching phenomena in se-
mantics are both graded and constrained, and sup-
ported this claim with corpus evidence and data
about human judgements. We have argued that
the presence of constraints on coercion phenom-
ena constitutes linguistic evidence that points to-
wards a rejection of meaning eliminativism and
towards moderate minimalism in lexical seman-
tics. Although context can stretch the meaning
of words, some combinations are uninterpretable,
and others are highly unlikely, because words do
carry a meaning on their own, and the construction
of interpretation is not entirely a matter of context.
According to this view, a word is a collection of
“pointers”17 to “fragments” of conceptual knowl-
edge; however, the way conceptual knowledge is
packed into lexical items and available for ex-
ploitation in actual use presupposes the existence
of a specific mental entity, lexical meaning, which
acts as interface between concepts and words. Fi-
nally, in this paper we have used the dataset we
created mainly for purposes of linguistic analy-
sis. From the point of view of machine learn-
ing, however, this dataset represents a gold stan-
dard which can be employed to train and test mod-
els aiming at detecting and classifying stretching
phenomena. Finally, the linguistic study we have
presented supports the view that hybrid architec-
tures merging logically driven and machine learn-
ing methods based on distribution and probability
are necessary to model the interplay between se-
mantics, pragmatics and cognition in natural lan-
guage phenomena such as the context-sensitivity
of word’s meaning.
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Abstract

An insight from formal semantics is ap-
plied to distributional semantics by build-
ing verb vectors and tensors that do take
into account argument information asso-
ciated with verbs. Four different argu-
ment combination models are presented
and used to augment the verb vectors in
two different conjunctive and disjunctive
ways. The resulting representations are
evaluated on a verb similarity task in three
different vector spaces. Three different
subsets of the similarity dataset are iden-
tified and the performance of the models
are analysed on them. The overall findings
show that the argument-augmented mod-
els and in particular a conjunctive model
based on point wise multiplication and the
Kronecker tensor product performed bet-
ter than the base line of verb-only vectors
and the other operations.

1 Introduction

Standard distributional semantics focuses on the
degree to which words co-occur in context rather
than the syntactic structure in which they appear.
Formal semantics takes an opposite view: mean-
ings of words emerge in syntactic structure: ad-
jectives and intransitive verbs are represented by
e.g. unary predicates, transitive and ditransitive
verbs by binary and ternary predicates, and so
forth. As a result, in distributional semantics,
where the representation of a word is its context
vector, verbs with the same contexts but different
argument structure will be come out similar. For
example, ’stroke’ and ’purr’ both occur frequently
in the context of ‘pet’, but whereas ‘purr’ is an in-
transitive verb and only has one argument, ‘stroke’
is transitive and has two arguments. This distinc-

tion does not show itself in this context: the two
verbs are considered to be similar when they oc-
cur in the context of ‘pet’. In formal semantics,
on the other hand, verbs that have the same argu-
ments will have identical representations An ex-
ample is a formal semantics model wherein the
meaning of the two verbs ‘like’ and ‘sit beside’
is the pair (‘John’, Mary’). This model cannot dis-
tinguish between these two verbs since they have
the same arguments.

In this paper, we argue that exploiting the syn-
tactic structure of the verb - particularly the in-
formation associated to its argument slots - when
building a distributional representation for it, im-
proves the much used distributional task of simi-
larity. We implement this idea by augmenting the
distributional representation of a verb with the dis-
tributional representations of its arguments with
the goal of providing a better distributional rep-
resentation for the verb itself. We present differ-
ent models for combining the argument vectors
and augmenting the vector and tensor of the verb
with them. We experiment with different spaces
with different vocabulary, dimension, and win-
dow sizes. We implement three different vector
construction algorithms, CBOW, Skip-gram (both
from the Word2Vec package but by using Google’s
TensorFlow package1), and the PPMI-normalised
co-occurrence counts. We evaluate our hypothesis
by applying it to the SimVerb-3500 verb similarity
dataset of (Gerz et al., 2016). The results support
our hypothesis; in the majority of models and pa-
rameters the augmented vectors do better than the
vectors of the verbs alone and the vectors of the
arguments alone in the similarity task. Moreover,
the combination of the Kronecker tensor product
of the arguments augmenting the Kronecker ten-
sor of the verb provides best results both in the de-

1https://www.tensorflow.org/
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velopment and in the test set. The best method of
augmentation was a conjunctive operation: point-
wise multiplication.

