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 1    “ Free-Range ”  Cognition 

 1.1   Thinking across Boundaries 

 Suppose you find yourself in the wilderness, hungry and lost. The particu-

lar reason you ended up there is relatively unimportant; perhaps you were 

hiking through a cloud bank and lost your bearings, or perhaps you were a 

contestant on a popular game show. The key challenge, regardless of what 

previously happened, is to figure out how to survive. More precisely, you 

need to engage in different types of cognition to, for example, determine 

which objects might potentially be food, observe other animals ’  eating hab-

its to determine what is possibly safe, and make decisions (possibly involv-

ing hard trade-offs) about what exactly to eat. Moreover, all this cognition 

must take advantage of disparate pieces of knowledge: you have to use your 

beliefs about the physiology of other animals both to determine whether 

their food choices are informative, and also to decide whether they might 

think that  you  are food. On top of all of these separate cognitive challenges, 

you are in a highly dynamic environment. You must be able to learn from 

the outcomes of your choices, revise your understanding of what is edible, 

and adjust to changing circumstances around you. More generally, you 

must be flexible in learning and reasoning, bringing many different cogni-

tive resources to bear on each problem that you confront. 

 Everyday cognition obviously involves much lower stakes (at least most 

of the time), though marks of these more hostile environments might per-

sist in our cognition ( Sterelny, 2003 ). Despite the difference in stakes, our 

ordinary, everyday thinking similarly requires an astonishing range of cog-

nitive activities, even in familiar environments: we categorize objects, make 

inferences about them, learn causal relations between them, make plans 

and take actions given causal beliefs, observe and categorize the outcomes 
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of our actions, learn from those outcomes, and so on. Despite this variety, 

though, our cognition seems to be quite seamless. We move between cogni-

tive processes and representations with ease, and different types of cogni-

tion seem to readily share information. Consider a simple example: I notice 

that my dog is limping, which leads me to reason that her leg must be hurt. 

As a result, I decide that I will not take her for a walk, since I do not want to 

risk further injury. This sequence of thoughts is utterly unexceptional; we 

have similar trains of thought many times every day. If we stop to consider 

all the different types of thought and knowledge that went into such a 

sequence, however, then we quickly realize that much of cognition must be 

unified in important ways. My reasoning and decision in this case require 

knowledge about my dog ’ s physiology, her normal state, the likely effects 

of certain actions, the costs and benefits of those outcomes, and so on, and 

I must deploy all these different types of information — seamlessly and in a 

coherent manner — to succeed in my goals. 

 These examples, both everyday and more fantastical, also serve to high-

light a quite different, but just as striking, feature of our cognition. Despite 

our substantial limitations and need to think in many different ways, we 

seem to be able to navigate successfully through the world, accomplishing 

many different goals along the way. It is a banal, but nonetheless correct, 

observation that the world is exceedingly complex along many dimensions, 

including the physical, social, and causal. At the same time, our conscious 

cognition is, by all appearances, a relatively slow, limited input information 

processor that seems quite inappropriate for the complexity of the world. 

Any particular inference, decision, or explanation almost always involves 

more factors that are (potentially) relevant to our cognition than conscious 

thought appears to be capable of handling. And yet, despite all these chal-

lenges, we are astonishingly successful in predicting, understanding, and 

controlling our world in all its complexity. We manage to forecast snow-

storms, establish universities, raise children, and generally succeed in navi-

gating our world. We regularly achieve many of the ends that we desire, all 

without blindly simplifying our world or operating solely on unconscious 

cognition. We instead somehow manage to ignore just the complexity that 

does not really matter for (consciously) determining how to reach our goals 

in each particular situation (at least most of the time). 

 This book attempts to make sense of these two different features of our 

real-world cognition: the relatively seamless way in which we shift between 
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seemingly distinct cognitive operations; and our ability to (correctly) 

attend precisely to the information, features, and possibilities that are rel-

evant to our goals, perhaps only loosely or indirectly. These two aspects of 

cognition are rarely viewed as connected in any significant way, when they 

are studied at all. In fact, much contemporary cognitive science essentially 

ignores both of these features, either implicitly or explicitly. Standard prac-

tice is to focus on particular cognitive processes in relative isolation. For 

example, papers on causal learning often start by noting the importance of 

causal knowledge for decision making but then never examine exactly how 

such learning and decision making interact. Similarly, category acquisition/

application and decision making — two other foci of this book — have been 

explored relatively independently. Moreover, the research in these areas 

has focused on situations in which it is quite clear what information is 

important and relevant. Laboratory experiments are obviously one such 

situation, as we (as cognitive scientists) all typically use simplified materi-

als so that we know just what our participants see. But even many field 

experiments explore situations in which the available information is easily 

specifiable, such as studying an air traffic controller who has access only to 

the information in the console in front of her. As a result, researchers rarely 

ask how we manage to focus our attention largely on the relevant aspects 

of the world (though there have been many philosophical arguments about 

how and why relevance is so hard to explain, as detailed in  Samuels, 2010 ). 

 I began with vivid, real-world examples, but little in this book will touch 

directly on complex cognition in realistic situations. I instead aim to deter-

mine some of the aspects of the general structure of our cognition that 

make successful thought possible in our complex world. That is, my goal 

here is to advance our understanding about the basic building blocks from 

which complex thought is built; actual models, built from those elements, 

of cognition in fully realistic and highly complex real-world situations will 

have to wait for future work. To expose those building blocks, I turn to what 

is sometimes called computational cognitive science: using precise compu-

tational models to describe, predict, and, most importantly, explain human 

behavior, at least in limited laboratory settings. In particular, I advocate 

an empirically well-supported cognitive account in which a mind has a 

shared store of cognitive representations that are structured approximately 

like graphical models, a computational framework that has been developed 

in machine learning over the past thirty years. Both of the salient features 
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of cognition discussed at the outset — seamless cognitive integration and 

appropriate focus on relevant factors — are naturally explained if our cogni-

tive representations are graphical models. 

 While I will have much more to say about graphical models through-

out the book, the key insight is that the  “ graph ”  part of them — objects 

like  Switch   →   Light  as a representation of my knowledge about the causal 

structure of the lights in my office, though typically more complicated —

 encodes relevance relations in a way that is easy to store and easy to use. 

Moreover, graphical models are rich enough to contain the information 

required by multiple cognitive processes. Relatively simple conscious cog-

nition can lead to successful navigation of a complex world when we have 

graphs that encode precisely this type of (correct) information about what 

matters for what, and when those graphs are available to multiple cogni-

tive processes. That is, we successfully navigate the world — predict, infer, 

explain, classify, and decide — because we have graphs in our heads. 

 1.2   Cognitive Representations, Graphical Models, and Cognitive 

Unification 

 Two different features of cognition are the focus in this book: the relatively 

seamless way that we move from one type of cognition to another, and our 

ability to quickly attend to the information that is (usually) most impor-

tant in a particular situation. I contend that both of these features can be 

explained (at least partially) if I can demonstrate — both theoretically and 

empirically — that multiple cognitive processes can all be understood as dis-

tinct, though related, operations on a common store of cognitive repre-

sentations structured as graphical models. Seamless, free-ranging cognition 

arises because the different types of cognition have a shared informational 

base of cognitive representations. Use of relevant information occurs 

because graphical models directly represent notions of relevance. 

 The nature of cognitive representation has generated substantial debate, 

but arguably more heat than light. I will use a natural, but relatively impre-

cise, understanding of the notion: our cognitive representations are the 

internally encoded information that our cognitive processes use, manipu-

late, and modify. That is, cognitive representations are the  “ content ”  in our 

head, however it might precisely be structured or instantiated. More will 

be said about this issue in chapter 2, including how we might distinguish 
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between representations and processes. We can already see, however, how 

seamless, free-ranging cognition could occur if the necessary information 

(i.e., the cognitive representations) is shared by multiple cognitive processes. 

Consider the simple challenge of turning on the lights in an unfamiliar 

room. Success requires both causal learning to determine which switches 

control lights, and means-ends decision making to determine what action 

will achieve my goal based on causal reasoning about the causal system. At 

least three different types of cognition are engaged in this simple problem, 

and yet we solve it seamlessly. In my account, this success is explained 

as the causal learning generating a cognitive representation (structured as 

a graphical model), which is subsequently accessed by the processes for 

both decision making and causal reasoning. Of course, many critical details 

remain to be provided about this picture, including an explanation of how 

this account is actually novel in an interesting way. However, this brief 

example gives us hope that an interesting explanation of seamless cogni-

tion might be possible. 

 The other piece of the puzzle is explaining our use of relevant infor-

mation in terms of shared cognitive representations being structured as 

graphical models. A graphical model consists of two components: (i) a 

graph encoding qualitative information about the structure (causal, infor-

mational, or other) among various factors; and (ii) a quantitative repre-

sentation of the relation strengths. Roughly, the qualitative component 

compactly represents relevance, and the quantitative component encodes 

the strength and nature of that relevance. Of course, relevance is a dynamic 

relation that depends on the particular cognitive agent and particular con-

text. The stable graphical model is thus not quite sufficient, since relevance 

depends on the particulars of our situation. The key is that the elements in 

the graphical model structure can have different values in different situa-

tions. For example, to use the causal graphical model  Switch   →   Lights , we 

also need to know something about the state of the  Switch  or the  Lights . 

When we know the values of the graphical model elements (e.g., when we 

know what is active), then the graphical model can guide our inferences 

appropriately. That is, the context and cognition sensitivity of relevance 

arise completely naturally from graphical models, when one includes the 

particular values of elements in the graph. Graphical models were origi-

nally developed partly to improve elicitation of human expert knowledge 

about causal and other relevance relations. They are now widely used by 
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machine learning researchers to encode complex information in a wide 

variety of domains. However, despite being a rich computational frame-

work with powerful representational and algorithmic resources, graphical 

models have only recently begun to appear in cognitive science research 

(e.g.,  Glymour, 2002 ;  Gopnik et al., 2004 ;  Griffiths, Chater, Kemp, Perfors, 

 &  Tenenbaum, 2010 ;  Sloman, 2005 ). 

 The upshot of the observations in the previous paragraph is that argu-

ments that our cognitive representations are structured (approximately) 

like graphical models are actually arguments for a particular explanation 

of our ability to (usually) focus on appropriate information in real-world 

cognition. My primary focus in much of the book will thus be on graphical 

models more specifically, rather than relevance relations in general, since 

the former are arguably a subset of the latter. If I can show that the graphi-

cal models framework provides an appropriate model for many of our cog-

nitive representations, then our ability to focus on the relevant information 

comes along  “ for free. ”  Of course, we presumably use representations like 

graphical models partly  because  they directly encode relevance relations, 

but I will not try to give the type of evolutionary story required to defend 

that particular claim. I instead focus on the smaller, but still substantial, 

challenge of showing that our cognitive representations have this structure 

and so can serve an appropriate explanatory role in understanding our abil-

ity to attend to relevant information in complex situations. 

 To meet this more focused challenge, I will argue that different types of 

cognition can each be understood — both theoretically and empirically — as 

operations on graphical models. That is, in many particular areas of cogni-

tion, the relevant cognitive representations appear to be particular graphi-

cal models. Very few theories in cognitive science are expressed in terms 

of graphical models, and so a major part of my effort will involve showing 

that multiple cognitive theories can actually be fruitfully expressed in the 

graphical models framework. That is, these theories can be (re)interpreted 

as operations on graphical models, though this is not the language that has 

been used by the cognitive scientists who developed the theories. Much of 

chapters 4, 5, and 6 will be taken up with providing these (re)interpreta-

tions. In fact, I will even show that multiple incompatible cognitive the-

ories — ones that make directly conflicting predictions — can be expressed 

as operations on graphical models. Sometimes they differ about the par-

ticular  type  of graphical model that is appropriate for the cognitive repre-

sentation; sometimes they differ only about the process used for learning 
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or reasoning, rather than the underlying representation. The key point, 

though, is that we can translate all these theories into the graphical models 

framework, and so we can understand much of our cognition as operations 

on graphical models, though many empirical details remain to be figured 

out by cognitive scientists. 

 Given the ambitious nature of my goals, it is important to be clear about 

what will count as success. First, I make no claim to universality in this 

account. I am not trying to explain every aspect of cognition, nor do I think 

that every cognitive representation is structured as a graphical model. In 

fact, section 4.4 includes an argument that one type of causal cognition —

 specifically, causal perception — produces cognitive representations that are 

almost certainly  not  graphical models of the sort that I use elsewhere in 

this book. I instead focus on, and make claims only about, several types of 

cognition that play significant roles in our everyday lives. Graphical mod-

els are appropriate in these areas and perhaps others, but almost certainly 

not always and everywhere. Second, because I focus on areas of cognition 

that have been studied extensively over decades, I can often build on previ-

ous research. If I can show, for example, that a particular cognitive theory 

can be understood as operations on a graphical model, then my view can 

 “ inherit ”  much of the empirical support for that other theory. That is, if an 

empirically well-supported theory can be expressed using graphical mod-

els, then we immediately know that the graphical models framework can 

account for those empirical data.  1   I will thus not talk in significant detail 

about experiments and empirical findings, but will instead show how to 

understand different theories, including references to papers that articu-

late the empirical data supporting them. Third, I would suggest that the 

language of  “ truth ”  is not the best way to evaluate cognitive theories, at 

least given our current state of knowledge. Instead we should ask whether 

an account is interesting, explanatory, coheres with other knowledge, and 

is likely to be empirically and theoretically fruitful in the future. I contend 

that the graphical-models-based view expressed here meets all these crite-

ria, though it will take a book to demonstrate it. 

 1.3   Where Are We Going? 

 My goals in this book are obviously quite ambitious and require that we 

cover quite a lot of ground. A complicating factor on top of all of this is that 

the graphical models framework is itself quite mathematically complex. 
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Entire books have been devoted just to explaining the computational and 

mathematical aspects of graphical models (e.g.,  Koller  &  Friedman, 2009 ), 

without even beginning to engage with cognitive issues. It turns out, how-

ever, that we do not need many of the mathematical details about graphical 

models to understand the view I advocate here, and most of the arguments 

on its behalf. We only need to understand 5 percent of the graphical models 

framework to do 95 percent of the work in this book. I have thus structured 

things so that the main thread of the book focuses on the important, and 

more qualitative, parts. Where possible, I have tried to omit mathemati-

cal details that distract from the main points. Of course, those details are 

not irrelevant: at some point, we need to make sure that all the computa-

tional pieces line up appropriately. I have thus separated out the formal 

mathematical details into distinct sections marked with an asterisk (*). It 

is important that nothing is being hidden here; all the qualitative claims 

can be precisely expressed in the full mathematical framework of graphical 

models. At the same time, readers who are less mathematically inclined or 

interested can skip the marked sections without loss of understanding, as 

those sections focus on the details, not the overall picture and arguments. 

 Before diving into the heart of the story, we have some conceptual and 

mathematical groundwork to do. Chapter 2 considers the question of what 

it really means to say that my cognition involves shared representations 

structured as graphical models. Numerous recent debates in cognitive sci-

ence (e.g.,  Griffiths et al., 2010 ;  Jones  &  Love, 2011,  and accompanying 

commentary;  McClelland et al., 2010 ) have turned partly on what exactly 

is intended by a particular cognitive model or set of models. The question 

of commitments is not simply an idle philosophical one. At the same time, 

many philosophers and cognitive scientists have proposed conceptual 

frameworks to capture the commitments of a cognitive theory, or the ways 

in which different cognitive theories relate to one another (e.g., Marr ’ s lev-

els, neural reductionism, or cognitive autonomy). I argue that all of these 

fall short: they all fail to provide the theoretical resources needed to capture 

the particular claims that I will defend throughout this book. We instead 

need a subtler understanding of (a) theoretical commitments in terms of 

a multidimensional space, and (b) intertheoretic relations based on one 

theory constraining another. I provide such an account so that the reader 

can properly interpret the claims of later chapters. In chapter 3, I then pro-

vide a primer on the formal computational framework of graphical models. 
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There are actually multiple types of graphical models, so this chapter pro-

vides an introduction to the different ones that will be used in later chap-

ters. Although the focus is on a formal framework, much of the chapter 

is written qualitatively, though the mathematical details are provided for 

interested readers in clearly indicated sections. 

 I then turn to the hard work — building on results from myself and many 

others — of showing that the graphical models framework can help us to 

understand single areas of cognition. Chapter 4 focuses on causal cogni-

tion of many sorts, ranging from learning which switches control which 

lights, to reasoning about the likely causes of a car accident, to directly 

perceiving that my hand ’ s push caused the door to close. Graphical models 

have already played an important role in our understanding of causal cog-

nition, and so this domain provides a good starting point to see how we 

can interpret cognitive theories as operations on graphical models. Chapter 

5 turns to the many types of cognition involving concepts, broadly con-

strued. We learn how to divide the world into groups or categories; for 

example, we learn that there are different species of animals. We catego-

rize objects as belonging to particular groups, such as deciding that the 

animal at my feet is a dog. We use information about an object ’ s category 

to make further inferences about it (e.g., that this animal probably barks). 

And these concepts and knowledge are integrated in important ways to 

support further inferences (and decisions), such as the expectation that this 

particular animal likely has four legs. I show that the cognitive representa-

tions underlying these operations (i.e., the concepts) can be represented as 

graphical models, and the different uses correspond to different operations 

on those representations. Finally, chapter 6 focuses on decision making, 

ranging from deciding how to leave my office to deciding what kind of 

candy to share with my daughter. I argue that many different types of deci-

sions depend on means-ends or social reasoning that is naturally under-

stood as operations on graphical models. 

 At the end of these three chapters, we will have a coherent picture in 

which each of these disparate cognitive domains can be understood, in 

isolation, as operations on graphical models. Of course, these theoretical 

similarities and identities might simply be a mathematical oddity. Chapter 

7 thus explores different possible cognitive architectures that could explain 

this theoretical unification. After surveying the relevant  “ theory space, ”  I 

argue that the empirical data about the nature and extent of integration of 
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cognitive processes suggest that the most plausible cognitive architecture 

(again, given our current knowledge) is one comprising a single, shared rep-

resentational store that different cognitive processes access in a relatively 

serial fashion. That is, the data suggest that the same cognitive representa-

tions are used and modified by multiple cognitive processes, and so we 

have an explanation for the relatively seamless nature of our cognition. 

Moreover, this particular architecture makes a number of distinctive predic-

tions, particularly about distinctive learning and goal effects. I thus provide 

a number of future experiments that will both test and explore the unified 

model. 

 At that point, I step back to consider other proposals for unifying cogni-

tion. I am certainly not the first to propose a unifying account, but I argue 

in chapter 8 that the spirit of my architecture is importantly different from 

(though complementary to) many previous proposals. More specifically, 

other accounts have unified cognition either by providing a small, shared 

set of processes or operations underlying all cognition (e.g., ACT-R, Soar) 

or by arguing that all cognition is of the same type in some sense, though 

there need not be any actual sharing or overlap (e.g., connectionist net-

works, Bayesian models). In contrast to both of these types of unification, I 

focus on the role of representations (not processes) that are truly shared (not 

simply of the same type). Finally, chapter 9 considers some of the broader 

conceptual or philosophical morals that can be drawn. For example, typi-

cal definitions of cognitive modularity do not fit cleanly with the idea that 

cognition might be unified through shared representations rather than 

shared processes or schemata, and so we must rethink our understanding 

of modularity. A different issue arises from the observation that relevance 

is not necessarily a univocal relation in the world; there are different types 

of relevance. Graphical models are typically understood to represent only 

a single type of relevance in each model (though the type can differ across 

models), which raises the question of how to understand — theoretically, 

empirically, and cognitively —  “ mixed ”  relevance relations. The cognitive 

architecture presented in this book also raises challenging issues about the 

common positions of both neural reductionism and the autonomy of the 

cognitive sciences. 

 We move smoothly between categorizing objects in the world, making 

inferences about them, using those inferences to reason about the causal 

structure of the world, making plans given that causal structure, taking 
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actions based on the plan, observing and categorizing the outcomes of our 

actions, learning from those outcomes, and so on. And in many cases, it is 

not even clear where one cognitive operation ends and another begins: if I 

am learning about a new type of object and I learn that objects of that type 

have a distinctive causal structure, it is unclear whether I have done cate-

gory learning, causal learning, both, or some hybrid that is not really either. 

The representations and processes of conscious cognition — however they 

might be individuated — are integrated in real-world cognition and together 

enable us to (usually) focus our cognitive energy on the factors, events, and 

aspects that are relevant to successfully achieving our goals. And all of this, 

I contend, is based on different cognitive operations on a shared representa-

tional store of graphical models. Now I begin the hard work of articulating, 

explaining, and defending that claim. 





