
Analysing Neural Language Models: Contextual Decomposition Reveals
Default Reasoning in Number and Gender Assignment

Jaap Jumelet
jumeletjaap@gmail.com

University of Amsterdam

Willem Zuidema
w.h.zuidema@uva.nl

ILLC, University of Amsterdam

Dieuwke Hupkes
d.hupkes@uva.nl

ILLC, University of Amsterdam

Abstract

Extensive research has recently shown that re-
current neural language models are able to pro-
cess a wide range of grammatical phenomena.
How these models are able to perform these
remarkable feats so well, however, is still an
open question. To gain more insight into what
information LSTMs base their decisions on,
we propose a generalisation of Contextual De-
composition (GCD). In particular, this setup
enables us to accurately distil which part of
a prediction stems from semantic heuristics,
which part truly emanates from syntactic cues
and which part arise from the model biases
themselves instead. We investigate this tech-
nique on tasks pertaining to syntactic agree-
ment and co-reference resolution and discover
that the model strongly relies on a default rea-
soning effect to perform these tasks.

1 Introduction

Modern language models that use deep learn-
ing architectures such as LSTMs, bi-LSTMs and
Transformers, have shown enormous gains in per-
formance in the last few years and are finding ap-
plications in novel domains, ranging from speech
recognition and writing assistance to autonomous
generation of fake news. Understanding how they
reach their predictions has become a key question
for NLP, not only for purely scientific, but also for
practical and ethical reasons.

From a linguistic perspective, a natural ap-
proach is to test the extent to which these models
have learned classical linguistic constructs, such
as inflectional morphology, constituency struc-
ture, agreement between verb and subject, filler-
gap dependencies, negative polarity or reflexive
anaphora. An influential paper using this approach
was presented by Linzen et al. (2016), who inves-
tigated the performance of an LSTM-based lan-
guage model on number agreement. In many

later papers (e.g. Gulordava et al., 2018; Wilcox
et al., 2018; Jumelet and Hupkes, 2018; Marvin
and Linzen, 2018; Giulianelli et al., 2018) a wide
spectrum of grammatical phenomena has been in-
vestigated, assessing these grammatical abilities
in a mainly “behavioural” fashion, by considering
the model’s output.

In this paper, we take it as established that neu-
ral language models have indeed learned a great
number of non-trivial linguistic patterns and ask
instead how language models come to show this
behaviour, and, more specifically, what kind of
information they use to come to their decisions.
There exist already a number of approaches that
look inside the high-dimensional vector represen-
tations and non-linear functions of these models,
trying to track the flow of information. In the next
section, we will review some of that work, dis-
tinguishing between hypothesis-driven and data-
driven methods. We highlight in particular one
method called Contextual Decomposition (CD,
Murdoch et al., 2018), that combines the strengths
of hypothesis- and data-driven analysis methods.

In the remainder of this paper, we then pro-
pose a generalisation of this method, which we call
Generalised Contextual Decomposition (“GCD”).
We derive equations for GCD for the case of a uni-
directional (one or multi-layer) LSTM (Hochre-
iter and Schmidhuber, 1997), and use the method
to analyse how a language model processes two
different phenomena: number agreement and gen-
dered pronoun resolution.

We demonstrate the power of GCD through the
revelation of some important asymmetries in the
way that both the singular-plural and the male-
female distinction are handled. In particular, we
find evidence for a default reasoning effect, which
we believe could also be important for future work
on detecting and removing bias: a default category
(singular, masculine) appears to be hard-coded in
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the weights of the language model, number and
gender information in the word embeddings them-
selves mainly plays a role for phrases of the op-
posite category (plural, feminine). Furthermore,
GCD enables us to investigate pronoun resolution
in a way that has not been done before: by delv-
ing into the model reasoning we are able to ac-
curately pinpoint where and how this resolution
takes place.1

2 Network analysis methods

Recently, methods to open the blackbox of deep
neural networks have become an important re-
search area (see Poerner et al., 2018; Belinkov
and Glass, 2019, for recent reviews of pro-
posed methods in NLP). We distinguish between
hypothesis-driven methods, and data-driven meth-
ods. Hypothesis-driven methods include probes
or diagnostic classifiers, that test whether specific,
a priori defined information can be decoded from
the internal states of a neural model, many ablation
studies, and types of correlation analysis, where
correlations between the structure of internal rep-
resentations of better and lesser understood mod-
els are studied). An example of this approach is
Giulianelli et al. (2018), who trained linear diag-
nostic classifiers on all layers and gate activations
of an LSTM to predict the number of the subject
that the verb, occurring later in the sentence, needs
to agree with (i.e. the number-agreement task).
Their results show that the relevant information
is encoded in a different way in different compo-
nents of the model, and at different times while
processing a sentence. This result is interesting,
because it starts from a clearly interpretable hy-
pothesis (number information must be maintained
somewhere while the network traverses the sen-
tence), but the work also demonstrates the limita-
tions of the approach: It progresses one hypoth-
esis about one linguistic pattern at a time and in-
volves much training, work, and computation at
each step.