Our work sits within the emerging field of com-
positional distributional semantics, which aims
to combine insights from distributional semantics
with formal semantics models of meaning in or-
der to build compositional vectors for meanings of
phrases and sentences of natural language. Differ-
ent unifying models have been proposed and ex-
perimented with tasks involving phrases and sen-
tences, e.g. see (Erk and Padó, 2008; Baroni
and Zamparelli, 2010; Coecke et al., 2010; Clark,
2015; Maillard et al., 2014; Krishnamurthy and
Mitchell, 2014); for a recent take and more mod-
els see the articles of the recently edited volume
by (Boleda and Aurelie, 2016).

Our work is different from existing work in the
field in that it is the first time that the focus is
not on building vectors for phrases and sentences
but on representations of words themselves. For
instance, experiments of previous work focused
on improving tasks such as phrase/sentence dis-
ambiguation in the work done by (Mitchell and
Lapata, 2010; Grefenstette and Sadrzadeh, 2011;
Polajnar et al., 2014), phrase/sentence paraphras-
ing in (Mitchell and Lapata, 2010; Kartsaklis and
Sadrzadeh, 2013), phrase reconstruction in (Ba-
roni and Zamparelli, 2010), phrase/sentence en-
tailment in (Lewis and Steedman, 2013), and pars-
ing in (Krishnamurthy and Mitchell, 2014). Our
focus is on building enriched representations for
verbs and the experimentation is on a verb sim-
ilarity task. We use the SimVerb-3500 dataset,
which was designed to represent the complexity
and diversity of verb meanings and to gain a better
understanding of verb semantics in distributional
models. Our thesis holds for any word with a
functional role, e.g. adjectives and prepositions.
Experimenting with similarity of these words can
also be a future direction.

The idea that distributional representations of
meanings of some words can be improved when
their syntactic structure is used has been investi-
gated in some of previous work and when build-
ing vectors for phrases and sentences contain-
ing them, e.g. in (Baroni and Zamparelli, 2010;
Grefenstette and Sadrzadeh, 2011) and more di-
rectly in (Erk and Padó, 2008). A further differ-
ence of our work with the former, i.e. the work
of (Baroni and Zamparelli, 2010; Grefenstette and

Sadrzadeh, 2011; Polajnar et al., 2014; Kartsaklis
and Sadrzadeh, 2013), is that they only focus on
combinations of arguments and do not combine
these with the vector of the verb. Further, often
only one model is used, e.g. (Baroni and Zampar-
elli, 2010) use linear regression on the phrase vec-
tors of adjective-nouns and nouns to harvest ma-
trices for adjectives, (Grefenstette and Sadrzadeh,
2011) only work with sums of Kronecker products
of arguments to build matrices for transitive verbs
and moreover they do not combine these with the
vector of the verb. The work of (Erk and Padó,
2008) only combines vectors of arguments with
that of the verb using a conjunctive multiplication
model and does not investigate disjunctive oper-
ations. There are further theoretical differences,
for example that following work carried out at the
lexical semantics/syntactic interface in linguistics
((Pustejovsky, 1995), (Van Valin, 2005), (Levin
and Rappaport Hovav, 2005)) we assume that ar-
gument structure is part of the meaning of the verb
and not external to it, which is what most previ-
ous work seem to follow. In this paper, we mainly
present experimental results and leave the theoret-
ical expansion to a sequel paper.