 2   Computational Realism, Levels, and Constraints 

 2.1   What Is a Computational Cognitive Model? 

 This book argues that we can fruitfully understand significant parts of 

human cognition as different processes operating on a shared representa-

tional store of graphical models. My approach throughout is unabashedly 

computational: cognition will be understood as precise operations on math-

ematically well-specified objects. More precisely, a background assumption 

of this work is that it is appropriate to think about aspects of cognition as 

fundamentally involving learning, transforming, making inferences using, 

and manipulating structured representations about the world.  1   One chal-

lenge with computational models of the mind is that it is often unclear 

just what commitments — metaphysical, epistemological, and methodolog-

ical — are intended for a particular theory. The mathematics of a cognitive 

theory are insufficient to know exactly what the theory does and, often 

just as importantly, does  not  imply, whether about the world, the cognitive 

scientist, or future experiments. As a result, we are often left in the posi-

tion of not knowing whether some empirical data confirm, disconfirm, or 

are simply irrelevant to a particular computational cognitive theory. Whole 

debates in cognitive science (e.g.,  Griffiths, Chater, Kemp, Perfors,  &  Tenen-

baum, 2010 ;  Jones  &  Love, 2011 ;  McClelland et al., 2010 ;  Melz, Cheng, 

Holyoak,  &  Waldmann, 1993 ;  Shanks, 1993 ) sometimes revolve around 

questions of commitment: what (beyond  “ fitting the data ” ) is implied or 

required for the proponent of a particular cognitive theory? 

 I attempt to bring some clarity to these issues in this chapter, as it will 

be particularly important for me to be clear about the commitments of my 

account. As we will see in chapter 7, my commitments differ in important 

ways from other cognitive theories with similar computational structure 
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(such as  Griffiths et al., 2010 ), and so I want to ensure that the relevant dis-

tinctions are clear. Because I aim to develop an account of theoretical com-

mitments, differences, and constraints that applies to cognitive theories in 

general (rather than just my own), this chapter is also the most explicitly 

philosophical one in the book. Discussion of graphical models will have to 

wait until chapter 3, and extended discussion of specific cognitive theories 

will start in chapter 4. Sections 2.1 through 2.4 take various philosophical 

detours to provide clarity about the relevant  “ possibility spaces, ”  and then 

I put everything together in section 2.5 to state the particular commitments 

of my view. That last section is thus the most important in the chapter; the 

other sections provide the machinery to understand the statements there. 

 One important dimension of variation between different cognitive 

accounts is their relative abstractness; some terminology is helpful here.  2   

Starting at the most specific, a cognitive  model  offers a computationally 

well-specified account of a specific aspect of cognition. For example, a 

cognitive model of categorization provides a function that takes as input 

both a novel case and various possible categories and then outputs some 

type of categorization behavior (e.g., probabilities of placing the novel case 

into each of the categories). In practice, almost all cognitive accounts that 

actually make concrete predictions are cognitive models. Moving up in 

abstractness, a cognitive  architecture  specifies the basic building blocks for 

cognitive models, as well as the ways in which those components can be 

assembled. Cognitive architectures describe aspects of our cognitive struc-

ture that are relatively constant over time ( Langley, Laird,  &  Rogers, 2009 ), 

and so a single cognitive architecture encodes a set (usually infinite in size) 

of cognitive models. Many well-known cognitive theories — for example, 

cognition should be modeled using neural networks ( Rogers  &  McClelland, 

2004 ) — are best understood as cognitive architectures. Any particular, fully 

parameterized neural network is a cognitive model; the set of all (appro-

priately structured) neural networks constitutes the cognitive architecture. 

Understanding the mind as a Bayesian learner is similarly a cognitive archi-

tecture ( Oaksford  &  Chater, 2007 ), while each specific Bayesian account is 

a cognitive model.  Newell (1990 , p. 80) described cognitive architectures as 

the  “ fixed ”  parts of cognition — that is, the basic pieces that do not change 

and generate flexible behavior by being assembled in particular ways. Simi-

larly,  Anderson (2007 , p. 7) focuses on cognitive architecture as the abstract 

 “ structures ”  that make cognition possible. 
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 Most abstractly, a cognitive  framework  is a general approach for under-

standing the nature of the mind. Frameworks do not specify the precise 

computational pieces that are used to construct a model, but rather indi-

cate a general approach to modeling the mind. For example, attempts to 

construct symbolic models of cognition (as opposed to neural models, or 

embodied models, or others) together form a cognitive framework, though 

architectures within that framework might use quite different elements. 

Finally, one might note that I have not used the word  “ theory ”  in this divi-

sion. That term is used in many different ways, but in this book, a cogni-

tive  theory  will include a cognitive account at any of the three levels just 

discussed; that is, a cognitive theory can be a framework, architecture, or 

model. When we consider how to connect different cognitive accounts, we 

will often not care about the level, so it will be useful to have a term that 

encompasses all three. When it actually matters whether the theory at hand 

is a model, architecture, or framework, then the appropriate term will be 

used. 

 This trichotomy is useful in understanding the level of abstractness at 

which a cognitive theory is offered. It does not, however, provide strict 

distinctions between the levels; no  “ bright lines ”  separate frameworks from 

architectures, or architectures from models. For example, one might offer a 

cognitive theory that looks like a cognitive model but has free parameters 

that must be filled in for a particular domain or for a particular individual. 

Such an account is not, strictly speaking, a cognitive model as defined ear-

lier, as we cannot generate precise predictions without specifying the rel-

evant free parameters. At the same time, this particular theory is clearly 

more specific than a stereotypical cognitive architecture, as it does not sim-

ply provide a set of building blocks and ways to assemble them. Rather, 

it shows how those pieces are (mostly) put together for a particular type 

of cognition. There will inevitably be borderline cases that could be cat-

egorized in different ways by different individuals, but most of the cases 

that we will consider adhere reasonably cleanly to the model/architecture/

framework distinction. 

 This trichotomy provides significant guidance in understanding the 

methodological commitments implied by advocacy of a particular cogni-

tive theory. In particular, accepting a theory at one level imposes meth-

odological commitments at the levels below. For example, if I advocate a 

specific cognitive architecture, then I am committing myself (at least for 
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the purposes of that investigation) to constructing cognitive models within 

that architecture. As a concrete example, the cognitive account offered in 

this book is a novel cognitive architecture based on shared representations 

expressed as graphical models. I am thus committed (methodologically) 

to developing specific cognitive models using these components, at least 

within this book. This commitment is obviously nonbinding: a researcher 

can entertain other possibilities or can come to realize that a particular 

higher-level commitment (e.g., to a particular architecture) is incorrect. 

Moreover, one can advocate different architectures or even different frame-

works for different aspects of cognition.  3   

 At the same time, this trichotomy is relatively uninformative about 

the epistemological and metaphysical commitments implied by advocacy 

of a particular cognitive theory. The specification of a cognitive theory —

 whether framework, architecture, or model — almost never (in isolation) 

commits one to any particular picture of the world, or constrains the ways 

that theory could be implemented, or determines how we could confirm 

or learn about the truth of that theory. One could, for example, propose 

a cognitive model but claim that it is just a useful computational device 

for generating predictions given inputs. Alternately, one could propose 

 exactly the same  computational model (more precisely, something with the 

same mathematics that makes the same input-behavior predictions) but 

claim that every process and representation in it should be interpreted in a 

strongly realistic manner. More generally, the mathematical/computational 

specification of a cognitive theory significantly underdetermines the com-

mitments that are implied by it. We thus need something more than this 

trichotomy to understand the full commitments of the cognitive architec-

ture advocated in this book. In other words, we need to do some philoso-

phy to really understand what the cognitive science means. 

 2.2   A Proliferation of Levels 

 We need some way to talk about the different metaphysical and epistemo-

logical commitments that arise for different mathematical/computational 

cognitive theories, or even for the same theory in different researchers ’  

hands. The (close-to-)dominant language used in contemporary cogni-

tive science is  Marr ’ s (1982)  three levels for characterizing information-

processing devices in general and processes in the human mind more 
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specifically. The  computational  level focuses on the challenge faced by the 

cognitive agent; more specifically, one identifies the appropriate input and 

output of the process, constraints on the possible types of computation, 

and features of the agent ’ s environment. The  algorithmic  level (also called 

the representation level) specifies an implementation — invariably only 

approximate in various ways — of the computational theory, including rep-

resentations of the inputs and outputs. Finally, the  implementational  level 

describes the physical realization of the representation and the algorithm. 

Roughly speaking, the computational level specifies what problem is being 

(appropriately) solved; the algorithmic level explains how it is solved; and 

the implementational level gives the details of the physical substrate that 

does the solving. As a concrete (noncognitive) example, we can think about 

a word-processing program as (i) a process for entering, editing, and ren-

dering text documents (the computational level); (ii) a bunch of lines of 

code that produce the appropriate behavior (the algorithmic level); or (iii) 

changes of 1s and 0s in the internal memory registers of the computer (the 

implementational level). 

 Marr ’ s levels are helpful for providing a quick characterization of the 

commitments of a theory,  4   but they unfortunately conflate at least three 

dimensions along which cognitive theories make commitments: extent of 

realism, tightness of approximation or scope, and (importance of) closeness 

to optimality. In Marr ’ s levels, these three dimensions of variation must 

change in lockstep, though they can actually vary independently. That is, 

Marr ’ s levels project a complicated, three-dimensional (at least) space of 

theoretical commitments down to a single dimension of variation; at the 

end of this section, I give the precise projection used to generate Marr ’ s lev-

els. Moreover, many more than just three levels exist for each dimension, 

as theories can differ in their commitments in relatively fine-grained ways. 

To understand what is intended by the cognitive architecture offered in 

this book, we need to examine these three dimensions of metaphysical and 

epistemological commitments in more detail. 

 The first dimension of theoretical commitment is arguably the easiest to 

understand: the  extent of realism  for a theory is the parts of the theory that 

are intended to refer to objects or processes that  “ really exist. ”  Many aspects 

of the traditional  “ levels of description ”  hierarchy (e.g., physics is lower 

level than chemistry) can naturally be understood as varying the extent of 

realist commitments of the theory. As a simple cognitive example, consider 



18 Chapter 2

a model of someone computing 2 + 2 = 4, that is, a model of an individual 

being asked to add two plus two and then responding with four. A com-

pletely minimal realist commitment for such a model would be to regard 

it instrumentally: the model offers only a correct characterization of the 

input – output function for human addition. A substantially more realist 

commitment would claim that there are representations of the numbers 2 

and 4, as well as some process by which the former representation (perhaps 

with a copy) is manipulated to yield the latter representation. As we see 

here, the mathematical specification of a theory is insufficient to deter-

mine the realist commitments; those are, in an important sense, outside 

the scope of the computational part of the model. Nonetheless, important 

empirical questions turn on those realist commitments, and so we need to 

be clear about how to understand them.  5   

 Cognitive objects and processes are arguably unobservable and so it is 

not always clear what it means to attribute  “ reality ”  to such things. An 

enormous literature exists about the nature of representations, their con-

tent, what it means to have processes that are distinct from representations, 

and so forth (a tiny sample of writings includes  Churchland, 1981 ;  Dretske, 

1981 ,  1988 ;  Lycan, 1981 ;  Millikan, 1984 ;  Ramsey, 2007 ;  Stich, 1983 ,  1992 ). 

I will not directly engage with that literature, however, since many, perhaps 

most, aspects of those debates are orthogonal to the dimension of realist 

 commitments . All I require is that there be something structured and some-

what persistent, which can be functionally or operationally identified as 

a representation. These properties hold for aspects of almost all cognitive 

theories ( Shagrir, 2012 ), including seemingly nonrepresentational accounts 

such as connectionist (e.g.,  Eliasmith  &  Anderson, 2002 ;  Rogers  &  McClel-

land, 2004 ), embodied (e.g.,  Barsalou, 2008 ), and dynamical systems (e.g., 

 Port  &  van Gelder, 1995 ) theories. We can generally draw a rough distinc-

tion between representations and processes: representations are the rela-

tively stable, persistent objects that encode information, and processes are 

the dynamic operations involving those objects that can potentially (but 

need not) change the state of those objects.  6   Of course, representations are 

partly determined by the uses to which they are put, but they are impor-

tantly not identical with those uses ( Grush, 1997 ). Rather, representations 

are whatever encodes information (perhaps for a purpose) stably over some 

reasonable timescale, and processes are whatever manipulates that infor-

mation (perhaps differently depending on the form of the representation). 
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 Given this division, realism implies different epistemological commit-

ments — in part, licensing different predictions  7   — for realism about pro-

cesses and about representations. Realism about a representation implies 

commitments about stability of predictions for different types of cognition 

that use the information encoded in that representation. If the representa-

tion  “ really exists, ”  then the same object is used for (potentially) many 

purposes, and so predictions in these different contexts should reflect that 

shared informational basis. For example, realism about the concept  DOG  

implies that behavior in a categorization task involving dogs should be 

correlated (in various ways) with performance in a feature inference task 

involving dogs. More generally, representation realism licenses us to use 

behavior on one task to make predictions about (likely) behavior on differ-

ent tasks that use the same representations, at least ceteris paribus. Impor-

tantly, representation realism does not imply that every representation is 

available for every process; it is certainly possible that we have multiple 

representational stores, some of which are process specific. But when the 

same representation is supposed to be available to multiple processes, then 

representation realism implies a set of epistemological commitments about 

correlations or stabilities between predictions about the behaviors gener-

ated by the different processes. 

 Process realism similarly implies epistemological commitments of 

interprediction correlations and stabilities, but this time for the same task 

given different inputs, backgrounds, or environmental conditions. That is, 

if one is committed to the reality of a given cognitive process, then that 

process should function similarly across a range of inputs and conditions. 

For example, realism about a particular process theory of concept learn-

ing implies that the same process should be active for a variety of inputs 

that trigger concept learning. Whether I am learning about the concept  DOG  

or the concept  CAT , the same process should be engaged (since that is the 

process that is  “ really there ” ). Of course, process realism does not imply 

that every process is triggered for every input or in every condition; rather, 

process realism is the more minimal claim that correlations and stabilities 

should exist for predictions about the different performances of the same 

task, ceteris paribus. 

 Moreover, the epistemological commitments of process realism and rep-

resentation realism are separable, at least in the abstract. One could think 

that the appropriate predictive correlations obtain within a cognitive task, 
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but not between them (i.e., process realism without representation real-

ism): for example, performance on a categorization task involving dogs 

might imply stable correlations about categorization involving cats but not 

anything stable for predictions about feature inference on dogs. Alternately, 

the appropriate stabilities might obtain across tasks for the same informa-

tion, but not within a task (i.e., representation realism without process 

realism): for example, there might be prediction correlations for categoriza-

tion and feature inference involving dogs, but not between categorization 

involving dogs and cats. 

 Crucially, one can be selectively realist about the representations or 

processes in one ’ s theory; process realism and representation realism are 

not all-or-nothing affairs. To take a concrete example, consider associative 

models of contingency (or causal) learning, such as the Rescorla – Wagner 

(1972) model. At a high level, these models posit that people learn cor-

relations (possibly including causal strengths) by updating associative 

strengths between various factors. Computationally, they use a two-step 

process: given a new case, one (i) predicts the state of some factors based on 

their associative connections with observed factors and then (ii) changes 

the associative strengths based on the error in that prediction. Most stan-

dard interpretations of associative learning models are realist about the 

associative strengths, but not about the predictions generated in step (i). 

That is, associative strengths  “ really exist ”  somewhere in the mind/brain, 

while the  “ predictions ”  are just a computational device rather than being 

encoded anywhere. On the process side, most are realist about the update 

process in step (ii), but not about the prediction process from step (i). 

 A second dimension of variation in theoretical commitments is the 

intended scope or  degree of approximation . All theories are approximate in 

that they exclude certain factors or possibilities. Variations on this dimen-

sion correspond to variations in which factors have been excluded, and 

thus the intended scope of the theory. As a concrete example, suppose one 

has a cognitive model of human addition that predicts that people will 

respond  “ 93 ”  when asked  “ What is 76 + 17? ”  A question arises when some-

one responds (erroneously)  “ 83 ” : what does this behavior imply for the 

model? One response is to hold that we have a (partial) falsification of the 

cognitive model, as it made a prediction that was not borne out. A different 

response is to argue that the behavior is due to some factor that falls out-

side the intended scope of the model (e.g., the individual was temporarily 
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distracted), and so does not constitute counterevidence. The mathematical 

or computational specification of a theory does not include what is (delib-

erately) omitted from the theory, but we can only know how to respond to 

an apparent mismatch between theory and reality if we know what is being 

excluded.  8   This dimension is obviously related to the extent of realism, but 

they are importantly different. Realism is about how to interpret elements 

within the theory, while approximation/scope is about the elements that 

are not in the theory, specifically whether the absent factors are included 

but simply do not matter (according to the theory) or rather fall outside the 

intended scope of the theory. 

 This dimension is related to the performance/competence distinction, 

but it is not identical to it. Roughly speaking, a competence theory aims to 

characterize what people are capable of doing, while a performance theory 

aims to describe what they actually do. Typically, a competence theory 

explains and predicts people ’ s ideal behavior if they did not face, for exam-

ple, limits on memory and attention, cognitive processing errors, and other 

deleterious factors. A performance theory is supposed to account for these 

various factors so as to (approximately) capture actual human behavior in all 

its messy glory. The mathematical specification of a theory does not entail 

that it is either a performance or a competence theory; that distinction 

instead arises from one ’ s commitments about the theory ’ s intended scope. 

One could have many intended scopes in mind besides performance and 

competence theories, including ones that arise from abstracting away from 

only some human cognitive limitations and peculiarities, rather than all 

of them (as in competence theories). The performance versus competence 

theory distinction marks out two important points along this dimension of 

commitments but fails to capture the full range of possible commitments. 

 The third dimension of variation in a theory ’ s commitments is the 

 intended optimality  (if any) of the theory: that is, is the theory claimed to be 

optimal (or rational), and if so, for what task(s) and relative to what com-

petitors? We are often interested not just in  how  some behavior occurs (i.e., 

the underlying representations and processes that generate it) but also in 

 why  that behavior occurs; claims about optimality underlie these so-called 

why-explanations. Actually tracing the causal history (whether ontoge-

netic or phylogenetic) of a process or representation is often remarkably 

difficult, if not impossible. An alternative path to reach a why-explanation 

is to show that (i) some cognition is optimal relative to competitors, and 
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(ii) there are sufficiently strong pressures on the individual (or lineage) to 

push the individual to the optimal cognition (and those pressures actually 

obtained in these circumstances). If these elements can be shown, then we 

can conclude that the cognition occurs  because  it is optimal. This alterna-

tive path is a standard way to demonstrate, for example, that some physi-

cal trait constitutes an evolutionary adaptation ( Rose  &  Lauder, 1996 ). In 

practice, many putative optimality-based explanations fail to show that 

there are actual selection pressures that would suffice to drive an individual 

toward the optimal cognition, or even to maintain an individual at the 

optimal cognition ( Danks, 2008 ). Nonetheless a theory ’ s closeness to opti-

mality (relative to alternatives) is an important aspect of the theory, though 

not part of its mathematical/computational specification. Variation in this 

dimension clearly induces different metaphysical and epistemological com-

mitments, as optimality claims imply constraints on the causal history of 

the cognition, and how the cognition should plausibly change under varia-

tions in the environment or learning history. 

 For all three of these dimensions of variation, there are many levels 

within each, rather than just three or four (as one typically finds in vari-

ous accounts of  “ theoretical levels ” ). One ’ s realist commitments, intended 

scope, and relative optimality of a theory can all vary relatively smoothly, 

or at least with sufficiently fine granularity that one can have many differ-

ent levels of commitment within each dimension. This is one reason that 

Marr ’ s levels are insufficient: three levels (or four, as in  Anderson, 1990 ; 

or five, as in  Poggio, 2012 ) are just not enough to capture all the differ-

ent ways in which we can vary our commitments. More importantly, as 

noted earlier, Marr ’ s levels conflate these three dimensions of variation. 

The computational level implies (a) weak realist commitments (particularly 

about processes); (b) significant approximation (since the theory is about 

how the system should solve a problem, rather than what it actually does); 

and (c) a high degree of optimality. At the other end, the implementation 

level implies (a*) strong realist commitments, (b*) little approximation, and 

(c*) very little optimality. There simply is no good way to use Marr ’ s levels 

to describe, for example, rational process models (e.g.,  Denison, Bonawitz, 

Gopnik,  &  Griffiths, 2013 ) that have both strong realist commitments and 

significant optimality. 

 As a result of this conflation, the use of Marr ’ s levels can be a mixed bless-

ing. On the one hand, Marr ’ s levels encourage more precise specification of 
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a theory ’ s extracomputational commitments, which is a positive compared 

to the bare statement of a computational model. On the other hand, use of 

Marr ’ s terminology can force proponents of a theory into particular com-

mitments that they would prefer to deny, as the levels bundle together 

commitments that should be kept separate. The usefulness of Marr ’ s levels 

principally depends on whether the theory ’ s proponent happens to endorse 

one of the limited sets of possible commitments that can be expressed in 

that trichotomy. None of those levels work for my case; the three dimen-

sions introduced in this section will, however, do the job. 

 2.3   Previous Accounts of Intertheoretic Relations 

 The previous section focused on commitments as relatively abstract enti-

ties, rather than something that has a direct impact on scientific practice. 