Data-driven methods include gradient-based
methods and contextual decomposition. An ex-
ample of a gradient-based method is Arras et al.
(2017), who adapt Layer-wise Relevance Propaga-
tion (LRP, Bach et al., 2015) to the case of LSTMs.
The key idea is to run the LSTM on each input of

1 We have integrated all our code in diagnnose
(Jumelet and Hupkes, 2019), a well-documented analysis li-
brary which facilitate the diagnosis of neural network activa-
tions: github.com/i-machine-think/diagnnose.

interest (the forward pass), then define a relevance
vector at the output layer and propagate that rel-
evance backwards through the network. The rel-
evance vector simply singles out the dimensions
of the output of interest, and sets all other dimen-
sion to zero. The backward pass is almost stan-
dard backpropagation, except that relevance does
not backpropagate into the gates. While Arras
et al.’s results reveal interesting patterns in sen-
tences used in a sentiment classification task, their
work illustrates some limitations as well. In par-
ticular, the work deals with a classification task
with few classes, aggregates relevance per word
for each predicted class, but offers little insight in
how word meanings interact to build up sentence
meaning beyond ‘pushing in the right direction’
vs. ‘pushing in the wrong direction’.

An alternative data driven method, and the one
that we will expand on in this paper, is Contextual
Decomposition for LSTMs (CD, Murdoch et al.,
2018). The key idea behind this technique is to
partition the hidden states into two components,
that Murdoch et al. label ‘relevant’ and ‘irrele-
vant’. For each word in a sentence, they do a for-
ward pass that computes all cell and gate activa-
tions as in normal operation of the neural network,
but also partition each activation value of each
neuron in h or c in a part that is caused by some
selected token or phrase in focus, and a part that is
not. They achieve this by deriving a factorisation
of the update formulas for h and c, that expresses
them as a long sum of components and then select-
ing some of these components as being relevant,
and others as irrelevant. Qualitative results on sen-
timent analysis suggest that CD can attribute roles
to words in a sentence very well, better than al-
ternatives the authors considered (which, unfortu-
nately, did not include LRP).

CD thus requires no extra training and requires
only the forward pass of the network. It can easily
be extended to work efficiently with many classes,
such as the language modelling task that we are in-
terested in. In the next section, we will define CD
more precisely, where we will use the terms in-
side and outside rather than relevant and irrelevant.
We then propose a generalisation that allows us
to experiment with different hypotheses on what
goes into the inside and outside bins, enabling
some of the advantages of hypothesis-driven anal-
ysis methods to be brought into this data-driven
method.

https://github.com/i-machine-think/diagnnose
https://github.com/i-machine-think/diagnnose


Figure 1: A graphical overview of GCD, based on the LSTM design of Olah (2015). φ denotes the phrase in focus,
and t ∈ φ implies the action is only performed when step t is part of φ. � denotes an individual interaction; green
interactions are added the β part and red interactions to γ. V , W , and D represent the linear projections of the
LSTM itself. The interaction set denoted here corresponds to the IN set of Equation 12.

3 Generalised Contextual Decomposition

In this particular study, we consider the LSTM
language model that was made available by Gu-
lordava et al. (2018). This language model (LM)
is a 2-layer LSTM with 650 hidden units in
both layers, trained on a corpus with Wikipedia
data. Given the relevance of the specific LSTM-
dynamics for the understanding of the main
method of our paper, we repeat the equations that
describe it below.

ft = σ(Wfxt + Vfht−1 + bf ) (1)
it = σ(Wixt + Viht−1 + bi) (2)
c̃t = tanh(Wc̃xt + Vc̃ht−1 + bc̃) (3)
ot = σ(Woxt + Voht−1 + bo) (4)

ct = ft � ct−1 + it � c̃t (5)
ht = ot � tanh(ct) (6)

zt = Dht + bd (7)
pt = SoftMax (zt) (8)

The final model output pt represents a multi-
nomial distribution over the model’s vocabulary.
Throughout the paper we refer to the bias terms
b as the model intercepts, to avoid confusion with
general biases that the model may have.

CD To compute the contributions of one or mul-
tiple input tokens (said to be in focus) to the out-
put of an LSTM cell, Murdoch et al. (2018) divide
each cell and hidden state into a sum of two parts:
a β part, which contains the part of this particu-

lar state that stems from inside this phrase, and a
γ part, which contains information coming from
words outside this phrase. The output logit zt can
then be redefined as

zt = Dht + bd = Dβht +Dγht + bd

= βzt + γzt + bd

with βzt providing a quantitative score of the
phrase’s contribution to the logit. How a partic-
ular hidden state ht is partitioned into βht and γht
is determined by two things: i) The decomposi-
tion of the previous states ct−1 (βct−1 and γct−1) and
ht−1 (βht−1 and γht−1), and ii) Which interactions
between the different β and γ terms, the intercepts
b, and the input xt are considered to be part of the
inside contribution of the phrase. We provide a
graphical overview of our setup in Figure 1.