2 Verb Similarity Task and Dataset

We evaluate our models on the 3500 verb simi-
larity evaluation resource SimVerb-3500 of (Gerz
et al., 2016). This is a dataset of 3,500 verb
pairs with human rankings for the similarity of
each pair, divided to 500-3000 development and
test sets. It contains 827 verb types covering all
the normed verb types of the University of South
Florida Free Association Norms (USF), the largest
database of free association for English. The verbs
were paired with each other using the norming
process of USF and VerbNet classes (Kipper et al.,
2008); leading to similar (respond/reply) and non-
similar (run/seat) pairs.2

In our experiment, we first computed vectors for
each verb using a set of models, to be presented in
Section 4; then we computed the cosine similar-
ity between the vectors in each pair and calculated
the degree of correlation between this the simi-
larity so obtained and human rankings from the
SimVerb-3500 using Spearman’s ρ. Human an-
notations were obtained from 843 native English

2Besides synonymy, the resource includes human rank-
ings for three additional types of verb relations: antonyms,
hypernym/hyponyms, cohypomyms: we return to this in sec-
tion 6.2.
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speakers within the age range of 18-50. In order
to restrict the annotators to this range, the special
crowed sourcing platform of PA3) was used. This
platform provides demographic information. For
more details on annotators and the dataset in gen-
eral, we refer the read to the original paper on the
development of this dataset, that is to (Gerz et al.,
2016).

3 Intransitive vs Transitive

Some of the verbs of the SimVerb-3500 dataset are
transitive, some are intransitive, some are both.
In order to assign a valence to each verb of the
dataset, we work with the following hypothesis:
verbs that occurred with an object more than 50%
of the total number of times that they occurred in
total, are treated as transitive and verbs that had
an object less than that, were treated as intransi-
tive. For example hesitate occurred with a to-
tal of 19,504, 0.033% with an object and 0.966%
without one, and was treated as intransitive ac-
cordingly. Similarly, refrain occurred a to-
tal of 7,725, 0.044% with an object and 0.95%
with none. Both were treated as intransitives. Ex-
amples of transitive cases were attract with
125,544 occurrences, 0.78% with an object and
0.21% with none. Another example is lend with
a total occurrence of 3,1741, 0.76% with an ob-
ject and 0.23% with none. Examples of borderline
cases were combine and dismiss with a 51%-
48% division between their object and no-object
occurrences. These were mostly verbs that have
both transitive and intransitive roles. For the pur-
pose of this paper, we applied a strict above/under
50% threshold and each verb was provided with a
transitive/intransitive tag. In further work, we plan
to apply a more fine grained filter using linguistic
resources to identify the type of the verb.

4 Vector and Tensor Combination
Operations

For intransitive verbs, we consider one argument
type per verb: subject. A verb occurs in a corpus
in different phrases and sentences, acquiring many
subjects. Each subject has a vector representation.
We combine these vectors to obtain the matrix for
the subject argument using two different sets of
operations:

3https://prolific.ac/

1. Disjunctive Operations: summation, point-
wise maximum

2. Conjunctive Operations: point-wise multipli-
cation, point-wise minimum, and Kronecker
tensor product.

Recall that the operations minimum and max-
imum act point-wisely on their inputs: they take
two vectors as input, take the minimum/maximum
of each entry therein and return a vector as out-
put. The Kronecker tensor product takes two vec-
tors and returns a matrix whose elements are mul-
tiplications of elements of vectors. For a demon-
strations, see below where these operations are de-
fined on vectors in a two dimensional space:

min(

(
a
b

)
,

(
c
d

)
) =

(
min(a, c)
min(b, d)

)

max(

(
a
b

)
,

(
c
d

)
) =

(
max(a, c)
max(b, d)

)

(
a
b

)
⊗
(
c
d

)
=

(
ac ad
bc bd

)

Since our numbers are probabilities, we are
working in a sub-vector space of a vector space
over the field of reals. This subspace is restricted
to positive reals; therein disjunctive operations ac-
cumulate the information of the arguments, con-
junctive ones sift through and take the common
part of them. In this setting, disjunctive operations
on vectors are analogous to taking union on sets
and conjunctive operations are analogous to taking
intersection. Hence, taking maximum acts simi-
larly to summation and taking minimum to multi-
plication. For a demonstration, suppose we have
two vectors, one element of one of which is a zero
and for the other element we have a ≤ c, recall
a, c, d > 0 we have