We can operationalize these different types and levels of commitments by 

thinking about the relations that they induce between the cognitive theory 

 T  and other (possible) theories in both the cognitive and other domains. For 

example, if  T  is advocated as being purely instrumentalist (i.e., essentially 

no realist commitment), then a neural theory of the same phenomena need 

only generate the same input – output function as  T  (if  T  turns out to be 

true); the truth of  T  places no other constraints on the neural model. More 

generally, the different positions in this multidimensional  “ commitment 

space ”  imply different constraints that  T  ’ s being true (or accurate, or useful, 

or meeting whatever one ’ s standard is for scientific theories) places on other 

theories. As one might suspect, the philosophy of science has long studied 

intertheoretic relations, particularly the question of which relation is most 

appropriate for cognitive theories; work on just that one question could fill 

a whole book (and has, as in  Schouten  &  de Jong, 2012 ). Most of that work 

understands theories as falling on different levels of description, and so I 

will sometimes adopt that language, though such talk is really shorthand 

for theories occupying different points in the multidimensional commit-

ment space. This section focuses on the two most prominent accounts —

 autonomy and reduction — and argues that neither can do the work that we 

require here. This argument will involve surveying a wide range of different 

possibilities, and it is important not to lose the forest for the trees: the key 

moral is not any particular objection against any particular account, but 

rather that the extant accounts do not seem particularly promising, and so 
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we must develop a different account of intertheoretic constraints (as I do in 

section 2.4). Readers who already agree that reduction and autonomy are 

insufficient characterizations of intertheoretic relations are welcome to skip 

to the next section. 

 One possibility is that the proper intertheoretic relation, at least for the-

ories in the cognitive sciences, is actually autonomy ( Fodor, 1974 ,  1997 ): 

advocating a theory  T  at one level places (almost) no restrictions on theo-

ries  U  that have different commitments (i.e., are not direct competitors). 

That is, perhaps different theories are essentially independent, though they 

must agree on the relevant observable facts. In particular, if one advocates 

a higher-level theory, then perhaps the only resulting constraint on lower-

level theories is that they generate the same (or approximately the same) 

input – output function.  9   

 At least three different types of arguments have been offered in defense 

of autonomy. The first is an appeal to multiple realizability in the cognitive 

sciences: if a cognitive state can be realized in many different ways (e.g., in 

neurons, in silicon in a computer, etc.), then there is seemingly relatively 

little that we can infer from a theory at one level about theories at a dif-

ferent level. In these cases, commitments at one level would be essentially 

autonomous from commitments at a different level. A second argument 

depends on the (methodological) behaviorist claim that there is no real 

difference between two theories that predict the same behavior given the 

same stimulus. For example,  Anderson (1990 , p. 26) holds that  “ if two theo-

rists propose two sets of mechanisms in two architectures that compute the 

same function, then they are proposing the same theory. ”  If this claim is 

correct, then advocating a theory at one level clearly imposes only the con-

straint that theories at another level must match its input – output function. 

A third argument focuses on so-called rational analyses, some of which seek 

(roughly) to understand the ways in which human behavior can be under-

stood as the rational solving of some task ( Danks, 2008 ). For these analyses, 

one must show that  “ behavior can be  …  described as conforming with  …  

some rational calculation ”  ( Chater, Oaksford, Nakisa,  &  Redington, 2003 , 

p. 67). But if such a demonstration is all that is required, then advocating 

a particular rational analysis (of this type) imposes no constraints on  how  

that behavior is generated. The only constraint on lower-level theories is 

that they must somehow generate this behavior (see also  Anderson, 1991a ); 
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that is, the only relevant intertheoretic relation is one of input – output 

approximation. 

 Many objections to the autonomy position focus on the argument from 

multiple realizability (e.g.,  Bechtel  &  Mundale, 1999 ;  Bickle, 1998 ;  Kim, 

1992 ). In particular, these responses aim to show that higher-level theo-

ries are not metaphysically autonomous from lower-level ones (though see 

 Aizawa, 2009 ). I focus here on two different challenges, both stemming from 

scientific practice. First, as argued in the previous section, cognitive scientists 

can and do make realist commitments for a theory  T  that include more than 

just the input – output specification. The intertheoretic relation of autonomy 

does not, however, enable us to pass those commitments along to lower-level 

theories. Suppose, for example, that our theory of decision making includes 

a realist commitment to explicit, separable representations of outcome prob-

abilities and outcome utilities. If autonomy is the only relevant intertheo-

retic relation, then any theory with the same input – output relations will be 

acceptable, even if it does not share those representational commitments. 

Moreover, the autonomy advocate can only allow the  “ downward flow ”  

of representational or process commitments by giving up exactly on the 

motivating desire to be agnostic about the reality of theoretical elements. 

That is, a fundamental tension exists between the philosophical claim in 

the autonomy response that one should not (in general) attribute reality 

to cognitive representations and processes, and the methodological reality 

that cognitive scientists do this all the time in a seemingly justified manner. 

 A second, more practical concern about the autonomy response is that it 

fails to provide any guidance or insight for scientific practice. If one accepts 

a particular theory, then (on the autonomy account) no constraints are 

placed on theories at higher or lower levels, besides the bare constraint of a 

particular input – output pattern. In particular, if I accept a theory that posits 

a particular mechanism  M , then I have no reason to look either for higher-

level theories that posit a coarsened version of  M  or for lower-level theories 

that postulate a potential refinement of  M . Even if such theories exist, the 

intertheoretic relation of autonomy does not accord them any privileged 

status with respect to  M . Any theory with approximately the same input –

 output relation is equally acceptable, and so our acceptance of  M  provides 

only the weakest guidance to our search for, or acceptance of, theories 

at different levels. But cognitive science is filled with examples in which 
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theories at one level are used to guide the search for theories at different 

levels. The autonomy response fails to give any explanation or justification 

for this practice (and, in fact, implies that no such justification is possible). 

 The other intertheoretic relation that has been extensively proposed in 

the philosophical literature on the cognitive sciences is  reduction .  10   Roughly, 

a higher-level theory  H  reduces to a lower-level theory  L  when  L  is a finer-

grained version of (something approximately equivalent to)  H .  11   That is, 

as a first pass,  H  reduces to  L  when  L   “ gives the details ”  of  H . For example, 

many cognitive theories are thought to be reducible (at least in principle) to 

neuroscientific theories that show what is  “ really going on ”  that generates 

the behaviors that are captured by the cognitive theory. Theoretical com-

mitments arise from an assumption that seems to be widely, but implic-

itly, shared: acceptance of  H  commits one to believe that  H  will ultimately 

reduce to true (lower-level) theories  L  1 ,  L  2 ,  …     ; acceptance of  L  commits 

one to accept any (higher-level)  H  that reduces to  L . Of course, these com-

mitments turn critically on what exactly counts as a reduction. Different 

notions of reduction can be placed into two (rough) groups depending on 

whether they focus on equivalence or replacement. 

 Equivalence-based notions of reduction view the intertheoretic relation 

as one of identity of some sort. In the canonical version of  “ reduction as 

syntactic equivalence ”  ( Nagel, 1961 ), a theory is a set of sentences in some 

logical vocabulary, and  H  reduces to  L  just when one can logically derive 

the statements of  H  from (i) the basic statements of  L ; (ii)  “ bridge princi-

ples ”  that tell us how to translate the basic predicates of  H  into the language 

of  L ; and (iii) perhaps some initial or boundary conditions in  L . That is,  H  

reduces to  L  just when one can derive  H  from  L , given a translation of  H  

and  L  into the same language (using the bridge principles) and potentially a 

restriction of the scope of application of  L . There are various subtleties here, 

such as allowing for the possibility that  H  is false in certain respects and so 

the derivation should be of some corrected version  H * of the reduced theory 

(Dizadji-Bahmani, Frigg,  &  Hartmann, 2010;  Schaffner, 1967 ). Alternately, 

the derivation of  H  from  L  might obtain only at some asymptotic limit or 

under a suitable approximation, but there are well-known adjustments that 

preserve reduction as syntactic equivalence in these cases ( Batterman, 2002 ; 

 Rueger, 2001 ,  2005 ). 

 The reduction-as-syntactic-equivalence view has been immensely influ-

ential over the past sixty years, but many problems arise when using it as 



Computational Realism, Levels, and Constraints 27

a model of implied intertheoretic constraints. First, we are often interested 

in theoretical claims that are not readily expressible as equations or logical 

statements, such as  “ graphical models provide an architecture for describ-

ing representations in a common cognitive store. ”  This statement does not 

correspond to any particular equation or logical statement; at best, it cor-

responds to a (very large) family of models. It is thus excluded from partici-

pating in any reduction-as-syntactic-equivalence relations, even though it 

seems to place constraints on other theories. Second, as argued earlier, an 

individual can have varying realist commitments about different parts of 

a theory. The syntactic equivalence approach treats all parts of the theory 

similarly and so cannot capture the possibility that some parts of a theory 

imply strong intertheoretic constraints while others imply only weak ones. 

 One natural way to try to salvage the reduction-as-equivalence idea is 

by modeling theories semantically, rather than syntactically. Arguably, the 

best-developed nonsyntactic view of scientific theories is the structuralist 

or model-theoretic account ( Balzer, Moulines,  &  Sneed, 1987 ;  Sneed, 1971 ; 

 Stegmuller, 1976 ), and the corresponding account of reduction has been 

applied in the cognitive sciences ( Bickle, 1998 ,  2003 ). At a high level, struc-

turalist reduction is semantic containment:  H  reduces to  L  just when there 

is a mapping from the models of  H  into the models of  L , where the models 

of a theory are not necessarily defined by any syntactic expressions.  12   Struc-

turalist accounts of scientific theories use substantial set-theoretic machin-

ery, but that is largely irrelevant to the resulting account of reduction; see 

 Moulines and Polanski (1996)  for the relevant technical details. 

 One problem with this account is that models are defined purely struc-

turally, and so theories about quite different domains can seemingly reduce 

to one another, even though we ordinarily think that reductions should 

only occur between theories in the same domain ( Moulines, 1984 ;  Schaff-

ner, 1967 ). The cross-domain problem can be solved by requiring  “ onto-

logical reduction links ”  that identify the objects of possible models for 

 H  with at least some of the objects of possible models for  L  ( Moulines, 

1984 ). These ontological reduction links clearly block many spurious cross-

domain reductions;  Bickle (2002)  argues that they block all of them. How-

ever, they do so by violating the motivating intuition of the structuralist 

program that the only relevant properties of elements in a model of a sci-

entific theory are structural ones ( Moulines, 1996 ). The structuralist is thus 

forced to choose between two intuitions: (i) structure matters, not domain; 
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and (ii) only within-domain reductions are acceptable. Regardless of choice, 

the structuralist account of reduction will not be left intact, so it cannot 

provide us with a suitable guide to capturing the intertheoretic constraints 

on commitments. 

 A third way to (try to) understand reduction in terms of equivalence is to 

incorporate both syntactic and semantic concerns by modeling reduction 

as  “ implementation ” :  H  reduces to  L  just when  L  implements  H  ( Danks, 

2008 ). One natural understanding of implementation is suggested by the 

common analogy between cognition and computer software. A computer 

language (e.g., C, C++, Java, Prolog, LISP, etc.) is defined by a set of basic 

methods and functions (and an acceptable syntax). Basic functions are 

defined solely by input – output relations (and the permissible inputs and 

outputs), and so they determine the  “ level of description ”  for computer 

programs written in that language. A computer program in one language 

can sometimes be  compiled  into a program in a different language. At an 

abstract level, compilation can be understood as replacing each higher-

level basic function with a (possibly quite complex) sequence of lower-level 

basic functions. The only necessary constraint on a compiler is that each 

sequence of function calls (in the lower-level language) must have the same 

input – output relation as the particular higher-level basic function that is 

being replaced. 

 If cognition is essentially a computer program running on the hard-

ware of the brain, then we should plausibly expect that higher-level cogni-

tive theories could be compiled into lower-level theories about cognition 

( Danks, 2008 ). This general notion of reduction as implementation is argu-

ably implicit in the use of box-and-arrow or data flow diagrams in areas 

such as cognitive neuropsychology. Importantly, however, box-and-arrow 

diagrams can tolerate ambiguity about the precise input – output function 

for each box and thus are more general than this notion of compilation. 

The precise mathematical details of a box are often (relatively) unimport-

ant for understanding and using such a theory but are crucial for the com-

pilation relation. The proposal that reduction is compilation requires our 

scientific theories to exhibit a degree of specificity that is simply absent 

from many theories that plausibly imply intertheoretic constraints; that is, 

the intertheoretic relation of compilation cannot provide the full story of 

intertheoretic constraints. 
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 Instead of thinking about reduction as equivalence, we could think of 

it as replacement:  H  reduces to  L  just when  H  can be replaced (in some 

sense) by  L  or special cases of  L  ( Churchland, 1985 ; Dizadji-Bahmani et 

al., 2010;  Hooker, 1981a ,  1981b ). Of course,  H  might continue to be prag-

matically useful — the equations might be easier to compute, the ontology 

might provide a handy shorthand, and so on — but  H  does not do any  “ real 

work. ”  More precisely, there must be a structure or substructure within the 

language and framework of  L , call it  L H  , whose theoretical power is appro-

priately analogous to that of  H . Consideration of canonical cases naturally 

points to three central aspects of theoretical power: (1) the explanatory 

scope of  L H   should be approximately the same as  H ; (2) the ontologies 

should be approximately similar, with a (rough) map from  H  to  L H  ; and 

(3) there should be some (not-always-clear) similarity of structure between 

 H  and  L H  . For all three of these aspects, the similarity between  L H   and  H  

can range over a continuum of values, and so this notion of reduction is 

not a binary relation but rather a  “ space ”  of reductions: identity (syntactic 

or semantic) between  L H   and  H  arguably provides an origin point for this 

space, and other regions of the space correspond to reductions, significant 

theoretical corrections, and even eliminations. 

 This notion of reduction can clearly capture many different facets of the 

interactions between theories at different levels. The risk, however, is that 

it does so by being so flexible or vague that it loses all practical content. 

In particular, saying  “  H  reduces to  L  ”  is supposed to license novel infer-

ences, support novel connections between theories, permit novel claims 

about the presence or absence of theoretical objects in the world, and so 

on, but this notion of reduction does not (yet) support such novelties. For 

example, one dimension is ontological overlap, which can occur to various 

degrees and should presumably provide us with a guide to what we should 

do with the ontology of  H : (i) if it provides a shorthand for the ontology of 

 L H  , then retain it; (ii) if it can be adjusted slightly to result in a shorthand, 

then amend it; and (iii) if it is sufficiently different, then eliminate it and 

find a more appropriate, upper-level ontology. This decision thus depends 

on our ability to actually locate the reduction somewhere along this dimen-

sion, but no principled method of doing so has been provided. It may be 

possible both to make the account precise and also to retain the underlying 

intuitions, but that has not yet happened, and many promising accounts 
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have foundered precisely when people tried to make them precise (though 

Dizadji-Bahmani et al., 2010, suggest that perhaps precision can be attained 

only through domain-specific inquiries). 

 Moreover, even if this account of reduction could be made to work, 

there are extremely general reasons to worry that reduction cannot pro-

vide the full story about intertheoretic constraints and commitments. 

First, the statement  “  H  reduces to  L  ”  implies that one has definite, posi-

tive theoretical proposals to serve as the relata. Scientific practice, how-

ever, rarely involves such precise proposals, at least in many domains. 

One might find, for example, a claim that two variables are associated, 

or some functional relationship falls in some (perhaps large) family, or 

some previously considered theoretical possibility is incorrect (but with-

out any further information about which theoretical possibility actually 

is right). These different types of theoretical claims can all imply commit-

ments at other levels even if there is no particular broad theory in which 

they fit (and so no appropriate relata for reduction). Second, essentially all 

accounts of reduction imply that it is a transitive relation: if  H  reduces to 

 L  and  L  reduces to  S , then  H  reduces to  S . Intertheoretic commitments do 

not, in general, seem to be similarly transitive.  H  can constrain  L  and  L  

can constrain  S  without  H  constraining  S ; for example,  H  could constrain 

 L  to explain phenomenon  P , and  L  could constrain  S  in terms of truth 

(perhaps via a reduction), but without  H  constraining  S  in any interesting 

way ( Putnam, 1975 ).  Some  implied intertheoretic commitments might be 

grounded in the relation of reduction, but it does not seem that all can be 

understood in this way. 

 Third, and perhaps most important, reduction is a between-level rela-

tion in the sense that  H  and  L  are presumed to be theories at different levels 

about roughly similar phenomena.  13   Intertheoretic constraints can arise, 

however, between theories that do not stand in this type of  “ hierarchi-

cal ”  arrangement. Consider, for example, theories of causal learning and 

reasoning (see chap. 4) and the causal model theory of concepts (see chap. 

5). These two types of theories investigate different phenomena — learning 

the causal structure of the world in the former case, and grouping indi-

viduals based on shared causal structures in the latter case — and so cannot 

possibly stand in a reductive relationship in either direction. Nonetheless 

they clearly constrain each other; at the least, they both depend on repre-

sentations of causal structure, and so information about one theory can 
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be informative about the other. We thus need a more general account of 

intertheoretic constraints to allow for constraints between theories that do 

not stand in a  “ higher-versus-lower-level ”  relationship. 

 One final defense of the centrality of reduction is that it can serve as 

a methodological guide to the intertheoretic commitments that scientists 

 should  make in practice. That is, perhaps the importance of reductions is 

that scientists will do better if they actively seek to find them, rather than 

depending on other types of intertheoretic relations to guide their inquiry 

( Barendregt  &  van Rappard, 2004 ;  Bickle, 2003 ). There have certainly been 

instances in which the search for a reduction has led to scientific prog-

ress, but the general methodological stance is overly limiting. In general, 

 any  intertheoretic connections — whether reductions or not — advance our 

scientific understanding, and so we should seek all of them. Of course, 

reduction is arguably the strongest possible interlevel constraint, so it can 

sometimes make sense to focus on finding reductions of some theory  H . But 

any interlevel constraints can advance scientific understanding, and so we 

should aim to understand the full scope of constraints, where reduction is 

a special, though particularly salient, case. 

 2.4   Connecting Theories through Constraints 

 The previous section concluded that scientific theories are connected, 

both in theory and in practice, by constraints, rather than reductions or 

autonomy. This section aims to flesh out just what these constraints could 

be. At a high level, one theory  S  constrains another theory  T  if the extent 

to which  S  has some theoretical virtue  V  (e.g., truth, predictive accuracy, 

explanatory power) matters for the extent to which  T  has  V . More col-

loquially,  S  constrains  T  just when, if we care about  T  along some dimen-

sion, then we should also care about  S  along that same dimension. The 

intertheoretic relations in the previous section focused almost exclusively 

on the theoretical virtue of truth, but there are many other dimensions 

along which constraints can apply, and constraints along one dimension 

need not track constraints along a different dimension. For example,  T  can 

reduce to  S  (and so truth-constrain it  14  ) while not imposing any constraint 

on its explanatory power ( Putnam, 1975 ). 

 This rough statement of  “ constraint ”  is quite high-level and vague in 

important respects, but it implies certain properties. First, between-theory 
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constraints are nonsubjective: the beliefs of the scientists are irrelevant, 

unless the relevant theoretical virtue involves those beliefs in some irre-

ducible way (as on some analyses of explanatory power). Of course, scien-

tists may not realize that a particular constraint exists and so might fail to 

exploit it in their theorizing. But whether a constraint exists is a matter of 

mathematics, the structure of the theories, and so forth, rather than any 

knowledge or reasoning by particular scientists. Second, this notion of con-

straint is agnostic about almost all aspects of  S  and  T : the theories need 

not be in different, comparable levels (i.e., one being higher-level than the 

other) or even be full-fledged theories. Rather,  S  and  T  can be qualitative 

claims or other partial theories, as long as one is relevant for the other (for 

the particular theoretical virtue). We can thus capture cases such as causal 

learning theories placing constraints on causal model theories of concepts. 

 A third, less obvious implication is that constraint is comparative in 

both relata. That is, whether  S  constrains  T  depends not just on  S  and  T  

but also on the alternatives to both  S  and  T . For example, suppose that  D  

is a theory of case-by-case changes in causal judgment and  A  is the asymp-

totic (or equilibrium) characterization of  D ; in other words,  D  is one way 

to implement  A  (in a step-by-step manner).  15   As in all cases of implementa-

tion, the obvious truth constraint here is  “ if  D  is true, then  A  must be true, ”  

and by contraposition,  “ if  A  is false, then  D  must be false. ”  A less-obvious 

constraint is:  “ if  A  is true, then all dynamical models  D * with non- A  asymp-

totics must be false. ”  Thus, at the extreme of only one dynamical model 

for each asymptotic theory, we get an additional constraint:  A  being true 

implies that  D  must also be true.  16   Similarly, if  D  is false, then  A  is less 

likely to be true and, at the  “ one dynamics per asymptotics ”  extreme, can 

actually be rejected immediately. In general, the spaces of alternatives for 

both relata shape the constraint relation — both whether it exists and the 

particular form it takes. This relativity to alternatives implies that uses of 

constraint in actual scientific practice may be dependent on history and 

context: whether we say that  S  constrains  T  (and how) can depend on the 

recognized alternatives, which are partly a function of the history of the 

scientific domain. Of course, whether  S  constrains  T  (relative to possibil-

ity sets  S  and  T ) is not  actually  historically determined; rather, what can be 

history dependent is whether the scientists focus on possibility sets  S  and 

 T  that exhibit a useful constraint relation, or sets  S * and  T * that exhibit no 

such useful relation. 
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 Aspects of the constraint relation between  S  and  T  are, however, some-

times relatively independent of the spaces of alternatives. For example, 

the  “ obvious ”  truth constraint mentioned in the previous paragraph — if 

 D  implements  A , then: if  D  is true, then  A  is true — does not depend on 

the alternatives to  D  and  A . Only the converse truth constraint is alter-

native dependent, which perhaps helps to explain why the obvious one 

has received more attention in discussions of implementing theories. 