Factorised activation functions The gate inter-
actions cannot yet be expanded into a cross-term
of their input parts, due to the non-linear activa-
tion that wraps them. Murdoch et al. define a
method to factorise the sigmoid and tanh func-
tions for each specific gate into a sum of contribu-
tions of the input terms, such that

tanh(
∑N

i=1
yi) =

∑N

i=1
Ltanh(yi)

Ltanh expresses the contribution of each input,
which is computed by averaging over the differ-
ences of all possible permutations of the input



terms; a procedure that corresponds to the calcula-
tion of the Shapley values (Shapley, 1953).2

Before this factorisation is performed, an input
token xt is added to the inside part β if it is part
of the phrase for which we decompose (i.e. the
phrase in focus), otherwise it is added to γ. Equa-
tion 1, for example, can then be rewritten as:

ft = σ
(
Vfβ

h
t−1 + Vfγ

h
t−1 +Wfxt + bf

)
= Lσ

(
Vfβ

h
t−1+Wfxt

)
+ Lσ(γ

h
t−1) + Lσ(bf )

(9)

where xt is considered to be inside the phrase in
focus and therefore added to the β part (denoted
in green for extra emphasis). A similar sum can
be written down for the input gate it and the can-
didate cell state c̃t. This allows the two products
ft � ct and it � c̃t of Equation 5 to be expanded
into a sum of cross-terms between the decom-
posed gate and (candidate) cell values. Expand-
ing the forget and input gate results in 15 cross-
terms, that each express different interactions be-
tween the current input, previous β and γ terms,
and the model intercepts.

Murdoch et al. state they observed improve-
ments when the intercept term is fixed to the
first position in each permutation. Consequently,
however, these intercepts are assigned a relatively
larger contribution, as their fixed position makes
their contribution independent of the magnitudes
of the other terms. We therefore pose that the full
set of permutations should be considered, to assign
unbiased contributions to each input term.3

Decomposing interactions Based on all the dif-
ferent interaction terms, the decomposition is de-
termined by which of these interactions should be
considered to belong to the inside part β of the
next cell state and which to the outside part γ.

In the formulation of Murdoch et al., all inter-
actions with outside parts γt are disregarded for
the computation of βt+1, and therefore only infor-
mation directly stemming from the βt terms with
no interference from γt is taken into account. Of
the 15 cross-product terms described above, this
leaves 5 terms to be part of βct+1:

2In the original formulation this procedure is called lin-
earizing. We deemed this term to be slightly confusing, as
the resulting functions L are still non-linear.

3We only discovered the impact of this decision after the
paper had already been reviewed. While using the full set
of permutations did, fortunately, not qualitatively change our
conclusions, the exact numbers presented in this work thus
differ from the earlier version of this paper. For complete-
ness, we report the original results with the fixed intercept
positions in the supplementary materials of this article.

βct+1 = Lσ(Vfβ
h
t +Wfxt)� βct β-β

+ Lσ(bf )� βct β-b

+ Lσ(Viβ
h
t +Wixt)� Ltanh(Vc̃β

h
t +Wc̃xt) β-β

+ Lσ(Viβ
h
t +Wixt)� Ltanh(bc̃) β-b

+ Ltanh(Vc̃β
h
t +Wc̃xt)� Lσ(bi) β-b

(10)

The remaining 10 terms from the cross-product are
put in γct+1. We use the notation {β-β, β-b} to
concisely describe this set of interactions. The de-
composition of the hidden state is created by de-
composing the output gate:

βht+1 = Lσ(Voβ
h
t +Woxt)� βct+1

+ Lσ(bo)� βct+1

(11)

The decomposed contribution score βzT over the
model vocabulary at step T of some phrase in fo-
cus is then calculated by passing the decomposed
hidden state to the decoder, i.e. DβhT . This score
can be expressed as a relative contribution by nor-
malising it by the full model logit z (including
bd). In a multi-layer LSTM, β and γ parts are not
only propagated forward, but also upward, where
they are added to their respective parts in the layer
above them. For initialisation β is set to a zero
vector, and γ is set to the initial LSTM states.4

Generalising CD While Murdoch et al. (2018)
consider only one way of partitioning interactions
between inside and outside components, their
setup can be quite easily generalised to also al-
low other interactions to be included in the inside
terms β. To obtain a better insight into how differ-
ent interactions contribute to the final prediction,
we experiment with various ways of defining the
set of relevant interactions.