(
a
0

)
+

(
c
d

)
=

(
a+ c
d

)

max(

(
a
0

)
,

(
c
d

)
) =

(
c
d

)

whereas
(
a
0

)
�
(
c
d

)
=

(
ac
0

)
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Label Formula Label Formula
Arguments Only Verbs Augmented by Arguments

Sum −−−→
V erb

+

tv = (
∑n

i

−−→
Sbji) + (

∑n

i

−−→
Obji) Sum-Sum −−−→

V erb
+

tv +
−−−→
V erb

Kronecker −−−→
V erb

⊗
tv :=

∑n

i

−−→
Sbji ⊗

−−→
Obji Sum-Mult −−−→

V erb
+

tv �−−−→V erb

Kron-Sum −−−→
V erb

⊗
tv + (

−−−→
V erb⊗−−−→V erb)

Kron-Mult −−−→
V erb

⊗
tv � (

−−−→
V erb⊗−−−→V erb)

Table 1: Subjects/ objects combination formulae

min(

(
a
0

)
,

(
c
d

)
) =

(
a
0

)

In the first set of operations, the zero element
disappears from the result, as we are accumulat-
ing positive information. The contrary is true for
the second case where the zero survives as we are
intersecting information. In the same line, a zero
will survive the Kronecker product:

(
a
0

)
+

(
c
d

)
=

(
ac ad
0 0

)

In our experiment, we augment the vector of
the verb with each of these combinations by sum-
ming and multiplying them. As illustrated above,
the summation provides a disjunctive augmenta-
tion and the multiplication, a conjunctive one. As
a technical side, in order to augment the Kronecker
combination, we need to make the type of the verb
match the type of the result of the Kronecker prod-
uct of its argument, the former is a matrix, the lat-
ter a vector. We resolve the problem by working
with the Kronecker product of the vector of the
vector of the verb with itself, thus obtain a matrix
encoding of the original vector of the verb. All the
operations we performed are listed in Table 2. The
number of the subject’s occurrences of an intran-
sitive verb are denoted by the variable k. For a
transitive verb, the number of subjects and objects
are the e number of times the verb has occurred in
a transitive sentence, these are denoted by variable
n.

Transitive verbs have at least two argument
types per verb: subject and object. They occur
in the corpus n many times, at each occurrence,
we collect their subjects and objects and combine
them by summing the subject and object vectors
and summing their Kronecker products. The vec-
tor of the verb is augmented with these as for the
intransitive case. The corresponding formulae are
listed in Table 1.

Not every verb pair in the SimVerb-3500 dataset
had a coherent type of verb; there were cases were

intransitive verbs were paired with transitive ones.
In such cases, we worked with the combination
formulae that led to a representation in the same
space. These were Sum and Kron for the ar-
gument only models, and Sum-Sum, Sum-Mult,
Kron-Sum, and Kron-Mult for the augmented ar-
gument models.

5 Vector Space Model Parameters

We implemented three different spaces; with the
skip-gram algorithm implemented in TensorFlow,
with the original C version of the continuous bag
of word algorithm implemented in Word2Vec, and
with a count-based space. All spaces were trained
on the parsed version of the UKWacky corpus4,
which is a concatenation of UKWac5 and a 2009
dump of English Wikipedia, tagged with the Tree-
Tagger and parsed with the MaltParser. In the case
of Word2Vec, we worked with a 50k and a 500k
vocabulary size, the vector embedding sizes were
128, 256, and 500, the window sizes were 3 and 5.
The parameters of the skip-gram space where the
same, except the maximum embedding size was
256, due to the large training times. Finally, in the
count-based space, the window sizes were 3 and 5
and the dimension was the most frequently occur-
ring 5k lemmas minus the top 100k; vectors were
weighted with PPMI.

Amongst the UKWacky’s tags are the subjects
and objects of sentences. We used the tags for
subjects and objects to detect the role of a word
in a sentence. UKWacky also contains the parsed
structure of the sentences, using this structure we
could determine which words the subjects and ob-
jects were operating on.

Different machines were used for the imple-
mentation and evaluation, among these was a clus-
ter of 8 Core Intel Xeon for the 500 development
set and an 18 machine cluster of 16 Core Intel
Xeon for the 3000 test set.