More generally, reduction and autonomy imply constraints that are typi-

cally alternative independent, though in different ways. Reduction usually 

implies that  S  and  T  are, in some sense, interchangeable, regardless of the 

alternatives. In contrast, autonomy typically implies that there are (almost) 

no constraints between  S  and  T , regardless of the alternatives. But although 

these two constraints are largely alternative independent, many are not. 

 More precise statements about the nature of constraint require focus-

ing on particular theoretical virtues. For concreteness, I will focus for the 

remainder of this section on an admittedly speculative and programmatic 

account of constraints relative to the cognitive virtue of  “ truth, ”  as it is 

closely connected to the issue of commitments. I use scare quotes around 

the word  “ truth ”  because the argument is frequently made that all theories 

are idealizations of one sort or another ( Cartwright, 1983 ;  Kitcher, 2001 ), 

and so it does not make sense to speak nonmetaphorically about the truth 

of scientific theories. If one endorses such a view, then the word  “ truth ”  

should be read for the remainder of this section as referring to the preferred 

dimension(s) of evaluation for a set of competing, mutually exclusive theo-

ries (e.g., accuracy with respect to the features of the world that influence 

our predictive and control capabilities, as in  Kitcher, 2001 ). 

 For a formal model of this notion of truth constraint, we start with the 

relevant dynamics: if  S  truth-constrains  T , then (by definition) learning 

about the truth of  S  should change how one thinks about the truth of  T . This 

formulation naturally suggests using probabilities: perhaps  S  constrains  T  

with respect to truth if and only if  P ( T  |  S )  ≠   P ( T ). That is, one theory  S  places 

truth constraints on another  T  whenever the probability of  T  changes when 

we condition on the truth of  S . This idea generalizes to  Jeffrey (1965)  condi-

tionalization, in which we condition on  S  having some probability, rather 

than being definitely true. Despite the superficial appeal, however, a model 

of truth constraints using probabilities faces significant challenges whether 

we interpret the probabilities subjectively or objectively. 
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 A subjective interpretation of probabilities is that they represent degrees 

of belief, either actual or rational. Probability distributions assume that the 

possibility space is exhaustive: we need to articulate the space of all possible 

theories in  S  and  T . In many actual scientific cases, however, we want to 

allow for the possibility that the truth is  “ something else, ”  and it is unclear 

what are or should be (a) the probability of something else, and (b) the 

probability of other possibilities given that something else is true. Relatedly, 

a definition in terms of probability distributions presumes that the space of 

alternatives is fixed through time: we cannot account (in a principled way) 

for the introduction of novel theories that were not previously included. 

If the probabilities are supposed to represent actual degrees of belief, then 

this condition almost certainly cannot be met, as new scientific theories 

are constantly introduced. If we instead interpret probabilities as rational 

degrees of belief, then we must have some notion of what the probabilities 

should be for theories that no one has ever considered. Finally, the task of 

assigning complete, consistent probability distributions to rich spaces (such 

as the space of scientific theories in some domain) requires that one solve 

uncomputable functions ( Gaifman  &  Snir, 1982 ). That is, a suitable prob-

ability distribution sometimes cannot be generated by  any  computational 

device (though perhaps this problem could be avoided by using distribu-

tions that are not too incoherent, according to one of the measures pro-

posed in  Schervish, Seidenfeld,  &  Kadane, 2003 ). 

 One might instead interpret the probabilities objectively, but it is unclear 

just what it would mean to have objective probabilities of the truth of sci-

entific theories. The laws of the universe are presumably set in a  “ one-shot ”  

event, and there is no clear understanding of what a  “ limiting frequency ”  

would be for them. Similarly, symmetry or other physicalist considerations 

will offer no help here. More generally, scientific theories seem to be either 

true or false, not varying in probability (though our judgments or confi-

dence can obviously vary). 

 We can instead model truth constraints using the general framework of 

rational belief change:  S  truth-constrains  T  if and only if a change in belief 

in  S  from time  t  1  to time  t  2  would, for a fully knowledgeable agent, rationally 

produce a change in belief in  T  from  t  1  to  t  2 . There is no assumption here 

that the change in belief in  S  is rational. Rather, this account of constraint 

essentially models it as a conditional: if belief in  S  changes (for whatever 

reason), then belief in  T  should rationally change as well, assuming that 
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the individual understands the implications of her beliefs. This final clause 

is important, as the existence of a constraint does not depend on whether 

an individual scientist actually knows about the connections between the 

theories. This account thus has the (correct and natural) implication that 

one productive scientific activity can be the discovery of intertheoretic con-

straints, as this can enable us to change our beliefs more intelligently. 

 An enormous variety of models of rational belief change have been 

proposed that approach the problem from a corresponding range of per-

spectives. (A hopelessly partial menu of options includes  Alchourr ó n, 

G ä rdenfors,  &  Makinson, 1985 ;  Bovens  &  Hartmann, 2003 ;  G ä rdenfors, 

2003 ;  Levi, 1991 ,  2004 ;  Teller, 1976. ) Crucially, many of these accounts are 

qualitative in nature rather than requiring quantitative probabilities, and 

they allow for changes in the possibility space (i.e., the set of possible theo-

ries) over time. As a result, these accounts are not necessarily susceptible 

to the same types of objections as probability-based accounts. One might 

be surprised that the resulting notion of truth constraint is relative to a 

particular standard of rationality, but this rationality-relativity is actually 

a natural property for a theory of truth constraints. The original core intu-

ition was that the truth of  S  should matter for the truth of  T , and we must 

incorporate a normative theory to capture the  “ should ”  in that statement. 

If one ’ s theory of rationality says that one ought not change one ’ s beliefs 

about  T  in light of new information about  S , then it is completely natural to 

say that  S  does not truth-constrain  T  (relative to that standard). 

 To help make this more concrete, we can provide the formal analogues 

to various truth constraints that regularly arise in scientific practice. If  H  

reduces to  L  given conditions  C , then an increase in belief in  L  &  C  should 

rationally also increase belief in  H . At the limit of full acceptance of  L  &  C , 

one should rationally also accept  H  fully. If  H  is instead fully autonomous 

from  L  (including differing inputs and outputs, so there is no constraint 

on that front), then belief in  H  should rationally not change in response 

to changes in belief about  L . In addition to these two standard interthe-

oretic relations, scientists also frequently talk about one theory  S  being 

inconsistent with another theory  T , which implies that changes in belief 

in  S  should rationally prompt the opposite change in  T . At the limit of full 

acceptance of  S ,  T  should rationally be rejected. This account even extends 

to more qualitative types of constraints, such as two theories mutually sup-

porting each other. For example, causal learning theories and causal model 
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theories of concepts use the same representational framework and so can 

be understood as mutually supporting: each makes the other more prob-

able. More generally, arguments based on converging evidence from dispa-

rate domains, measurement methods, or processes are completely standard 

in psychology  17   and correspond here to the symmetric constraint that 

increases (or decreases) in belief in  S  should rationally lead to increases (or 

decreases) in belief in  T , and vice versa. 

 This proposal clearly exhibits the properties previously identified for 

intertheoretic constraints. First, whether  S  constrains  T  is a nonsubjective 

matter, as the scientists ’  local, particular knowledge or beliefs do not influ-

ence whether a fully knowledgeable agent rationally ought to change her 

beliefs. Second, many models of rational belief revision require only that 

we be able to talk coherently about beliefs, rather than focusing on fully 

developed theories. This account of truth constraints can thus be appropri-

ately agnostic about  S  and  T ; we need only be able to specify them clearly 

enough that we can capture (and derive) their relations to each other from 

the perspective of rational belief revision. Third, in this account, truth con-

straints are clearly comparative in both relata, since questions of rational 

belief revision can turn on the alternative beliefs that one has available 

or considers plausible (or even just possible). Thus this model provides a 

reasonable initial model of truth constraints. Moreover, even if it turns out 

to be wrong in details, it points toward a way to generalize our understand-

ing of intertheoretic relations beyond the simple ones of reduction and 

autonomy. 

 2.5   Putting the Pieces Together 

 The previous two sections took a significant detour through philosophi-

cal issues, but that was necessary to make sense of the commitments that 

one can have about a cognitive theory. In particular, claiming realist com-

mitments for a theory is essentially shorthand for a complicated set of 

intertheoretic constraints, including constraints on future empirical obser-

vations and manipulations. The standard language used in cognitive sci-

ence is insufficient to express these complex commitments. The choices are 

not just minimal instrumentalism versus full-blooded realism versus com-

plete theoretical autonomy; rather, there is a continuum of commitments 

that cannot be determined solely by the mathematical or computational 
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specification of some cognitive theory. Having made this detour, I now 

have the language and resources to be clear about the commitments of the 

cognitive account presented in the remainder of the book. 

 I propose a particular cognitive architecture in which many of our cog-

nitive representations are well modeled by graphical models. This account 

is committed to the realism of these representations but is largely agnostic 

with regard to realism about the processes (though there must be suitable 

processes that can use the information encoded in the representations). 

More specifically, the account proposes that there are persistent objects 

in the mind that subserve a wide range of cognitive processes, but where 

the precise processing method might, but need not, be identical in all 

domains or all contexts. The account thus places both upward constraints 

on accounts of human behavior (e.g., about the effects of learning context 

on subsequent choices) and downward constraints on neural accounts (e.g., 

there should be some persistent neural object, state, or disposition that is 

the representation). It also points toward various formal questions that are 

neither higher nor lower level (e.g., can distributed representations capture 

the types of transformations that are an important part of the power of 

graphical models?). And finally, precisely because the proposed architec-

ture is wide-ranging in scope, the data to support it will come from many 

different domains. I do not propose this architecture because it works for 

just causal learning, or just categorization, or just certain decision phenom-

ena. Rather, I propose this architecture because it is the best account that 

explains all these domains, and others. 





 3   A Primer on Graphical Models 

 3.1   Graphical Models as Representations of Relevance 

 The previous chapter laid the philosophical groundwork for the cognitive 

architecture that I will present. This chapter introduces and explores the 

framework of graphical models, the computational and mathematical basis 

of that architecture. The main thread of the chapter focuses on a concep-

tual introduction, with mathematical details provided in sections marked 

with an asterisk (*); the reader can skip those sections with little loss of 

(qualitative) understanding. Section 3.1 explores the common elements 

shared by all graphical models, with subsequent sections examining the 

details of specific model types. As with many formal frameworks, a high-

level grasp of different graphical model types suffices to understand most 

uses of them. The technical details are important to ensure that nothing 

is swept under the rug, but are often largely irrelevant to many uses of the 

framework. Readers interested in additional details about graphical models 

should consult one of the many available introductions, both for graphi-

cal models in general (e.g.,  Koller  &  Friedman, 2009 ;  Lauritzen, 1996 ) and 

for specific model types (see references cited in the specific sections of this 

chapter). 

 At their core, graphical models can be understood as compact represen-

tations of relevance relations, where different types of graphical models 

represent different types of relevance (e.g., informational, causal, probabi-

listic, communicative). They thus address a key challenge for any cognitive 

agent: namely, determining what matters and, often equally importantly, 

what can be ignored. The term  “ graphical model ”  encompasses many dif-

ferent types of mathematical models, including Bayesian networks (also 

called Bayes nets), structural equation models, random Markov fields, 
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hidden Markov models, influence diagrams, social networks, command-

and-control structures, and more. At their cores, these models all have a 

 graph : a diagram of nodes and edges that encodes the qualitative relation-

ships (see   fig. 3.1  for examples).    

 From a purely mathematical perspective, the nodes are simply objects, 

and the edges can be undirected ( A   —   B ), directed ( A   →   B ), or bidirected ( A  

 ↔   B ). (In general, italics will be used to denote nodes.) In talking about the 

graph structure, we often use terminology based on physical relationships. 

A node is  adjacent  to another one just when there is an edge (of any sort and 

any direction) between them. For example,  B  and  C  are adjacent in   figure 

3.1a  but not in   figure 3.1b ;  A  and  B  are adjacent in both. A  path  between 

two nodes is a sequence of edges that one can traverse (without regard for 

edge direction) to get from one node to the other. For example, there is a 

path from  A  to  C  in   figure 3.1a , and a path from  F  to  E  in   figure 3.1b . Actu-

ally, there is at least one path between every pair of nodes in   figure 3.1b , 

and so we say that graph is  connected . For graphs with directed edges, we 

also use genealogical terminology: for example, in   figure 3.1a ,  A  is  B  ’ s  par-

ent ,  B  is  A  ’ s  child , and so forth. More generally, for any node  X , the set of all 

parents of  X , plus the parents of parents of  X , plus  …  , is called the  ancestors  

of  X . The  descendants  of  X  are defined similarly. 

 Of course, we are rarely interested in the graph solely as a mathematical 

object; rather, we want it to represent something, and so the semantics of 

the nodes and edges matter. The nodes in a graphical model can correspond 

A 
(a)

(b)

B C 
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C 

E 

B 

 Figure 3.1 
 Example graphs. 
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to individuals (e.g., in a social network or a command-and-control struc-

ture), variables (e.g., in a Bayes net or random Markov field), or something 

else (e.g., decision nodes in an influence diagram or decision network). The 

edges can similarly have different meanings, but the edge semantics always 

involve direct relevance, whether direct causation, a direct communication 

or social connection, direct probabilistic relevance, or some other sort of 

direct connection. The repeated word  “ direct ”  in the previous sentence is 

critical: graphical edges do not denote simply that one node matters for 

another, but rather that one node matters for another  even after we account 

for all the other nodes in the graph . In   figure 3.1a , for example,  A  is indirectly 

relevant for  C , but not directly relevant; its relevance is only through the 

intermediary of  B . As this example suggests, direct relevance depends on the 

other nodes that are included in the graph. To take a contrived example, 

exposure to the cold virus (probabilistically) causes infection, which (prob-

abilistically) causes symptoms. If we model all three factors, then we have 

the causal graph  Exposure   →   Infection   →   Symptoms . If we instead exclude the 

node  Infection  from our graph, then we have simply  Exposure   →   Symptoms . 

In other words,  Exposure  can be either a direct or an indirect cause of  Symp-

toms  depending on what else we include in the graph. The graph structure 

can change as we add or remove nodes, even between nodes that are nei-

ther added nor removed; these changes follow principled rules that will be 

discussed in section 4.3. 

 An important constraint on the overall graph semantics is that the node 

and edge meanings  “ fit ”  appropriately. For example, if the edges are to be 

understood as causal connections, then the nodes should refer to things 

that can stand in causal relationships. In the other direction, if the nodes 

are variables, then the edges should not be, for example, communication 

relations; what would it mean for an instantiation of an  Exposure  variable 

to  “ communicate ”  (literally, not metaphorically) with an instance of an 

 Infection  variable? In terms of representation, this node-edge semantic 

coherence is a local matter: the edges or nodes in a single graph can have 

different semantics (e.g., causal versus informational edges in influence dia-

grams), as long as each node-edge-node triple is coherent.  1   Most graphical 

model types have one or two canonical interpretations, and so we will gen-

erally focus on those. 

 The graph component of a graphical model captures qualitative rele-

vance relations, but it cannot convey quantitative information; nodes are 
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either adjacent or not. For example, a causal graph tells us whether one node 

causes another, but it cannot convey the strengths of those causal relations. 

Thus almost all graphical model types have a quantitative component that 

complements the graph and represents this more precise, often numerical, 

information. There are many different quantitative components that one 

can use, including both numerical representations (e.g., joint probability 

distributions, linear equations) and more categorical representations (e.g., 

whether the connection is positive or negative, the order of magnitude of 

the influence). This quantitative component is sometimes provided only 

implicitly, such as in most social network models. 

 Each type of quantitative component has a corresponding notion of 

 independence :  A  is independent of  B  just when learning about  A  gives no 

information (in the quantitative component) about  B . For example, my 

shirt color and the temperature in Moscow are independent of each other: 

if you learn that I am wearing a blue shirt, then that provides no infor-

mation about the current temperature in Russia. Zero correlation is one 

example of independence:  2   if  A  is uncorrelated with  B , then information 

about  A  does not help at all when trying to predict  B . Alternately, nodes 

can be  dependent : learning about  A  does help to predict  B . For example, the 

temperature in Pittsburgh and the temperature in Moscow are dependent: 

learning that it is snowing in Pittsburgh is informative about the likely 

temperature range in Moscow. Of course, dependence need not be perfect, 

as we see in this example. Snow in Pittsburgh means that it is winter and 

so probably colder than the yearly average in Moscow, but we cannot use 

snow in Pittsburgh to predict the  exact  temperature in Moscow. In general, 

the function of many standard statistical tests is precisely to help us deter-

mine whether two factors are (probably) dependent or independent.  3   

 As with relevance, we need to distinguish between direct and indirect 

in/dependence: two factors can be dependent in isolation, but independent 

once we learn about other factors in the system. For example,  Symptoms  

depend on  Exposure ; learning that I was exposed to a virus is informative 

about whether I exhibit symptoms. At the same time, however, the two are 

(arguably) independent once we control for  Infection : if you already know 

that I was infected (or not), then learning that I was exposed is no longer 

helpful in predicting my symptoms. More generally, we say that  A  and  B  

are  independent conditional on  C if, given that we already know about  C  ’ s 

value, learning about  A  ’ s value does not help us to predict  B  ’ s value. Many 
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multivariate statistical tests (e.g., multifactor ANOVAs, tests of significant 

coefficients in a multivariate linear regression, etc.) are designed and used 

to determine whether two factors are independent conditional on some 

other factors. 

 Graphical models have two distinct components — the graph and the 

quantitative representation — and those must be connected somehow to 

yield a single coherent model. The natural coherence constraint is that the 

graph and the quantitative component should express exactly the same 

direct relevance or dependence relations. That is, nodes  A  and  B  should be 

directly relevant in the graph if and only if they are directly dependent in 

the quantitative representation. This constraint is almost always formalized 

in two separate assumptions that capture the two  “ directions of fit. ”  In 

one direction, a so-called  Markov assumption  says that  “ if two nodes are not 

adjacent in the graph, then they are independent in the quantitative com-

ponent (perhaps conditional on some set of other nodes in the graph). ”  

That is, the Markov assumption requires that each direct nonrelevance in 

the graph have a corresponding (conditional) independence in the quanti-

tative component. In the other direction, we assume that  “ if two nodes are 

(conditionally) independent in the quantitative component, then they are 

not adjacent in the graph. ”  There are many names for this latter assump-

tion (e.g., Minimality, Simplicity, Stability, Faithfulness); I will refer to these 

as Faithfulness assumptions because that is a now-standard name for one 

graphical model type used in cognitive science. The exact Markov and 

Faithfulness assumptions depend on the types of graph and quantitative 

component in the graphical model, and we explore some instances in sec-

tions 3.2 and 3.3. But all graphical models need these two assumptions to 

maintain full coherence between the two components.  4   

 A graphical model in isolation is not particularly useful; one wants to be 

able to use the representation to predict and explain the world, or to assist 

with decisions, or to perform many other tasks. Prediction and inference 

algorithms can be quite local in graphical models precisely because they 

encode direct relevance relations in the graph. For example, predicting the 

value of some node requires one to know only the values of  “ close ”  (in the 

graph) nodes. As a result, prediction and inference in a graphical model are 

usually relatively fast. More importantly, these processes typically scale well 

as the scope of the graphical model grows: one can (usually) add a large 

number of nodes to the graphical model without incurring a substantial 
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computational cost in prediction and inference. For example, predictions 

about node  A  in   figure 3.1b  depend only on nodes  B ,  C , and  D , regardless of 

how many other nodes we add to the graph (as long as the additional nodes 

are not adjacent to  A ). This modularity is one key advantage of graphical 

models and is particularly attractive in thinking about them as models of 

cognitive representations. Graphical models can be wide-ranging but not 

suffer computationally when used for prediction and inference, just as our 

knowledge can be wide-ranging, while we (mostly) attend only to relevant 

factors. 

 I indicated earlier that nodes are  “ just ”  objects in the graph, but some-

times a node can play a special role as a  “ switch ” : as the value of this so-

called  context node  changes, the graph for the other variables will change 

as well. For example, it is normally the case for men that their age is a 

cause of whether they can grow a beard — the natural graph is  Age   →   Abil-

ity to grow a beard  — while these two factors are normally independent in 

women, and so their graph has no edge between  Age  and  Ability to grow a 

beard . We can encode the way that the graph changes depending on one ’ s 

sex by including a  Sex  node that is a parent of both of these nodes (as 

shown in  Boutilier, Friedman, Goldszmidt,  &  Koller, 1996 ;  Poole  &  Zhang, 

2003 ;  Zhang  &  Poole, 1999 ). The use of context nodes does not increase 

the representational power of graphical models; mathematically, anything 

that can be represented with them can also be represented without them. 