A particular case concerns the interactions be-
tween β and γ. It wouldn’t be correct to com-
pletely attribute the information flowing from
these interactions to the phrase in focus, but dis-
allowing any information stemming from interac-
tions of a phrase with a subsequent token results
in loss of relevant information. Consider, for in-
stance, the verb prediction in a number agreement
task. While the correct verb form depends only on
the subject, the right time for this information to
surface depends on the material in between, which
in the setup described in Equation 10 would be dis-
carded by assigning the β-γ interactions to γ.

4For the initial states we use the activations that follow
from the short phrase “. <eos>”. This phrase resets the
model state to a clean slate, and leads to better results than
using 0-valued activations.



Taking inspiration from Arras et al. (2017), and
based on their motivation, we add the βs-γg in-
teraction to the relevant interaction set, while still
disregarding a γs-βg interaction. The g subscript
denotes the part of the interaction that is coming
from the gate, and s the source part. We denote
this amended interaction as β-γ∗.

Furthermore, we follow the addition of Singh
et al. (2019) of only adding the intercept interac-
tions b-b to the inside part if the current time step
is part of the phrase in focus, which we denote as
b-b ∈ x. We add these β-γ∗ and b-b ∈ x inter-
actions to Equation 10, resulting in the following
decomposition that is presumed to come from in-
side the phrase in focus (denoted as IN):
βct+1 = {β-β, β-b}

+ Lσ(Vfγ
h
t )� βct β-γ∗

+ Lσ(Viγ
h
t )� Ltanh(Vc̃β

h
t +Wc̃xt) β-γ∗

+ Lσ(bi)� Ltanh(bc̃) b-b ∈ x (12)

We also experimented with various other inter-
action sets. To determine the influence of the gate
intercepts, we create an interaction set that does
not take the input embeddings into account at all:
{β-β, β-γ∗, β-b, b-b}, with x always added to γ,
denoted as INTERCEPT∗. We include β-γ∗ to still
account for the way the intercepts are gated by the
input sentence. The initial hidden and cell state are
added to β now as well, as we consider these states
to be part of the model bias. Finally, to determine
the dependence of the input on the gate intercepts
we use an interaction set that never takes the inter-
actions with any intercept into account: {β-β, β-
γ∗}, denoted as ¬INTERCEPT.

4 Experimental setup

We use GCD to study how our LSTM model han-
dles two different linguistic phenomena: subject-
verb agreement and anaphora resolution in rela-
tion to gender. Next to the model of Gulordava
et al. (for which we present our results), we also
ran our experiments on the LM of Józefowicz et al.
(2016), which arrives at similar results.

4.1 Subject-verb agreement
We consider a variant of the number-agreement
(NA) task that was proposed by Linzen et al.
(2016) to assess the syntax-sensitivity of language
models. In this task, a model is evaluated based
on its ability to track a long-distance subject-verb
relation, which is assessed by the percentage of
times that the verb-form it prefers matches the

number of the syntactic subject. Commonly, the
material in between subject and verb contains an
attractor noun that competes with the syntactic
subject, e.g. The keys on the table are.

Here, we consider the NA corpora made avail-
able by Lakretz et al. (2019), which consists of a
number of data sets containing a range of syntactic
constructions in which number agreement plays a
role. We report results for several of their data
sets, but focus in particular on their NounPP sub-
set, in which sentences contain an attractor embed-
ded in a prepositional phrase. These sentences are
formed following the template The N Prep the N
V [..], e.g. The boys near the car greet [..]. The
sentences in this data set are split based on the
number of the subject and the attractor, resulting
in four different conditions: SS, SP, PS, and PP.

4.2 Anaphora resolution and gender bias

Our second experiment concerns anaphora resolu-
tion and the possible gender biases that networks
may use to perform this task. We focus on intra-
sentential anaphora resolution, in which a pronoun
in a subordinate clause refers to an entity in the
main clause, based on gender information. For ex-
ample: The monk liked the nun, because she was
always nice to him.

Compared to number agreement it is more dif-
ficult to formulate a setup for anaphora resolution
in which there is a right or wrong prediction that
directly reflects how the model handles the phe-
nomenon: when predicting she in the example, it
could have been equally probable to predict he.
Rather, to establish if a model correctly resolves
the referent of a pronoun, it should be checked
what the model considered to be the source of this
prediction, which cannot directly be inferred from
the prediction itself. GCD gives us exactly this
information and is therefore an excellent tool to
study anaphora resolution in language modelling.

To create our corpus, we use the templates from
the WinoBias corpus created by Zhao et al. (2018).
This corpus contains sentences with job titles that
are gender neutral, yet contain a stereotypical bias
towards one gender (doctors and CEOs are male,
nurses and housekeepers female). We construct
two types of corpora, one containing the stereo-
typical job titles of Zhao et al. and one in which
we replace these titles by entity descriptions that
are unambiguously gendered (king, bride, father,
etc.). Similar to the NounPP corpus for NA, we



(a) A single NounPP sentence: singular
subject with plural attractor (SP).