4http://wacky.sslmit.unibo.it/doku.php?id=corpora
5https://www.sketchengine.co.uk/ukwac-corpus/
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6 Subsets of the Dataset

6.1 Number of Subjects and Objects
We probed the number of subjects and objects
of the verbs to test whether this parameter af-
fected the results. Some verbs had a large num-
ber of subjects/objects; more precisely, subjects
for the case of intransitive verbs and subjects and
objects for transitive verb. We wanted to know
wether these verbs made better or worse contribu-
tions to our models. Our conjecture was that these
verbs would provide inappropriate candidates for
the argument-augmented models since their argu-
ments are plentiful and in principle can range over
all eligible nouns; thus the information provided
by them is more resemblant of noise. We de-
cided to verify this idea by removing these verbs
from the dataset and test whether the results im-
proved or not. Our findings showed that about
95% of the verbs have very few subjects/objects
and very few of the verbs have a large number
of subjects/objects. Based on this, verb pairs that
had the top 5% and the low 5% of the total num-
ber of subjects/objects of all verb pairs were re-
trieved. The experiment was repeated separately
for each case. The performance of the argument-
augmented model on the omitted top 5% of verbs
was improved.

Our intuition was backed with this experimen-
tation: when the set of verbs with top 5% of sub-
jects/objects where removed from the model, the
amount of noise from the model was reduced and
the augmentation worked better.

6.2 Synonyms vs Antonyms
We analysed the correlation between the rela-
tionship of the verbs in a pair and how well
the argument augmented models worked. As
referenced in section 1, each verb pair of the
SimVerb-3500 dataset came labelled with one of
{antonym, synonym, hyper/hyponym, none}. Our
findings showed that the subset of the dataset
with synonymy relationship performed best and
dropping the antonyms from the dataset improved
the results. The conclusion is similar to that of
(Gerz et al., 2016): argument-augmented models
work best for synonyms and become worse when
antonyms are included.

6.3 Intransitive vs Transitive
We experimented with subsets of the dataset re-
stricted to pairs where verbs are either both intran-

sitive or both transitive. A preliminary analysis
did not show a clear improvement and we could
not find much regularity in the results; some ar-
gument combinations together with certain verb
augmentations worked better for some implemen-
tations and we some did not. The argument-based
results performed better than the verb-only ones in
the majority of cases. For reasons of space we do
not present these results here.

7 Results

The results are presented in tables 3 and 4. Table
3 reports the results on the 500 development set;
Table 3 reports the result of the best model of the
3000 test set on the test set.

The results of the 500 development set are for
the following space parameters: window size 5,
vocabulary size 500k, dimension 500 for CBOW,
256 for skip-gram and 5k for the count-based
model. The Original Setting is the full dataset
before any classification was applied. The Verbs
with Top 5% of Subjects/Objects Removed
is the classification described in subsection 6.1,
where the verb pairs that had the top 5% of
the number of subjects/objets were removed from
the dataset . The Synonyms Only and All But
Antonyms are the result of the classifications out-
lined in subsection 6.2, where, respectively, only
verb pairs that had a synonymous relationship
were experimented on and where all the verb pairs
but the ones that had the antonymous relationship
were experimented on . As a baseline, we are
comparing the results with a model with a non-
augmented verb, that is, the vector of the verb
without considering any of its arguments. The re-
sults of the verb-only model are presented in the
first column of Table 3. To make it clear that this
is our baseline, we have underlined the label of
this column.

In the 500 development set, the highest degree
of correlation was achieved by the count-based
space and was 0.42. In all but the synonym-only
subset of the dataset, the argument-only and the
argument-augmented models did better than the
verb-only model. The verb-only model did bet-
ter in two out of three cases of the synonym-only
subset. Here, the Kron-Sum and Kron-Mult oper-
ations were the best ways of augmenting the verb
vectors with vectors of arguments; they performed
best in 6 out of 12 cases. They were followed
by Sum-Mult, which was the winner in 3 out of
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Label Formula Label Formula
Arguments Only Verbs Augmented by Arguments