However, their presence can significantly improve both the interpretability 

(by human eyes) of a graphical model and the computational speed and 

efficiency of inference in such models. Context nodes will be important in 

section 5.4. 

 There are many ways to construct a graphical model. One might simply 

base it on expert knowledge, for example. More interestingly, we can often 

learn the graph structure and quantitative parameters from data, even if 

we have little or no background knowledge. The key to this learning is 

that essentially all graphical models make predictions about how the world 

should be. That is, they are almost all  generative models : representations that 

can be used to generate  “ typical ”  data (according to the model). We can 

thus find, for any particular data set, the graphical models — graphs plus 

quantitative components — that could possibly or plausibly have produced 

data like those. Graphical models give us a language for talking about struc-

tures that produce data, and so learning such models from a data set is 
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 “ just ”  a matter of finding the structures that yield those particular data. Of 

course, it is a much trickier matter to develop computationally tractable 

learning algorithms, which is why scare quotes were used in the previous 

sentence. Nonetheless, for most of the specific graphical model types dis-

cussed in this chapter, efficient and tractable structure learning algorithms 

of various flavors have been developed and deployed effectively to learn 

graphical models from data. If there is, for a given data set  D , a graphi-

cal model  G  that exactly captures it,  and  if both assumptions (Markov and 

Faithfulness) are satisfied for  G , then we will say that G  perfectly represents    D  . 

 This section has focused on graphical models as a whole, which has 

necessitated broad brushstrokes in terms of their features. In practice, one 

always uses one or another type of graphical model, as well as type-specific 

restrictions that improve learning, inference, and prediction. We thus turn 

now to these more specific types of graphical models, with a particular 

focus on the two model types that will reappear in later chapters. 

 3.2   Directed Acyclic Graph (DAG) Models 

 Many relationships in the world are asymmetric, including causal, commu-

nication, and hierarchical ones: virus exposure causes symptoms, but symp-

toms do not cause virus exposure; the general commands the sergeant, but 

not vice versa; and so forth. These asymmetric relations can be represented 

with directed edges in the graph component, such as  E   →   S ,  G   →   S . More-

over, in many of these situations, the full set of relations does not involve a 

cycle; it is not the case that  A  has the (asymmetric) relation to  B ,  B  has it to 

 C , and so on until we get back to  A . For many causal systems, for example, 

there is no sequence of causes such that one factor causes itself. (One might 

object that causal cycles such as feedback systems are ubiquitous in nature, 

but they are only cyclic  through time ; as discussed later in this section, they 

are acyclic when we explicitly represent time.) Thus one natural type of 

graphical model uses directed acyclic graphs (DAGs): graphs with (a) only 

directed edges and (b) no directed cycles: one cannot start from node  X  

and follow a path (that respects the arrow directions) that leads back to  X . 

  Figure 3.1a , for example, is a DAG. 

 Many different types of graphical models are based on DAGs, including 

Bayesian networks, also known as Bayes nets ( Pearl, 2000 ;  Spirtes, Glymour, 

 &  Scheines, 2000 ), (recursive) structural equation models (SEMs) ( Bollen, 
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1989 ;  Kaplan, 2009 ), and influence diagrams or decision networks ( Howard 

 &  Matheson, 1981 ;  Shachter, 1986 ,  1988 ). In particular, we focus here on 

DAG-based graphical models in which the nodes correspond to  variables  —

 factors that take on different values depending on the particular individual 

or context. For example,  Exposure  is a variable, since it can take the values 

 Yes  or  No  (or perhaps additional values to encode the intensity of the expo-

sure). In general, any property of individuals has a corresponding variable 

that ranges over the possible values of that property. Variables can be either 

 discrete  or  continuous , depending on whether they have finitely or infinitely 

many values, respectively.  5   Bayes nets and SEMs differ on precisely this 

dimension: Bayes nets are for sets of discrete variables, and SEMs are for sets 

of continuous variables.  6   

 Recall that the general Markov assumption says:  “ If there is no edge in 

the graph, then the nodes should be (conditionally) independent in the 

quantitative component. ”  For DAG-based graphical models over variables, 

we can refine this assumption to say:  “ Any variable is independent of its 

nondescendants, conditional on its graphical parents. ”  That is, for any 

node in the graph, learning about a nondescendant tells us nothing about 

the variable, given that we already know the values of its immediate par-

ents. Consider, for example, trying to predict the value of  Symptoms  in the 

DAG shown in   figure 3.2 . If we know nothing at all, then learning about 

 Exposure  clearly gives us some information about  Symptoms , as the latter 

is  “ downstream ”  of the former. However, once we know the value of the 

parent of  Symptoms  (i.e.,  Infection ), then  Exposure  and  Symptoms  are (statisti-

cally) independent of each other.    

 The Faithfulness assumption in DAG-based graphical models can 

be stated simply as  “ The only independencies are those implied by the 

Markov assumption. ”   7   The two major practical implications of this 

assumption in DAG-based graphical models are to rule out (i) determin-

istic systems, though  “ almost-deterministic ”  ones (i.e., those with arbi-

trarily small amounts of noise) are fine; and (ii) exactly counterbalancing 

pathways. A hypothetical example of the latter possibility can be seen in 

Exposure Infection Symptoms 

 Figure 3.2 
 Example chain DAG. 
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  figure 3.3 . Suppose that  Exercise  increases one ’ s  Metabolism , which reduces 

one ’ s  Weight . At the same time,  Exercise  increases one ’ s  Appetite  (and thus 

food intake), which increases one ’ s  Weight . In theory, these two different 

pathways could  exactly  balance each other, so that variations in  Exercise  

were independent of  Weight . If the causal mechanisms are balanced, then 

changing one ’ s exercise will not actually matter for one ’ s weight, though 

they are (in the world) causally connected. In this case, we would have a 

violation of the Faithfulness assumption, as we have an independence that 

is not predicted by the Markov assumption.    

 The Markov and Faithfulness assumptions jointly imply that the quan-

titative component is modular: we can express every variable as a function 

of only its graphical parents. That is, we can encode the behavior of the 

full system simply by encoding how each variable depends on its graphi-

cal parents. There is also a purely graphical criterion (called d-separation; 

see  Geiger, Verma,  &  Pearl, 1989 ) that one can use to infer the full set of 

dependencies and independencies in the quantitative component. One 

can thereby rapidly compute, for any particular variable  V , exactly which 

variables provide information about  V  given knowledge about any other 

variables in the graph. The DAG thus enables significant computational 

savings in both representation and inference, precisely because one can 

determine, based solely on the graph, exactly which variables are relevant 

in a wide range of conditions. This modularity also makes it possible to 

develop computationally efficient algorithms for learning the DAG struc-

ture from observational or experimental data ( Chickering, 2002 ;  Spirtes et 

al., 2000 ). Details about the exact form of this modularity for Bayes nets 

and SEMs, as well as a precise statement of the d-separation criterion, are 

provided in section 3.2.1. 

 One of the most prevalent uses of DAG-based graphical models is to 

represent causal structures. It is important to realize that nothing in the 

Exercise 

Metabolism 

Weight 

Appetite 

 Figure 3.3 
 Example complex DAG. 
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formalism compels such an interpretation. One can easily use a DAG-based 

graphical model simply as a representation of the probabilistic or statistical 

dependencies between variables; in this case, the directions on the arrows 

arise because of the particular structure of the between-variable indepen-

dencies and do not necessarily reflect any (nonstatistical) asymmetry in 

the world. That being said, there are situations in which one can interpret 

a DAG-based graphical model causally:  C   →   E  does not simply capture a 

dependence but additionally means  “  C  causes  E . ”  The notion of causation 

here is a relatively instrumental or pragmatic one: roughly, if one could 

somehow manipulate  C  from outside the modeled causal system, then  E  

would (probabilistically) change ( Spirtes et al., 2000 ;  Woodward, 2003 ). A 

causal interpretation does not necessarily imply any strong metaphysical 

commitments about the nature of causation, but only a set of commit-

ments about how the system would behave in various hypothetical (and 

perhaps unrealizable) situations. 

 When one gives a causal interpretation to a DAG-based graphical model, 

the assumptions must change accordingly. The causal version of the Mar-

kov assumption says:  “ Any variable is independent of its noneffects con-

ditional on its direct causes. ”  Recall that whether one node is a parent of 

another can be relative to the other nodes in the graph. Similarly, whether 

one variable is a direct cause of another can depend on the other variables 

under consideration;  Exposure  is an indirect cause of  Symptoms  if we include 

 Infection , but a direct one if we omit it. The causal Faithfulness assump-

tion simply changes to refer to the causal Markov assumption. Numerous 

philosophical debates have developed around the causal Markov and causal 

Faithfulness assumptions, principally whether they hold necessarily or only 

contingently in the world, and if contingently, whether statistical tests can 

determine if they obtain in some particular domain ( Cartwright, 2002 ;  Gly-

mour, 1999 ;  Hausman  &  Woodward, 1999 ,  2004 ). It is certainly important 

to be clear about whether one is interpreting a DAG-based model causally, 

else one can make any number of erroneous inferences about what would 

happen in response to various actions. At the same time, the causal inter-

pretation is clearly a legitimate one, so we will not delve deeply into the 

philosophical debates.  8   

 Many variations on this core theme have been developed for DAG-based 

graphical models, as slight modifications are introduced to capture a spe-

cific phenomenon. Two such variations are important in thinking about 
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cognitive representations. First, one often needs to model processes that 

unfold in time. Most prominently, many cyclic causal structures involve 

feedback loops through time and we must adjust the standard DAG-based 

framework to capture these temporally extended processes. For example, 

talk of the  Supply  –  Demand  feedback cycle in   figure 3.4a  is really shorthand 

for a more complex dynamical story: the current  Supply  influences  Demand  

in the next time period, the current  Demand  influences  Supply  in the next 

time period, and the current values of both also influence their own values 

in the next time period. To model such processes, we can add (relative) time 

indices for the variables — rather than  Supply , we have  Supply at t ,  Supply at 

t +  1, and so forth — to indicate the relative temporal relations and thereby 

convert the cyclic graph into a DAG, as in   figure 3.4b .    

 Thus, to the extent that causal cycles or feedback loops are temporally 

extended, we can capture them in DAG-based graphical models. Of course, 

this move comes at a computational cost, since we are multiplying the 

number of variables. However, such dynamic models are, in many cases, 

more useful than working with truly cyclic graphs ( Lerner, Moses, Scott, 

McIlraith,  &  Koller, 2002 ).  9   

 Second, we often want to incorporate decision possibilities into our 

graphical model. Influence diagrams or decision networks (names used 

interchangeably) explicitly include  “ decision ”  nodes that have no graphi-

cal parents and represent an outside policy maker ’ s decision in this con-

text ( Howard  &  Matheson, 1981 ;  Shachter, 1988 ). Such models can be used 

to quickly infer the likely outcomes of various decisions so that one can 

Supply Demand 

Supply at t 

(a)

(b)
Demand at t 

Demand at t+1Supply at t+1

 Figure 3.4 
 (a) Supply-demand cyclic graph; (b) temporally indexed acyclic graph. 
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(hopefully) make a better decision. The key difference from other DAG-

based graphical models is that decision nodes in a decision network do not 

have any  “ natural ”  value or probability. These variables are  always  set from 

outside the system; nothing internal to the graphical model specifies their 

value. The edges in a decision network thus only characterize what happens 

once a decision has been made. As a result, the various inference algorithms 

for DAG-based graphical models must be adjusted somewhat, though all 

the same inferences are still possible. We will return to decision networks 

in section 6.3. 

 3.2.1   Mathematical Details of DAG Models* 

 This section provides specific mathematical details for DAG-based graphical 

models in which the nodes are variables. This section presupposes knowl-

edge of probability theory, as well as a basic understanding of statistical 

notions such as independence and conditioning. For reasons of space, I 

do not attempt to give an exhaustive introduction to DAG-based graphical 

models; interested readers are encouraged to consult some of the references 

mentioned at the beginning of section 3.2. To help with notational simplic-

ity, capitalized letters or words will (generally) refer to variables, and lower-

case letters or words refer to values of those variables. Bold text denotes sets 

of variables or values; italics denote single variables or values. 

 We focus on DAG-based graphical models over a set of  N  distinct vari-

ables  V  = { V  1 ,  …  ,  V N  }, and so the quantitative component is fully character-

ized by a joint probability distribution or density,  P ( V  =  v ). Recall that the 

Markov assumption for DAG-based graphical models is that any variable 

 V  is independent of its nondescendants conditional on its parents. This 

assumption implies that we can factor this joint probability distribution 

into the product of  N  conditional distributions (densities). Specifically, if 

 Par i   denotes the set of graphical parents of  V i   (and  par i   the values of those 

variables), then the full joint probability distribution (density) factors into: 

  P P V vi i
i

N

( ) ( | )V v Par par= = = =
=

∏ i i
1

  (3.1) 

 If all variables are discrete, then we have a so-called Bayesian network, and 

equation (3.1) is the simplest representation of the joint probability dis-

tribution. For example, if  Exposure ,  Infection , and  Symptoms  are all binary 
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variables in   figure 3.2 , then the joint probability distribution over those 

three variables is: 

  P(Exposure = e, Infection = i, Symptoms = s) = P(E = e) P(I = i | E = e) P(S = s | I = i)  

 Note that the probability that  Symptoms  =  s  does not depend (directly) on 

 Exposure ; those variables are independent conditional on  Infection . 

 If the variables are continuous, then one typically places further con-

straints on the conditional densities in   equation (3.1) . Probably the most 

common restriction is found in linear structural equation models (SEMs): 

all variables are linear functions of their parents plus Gaussian (i.e., nor-

mally distributed) noise. That is, one assumes that every variable can be 

expressed as: 

  
V wi W i

W
i= +

∈
∑ α , ε

Pari   

 where   α  W,i   is the linear coefficient for parent  W , and   ϵ  i   is a normally dis-

tributed error term. Although this equation is not written as a probability 

density, it determines a conditional density that is suitable for equation 

(3.1). Because the variables with no parents still have Gaussian noise terms, 

the set of equations induces a multivariate Gaussian density over  V , which 

allows one to use a wide range of analytically and computationally tracta-

ble inference and updating algorithms. In the case of   figure 3.2 , the result-

ing set of linear equations is: 
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 It is important to realize that the restriction to linear equations with Gauss-

ian noise is only one way to further constrain the conditional densities. 

One could equally well develop a DAG-based graphical model that uses 

nonlinear equations ( Chu  &  Glymour, 2008 ;  Tillman, Gretton,  &  Spirtes, 

2010 ) or non-Gaussian noise terms ( Shimizu, Hoyer, Hyv ä rinen,  &  Ker-

minen, 2006 ). In all these cases, the key constraint is that each variable is 

a function only of its graphical parents, and (usually) independent noise. 

 The Faithfulness assumption requires that the only independencies be 

those implied by the Markov assumption. As a result, each variable must 

depend, at least sometimes, on each of its parents. That is, there cannot 
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be a graphical parent  W  such that  V  does not depend on  W , regardless of 

the values of the other parents. In Bayes nets, this implication means that 

the conditional distribution for  V  cannot be the same for every value of  W  

(conditional on each set of values for other parents). For SEMs, Faithfulness 

implies that none of the linear coefficients can be exactly zero. This cor-

responds to the standard practice when estimating linear models that vari-

ables with zero coefficients (or those that are statistically indistinguishable 

from zero) are removed from the linear equation. The Faithfulness assump-

tion has other implications (e.g., no variable can be perfectly correlated 

with another one), but this is the key one that will be used later in the book. 

 Given a particular DAG  G , the Markov and Faithfulness assumptions 

jointly determine a set of independencies (unconditional and conditional) 

over  V . That is, there is a purely graphical criterion — d-separation — for 

whether  V i   and  V j   are independent conditional on  S  ( Geiger et al., 1989 ). 

This criterion can thus be used to derive relevance relations from just the 

graph. To understand d-separation, suppose  π  is an  undirected path  in DAG 

 G : that is,  π  is a sequence of  r  distinct variables  V   π (1) ,  …  ,  V   π (   r   )
  such that  V   π (   i   )  

and  V   π (   i    + 
1)  are adjacent for all  i   <   r , but we do not care about the direction of 

the edge between  V   π 
(   i   )  and  V   π 

(   i    + 
1) . A node  V   π (   i   )  is a  collider  on  π  if and only if 

 V   π (   i     −  
1)   →   V   π 

(   i   )   ←   V   π (   i    + 
1)  on  π . For a given conditioning set  S , define a node  X  on 

 π  to be  blocked  by  S  if and only if either (a)  X  is in  S  and  X  is a noncollider 

or (b)  X  is a collider and neither  X  nor any of its descendants are in  S . We 

then define a path  π  to be  active  given  S  if and only if every node on  π  is not 

blocked by  S . And we say that  V i   and  V j   are  d-connected  given  S  if and only if 

there is at least one active path between them given  S . Conversely,  V i   and  V j   

are  d-separated  given  S  if and only if there are no active paths between them 

given  S . Finally, one can prove (assuming Markov and Faithfulness):  V i   and 

 V j   are independent conditional on  S  if and only if  V i   and  V j   are d-separated 

given  S  ( Geiger et al., 1989 ). 

 As a practical example, consider the exercise case from   figure 3.3 ; for 

brevity, I simply use the first letters of the variables. Are  E  and  W  indepen-

dent conditional on  S  = { M ,  A }? There are two paths between  E  and  W :  E   →  

 M   →   W  and  E   →   A   →   W . Both of these paths are blocked by  S , as the only 

nonterminal node in each path ( M  and  A , respectively) is a noncollider 

and also in  S . Since there are no active paths between  E  and  W  given { M , 

 A }, they are d-separated, and so  E  is independent of  W  conditional on { M , 

 A }. Alternately, are  M  and  A  independent given  T  = { E ,  W }? There are again 
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two undirected paths:  M   ←   E   →   A  and  M   →   W   ←   A . The first path is again 

blocked, since  E  is not a collider and is in  T . The second path, however, is 

not blocked:  W  is a collider and is in  T , so it is active. Thus  M  and  A  are 

d-connected given { E ,  W }, and so they are associated conditional on { E ,  W }. 

 This latter result might seem surprising, since we are conditioning on a 

variable on every path between  M  and  A , and many people believe that (sta-

tistical) conditioning can only turn an association into an independence, 

rather than (as in this case) an independence —  M  and  A  are independent 

conditional on only  E  — into an association. It is easiest to see how this 

could occur by thinking about a causal situation. As a simplified example, 

suppose we have two independent causes of an effect  X , where either is suf-

ficient to produce  X , and there are no other causes of  X . By assumption, the 

causes are independent, so learning about one (in isolation) tells us nothing 

about the other. Now suppose that we know that the effect occurred (i.e., 

we condition on  X  =  yes ). In this situation, learning about one cause  can  tell 

us about the other cause: for example, if I learn that one cause is absent, 

then I know that the other must have occurred, as it is the only remaining 

explanation for  X  ’ s occurrence. Thus the two causes are associated condi-

tional on  X . 

 If one has a particular DAG-based graphical model  M , including quan-

titative (parametric) information, then one can straightforwardly infer the 

probability distribution (density) of different variables given observations 

of other variables in  M . The key to such algorithms is that if  X  is inde-

pendent of  Y  given  S , then  P ( X  |  S ) =  P ( X  |  Y ,  S ). Since (conditional) inde-

pendence can be computed quickly from the graph using the d-separation 

criterion, one can determine which variables are relevant for updating the 

probability distribution and which are irrelevant. In fact, this computa-

tional advantage when doing Bayesian updating is what gives Bayesian net-

works their name, not anything inherently Bayesian about the graphical 

model itself. The modularity of the graphical model can also be leveraged to 

develop local, message-passing algorithms for updating given observations: 

one specifies the value of observed variables, nodes in the graph pass infor-

mational  “ messages ”  to one another, and the model eventually settles into 

a state representing the updated joint probability distribution ( Pearl, 1988 ). 

 If the DAG-based graphical model  M  can be interpreted causally, then 

one can also update the joint probability distribution given interven-

tions or manipulations of variables in  M . The simplest way to do this is to 
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augment  M  to a new DAG-based graphical model  M * that explicitly repre-

sents the interventions by (i) adding appropriate nodes and edges to the 

graph to capture the interventions being causes of the  “ intervenee ”  vari-

able, and (ii) adjusting the conditional distributions for those latter vari-

ables, since the parents of those nodes have changed in  M *. One can then 

use standard updating techniques in  M * given the  “ observations ”  that the 

interventions are active. A particularly interesting case is a so-called  hard  

intervention: one that completely determines the value of a target variable, 

thereby cutting off the target from its normal causes. When a hard inter-

vention is active on  T , the graph in  M * is further adjusted to remove the 

edges into  T  from the other parents of  T , since they are no longer causes of 

 T . Much of the philosophical literature about causal graphical models has 

focused on this particular property of hard interventions and the ways in 

which that property can help or hinder learning and inference ( Eberhardt 

 &  Scheines, 2007,  and references therein). It is important to realize, though, 

that hard interventions are only one type of intervention; we can also rep-

resent soft interventions that influence (from outside the ordinary causal 

system) a variable ’ s value without completely determining it. In either case, 

we simply augment the graph to describe the impacts of that intervention 

and then use standard, noninterventional inference methods on the aug-

mented graph. 