(b) Average NounPP SP: singular sub-
ject with plural attractor.

(c) Average NounPP PS: plural subject
with singular attractor.

Figure 2: Average contributions for the NounPP corpus of Lakretz et al. (2019), defined as βz
t /zt. INIT denotes

the contribution of the initial states. The picture depicts an asymmetry in the way that the model encodes singularity
and plurality: while plural verbs depend strongly on the subject, for singular sentences this is not the case.

create 4 different conditions, based on the gender
of the subject and object (FF, FM, MF, and MM).
An example of an MF sentence would be The fa-
ther likes the woman, because he/she. We sample
from the set of entity descriptions to create 500
sentences per condition, for both corpus types.

4.3 Experiment types
Phrase contributions In the first type of exper-
iment, we consider the contributions of different
words in the input to a later prediction of the
model. This allows us to compare the contribu-
tions of different words in the sentence and track
which words the model uses to come to its pre-
diction. We compute a phrase’s contribution to a
prediction at step t as βzt /zt.

Pruning information In the second type of ex-
periment, we focus on the model’s predictions. In
particular, we study how the model’s predictions
change when it is forced to consider only specific
parts of the input, by disregarding all information
that does not belong to the inside information of
that part of the input. This allows us to quantify
the extent to which a correct prediction does in
fact stem from that phrase. For this experiment,
we consider several different interaction sets, that
differ in what is considered to be inside the contri-
bution of the phrase: IN describes the direct con-
tribution of some phrase, INTERCEPT the contri-
bution of the model intercepts, and ¬INTERCEPT

the contribution of some phrase without its inter-
cept interactions.

5 Subject-verb Agreement

We now study what information the LM uses to
achieve the high prediction accuracies that were

reported by Lakretz et al. (2019).

5.1 Phrase contributions
For every word in a sentence, we compute the
GCD contribution for all words preceding this
word. We plot these contributions in a decomposi-
tion matrix (akin to the attention plots often seen
in machine translation papers). Every cell of this
matrix represents the contribution of an input xi
(row i) to an output yj (column j). The complete
decomposition of an output word yj can thus be
found in column j. The reported scores are the
decomposed scores normalised by the total model
logit, resulting in the relative contribution.

In Figure 2, we plot the average decomposition
matrices for the SP and PS splits of the NounPP
data set. While many interesting observations can
be made here, we would like to focus on the final 2
columns that represent the decompositions of the
correct and wrong verb in the sentence, and on the
contribution of the subject to this verb. In the sin-
gular case (2b), this contribution is, surprisingly,
relatively low: The correct verb prediction does
not seem to depend solely on the syntactic sub-
ject, but stems from elements that lie outside the
subject as well. For the plural case, this picture
is strikingly different: The highest contribution
now stems from the subject of the sentence. When
considering the decomposition of the wrong verb
(the final column) it becomes even more clear that
contributions to a plural verb predominantly stem
from a plural noun, whereas singular verbs receive
strong contributions from non-numbered tokens as
well. This quite remarkable difference provides
the first evidence for one of our conclusions: A
singular prediction acts as the default number for
the model, and predicting a plural verb requires



GCD

Task C FULL IN INTERCEPT∗ ¬INTERCEPT

Simple S 100 73.3 (91.3) 97.3 (100) 69.7 (86.3)
Simple P 100 100 (100) 32.7 (7.7) 100 (100)

nounPP SS 99.2 93.0 (99.7) 99.8 (99.8) 72.7 (88.7)
nounPP SP 87.2 90.3 (99.3) 98.8 (99.8) 60.5 (83.5)
nounPP PS 92.0 100 (100) 0.0 (0.0) 100 (100)
nounPP PP 99.0 100 (99.3) 7.0 (0.5) 99.8 (100)

namePP SS 99.3 97.7 (91.3) 99.4 (100) 76.2 (90.9)
namePP PS 68.9 98.3 (98.2) 1.3 (0.0) 99.9 (99.9)

Table 1: Accuracies on various subject-verb agreement
tasks of Lakretz et al. (2019). FULL denotes the full
model accuracies. IN is the decomposition of the sub-
ject, INTERCEPT∗ only decomposes the gate intercepts
of the model. ¬INTERCEPT takes no interactions with
the intercepts into account. Singular conditions are de-
noted in green. (·) denotes accuracies of scores without
decoder bias, i.e. Dht vs Dht + bd.

some explicit evidence coming from the subject.

5.2 Pruning information

To quantify to which extent the model bases its
prediction on the subject, we prune all information
that is not directly related to the subject and repeat
Lakretz et al.’s NA tasks. If the model prediction
were based solely on the number of the subject,
its accuracy should go up, as we filter out all po-
tentially intervening or confusing information. If,
on the other hand, the prediction of the verb is
not causally linked to the subject, but the model
is using heuristics that require the rest of the sen-
tence, no increase in accuracy is to be expected.
We show the results, along with the accuracy of
the full model in Table 1.