Sum −−−→
V erb

+

itv :=
∑k

i

−−→
Sbji Sum-Sum −−−→

V erb
+

itv +
−−−→
V erb

Minimum −−−→
V erb

min

itv := argmin(
−−→
Sbj1, · · · ,

−−→
Sbjk) Sum-Mult −−−→

V erb
+

itv �−−−→V erb

Maximum −−−→
V erb

max

itv := argmax(
−−→
Sbj1, · · · ,

−−→
Sbjk) Min-Sum −−−→

V erb
min

itv +
−−−→
V erb

Kronecker −−−→
V erb

⊗
itv :=

∑k

i

−−→
Sbji ⊗

−−→
Sbji Min-Mult −−−→

V erb
min

itv �−−−→V erb

Max-Sum −−−→
V erb

max

itv +
−−−→
V erb

Max-Multiply −−−→
V erb

max

itv �−−−→V erb

Kron-Sum −−−→
V erb

⊗
itv + (

−−−→
V erb⊗−−−→V erb)

Kron-Multiply −−−→
V erb

⊗
itv � (

−−−→
V erb⊗−−−→V erb)

Table 2: Subject combination Formulae

Model Verb Sum Kronecker Sum-Sum Sum-Multiply Kronecker-Sum Kronecker-Multiply
The Original Setting

Skip-gram 0.0094 0.0076 0.0348 0.0188 0.0224 0.0465 0.0187
CBOW 0.1497 0.2013 0.1374 0.2008 0.1684 0.1383 0.1767
Count 0.2382 0.1270 0.1457 0.1398 0.2773 0.1516 0.2657

Verbs with Top 5% of Subjects/Objects Removed
Skip-gram 0.0141 0.0109 0.0501 0.0108 0.0188 0.0503 0.0223

CBOW 0.1757 0.1865 0.1003 0.1861 0.1909 0.1014 0.1864
Count 0.3613 0.2792 0.2772 0.2792 0.3880 0.2772 0.4206

Synonyms Only
Skip-gram 0.4119 0.0784 0.1029 0.0736 0.3409 0.1029 0.3495

CBOW 0.1437 0.0491 0.0085 0.0491 0.3587 0.0085 0.3832
Count 0.3613 0.1270 0.1457 0.1398 0.2773 0.1516 0.2657

All But Antonyms
Skip-gram 0.0143 0.0281 0.0669 0.0280 0.0146 0.06721 0.0110

CBOW 0.1693 0.2059 0.1338 0.2049 0.1706 0.1346 0.1790
Count 0.2309 0.1331 0.1484 0.1336 0.2787 0.1486 0.2650

Table 3: Degrees of correlation between human rankings and cosine distances on the 500 development set of SimVerb-3500.
Baseline is the verb-only model: the first column on the models row.

12 cases. Overall; the argument-augmented sub-
set performed best in 6, the argument-only models
in 2, and the verb-only models in 2 cases. Thus,
the argument-based models performed best in 10
out of 12 cases; we take this as a support for our
hypothesis.

As a second experiment, we picked the parame-
ters of the best performing 500 development set
and ran it on the 3000 test set. The best re-
sults were for the count space, where window
size was 5, vocabulary size 500k, and dimension
5k. The best performance of the development set
was the model where verbs with Top 5% of sub-
jects/objects were removed. We repeated the ex-
periment with the original as well as the other
subsets of the dataset in the 3000 test set and
obtained the same results: the best performance
was provided by the argument-augmented model
and in the subset where verbs with Top 5% of
subjects/objects were removed. The best com-
bination operation was again a tensor-based one:
Kronecker-Multiply. The results are presented

in Table 4. Here again and in consistency with the
results of the 500 development set, multiplication
proved to be the best augmentation method: the
Kronecker-Multiply and Sum-Multiply opera-
tions achieved the top two best correlation scores
and were thus our top two best performers.