 Methods for learning DAG structure fall largely into two camps: con-

straint based or Bayesian/score based. Constraint-based methods try to 

determine the set of DAGs that imply (by d-separation) exactly the inde-

pendence and dependence relations that are found in the data. In prac-

tice, one cannot test all of the possible conditional independence relations, 

as there are far too many of them (exponential in the number of vari-

ables). Moreover, the statistical power of independence tests decreases as 

the number of variables in the conditioning set increases, so it is better 

to base structure learning decisions on independence tests with as small a 

conditioning set as possible. Various constraint-based learning algorithms 

incorporate these insights into computationally tractable methods that 

have been applied in a wide range of domains ( Pearl, 1988 ;  Spirtes et al., 

2000 ;  Tillman, Danks,  &  Glymour, 2008 ). In contrast, Bayesian or score-

based methods aim to determine the set of most probable graphs given the 

observed data. In practice, there are typically too many possible graphs to 

determine the probability of each, and we are usually more interested in 
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which graphs are most probable, rather than the exact probability of each 

graph. Thus most score-based learning algorithms examine only a subset of 

possible graphs, guided by a score that is proportional (by some unknown 

constant) to the true probability ( Chickering, 2002 ;  Heckerman, 1998 ). 

Although both types of searches rarely consider all graphs, they provably 

converge to the true structure as the amount of data grows, if done correctly 

(as in  Chickering, 2002 ;  Spirtes et al., 2000 ). A third type of causal structure 

learning algorithm has recently emerged that is specifically designed for 

linear, non-Gaussian systems and uses independent component analysis 

(ICA) to determine (when possible) both adjacencies and directions in the 

DAG ( Shimizu et al., 2006 ), but the details of these algorithms will not be 

relevant to our use of these graphical models. DAG structure learning algo-

rithms continue to be a major focus of research in machine learning, but we 

will not use any sophisticated ones in this book. 

 3.3   Undirected Graph (UG) Models 

 A different constraint on the space of graphical models is to require that 

all graphical edges be undirected.   Figure 3.1b  gives an example of an undi-

rected graph (UG). If we further restrict the nodes to all be variables, then 

we get a specific type of graphical model with a variety of names, including 

conditional random fields (CRFs), Markov networks, and the name that 

I will use, Markov random fields (MRFs) ( Lafferty, McCallum,  &  Pereira, 

2001 ;  Li, 2009 ;  McCallum, Freitag,  &  Pereira, 2000 ;  Sutton  &  McCallum, 

2007 ). These models are particularly useful for situations in which the 

dependencies or relevance relations are symmetric. For example, suppose 

the nodes correspond to the occurrence of disease at a particular spatial 

location, and the edges denote direct spatial proximity (as in  Knorr-Held 

 &  Rue, 2002 ). In this case, the edges ought not be directed, as disease can 

propagate in either direction, and so a UG is the most appropriate type of 

graph (see also  Waller, Carlin, Xia,  &  Gelfand, 1997 ). MRFs have been used 

successfully in domains such as image processing ( Li, 2009 ), sequence label-

ing ( Lafferty et al., 2001 ), and speech recognition ( Gravier  &  Sigelle, 1999 ; 

 McCallum et al., 2000 ). 

 Recall that the overarching Markov assumption is  “ If there is no edge 

in the graph, then the nodes should not be directly dependent. ”  That is, if 

there is no edge between  A  and  B  in the graph, then there should be some 
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set of nodes  S  such that  A  and  B  are independent given that we know the 

values of  S . Because the relationships in a UG are symmetric, the natural 

Markov assumption is thus  “ Any variable is independent of nonadjacent 

variables, given the adjacent variables. ”  And as with DAG-based models, 

we also have a corresponding Faithfulness assumption that says:  “ The only 

independencies are those predicted by the Markov assumption. ”  For exam-

ple, variable  R  in   figure 3.5  is independent of variables  U  and  W , given that 

we know the values of  S  and  T . At the same time,  R  is not independent of  S , 

regardless of what we learn about the other variables in the system.    

 Inference in UG-based graphical models is often computationally quite 

efficient, as the direct relevance relations are straightforwardly represented 

in the graph. Because the edges are undirected, one can determine relevance 

between two nodes simply by looking for any path between them without 

a node whose value is known. A variety of algorithms have been developed 

for learning UG edge structure from data, particularly for applications such 

as image processing where we have relatively little background knowledge 

to substantively constrain the graph structure ( Lee, Ganapathi,  &  Koller, 

2007 ;  Taskar, Guestrin,  &  Koller, 2004 ). One might wonder whether UG- 

and DAG-based graphical models can perfectly represent the same data. 

The short answer is that they cannot, but we return to this issue in section 

3.4 when we compare the expressive power of different graphical model 

types. 

 Another important class of UG-based graphical models is that of social 

network models ( J. P. Scott, 2000 ;  Wasserman  &  Faust, 1995 ). Social net-

works aim to model the social relationships between a set of individual 

actors: the nodes denote specific people, and the edges indicate a  “ direct ”  

social relationship (where the exact nature of the relationship depends 

on the model). Much of the research on social networks has focused on 

characterizing various properties of the graph, such as the relative density 

W R 

T 

U 

S 

 Figure 3.5 
 Example Markov random field. 
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of connections, the set of  “ central ”  individuals, the average path distance 

between individuals in the graph, and so forth. More recently, research has 

emerged examining the dynamics of social networks, including the ways 

in which they change after a disruption (e.g.,  Butts  &  Carley, 2007 ;  Lin, 

Zhao, Ismail,  &  Carley, 2006 ). In general, however, social networks tend 

to be relatively unspecified in their quantitative component: the focus is 

almost entirely on the connection graph, rather than on the strengths of 

connections or more fine-grained characterizations of the social relation-

ships. As a result, the predictions and inferences that one can generate with 

a social network tend to be relatively coarse or high-level (e.g.,  “ all other 

things being equal, information propagates faster in graph  G  1  than in  G  2  ” ). 

Though social networks are also a type of UG-based graphical model, I do 

not consider them further here, as this book does not focus principally on 

social relations. 

 3.3.1   Mathematical Details of UG Models* 

 I focus in this section on Markov random fields (MRFs), as they are the type 

of UG-based graphical model that will be used starting in chapter 5. As 

before, our (undirected) graphical model is over a set of  N  distinct variables 

 V  = { V  1 ,  …  ,  V N  }, and so the quantitative component is a joint probability 

distribution or density,  P ( V  =  v ). The Markov assumption holds that any 

variable is independent of nonadjacent variables, conditional on the adja-

cent ones. One might have thought that we could use this assumption to 

factorize the joint distribution (density) in an analogous fashion to equa-

tion (3.1) for DAG-based graphical models (except using the set of adjacent 

variables  Adj  i  instead of the graphical parents  Par  i ). Unfortunately, this will 

not work for a variety of technical reasons, so we must use a slightly dif-

ferent formulation. There are multiple (possible) Markov assumptions that 

are only equivalent and only imply the factorization in the next equation 

if  P ( V ) is positive ( Lauritzen, 1996 ;  Moussouris, 1974 ); that is, the different 

formulations are equivalent only if  P ( V ) is nonzero for all possible combi-

nations of variable values, though some of those probabilities can be arbi-

trarily small. Moreover, positivity is required for the Hammersley-Clifford 

theorem ( Hammersley  &  Clifford, 1971 ), which provides the foundation 

for many applications. We thus make the relatively innocuous assumption 

of positivity in the remainder of this section (though note that positivity, 

like the Faithfulness assumption, rules out truly deterministic systems). 



58 Chapter 3

 Define a  clique    C   to be a set of nodes such that every node in  C  is adja-

cent to every other node in  C , and define a  maximal clique  to be a clique 

such that adding any more nodes to it results in a nonclique. As a concrete 

example, there are three different maximal cliques in the graph in   figure 

3.5 : { R ,  S ,  T }, { S ,  T ,  U }, and { U ,  W }. If  G  1 ,  …  ,  G  M  are the maximal cliques, 

then the joint distribution (density) factors into: 

  P
Z

i
i

M

( (V v G g= =
=

∏)= )i i
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1

ψ   

 where   ψ  i   is the so-called  clique potential  for clique  G  i  (and  Z  is just a nor-

malization constant that ensures that we actually have a probability distri-

bution). Thus the joint probability distribution (density) for the graph in 

  figure 3.5  factors into: 
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 Clique potentials are simply functions that output a real number for each 

combination of variable values in the clique, and they are so named because 

of the use of MRFs in statistical mechanics (where the clique potentials 

represent the potential energy of a particular configuration). Importantly, 

clique potentials are  not  necessarily probability distributions: the clique 

potential for  G  i  does not correspond to the marginal distribution over the 

variables in  G  i , nor does it (necessarily) encode the conditional probabili-

ties, nor is it even necessarily individually normalizable. For example, in 

  figure 3.5,  P  ( R  =  r ,  S  =  s ,  T  =  t ) is not equal to   ψ   1 ( R  =  r ,  S  =  s ,  T  =  t ); the prob-

abilities of  S  and  T  also depend on   ψ   2 , since the values of  S  and  T  are inputs 

to it. We can thus see that, for a particular  P ( V ), there is not necessarily a 

unique set of clique potentials, unless we further constrain the functional 

forms of the clique potentials. If there are no such constraints, then we 

can, for example,  “ move probability mass ”  between potentials   ψ   1  and   ψ   2  

(since both depend on  S  and  T ), or between   ψ   2  and   ψ   3  (since both depend 

on  U ), resulting in many different factorizations. In practice, one typically 

divides the relevant probability mass evenly among the cliques containing 

a variable  V , and so the precise form of the clique potentials depends on the 

number of cliques containing  V . 

 Gaussian Markov random fields (Rue  &  Held, 2005) are a special type 

of MRFs that are used when  P ( V ) is a multivariate Gaussian (i.e., normally 
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distributed). In this case, the UG structure corresponds perfectly with the 

precision matrix (i.e., the inverse of the covariance matrix for the multi-

variate Gaussian): there is an edge between  X  and  Y  if and only if there 

is a nonzero entry for  X  and  Y  in the precision matrix. The multivariate 

density for Gaussian MRFs can thus be specified without the need to use 

clique potentials. Perhaps more importantly, we have a natural way to learn 

the structure of a Gaussian MRF by statistically estimating the zeros of the 

precision matrix. 

 As with DAG-based graphical models, we can use the topological struc-

ture of the graph to compute the quantitative in/dependencies, and vice 

versa. In fact, the relationship is even easier to express in UG-based models, 

since there are no colliders. A path  π  between  A  and  B  is  blocked by    S   if and 

only if  π  contains at least one member of  S . For example, in   figure 3.5   R  and 

 U  are blocked by { S ,  T } but are not blocked by  S  alone. It is straightforward 

to show that  A  and  B  are independent conditional on  S  if and only if every 

path between  A  and  B  is blocked by  S . That is, two variables are indepen-

dent conditional on a set if and only if that set blocks every way of getting 

from one variable to the other. And again, we can use this tight connection 

between graph topology and quantitative dependence to construct efficient 

inference and learning algorithms given certain constraints or parametric 

assumptions ( Koller  &  Friedman, 2009 ; Rue  &  Held, 2005). Learning the 

graph structure in relatively assumption-free settings is much harder: most 

such methods (e.g.,  Chen  &  Welling, 2012 ) focus on estimating particular 

models and finding the  “ zeros ”  in the model, but this is an area of ongoing 

machine learning research. 

 3.4   Expressive Power of Graphical Models 

 A natural question arises at this point concerning the expressive powers of 

the different types of graphical models. Recall that we say that a graphical 

model  G  perfectly represents some data  D  just when  G  implies (by Markov 

and Faithfulness) all and only the in/dependencies that are actually found 

in  D . What are the  “ data spaces ”  that a DAG-based or UG-based graphical 

model can perfectly represent? And are those data spaces identical, disjoint, 

or overlapping? The answers to these questions are complicated but will be 

important in later chapters when we compare different cognitive theories 

(expressed as operations on graphical models). In general, the data space 
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that can be perfectly represented by a type of graphical model depends 

only on the graphs for that type,  10   and so I will largely ignore the quantita-

tive components in this section. Instead we can characterize the expressive 

powers of different graphical model types solely in terms of topological 

features of the underlying graphs, though we need several pieces of termi-

nology to express those features. 

 In a DAG, we say that an  unshielded collider  is any variable  T  such that (i) 

 X   →   T   ←   Y , and (ii)  X  and  Y  are not adjacent. That is, an unshielded col-

lider in a DAG is any variable with edges directed into it from variables that 

have no edge between them. For example, in   figure 3.6a ,  T  is an unshielded 

collider. If an edge were present between  X  and  Y  in   figure 3.6a , however, 

then  T  would no longer be unshielded. One can prove: if a DAG-based 

graphical model with graph  G  perfectly represents  D , then there is also a 

perfectly representing UG-based graphical model if and only if there are no 

unshielded colliders in  G  ( Pearl, 1988 ). That is, if the perfectly representing 

DAG has no unshielded colliders, then there is also a perfectly represent-

ing UG; if there is even just a single unshielded collider, then there is no 

perfectly representing UG. For example, if the graph in   figure 3.6a  perfectly 

represents  D , then there is no UG that can perfectly represent  D . In con-

trast, the graph in   figure 3.6b  has no unshielded colliders, so any data that 

it perfectly represents can  also  be perfectly represented by a UG; in fact, the 

corresponding UG is the one shown in   figure 3.6c .    

 We cannot have the same condition for moving from perfectly represent-

ing UGs to DAGs, since there are obviously no colliders in a UG. We instead 

define a  chordal graph  (directed or undirected) to be one in which every path 

from a node back to itself (ignoring edge directions, if any) has at least one 

pair of nonsequential (in the path) nodes that are adjacent in the broader 

graph. For example, the graphs in   figures 3.6b and 3.6c  are trivially chordal, 

since there are no paths from a node back to itself. In contrast,   figure 3.6d  

shows a nonchordal graph: in the  A  —  X  —  T  —  Y  —  A  path, there is no edge 

between the nonsequential variables  X  and  Y . Chordality is essentially an 

 “ edge density ”  constraint on the underlying graph. And provably: if a UG-

based graphical model with graph  G  perfectly represents  D , then there is 

also a perfectly representing DAG-based graphical model if and only if  G  is 

chordal ( Pearl, 1988 ). Thus if the graph in   figure 3.6c  perfectly represents 

 D , then there is a DAG that also perfectly represents  D  (i.e.,   fig. 3.6b ). In 
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 Figure 3.6 
 Four graphs illustrating colliders and chordality. 
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contrast, if  D  is perfectly represented by the UG in   figure 3.6d , then there is 

 no  DAG that perfectly represents  D , since that UG is not chordal. 

 Unshielded colliders are actually the key to both theorems, as chordal 

graphs are exactly those in which it is possible to give directions to all the 

edges so that the resulting graph is both acyclic and has no unshielded 

colliders. (Notice, for example, that every way of orienting the edges in   fig. 

3.6d  will yield either a cyclic graph or at least one unshielded collider.) Thus 

it is worth examining unshielded colliders in more detail. Consider the 

isolated example shown in   figure 3.6a .  11   Perhaps the most striking aspect of 

this graph is that  X  and  Y  are entirely independent of each other, though 

they are both directly relevant to  T . Unshielded colliders thus provide the 

clearest example that dependence is  not  a transitive relation:  X  and  T  are 

dependent,  T  and  Y  are dependent, but  X  and  Y  are not (unconditionally) 

dependent. This pattern of in/dependence stands in sharp contrast to the 

pattern in, for example,   figure 3.6b . In that graph,  X  and  A  are dependent, 

 A  and  Y  are dependent, and also  X  and  Y  are dependent. That is, common 

effect (  fig. 3.6a ) and common cause (  fig. 3.6b ) structures exhibit different 

patterns of independence, which can be used to help learn edge directions 

in a DAG ( Spirtes et al., 2000 ). When we turn to UGs, we find that  “ tran-

sitivity of dependence ”  always holds: if  X  and  Y  are dependent in a UG, as 

well as  Y  and  Z , then  X  and  Z  are necessarily also dependent in that UG. 

Thus we can straightforwardly see why DAGs and UGs have related but 

not identical expressive power: UGs require dependence transitivity, while 

DAGs tolerate — and can even require — some violations of it. 

 DAG- and UG-based graphical models thus overlap in their expressive 

power: some data can be represented by either type of graphical model, 

but other data can be represented by only one type. If one is in the overlap 

region, then it does not matter (from a formal point of view) whether one 

uses a DAG- or UG-based graphical model; either will suffice. Of course, 

one may have other reasons to prefer one representation, such as opti-

mized inference algorithms. For example, the widely used hidden Markov 

models (HMMs) (for overviews see, e.g.,  Koller  &  Friedman, 2009 ;  Rabiner, 

1989 ) fall into exactly this overlap: HMMs can be characterized as either a 

DAG- or a UG-based graphical model. There is no (mathematical) fact of the 

matter about which is the  “ right ”  representation of an HMM. In practice, 

however, HMMs are often represented as DAGs to simplify the details of 

various inference and reasoning algorithms. 
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 Since the two model types only overlap, one might instead want to use 

graphical models whose graphs can have both directed and undirected 

edges. Such models are able to perfectly represent any data that can be 

perfectly represented by either a DAG- or a UG-based graphical model, and 

so provide a measure of unification to those graphical model types. Graphi-

cal models with both directed and undirected edges are called  chain graphs  

( Andersson, Madigan,  &  Perlman, 1996 ;  Lauritzen  &  Richardson, 2002 ;  Lau-

ritzen  &  Wermuth, 1989 ;  Richardson, 1998 ); DAG- and UG-based graphical 

models are simply special cases. Many technical issues about chain graphs 

are unsolved or unsettled, such as the proper Markov assumption ( Ander-

sson et al., 1996 ) and sensible causal/realist interpretations ( Lauritzen  &  

Richardson, 2002 ). Chain graphs do not play a significant role in this book, 

however, so we do not need to confront these particular issues. It is worth 

noting, though, that chain graphs do not merely subsume the DAG- and 

UG-based graphical model frameworks. Rather, they have strictly greater 

expressive power than the two frameworks combined: there are data  D  that 

can be perfectly represented by a chain graph but cannot be perfectly rep-

resented by either a DAG- or a UG-based graphical model. For example, 

any data that are perfectly represented by the graph in   figure 3.7  have no 

perfect representation in a DAG or UG.    

 Even chain graphs are not universal representers, however. There are 

data whose independence structure cannot be perfectly represented by a 

chain graph and so cannot be captured by any DAG- or UG-based graphical 

model. In fact, many independence structures cannot be perfectly repre-

sented by  any  of the standard types of graphical models ( Studeny, 1995 ). 

  Figure 3.8  gives a graphical summary (not to any scale) of the expressive 

powers of the different types of graphical models.    

 The presence of white space in   figure 3.8  is critical, since it shows that 

there are limits on the representational capacities of graphical models. The 
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 Figure 3.7 
 Example chain graph. 
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 Figure 3.8 
 Representational power of different graphical model types. 

graphical models framework would be relatively uninteresting in cognitive 

science if it could represent  any  conceivable situation or theory. That is 

not the case, however: expressing a theory in terms of graphical models 

imposes significant restrictions and constraints on it; many possible cogni-

tive theories cannot be translated into the graphical models framework. 

 This chapter has focused on characterizing these different types of 

graphical models. Now it is time to put them to work as a mathematical 

framework and language to characterize human cognitive representations. 

Over the next three chapters, I show how to use graphical models in three 

different areas of cognition, but we begin with representations of causal 

structure in the world. 

 

 

 

 

 

 

 
 



 4   Causal Cognition 

 4.1   A Taxonomy of Causal Cognition 

 We now have the pieces in place to express particular areas of cognition 

as operations on cognitive representations structured as graphical models, 

and to actually understand what that means. We begin in this chapter with 

causal cognition. Causation is one of the unifying threads of our cognition 

( Sloman, 2005 ). We interpret disparate events as parts of a coherent causal 

structure. We use our causal knowledge to predict future states of the world. 

Our choices and actions in the world are influenced and guided by our 

understanding of the causal relations around us. Perhaps most importantly, 

we understand the difference between causal relationships and those that 

are only predictive, and our cognition is sensitive to that difference. It has 

even been suggested that our rich understanding of causal relations is a key 

feature distinguishing us from other animals ( Penn, Holyoak,  &  Povinelli, 

2008 ). Of course, not all cognition is causal, nor are causal relations the 

only cognitively relevant ones in the world. But any framework that aims 

to unify multiple cognitive domains arguably must include causal cogni-

tion as a critical element. 