These numbers show a strong causal relation
between plural subjects and verbs: The number
prediction accuracy for the IN decomposition goes
up for all cases with a plural subject. This confirms
our previous finding from the decomposition ma-
trix, which showed a relatively high contribution
of plural subjects to plural verbs, as well as the
conclusion of Lakretz et al. (2019) that the model
is in fact keeping track of syntactic structure.

When considering the singular subjects an in-
teresting pattern emerges: The decomposition of
sentences for which the intervening attractor has
the same number leads to a lower accuracy. This
confirms that the model is in fact basing its predic-
tion for these conditions on information that lies
outside the subject itself.

Intercepts When we only decompose with re-
spect to the gate intercepts (INTERCEPT∗, column

5) it turns out the model has an extreme preference
for selecting singular verbs. Decomposing with-
out the intercept interactions (NO INTERCEPT, col-
umn 6) leads (as expected) to opposite results: the
decomposed model now has a strong preference
towards plural verbs as the singular prediction no
longer can depend on these intercepts. This further
confirms that singular verbs are used as a default
baseline, which is partly encoded in its intercepts.
To predict plural verbs, on the other hand, some
evidence is needed, which the model picks up cor-
rectly from the subject number.

Corpus frequency One would expect that due
to the model’s default number being singular, this
class to be more encountered during training. This
turns out not to be the case: in the model’s training
corpus the plural verbs of the NA tasks occurred
over 5 times as often as their singular counterparts.
This higher frequency is in fact represented in the
decoder intercept, which is higher on average for
plural verbs, but it is surprising that the LSTM
weights encode a default for the minority class.

6 Anaphora-resolution and gender

For the NA-tasks, the full model accuracy provides
evidence that the model can perform the task well;
for anaphora resolution, it is not possible to create
such accuracies based on the full model predic-
tions alone. In this section, we therefore address
two different questions: 1) Does the model cor-
rectly resolve referents? In other words: When the
model generates a male or female pronoun, does it
consistently do this based on male and female ref-
erents encountered earlier in the sentence, and 2) If
the model correctly performs anaphora resolution,
what types of interactions and information does it
use to do so? In our analysis we furthermore con-
sider the difference between sentences with un-
ambiguously gendered referents with sentences in
which the gender of the referents is ambiguous but
contains a stereotypical male or female bias.

6.1 Phrase contributions
As the template that the sentences in our anaphora
data set follow is not as rigid as those of the NA
tasks, creating an averaged decomposition matrix
for all words in the sentences does not result in a
comprehensive picture. To evaluate whether the
model links pronouns to referents of the correct
gender, we subtract the referent contribution to she
from that to he: βzhe/zhe − βzshe/zshe. A positive



(a) unambiguous (b) stereotypical

Figure 3: Average decomposed preference of he over
she, calculated as the difference between the relative
contributions: βz

he/zhe − βz
she/zshe. Positive values de-

note male preference, negative values female prefer-
ence. Phrases occurring between subject and object,
and object and pronoun are denoted with [...].

difference then indicates this referent had a greater
contribution towards predicting he than she, and
a negative difference vice versa. Little difference
indicates that the referent did not contribute much
to the gender of the predicted pronoun.

Unambiguous referents In Figure 3a we plot
this relative contribution difference for the two
conditions in our data set that contain both an un-
ambiguous female and male referent. It is evident
that the model bases its prediction on a referent of
the right gender: The female subjects and objects
contribute more to the prediction of she (reflected
by the negative purple cells) and the male subjects
and objects more to the prediction of he (the posi-
tive green cells).

Interestingly, this effect is much stronger visi-
ble for the female connections. The reason for this
can be found in the model intercepts; male prefer-
ence is more strongly encoded in the intercepts of
the decoder: he has an intercept of 7.75, she only
6.09. This enables the model to use this male pre-
diction as a default, similar to how singular verbs
acted as a default baseline for number prediction.
Akin to number agreement the model thus needs
to encounter sufficient evidence of an entity being
female to prefer a female pronoun. In the next sec-
tion we show that this male default is encoded in
the gate intercepts as well.

Stereotypical referents The intermediate con-
clusion that the language model performs success-
ful anaphora resolution on our experiment also
provides us the opportunity to probe the gender
biases of the model. To do so, we repeat the pro-
noun preference test on an adapted version of the
WinoBias corpus (Zhao et al., 2018), in which all

referents are only stereotypically considered to be
male or female (e.g., doctor and nurse).

The results, plotted in Figure 3b, show that
the model is very susceptible to stereotypically
male referents; these decomposed scores contain
an even stronger male preference than for the un-
ambiguous corpus. The stereotypically female ref-
erents, on the other hand, do not lead to a female
preference, indicating that their contribution is not
considered strong enough evidence by the model
to prefer a female pronoun. All the intermedi-
ate tokens exhibit a slight male preference, a pat-
tern that is comparable to the singular bias of the
NA task. From these results we conclude that the
model considers a stereotypically male job occu-
pation to be male (“doctors are male”), whereas
this does not hold for stereotypically female jobs.