Similar to the results of the original SimVerb-
3500 paper (Gerz et al., 2016), the degrees of
correlation are in general low. For the devel-
opment set, their best set of results in a distri-
butional space are obtained using a dependency
based vector space, where the highest achieved
degree of correlation was 0.401. Our best model
(Kronecker-Multiply ) reached a degree of corre-
lation of 0.4206 and improves on that. The results
reported in (Gerz et al., 2016) were then improved
by using non-distributional linguistic resources.
These models obtained a degree of correlation of
0.632. As these used non-distributional resources,
it would not make sense to compare our models
with these. In the test set, however, their best dis-
tributional model, which was again a dependancy
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Model Verb Sum Kronecker Sum-Sum Sum-Multiply Kronecker-Sum Kronecker-Multiply
The Original Setting

Count 0.1490 0.1183 0.1014 0.1135 0.1632 0.1014 0.1623
Verbs with Top 5% of Subjects/Objects Removed

Count 0.1558 0.1557 0.1414 0.1568 0.2055 0.1415 0.2046
Synonyms Only

Count 0.1503 0.0245 0.0093 0.0251 0.0265 0.0093 0.0236
All But Antonyms

Count 0.1533 0.1208 0.1074 0.1209 0.1682 0.1075 0.1681

Table 4: Degrees of correlation between human rankings and cosine distances on the 3000 test set of SimVerb-3500 for the
best model of the development set. Baseline is the verb-only model: the first column on the models row.

based vector space, obtain a degree of correlation
of 0.351, which beats our best model. Neverthe-
less, their best count-based model only achieved a
degree of correlation of 0.186, whereas the perfor-
mance of our best count-based model was 0.2046
and thus improves on that.

8 Conclusions and Work in Progress

We conjectured that the distributional vector rep-
resentations of words with functional roles, such
as adjectives and verbs, will improve when their
argument structure is taken into account. We fo-
cused on verbs and implemented this conjecture
by augmenting the vectors of verbs with vectors
of their arguments. We provided a variety of dif-
ferent models for combining the arguments with
each other and for augmenting the vector of the
verb with them. We worked with three differ-
ent vector spaces using a parsed version of the
UKWacky corpus: the Tensor Flow Skip-gram al-
gorithm, the Word2Vec CBOW algorithm, and a
count-based model, normalised with PPMI. We
evaluated these models on the SimVerb-3500 verb
similarity dataset. We analysed the dataset in
three different ways: based on the number of
subjects/objects of the verb pairs, on the rela-
tion between the verbs in a pair, and the transi-
tive/intransitive types of the verbs. The former
two provided improvements, the results of the lat-
ter did not lead to a clear conclusion.

Overall, the argument-augmented models pro-
vided the best results, confirming our hypothe-
sis. The best combination operations were sum
and multiplication of sums of Kronecker tensor
products of arguments. The best overall degree
of correlation was achieved by the multiplication
of sums of Kronecker products in the count-based
space when the verb pairs with the top 5% of the
number of subjects/objects were removed. The
results are the same in the 500 development and

3000 test set.
The correlations were overall quite low. One

reason is the imprecision of the tags in the
UKWaC. Our hypothesis relies on the recogni-
tion and retrieval of arguments of verbs, which in
turn relies on the syntactic dependencies identified
by the UKWaC tags. A preliminary analysis re-
vealed a good number of mistakes. For instance,
”drivers” was identified as the object of the in-
transitive verb ”snooze” in the phrase ”snoozing
drivers”; this was among the most common er-
ror patterns. Further, as the number of verb pairs
increased, so did the number of general purpose
verbs; on these our models did not performed well,
due to the presence of noise in the subjects/objects.
Bettering these faults by using a better parser to
tag the UKWaC corpus and rerunning the models
is a future direction. Working with tensors other
than the Kronecker one and where the verb tensors
are matrices that are directly built using data, as
in previous work of (Grefenstette and Sadrzadeh,
2011) (Kartsaklis and Sadrzadeh, 2013) for verbs
and of (Baroni and Zamparelli, 2010) for adjec-
tives is another direction we believe is worth pur-
suing. Finally, studying the theoretical side of this
work by exploring the syntactic and lexical struc-
ture of the verbs and its connections to its formal
and distributional semantics, e.g. the internal ver-
sus external structure of the verb and the connec-
tions of this with the meaning of the verb, is our
work in progress.
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