 Many debates center on the nature of causation (particularly in philos-

ophy), and so we need to be clear about what we mean by  “ causation. ”  

I focus here on causation in our cognition, rather than as an objective, 

physical relation in the world. Presumably our concept of causation has 

 some  connection to some metaphysical relation(s) in the world, such as 

being part of a physically continuous process ( Dowe, 2007 ) or having a dif-

ference-making relation toward some factor ( Woodward, 2003 ). However, 

there is no necessary reason for the content of our concept of causation to 
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be identical with any particular corresponding relation in the world; all 

that matters is that our concept appropriately tracks some relation(s) in 

the world that can ground and support the learning, reasoning, and infer-

ences that we do with our causal knowledge ( Danks, 2014 ). Philosophical 

debates about causation  “ in the world ”  are simply beside the point. I will 

also not focus on people ’ s explicit beliefs about causation, as our explicit 

beliefs about something can be misleading about the actual content and 

function of that something. I will instead concentrate on behavior that is 

based on causal cognition, as that is a better means to learn about the actual 

notion that plays such a central role in our cognitive lives. Introspection 

about  “ what causation seems to be ”  will not play a role here. 

 These caveats do not provide much positive guidance about what I mean 

by causation. The key distinction here is between causation and association 

(e.g., correlation). If two factors are associated or dependent (to use the 

term from chap. 3), then they carry information about each other. That is, 

learning something about one factor tells us something about the other. 

For example, hair color and job title are associated, at least among academ-

ics: full professors are more likely to have gray hair, while assistant profes-

sors are more likely to have nongray hair. This association is obviously not 

perfect — there are full professors with nongray hair and assistant profes-

sors who do have gray hair — but there is appropriate information transfer. 

Moreover, this information transfer, and association more generally, is sym-

metric: job title can be used to learn (partially) about hair color, and vice 

versa. At the same time, this association is clearly noncausal, as changes in 

job title do not directly lead to hair color change, nor is dyeing one ’ s hair 

an effective strategy to get promoted. The association instead arises because 

both are functions of one ’ s age and time in the job. In contrast, causal rela-

tions are fundamentally asymmetric: causes lead to their effects, but effects 

do not lead to their causes (at the same moment  1  ). If we were to change the 

state of the cause, then the effect would probabilistically change; in con-

trast, exogenous changes of the effect do not lead to changes in the cause. 

For example, flipping the switch leads to the light changing state (probabi-

listically), but smashing the lightbulb (to force it to be  “ off ” ) does not affect 

the light switch at all. 

 As these examples suggest, it is critical that we cognitively represent the 

distinction between associations and causal relations: both support predic-

tions based on observations of the world, but only causal relations support 
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predictions when we act on the world (in situations in which our actions 

are appropriately exogenous). Moreover, our cognitive representations of 

causal structure should, if they truly represent causation, capture the cause-

effect asymmetry. I will thus focus on graphical models with directed edges 

that represent exactly this asymmetry:  C   →   E  will mean  “  C  causes  E . ”  In 

addition, since essentially all feedback cycles are temporally extended (and 

thus acyclic for time-indexed variables), I will focus on acyclic graphs. That 

is, this chapter will use directed acyclic graph (DAG)-based graphical mod-

els. And the key claim of this chapter is that much (though not all) causal 

cognition can be understood as operations on cognitive representations 

that are isomorphic to such DAG-based graphical models. 

 Causal cognition can be broadly divided into causal learning and causal 

reasoning ( Danks, 2009 ), where causal learning is (roughly) the acquisition 

of new causal beliefs or changes to existing ones, and causal reasoning is 

the use of those beliefs in various ways. The distinction is not sharp, as each 

can depend on the other: causal learning can involve causal reasoning (e.g., 

learning from predictive failures of prior beliefs), and causal reasoning can 

involve causal learning (e.g., when reasoning reveals previously unnoticed 

causal connections). Nonetheless this rough dichotomy is useful, as we can 

think about learning as changing our representations, and reasoning as 

using those representations. Causal learning can then be subdivided fur-

ther into causal inference and causal perception. Causal perception is the 

relatively immediate perception of causal relations, as when one sees the 

cue ball  cause  the eight ball to move when it hits the eight ball ( Rips, 2011 ; 

 Scholl  &  Tremoulet, 2000 ). Causal inference refers to the process by which 

we infer causal relations from multiple cases, where causation cannot be 

directly observed in any particular case (e.g.,  Cheng, 1997 ;  Danks, 2007a ; 

 Gopnik et al., 2004 ;  Holyoak  &  Cheng, 2011 ). For example, I can learn that 

aspirin relieves pain based on repeated instances in which I took aspirin 

and my pain abated, as well as occasions on which I did not take aspi-

rin and my pain continued.  2   There are both behavioral and neuroscientific 

grounds for distinguishing between causal perception and causal inference 

( Blakemore et al., 2001 ;  Roser, Fugelsang, Dunbar, Corballis,  &  Gazzaniga, 

2005 ;  Satpute et al., 2005 ;  Schlottmann  &  Shanks, 1992 ). Moreover, this 

chapter provides theoretical grounds to distinguish them, as I will argue 

that causal inference can be modeled as operations on graphical models, 

while causal perception (arguably) cannot. 
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 One obvious lacuna in this taxonomy is so-called learning from descrip-

tion: learning about causal relations in the world from the direct verbal 

testimony of others (e.g., being told  “ the third light switch controls the 

outside lights ” ). Arguably, much or even most of our causal learning comes 

from other people ’ s descriptions of the world. I will not explicitly discuss 

this particular mode of causal learning, however, as there are few experi-

ments and essentially no theories about it. Many important details about 

causal learning from description are simply unknown. At the same time, 

I will discuss it implicitly in section 4.3, as many causal reasoning experi-

ments study predictions and inferences generated from causal knowledge 

acquired through learning from description. Thus, to the extent that the 

graphical models framework can help us to understand empirical phe-

nomena in causal reasoning, we also have evidence that it provides a good 

framework for capturing those causal representations. A full account of 

causal learning from description remains an open research problem, par-

ticularly the question of when learners infer the absence of a causal relation 

( C  does not cause  E ) from absence of information (the other person simply 

does not mention whether  C  causes  E ). We clearly make such inferences on 

a regular basis, and they are critical for us to develop relatively sparse (and 

thus useful) cognitive representations of causal structure. A range of con-

textual factors including conversational pragmatics and shared knowledge 

presumably drives those inferences, however, so a full theory may be a long 

time coming. 

 The remainder of the chapter does the positive work of understanding 

causal inference (sec. 4.2) and causal reasoning (sec. 4.3) as operations on 

graphical models, and the negative work of arguing that causal perception 

is unlikely to be captured as a process operating on a graphical model (sec. 

4.4). Before beginning, however, a reminder: for some of these cognitive 

processes, I will show that different, competing cognitive theories can all 

be captured in the graphical models framework. The intention in this strat-

egy is not to show that we somehow have a universal language that can 

capture all theories; the graphical models framework is decidedly not that. 

Rather, the idea is that the cognitive science debates about these theories 

are about details that do not matter to the cognitive architecture that I am 

advocating. For example, regardless of whether the correct model of causal 

inference is the causal power theory,  Δ  P  theory, or some mixture (both dis-

cussed in section 4.2), the resulting cognitive representations are arguably 
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structured as a DAG. As a scientific community, we do need to determine 

the precise DAG parameterization, but resolving that issue is irrelevant to 

the present claims of my framework. The focus on graphical models permits 

a certain level of agnosticism about some of the underlying details while 

showing the  “ common core ”  of these various cognitive theories. Moreover, 

I focus on theories that all have substantial empirical support (at least in 

some contexts), and so the re-representation of some theory in the graphi-

cal models framework thereby provides empirical support for my cognitive 

architecture. 

 4.2   Causal Inference 

 One significant body of psychological research on causal cognition is on 

causal inference: learning causal structure from a set of cases, none of which 

explicitly convey causal information. For example, I might observe a group 

of plants, some of which have been treated with a liquid and some not, and 

my task is to determine whether the liquid is a fertilizer, poison, or causally 

irrelevant. This is a particularly challenging problem: I am provided only 

with statistical information about the correlation between use of the liquid 

and the plant ’ s health but cannot remain with only these observational 

associations because, as discussed in section 4.1, associations are not the 

same as causal relations. I must instead use the observed associations as 

evidence for (unobserved) causal relations. Historically, this research has 

been connected closely with the animal learning literature on classical and 

instrumental conditioning, both to gain inspiration for particular causal 

learning models and to show how human causal inference differs from ani-

mal associative learning. This section shows how to understand this causal 

inference as operations on and with DAG-based graphical models, and 

doing so will require going down into the cognitive science details. 

 In thinking about causal inference, it is helpful to draw a rough distinc-

tion between causal  structure  and causal  strength . Causal structure captures 

the qualitative causal relations (e.g.,  “  C  causes  E  ” ), while causal strength 

encodes the fine-grained mathematical details of the causal connection 

(e.g.,  “  C  is a preventive cause of  E  with strength 0.4 ” ). This is obviously not 

a bright-line distinction: nonzero causal strength is (arguably) the same as 

the presence of a causal relation, and we can also have knowledge that falls 

between these two endpoints in coarseness (e.g.,  “  C  is a strong generative 
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cause of  E  ” ). Nonetheless this distinction can help us to understand theo-

ries of causal inference. In particular, many psychological theories of causal 

inference are fundamentally theories of causal strength estimation: they 

focus on situations in which the learner confronts only a restricted space 

of causal structures and must learn causal strengths relative to that back-

ground. Causal structure theories have emerged in recent years, though 

not always in a computationally well-specified form. And most importantly 

for the purposes of this book, (almost) all of both kinds of theories can be 

expressed as learning about directed acyclic graphs ( Danks, 2007a ;  Holyoak 

 &  Cheng, 2011 ). 

 The vast majority of the experimental evidence about causal inference 

comes from a relatively restricted experimental setting. Participants are told 

about a focal effect  E  and a set of potential causes  C  1 ,  …  ,  C n  , where these 

are all variables; typically, they are events that either do or do not occur, 

though some experiments move beyond binary (e.g.,  “ present ”  or  “ absent ” ) 

variables. In other words, participants know the relevant variables, as well 

as a sorting into causes and effects, whether based on temporal informa-

tion (since causes cannot occur after their effects), prior knowledge, or 

some other reason. Participants are also usually warned that  “ other factors ”  

could produce the effect  E . We can capture this possibility by including an 

always-present, but never-observed, variable  B  that encapsulates all these 

background factors. Participants are then asked to learn the causes of  E  

from a sequence of cases. Importantly, causal inference experiments rarely 

ask participants to determine the full causal structure, including potential 

causal relations between the  C i   ’ s. Of course, causal inference must take such 

relations into account in some way: if the true causal structure is  C  1   ←   C  2  

 →   E , then  C  1  will be associated with  E , and we will only learn it is not a 

cause of  E  if we condition on  C  2 . But participants typically do not have 

to learn explicitly whether, say,  C  6  causes  C  17 . Finally, after observing the 

sequence of cases, participants are asked to give a numeric rating for the 

causal strength of each potential cause  C i  , where different questions are 

used by different researchers (and where the exact question can matter a 

great deal, as shown in  Collins  &  Shanks, 2006 ). 

 This restricted experimental setting provides a useful starting point for 

understanding how DAG-based graphical models capture the cognitive 

representations used in causal inference more generally. Researchers have 

proposed many different cognitive models to explain human performance 
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in this setting, and all can be understood as parameter estimation in a fixed-

structure DAG-based graphical model ( Danks, 2007a ). In particular, con-

sider the DAG in   figure 4.1 , where the dashed edges indicate that there 

could be edges (in either direction) between each pair of  C i   nodes.    

 We make the parametric assumption that  E  is a function of the values 

of its causes and, for each cause  C i  , a parameter  w i   indicating  C i   ’ s causal 

strength. That is, we assume (though just for this setting) that the causes 

have independent influences, rather than interacting in some more com-

plex way to generate  E  ’ s value. In many experiments, this assumption 

clearly holds; more generally, the existence of such parameters is implied 

by the fact that probe questions ask about  “ the ”  causal strength of each 

potential cause, which suggests that a single number characterizes each 

causal connection. If this assumption is wrong and there are complex inter-

actions, then  Novick and Cheng (2004)  show how to capture them in an 

independent-influence model by introducing new variables to represent 

the relevant interactions. 

 The major theories of causal inference (or at least of causal strength 

learning) all correspond to parameter estimation in this graph; that is, 

each theory can be understood as people representing the causal structure 

using the DAG in   figure 4.1  and then learning the  w i   values for that DAG. 

(The mathematical details to defend this claim are provided in sec. 4.2.1.) 

From this perspective, different accounts of causal inference arise because 

of different assumptions about how the cause-specific strengths interact to 

produce  E  ’ s value. That is, all these different theories agree about the under-

lying cognitive representation of qualitative causal structure: it is the DAG 

shown in   figure 4.1 . We get different cognitive models only because the 
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 Figure 4.1 
 Fixed-structure graph for causal inference. 
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theories posit that people assume different functions for predicting  E  from 

the observed potential causes. But these differences should not distract us 

from the underlying  sameness  of the posited cognitive representation of 

causal structure. 

 As an example, the well-known Rescorla-Wagner model in animal asso-

ciative learning ( Rescorla  &  Wagner, 1972 ) has been proposed as a model of 

human causal inference ( Shanks, 1993 ,  1995 ;  Shanks  &  Dickinson, 1987 ), 

as has its long-run counterpart ( Danks, 2003 ), the conditional  Δ  P  theory 

( Cheng  &  Novick, 1992 ). This class of cognitive models corresponds to the 

assumption that the value of  E  (or the probability of  E , if it is binary) is 

based on the sum of the  w i   strengths of the present causes ( Tenenbaum  &  

Griffiths, 2001 ). In contrast, the causal power theory ( Cheng, 1997 ) and its 

dynamic implementations ( Danks, Griffiths,  &  Tenenbaum, 2003 ) are the 

appropriate parameter estimators when the causal strengths combine as a 

so-called noisy-OR gate in which the effect occurs just when at least one 

of the  “ noisy ”  causes generates it ( Glymour, 1998 ). A similar characteriza-

tion can be given for other models of causal inference, including  Pearce ’ s 

(1987)  model of configural cue learning, and the pCI or belief adjustment 

model ( Catena, Maldonado,  &  Candido, 1998 ;  White, 2003a ,  2003b ). These 

cognitive models are all quite different, but all share the (perhaps implicit) 

principle that causal inference is parameter learning in a cognitive repre-

sentation that is a fixed-structure DAG-based graphical model. 

 The experimental literature is filled with debates about which cognitive 

theory is the  “ right ”  model of human causal inference; a meta-analysis by 

 Perales and Shanks (2007)  actually concluded that  none  fits all the experi-

mental data well (see also  Hattori  &  Oaksford, 2007 ). This is unsurprising 

if we think about these models as different functional forms for the same 

DAG-based graphical model: a single model should fit all the data only if 

people believe that causes combine to generate the effect value via exactly 

the same function in every experiment. But if different functions are appro-

priate in different experiments, then no single parameter estimation model 

should fit all the data. If, for example, the potential causes and the effect 

can range over many values and the causes exert independent influences, 

then the natural functional form is the linear function underlying the 

Rescorla-Wagner, conditional  Δ  P , and related models. If we change only 

the variable ranges so that they can be only present or absent, then the 

natural functional form is the noisy-OR gate of the causal power theory and 
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its dynamical implementations. Moreover, experimental evidence suggests 

that people are sensitive to the underlying functional form and change 

their behavior accordingly ( Lucas  &  Griffiths, 2010 ). The DAG-based char-

acterization of these cognitive models as parameter estimators thus helps 

to explain the diversity of results found in the causal inference literature. 

 Many different theories have also been proposed to explain causal  struc-

ture  learning. At a high level, these theories can be classified as either ratio-

nal or heuristic accounts. In rational accounts of causal structure learning, 

people are modeled as learning causal structure according to some reliable, 

correct, principled method, such as a constraint-based algorithm (e.g.,  Gly-

mour, 2003 ;  Gopnik et al., 2004 ) or Bayesian inference (e.g.,  Griffiths  &  

Tenenbaum, 2005 ;  Steyvers, Tenenbaum, Wagenmakers,  &  Blum, 2003 ). 

The various rational accounts differ substantially, but they all agree that 

people are good at learning causal structure: the core idea behind all these 

rational models is that people are ultimately learning the  “ right ”  thing, 

though the accounts are essentially all agnostic about how people actu-

ally go about learning the right thing. In contrast, heuristic accounts aim 

to model the cognitive processes by which people learn causal structure. 

Causal model theory ( Waldmann, 1996 ) proposes that people use a range of 

factors to settle on a causal structure at the outset of learning, and then they 

adjust that structure to accommodate inconsistent data (see also  Lagnado, 

Waldmann, Hagmayer,  &  Sloman, 2007 ). Other heuristic accounts argue 

that people focus on learning local aspects of the causal structure such as 

single links and then assemble this local knowledge into a globally coher-

ent structure ( Fernbach  &  Sloman, 2009 ;  Waldmann, Cheng, Hagmayer,  &  

Blaisdell, 2008 ;  Wellen  &  Danks, 2012 ). 

 Despite this great diversity in accounts of causal structure learning, they 

all agree that people are trying to learn a DAG. That is, there is great dis-

agreement about the cognitive processes involved in structure learning, but 

complete agreement across all these different cognitive models that the cog-

nitive representation that is ultimately learned is structured as a DAG-based 

graphical model. There are, of course, a range of open research questions 

about human causal structure learning, such as whether some of the heuris-

tic accounts are essentially dynamical implementations of one or another 

rational account. But the existence of such issues should not obscure the 

fact that there is unanimity about the representation of causal structure. 

In this regard, the moral from causal structure learning is the same as for 
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causal strength learning: there are many things that we do not know about 

this aspect of causal cognition, but it seems that a significant portion of our 

cognitive representations of causal systems are best understood as a DAG-

based graphical model. The next subsection gives the mathematical details 

to fully explain and justify these claims, and then I turn in section 4.3 to 

causal reasoning, which arguably provides more direct evidence in favor of 

DAG-based graphical models as our cognitive representations of (much of 

our) causal knowledge. 

 4.2.1   Mapping Causal Inference onto Graphical Models* 

 All standard causal inference theories assume that the variables come  “ pre-

sorted ”  into potential causes  C  1 ,  …  ,  C n   and a target effect  E . The DAG in   fig-

ure 4.1  provides the graph component of a graphical model (or at least the 

 E -relevant graph) for these theories, and so all that remains is to specify the 

quantitative component. As noted earlier, we assume that every variable ’ s 

causal strength can be encoded by a single number; this assumption is eas-

ily relaxed ( Novick  &  Cheng, 2004 ). Thus a fully specified (for  E ) graphical 

model requires only that we provide the functional form  f  and parameters 

 w i   for the following equation: 

  P E C C C B f C w C w C w B wn n n B( | , ,..., , ) ( , , , ,..., , , , )1 2 1 1 2 2=   (4.1) 

 Typically, the variables  C i   will take on the values 1 or 0 depending on 

whether they are present or absent, respectively, but that is not assumed 

here. Causes can be continuous variables that can take on values over a 

much larger range. This section shows that different cognitive models of 

causal strength inference are estimators for the  w i   parameters in equation 

(4.1) for different particular functional forms  f , where equation (4.1) itself 

derives from the DAG in   figure 4.1 . 

 One set of causal inference theories includes the Rescorla-Wagner model 

( Rescorla  &  Wagner, 1972 ), various dynamical variants of the Rescorla-

Wagner model ( Tassoni, 1995 ;  Van Hamme  &  Wasserman, 1994 ), and the 

conditional  Δ  P  theory ( Cheng  &  Novick, 1992 ). The first two types of theo-

ries are dynamical theories that characterize case-by-case changes in causal 

strength beliefs, and the last theory is an asymptotic one that aims to cap-

ture people ’ s long-run, stable causal strength beliefs. Provably, the cognitive 

models based on Rescorla-Wagner converge in the long run  3   (for standard 

conditions and parameter values) to the conditional  Δ  P  predictions ( Danks, 
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2003 ), so we can consider these theories as a group. Now suppose that  E  is 

a binary variable  4   (either present or absent), and consider, as the functional 

form  f  in equation (4.1), the sum of the  w i   ’ s weighted by the correspond-

ing cause variables (where present or absent values correspond to 1 or 0, 

respectively): 

  P E C C C B w C wn B i i
i

n

( | , ,..., , )1 2
1

= +
=
∑   (4.2) 

 Provably, the conditional  Δ  P  values are the maximum likelihood estimates 

of the  w i   parameters in equation (4.2) ( Tenenbaum  &  Griffiths, 2001 ), and 

so the Rescorla-Wagner-based dynamic models are also case-by-case estima-

tors of those parameters.  5   Thus we can interpret this whole class of theo-

ries as maximum likelihood estimators for a DAG-based graphical model in 

which the quantitative component (for  E ) is given by equation (4.2). 