6.2 Pruning information
Following our subject-verb agreement setup, we
compare the predictions of our language model
when it focuses only on the subject or object of the
sentence. In Table 2, we show the percentage of
cases in which he is assigned a higher decomposed
score than she, for both unambiguously gendered
referents and stereotypically gendered referents.

FULL In the first column of Table 2a, we see
that if the sentence contains referents of the same
gender (MM & FF), the full model prediction al-
most always prefers to use a pronoun with that
same gender. When both a male and female ref-
erent are present, the model has a slight prefer-
ence for generating a pronoun that matches with
the subject of the sentence (which, interestingly,
is the referent that is the furthest away from the
pronoun). In the stereotypical case (Table 2b), the
difference between male and female sentences for
the FULL scores almost disappears, showing a pre-
dominant male pronoun preference. This shows
that the model by default prefers a masculine pro-
noun, and only when it is provided sufficient evi-
dence of a female entity it will consider predicting
she (similar to number agreement).

Pruning When considering the decompositions
with relation to the subject or object we see that
the decomposed score of a male entity in all con-
ditions always prefers a male pronoun. For female
entities this effect is slightly obscured by the male
bias of the decoder intercept: The accuracies with-
out adding this intercept highlight that female con-
tributions lead to a strong female preference. For



GCD

FULL SUBJECT OBJECT INTERCEPT∗

MM 100 100 (93.2) 100 (97.8) 100 (93.2)
MF 58.6 100 (86.4) 47.2 (0.8) 100 (96.0)
FM 37.0 29.2 (0.6) 100 (97.2) 100 (98.0)
FF 1.2 77.2 (0.8) 88.8 (1.2) 100 (92.2)

(a) %he>she, unambiguous referents

GCD

FULL SUBJECT OBJECT INTERCEPT∗

MM 100 100 (100) 100 (100) 100 (88.0)
MF 94.6 100 (99.6) 95.4 (84.0) 100 (84.8)
FM 88.8 90.6 (77.4) 100 (100) 100 (91.0)
FF 84.6 92.8 (75.6) 97.4 (84.0) 100 (89.2)

(b) %he>she, stereotypical referents

Table 2: Gender preference on the fixed and stereotypical gender corpora. Reported scores are the percentage of
times he is preferred over she. The first column denotes the gender of the subject and object. FULL denotes the full
model preference, SUBJECT the decomposed score of the subject phrase (including determiners), and OBJECT the
decomposed object score. INTERCEPT∗ is the decomposed score with relation to the intercepts only. (·) denotes
accuracies of scores without decoder bias, i.e. Dht vs Dht + bd.

the stereotypical corpus this female preference is
far less apparent, which is in line with the results
of Section 6.1. When solely considering the inter-
cept contributions it becomes clear once more that
a strong male bias is encoded in them, an effect
that is further amplified by the decoder intercept.

Corpus frequency For NA the default class
turned out to be less frequent in the training cor-
pus. For our gender setup it turns out the male
default is in fact the majority class, with he being
nearly 4 times more frequent than she. We con-
clude that the default class is not directly corre-
lated to training frequency and likely depends on
the phenomenon at hand, although an investiga-
tion incorporating a wider range of models would
be needed to establish this.

7 Conclusion

We propose a generalised version of Contextual
Decomposition (Murdoch et al., 2018) – GCD –
that allows to study specifically selected interac-
tions of components in an LSTM language model.
This enables GCD to extract the contributions of
a model’s intercepts, or to investigate the interac-
tions of a phrase with other phrases and intercepts.

We analyse two linguistic phenomena in a pre-
trained language model: subject-verb agreement,
in which number plays a role, and anaphora reso-
lution for which gender is important. Anaphora
resolution in the context of language modelling
had not been investigated thoroughly before, and
our setup enables this at an unprecedented level.

We trace what information the language model
uses to make predictions that require gender and
number information and find that, in both cases,
the model applies a form of default reasoning, by
falling back on a default class (male, singular) and
predicting a female or plural token only when it is
provided enough explicit evidence. As such, the

decision to predict masculine and singular words
can not be traced back evidently to specific infor-
mation in the network inputs, but is encoded by
default in the model’s weights.

Our setup and results demonstrate the power of
GCD, which can be applied on top of any model
without additional training. Our results bear rele-
vance for work on detecting and removing model
biases, and may clarify some of the issues that
were raised by Gonen and Goldberg (2019), who
argue that current bias removal methods only op-
erate on a superficial level. GCD could also be
used to aid a model in guiding it towards the right
flow of information, which could be applied to a
wide range of applications such as the interven-
tions of Giulianelli et al. (2018). In the future, we
plan on extending GCD to other types of language
models, such as the currently popular attention-
based models. Furthermore, we wish to expand
the capacities of GCD by improving the gate fac-
torisation with a better Shapley value approxima-
tor, such as those proposed by Lundberg and Lee
(2017) or Ancona et al. (2019). The axiomatic ap-
proach of Montavon (2019) could provide further
insight into how GCD relates to other explanation
methods, and we are confident that combining the
strengths of GCD with that of other frameworks
will ultimately lead to a more robust and faithful
insight into deep neural networks.
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Marco Ancona, Cengiz Öztireli, and Markus Gross.

2019. Explaining deep neural networks with a poly-
nomial time algorithm for shapley values approxi-
mation. In 36th International Conference on Ma-
chine Learning (ICML 2019).
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A Fixed Shapley results – number agreement

(a) NounPP SP – fixed Shapley (b) NounPP SP– full Shapley

(c) NounPP PS – fixed Shapley (d) NounPP PS – full Shapley

Figure 4: Results of Figure 2, for both Shapley computations. Note how the fixed Shapley results generally lead to
lower term contributions, as these are more prominently assigned to the intercept terms instead.

GCD – fixed Shapley
NA Task C FULL IN INTERCEPT∗ ¬INTERCEPT

Simple S 100 100 100 7.7
Simple P 100 100 7.3 65.7
nounPP SS 99.2 91.2 100 14.8
nounPP SP 87.2 91.7 100 14.3
nounPP PS 92.0 100 0 82.7
nounPP PP 99.0 99.8 0.5 81.0
namePP SS 99.3 91.2 100 12.4
namePP PS 68.9 99.8 0 82.0

GCD – full Shapley
Task C FULL IN INTERCEPT∗ ¬INTERCEPT

Simple S 100 73.3 (91.3) 97.3 (100) 69.7 (86.3)
Simple P 100 100 (100) 32.7 (7.7) 100 (100)

nounPP SS 99.2 93.0 (99.7) 99.8 (99.8) 72.7 (88.7)
nounPP SP 87.2 90.3 (99.3) 98.8 (99.8) 60.5 (83.5)
nounPP PS 92.0 100 (100) 0.0 (0.0) 100 (100)
nounPP PP 99.0 100 (99.3) 7.0 (0.5) 99.8 (100)

namePP SS 99.3 97.7 (91.3) 99.4 (100) 76.2 (90.9)
namePP PS 68.9 98.3 (98.2) 1.3 (0.0) 99.9 (99.9)

Table 3: Results of Table 1, for both Shapley computations. The main difference here lies in the ¬INTERCEPT
case: for the fixed Shapley this case leads to a much starker decrease. The pattern, however, remains unaltered:
the singular conditions depend much stronger on the intercepts than the plural conditions for both the Shapley
computations.



B Fixed Shapley results – pronoun resolution

(a) unambiguous
fixed Shapley

(b) unambiguous
full Shapley

(c) stereotypical
fixed Shapley

(d) stereotypical
full Shapley

Figure 5: Results of Figure 3, for both Shapley computations. The pattern remains the same, although the full
Shapley case highlights a stronger default male bias that is encoded in the non-gendered sub-phrases.

GCD – fixed Shapley
C FULL SUBJECT OBJECT INTERCEPT

MM 100 100 100 100
MF 58.6 100 31.2 100
FM 37.0 6.2 100 100
FF 1.2 50.0 73.6 100

(a) %he>she, unambiguous referents

GCD – full Shapley
C FULL SUBJECT OBJECT INTERCEPT∗

MM 100 100 (93.2) 100 (97.8) 100 (93.2)
MF 58.6 100 (86.4) 47.2 (0.8) 100 (96.0)
FM 37.0 29.2 (0.6) 100 (97.2) 100 (98.0)
FF 1.2 77.2 (0.8) 88.8 (1.2) 100 (92.2)

(b) %he>she, unambiguous referents

GCD – fixed Shapley
C FULL SUBJECT OBJECT INTERCEPT

MM 100 100 100 100
MF 94.6 100 89.4 100
FM 88.8 81.6 100 100
FF 84.6 83.0 92.2 100

(c) %he>she, stereotypical referents

GCD – full Shapley
C FULL SUBJECT OBJECT INTERCEPT∗

MM 100 100 (100) 100 (100) 100 (88.0)
MF 94.6 100 (99.6) 95.4 (84.0) 100 (84.8)
FM 88.8 90.6 (77.4) 100 (100) 100 (91.0)
FF 84.6 92.8 (75.6) 97.4 (84.0) 100 (89.2)

(d) %he>she, stereotypical referents

Table 4: Results of Table 2, for both Shapley computations. Similar to Figure 5, it can be seen that the pattern
remains the same, with the full Shapley computation again highlighting a slightly stronger male bias.