 The weighted sum in equation (4.2) has the odd feature that it can 

potentially result in a prediction of  P ( E  = 1) that is greater than one, which 

is of course impossible. If  E  is a continuous variable (e.g., amount of light, 

rather than light simply on or off), then predictions greater than one are 

not necessarily a problem, if we slightly reinterpret equation (4.2) (see note 

4). In the case of a binary  E , however, such predictions would necessarily 

be wrong. So consider a different functional form  f . Suppose that our causes 

partition into two disjoint sets — generators  G  1 ,  …  ,  G m   (for convenience, let 

 B  be  G  1 ) and preventers  R  1 ,  …  ,  R s   — where  E  occurs just when at least one 

generator causes it and no preventer blocks it (where the probabilities of 

 “ causing ”  or  “ preventing ”  are given by the corresponding  w i   ’ s). That is, we 

assume that both positive and negative causes have some  “ capacity ”  ( Cart-

wright, 1989 ) to produce or block the effect. For simplicity, we assume that 

the generators and preventers are all also binary causes.  6   In that case, we get 

a functional form known as a  “ noisy-OR/AND ”  gate: 

  P E G G R R G w R wm s i i
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j j
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( | ,..., , ,..., ) ( ) ( )1 1
1 1

1 1 1= − −⎛
⎝⎜

⎞
⎠⎟

−
= =
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 One can prove that the maximum likelihood estimates for the  w i   and  w j   

terms in equation (4.3) are provided by the causal power theory ( Cheng, 

1997 ), as well as a corresponding dynamic case-by-case updater based on it 

( Danks et al., 2003 ). That is, the only difference between the causal-power-

centered and Rescorla-Wagner-centered cognitive models is that the former 

estimate  w i   in equation (4.3) while the latter estimate it in (4.2). Despite 



76 Chapter 4

their disagreements in many quantitative predictions, these different cogni-

tive models are (implicitly) committed to the same cognitive representation 

of causal structure; they differ only in how those shared pieces combine 

quantitatively.  7   

 Other models of causal strength inference can also be shown to carry 

out parameter estimation in the DAG shown in   figure 4.1 . I focus here on 

just one additional model (though see also  Danks, 2007a ). In the pCI or 

belief adjustment model ( Catena et al., 1998 ;  White, 2003a ,  2003b ), the 

judged causal strength depends on the extent to which the evidence con-

firms the existence of a causal relationship. More precisely, the proportion 

of Confirming Instances (pCI) is defined to be the difference between the 

probability of seeing a case that confirms the causal relation (i.e.,  C  and  E  

either both occurring or both not occurring) and the probability of seeing a 

disconfirming case. The pCI model has not yet been extended to allow for 

multiple causes, so we focus on the single-cause situation here. We can also 

calculate pCI in a purely online manner using a complex update equation 

( Danks, 2007a ). The related belief adjustment model uses pCI as a core but 

holds that causal strength judgments are not a function of the full sequence 

of cases. Those judgments are instead a weighted average of (i) the previous 

judgment and (ii) the cases seen since the last judgment. In practice, it is 

often unclear what constitutes a  “ judgment ”  outside the lab. In addition, 

many in-laboratory experiments use only a single judgment at the end of 

learning, and so the belief adjustment model collapses to the pCI model. 

We thus focus on just pCI. 

 To understand pCI as graphical model parameter estimation, we first 

focus on the case in which  P ( C ) =  P ( ¬  C ) = 0.5. In this special case (and for a 

single cause), pCI is actually identical with  Δ  P , and so we can use equation 

(4.2) as the functional form for the graphical model parameter estimation. 

However, pCI and  Δ  P  diverge if  P ( C )  ≠  0.5. In fact, we can prove that there 

is  no  functional form for which pCI is the maximum likelihood graphical 

model parameter estimate (in the   fig. 4.1  DAG) when  P ( C )  ≠  0.5 ( Danks, 

2007a ). Specifically, if  P ( C )  ≠  0.5, then (i) if  C  and  E  are statistically inde-

pendent, then pCI  ≠  0; and (ii) if  C  and  E  are statistically associated, then 

there are cases in which pCI = 0. The single-cause version of the graphical 

model in   figure 4.1  requires, however, that  w C   = 0 if and only if  C  and  E  

are statistically independent. Thus there is no way of getting  w C   to track 

pCI when  P ( C )  ≠  0.5. This might be interpreted as a failing of the graphical 
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models framework, but it actually points toward a deep problem with pCI. 

Essentially every theory of causation holds that causation and association 

go hand in hand in this specific experimental setting (single cause, no pos-

sibility of confounding, and no other oddities). Since  P ( C ) = 0.5 is arguably 

the special case condition, we thus see that pCI makes the clearly false pre-

diction that people should be mistaken in almost all their  qualitative  causal 

judgments. 

 We turn now to theories of causal structure learning. The rational the-

ories hold that people are using some principled algorithm that is prov-

ably reliable at structure learning. In all cases, those theories are explicitly 

derived from machine learning algorithms for extracting DAG-based 

graphical model structure from observational and interventional data 

( Chickering, 2002 ;  Heckerman, 1998 ;  Spirtes, Glymour,  &  Scheines, 2000 ). 

It is nonetheless helpful to see how those algorithms must be modified to 

accommodate human behavior. Constraint-based human causal inference 

algorithms ( Glymour, 2003 ;  Gopnik et al., 2004 ) determine the set of causal 

structures that imply exactly the observed statistical in/dependencies. In 

practice, humans appear to be able to learn causal structures from relatively 

small sample sizes, so those in/dependencies cannot be determined using 

standard statistical tests but must instead be computed by overweighting 

the observed cases ( Gopnik et al., 2004 ) or using some other method for 

judging independence, such as Bayesian statistics ( Danks, 2004 ). Bayesian 

human causal inference algorithms ( Griffiths  &  Tenenbaum, 2005 ;  Steyvers 

et al., 2003 ) seek to find the DAG-based graphical model that is most prob-

able given the data (see also the discussion of Bayesianism in sec. 8.2.2). 

These algorithms work well with small sample sizes but can be computa-

tionally complex and thus typically incorporate either various approxima-

tions ( Griffiths  &  Tenenbaum, 2005 ) or restrictions on the space of possible 

graphs that must be examined ( Steyvers et al., 2003 ). 

 Heuristic theories of human causal structure learning make no claims to 

asymptotic reliability; in fact, many of them hold that people ’ s causal learn-

ing is not even governed by statistical information. The important thing 

for our present purposes, however, is that all these theories are expressed 

in terms of learning the structure of a DAG-based graphical model. The 

specific heuristics differ across theories, but the underlying representation 

does not. For example, causal model theory accounts of structure learning 

hold that people use easily discoverable features of the situation to choose 
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a preliminary causal structure, and then they revise that structure only as 

necessary to accommodate surprising data ( Lagnado et al., 2007 ;  Wald-

mann, 1996 ). For example, suppose there are two potential causes  C  and 

 D , and the first case that I see is  C ,  ¬  D , and  E . The co-occurrence of  C  and 

 E , coupled with the absence of  D , suggests the causal structure  C   →   E  with 

no edges involving  D . Thus I might believe that particular causal structure 

until I see some problematic or potentially disconfirming evidence (e.g., 

a case with  ¬  C ,  D , and  E ). Regardless of how the initial causal structure 

is determined or subsequently changed, however, these algorithms always 

assume that the relevant representation is a DAG-based graphical model. A 

different type of heuristic algorithm attempts to construct a global causal 

structure from local information. That is, these algorithms suppose that 

people do not try to learn a full causal structure in one fell swoop but rather 

construct it from smaller pieces. Those subgraphs can be learned from 

many different sources with varying or context-sensitive reliability, includ-

ing temporal and intervention information about single edges ( Fernbach  &  

Sloman, 2009 ), associations within particular clusters of variables ( Wellen 

 &  Danks, 2012 ), or simple unconditional co-occurrence information 

( Meder, Gerstenberg, Hagmayer,  &  Waldmann, 2010 ). Again, though, all 

these algorithms explicitly understand causal structure learning as people 

trying to learn the graphical component of a DAG-based graphical model. 

Causal structure and parameter learning cognitive models can thus univer-

sally be understood as people acquiring cognitive representations that are 

structured as DAG-based graphical models. 

 4.3   Causal Reasoning 

 Learning causal structures in the world is only one part of causal cogni-

tion; we also need some way to use the results of that learning. The most 

obvious form of causal reasoning is when we predict or infer something 

about the state of the world based on our understanding of the causal struc-

ture, perhaps coupled with some observations. For example, I infer that 

the light switch in my office is in the up position because I know that 

the switch controls the lights and I observe that the lights are currently 

on. This type of reasoning is easily performed using graphical models; as 

noted in chapter 3, graphical models were developed in part to optimize 

exactly this type of inference. The central challenge in any inference is 
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almost always determining what is relevant to the question at hand, and 

graphical models (by design and construction) encode exactly these rel-

evance relations. Because of this compact encoding of relevance, inference 

and prediction can occur through information  “ flowing ”  (metaphorically, 

of course) along the edges in the graph, where there are many different 

practical implementations of this high-level idea. (Technical details about 

inference using graphical models are provided in sec. 4.3.1.) Of course, the 

fact that prediction and inference can easily be done with graphical models 

does not imply that  people  actually operate this way. The descriptive ques-

tion is whether people make inferences and predictions about their world 

using causal knowledge in a way that conforms (at least roughly) to infer-

ence on DAG-based graphical models. 

 Suppose that I know something about the causal structure of the world; 

perhaps I know that  C  causes  M  and  M  causes  E  (i.e.,  C   →   M   →   E ), and I 

additionally know something about the degree or strength of the causal 

connections. If I then learn something about the state of one part of the 

world, what inferences do I draw about other parts of the world? For exam-

ple, if I learn that  C  actually occurred, I might conclude that  E  probably 

also concluded.  Rottman  &  Hastie (2014)  performed an exhaustive survey 

of almost all published (at that time) experiments on this type of causal rea-

soning. They found experiments testing an extremely wide range of differ-

ent causal structures and information sets and aimed to determine whether 

standard normative inference algorithms, applied to DAG-based graphical 

models, can provide a good fit to the quantitative data collected in those 

experiments. It is important to recognize that their survey speaks only 

indirectly to issues of cognitive representations; they are principally con-

cerned with the reasoning algorithms or processes that people use, rather 

than directly assessing whether our cognitive representations are structured 

(approximately) like graphical models. Nonetheless, to the extent that peo-

ple behave normatively, we have indirect evidence that our cognitive rep-

resentations are (probably) structured like a DAG-based graphical model. 

 Rottman and Hastie conclude that, in general, people largely exhibit 

normative causal reasoning; that is, our causal reasoning appears to be 

based on DAG-based graphical models. Their survey noted, however, two 

important, systematic deviations in people ’ s behavior. First, people seem to 

systematically underuse parametric information; for example, they do not 

properly take into account information about the base rate at which some 
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event occurs. Alternately, if  C   →   M   →   E , then people typically underesti-

mate the impact of  C  ’ s presence on  E  ’ s occurrence. This general finding of 

relative conservativeness in inference (more generally, underuse of infor-

mation) fits with a much broader pattern of results that extends outside 

causal reasoning: people frequently fail to fully use all available quantitative 

information when making inferences about their world. There are multiple 

plausible explanations for this general pattern of findings. For example, 

perhaps people rely on prior knowledge from outside the lab rather than on 

the evidence actually provided. Alternately, inference might occur through 

an anchor-and-adjust process with insufficient adjustments. More gener-

ally, this puzzle is the topic of active research in cognitive science. Impor-

tantly, however, it does not necessarily give us reason to think that our 

causal knowledge is not structured like a graphical model. This systematic 

deviation suggests that people use nonnormative reasoning algorithms or 

processes, which could equally well be applied to DAG-based graphical 

models or not. In fact, many of the alternative, nonnormative reasoning 

algorithms that have actually been proposed in the psychological literature 

operate on graphical models. That is, this particular deviation does not pro-

vide evidence against the view being proposed in this book. Instead it offers 

evidence only against the idea that people always use normative reasoning 

processes on those graphical models, rather than sometimes using more 

psychologically plausible, but also more heuristic, procedures. 

 The second deviation from normative behavior is not so easily handled, 

since it (seemingly) directly implies that our cognitive representations have 

a different structure. Recall that graphical models must satisfy a Markov 

assumption that says (roughly) that if two nodes are not adjacent, then 

they are not informationally relevant to each other (perhaps after condi-

tioning on other nodes). In the causal structure  C   →   M   →   E , for example, 

 C  is not informationally relevant to  E  once we know (with certainty) the 

value of  M . To make it concrete: once I know that I am infected with a 

particular strain of the influenza virus ( M ), learning that I was exposed ( C ) 

no longer helps to predict my symptoms ( E ). The Markov assumption is 

an absolutely fundamental part of the graphical models framework, as it 

enables the model to encode ir/relevance. Graphical models are only useful 

as models of relevance relations — informational, causal, or other — if they 

can compactly encode which elements are not important for one another, 

and that depends on the Markov assumption. If people do not seem to 
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follow the Markov assumption, then we seem to have a direct disconfirma-

tion of a core principle underlying the graphical models approach. And 

it does appear that people systematically violate the Markov assumption: 

in cases like this example, their predictions about  E  change depending on 

whether they learn that someone has both  C  and  M , versus learning only 

that someone has  M . That is, information about  M  does not fully block the 

relevance of  C  on  E . Most of the research on these seeming violations of 

the Markov assumption has taken place in the context of causal-structure-

based categories, and so I will fully discuss this issue in the next chapter 

(on concepts).  8   The key point now is that I will argue in section 5.3 that 

there are multiple natural explanations for people ’ s behavior that are com-

pletely consistent with the relevant representations being structured as a 

DAG-based graphical model. Given the substantial evidence in  favor  of 

the graphical models approach, much more definitive evidence is required 

about seeming violations of the Markov assumption before we abandon the 

graphical models framework. 

 None of the causal reasoning discussed so far in this section, though, 

is actually distinctively  causal : one could make all the same inferences —

 whether exactly normatively correct or systematically deviating in certain 

ways — with a noncausal representation.  9   As noted earlier, causal repre-

sentations enable us to make predictions and reason about interventions 

or actions that come from outside the causal system. One type of reason-

ing about interventions is action selection: given a causal structure and a 

desired outcome, which variable or node should be the target of my action? 

People ’ s behavior on this problem largely conforms to the DAG-based 

graphical model predictions; people correctly use their causal knowledge 

to choose actions that will largely be efficacious at obtaining some desired 

outcome ( Hagmayer  &  Meder, 2013 ;  Meder et al., 2010 ;  Nichols  &  Danks, 

2007 ;  Sloman  &  Hagmayer, 2006 ). I will return to discuss this point in 

greater detail in chapter 6, since this causal reasoning naturally serves our 

decision making. 

 A more restricted type of causal reasoning about interventions is deter-

mining the likelihood of various outcomes given that I perform an action 

on the causal structure, rather than simply observing some part of the 

causal structure. There is clearly a difference between action and observa-

tion: if I observe that the lights are off, then I can make an inference about 

the state of the light switch; if I break the lights, then no such inference 
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is warranted. More generally, psychological experiments have focused on 

cases in which an action is a so-called hard intervention that breaks all 

the other causal connections into that particular variable. For example, 

when I break the lights, I also sever the  Switch   →   Lights  causal connection, 

which yields a graph in which there is no edge (and thus no relevance rela-

tion) between  Switch  and  Lights . According to this modified graph, I cannot 

make any inferences about  Switch  given information about  Lights  (and vice 

versa). Moreover, people appear to be highly sensitive to this distinction: 

they know, for example, that the observation of an effect supports infer-

ences about the cause, while an intervention on it does not ( Sloman  &  

Lagnado, 2005 ;  Waldmann  &  Hagmayer, 2005 ). People are appropriately 

sensitive even in more complex structures: given the causal structure  E  1   ←  

 C   →   E  2 , they realize that an observation of  E  1  is informative about  E  2 , but 

an intervention on it is not. Some evidence even suggests that the observa-

tion/intervention distinction is important in causal reasoning by nonhu-

man animals ( Blaisdell, Sawa, Leising,  &  Waldmann, 2006 ;  Leising, Wong, 

Waldmann,  &  Blaisdell, 2008 ). 

 The general moral of this research is that the different ways that peo-

ple use information from observations versus interventions in their causal 

reasoning can be modeled as different operations on the same underlying 

cognitive representations, structured as DAG-based graphical models. Our 

causal reasoning does seem to be  “ truly causal, ”  in the sense that it recog-

nizes and respects the differential impact of interventions from outside the 

causal structure. Having said that, one might object that this conclusion 

is too quick: if the causal structures were learned from data that included 

interventions, then people could have learned (in a noncausal way) that the 

relevance relations vary across contexts, such as the  “ intervene on effect ”  

versus  “ observe effect ”  contexts. This worry turns out to be misplaced, 

however:  Waldmann and Hagmayer (2005)  and others have shown that 

people make the normatively correct (i.e., as predicted by graphical mod-

els) postintervention inferences even when causal structures are learned 

from purely observational data. This is a particularly striking finding, since 

people are making (correct) inferences that differ from any data that they 

have ever seen. The causal knowledge that we get from causal inference 

really does seem to be structured as (something like) a graphical model, 

regardless of whether the learning data came from observations, interven-

tions, or a mixture. 
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 I have focused so far on our qualitative causal reasoning about interven-

tions and observations: do people realize that actions or interventions can 

break causal connections? One could additionally ask about people ’ s  quan-

titative  postintervention causal reasoning, and here the story is trickier. The 

numeric estimates that people provide when engaged in postintervention 

causal reasoning often do not precisely conform to the normative predic-

tions, which might appear problematic for my graphical-models-based cog-

nitive architecture. Recall, however, that an intervention (at least in these 

psychological experiments) is essentially a graph modification operation 

that takes an initial causal structure and removes the edges into any node 

that is the target of an intervention. Postintervention causal reasoning can 

thus be understood as a two-step process: (i) transform the causal graph, 

and (ii) do  “ standard ”  causal reasoning on the modified graph. I argued 

earlier that step (ii) seems to involve processes or algorithms that are not 

(strictly speaking) normatively correct, though they still operate on DAG-

based graphical models. The key question is thus not whether people ’ s 

behavior is normatively correct when reasoning about postintervention 

causal systems but whether that behavior looks like this type of two-step 

process. The answer appears to be yes: the systematic deviations that people 

make in their quantitative postintervention causal reasoning are exactly 

the behavior that we would expect if they were doing post observation  causal 

reasoning (with its two characteristic types of deviation) on an appropri-

ately altered graph. Thus the quantitative deviations in postintervention 

causal reasoning seem to arise for exactly the same reasons as — and in an 

important sense are identical with — those deviations in postobservation 

causal reasoning. 

 A very different type of causal reasoning occurs when people reason 

about the causes in some particular case. In particular, we frequently 

encounter a situation and need to use our causal knowledge to determine 

which potential causes were actual causes. That is, given that some event 

occurred (and given our background causal knowledge), what caused the 

event? Our causal knowledge about general types of situations is clearly 

connected with what we know or infer in a particular situation. Part of 

the reason that I infer that aspirin stopped my headache this morning is 

because I know that aspirin generally stops headaches. And observations of 

particular instances are part of the reason that I learned the general struc-

ture. At the same time, reasoning in a particular case must take into account 
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the specific details of that situation, and so is at least a more complicated 

type of graphical model inference. 

 Historically, much of the research on causal judgment in specific cases 

has focused on reasoning in social situations and, in particular, the chal-

lenge of determining whether someone ’ s actions are caused by the environ-

ment/situation or by the individual ’ s persistent personality traits. People ’ s 

behavior can vary widely across different circumstances, and predicting 

future behavior requires separating out the influences of situation from 

those of the person ’ s stable personality ( Mischel  &  Shoda, 1995 ). A sub-

stantial empirical literature examines people ’ s judgments in these types of 

cases, but there are two reasons why it is unclear whether graphical models 

can help with this literature. First, we (as researchers) often have substantial 

ambiguity about what causal knowledge subserves much social cognition 

and inference, and so we do not know what is potentially represented as a 

graphical model. For example, general folk theories of behavior exhibit sig-

nificant cultural variations that seem to lead to differences in (social) causal 

attribution ( Norenzayan, Choi,  &  Nisbett, 2002 ), but we do not actually 

know the precise structure of those background folk theories. In particu-

lar, we do not know whether those theories can be captured in a graphi-

cal model, and if so, whether our behavior can be modeled as inferences 

on that model. Second, and more importantly, social causal attribution is 

closely bound up with many factors besides just causation: judgments of 

blame, responsibility, praise, legal culpability, and more all factor into our 

social judgments. As such, it is not always clear what morals can be drawn 

about general causal attribution from findings about distinctively social 

causal attribution.  10   Even if these causal judgments start as causal inference 

in a graphical model, they are clearly subject to many other influences that 

have not yet been put into the graphical models framework. 

 At the same time, some of these theories of causal attribution have been 

stated in more general terms that extend beyond social situations, even if 

they were originally inspired by problems in social psychology. Historically, 

such models have tended to focus on the importance of correlation: for any 

particular case, the most likely causes of some event  E  are those factors that 

most strongly covary with  E  (e.g.,  Kelley, 1973 ). Such accounts can straight-

forwardly be captured in the graphical-models-based framework if we think 

that causal attribution is simply a matter of inferring which causes were 

likely present, given an observation of the effect. That is, these accounts 
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propose that causal attribution is no different (in kind) from the observa-

tional inference that we just showed could be understood as (nonnorma-

tive, psychologically plausible) operations on causal knowledge structured 

as a graphical model. 

 General causal attribution is not, however, so simple, precisely because 

our causal knowledge is often richer than the simple model used in these 

correlation-based accounts. In particular, we often have information about 

causal mechanisms.  11   For example, we may know details about a particular 

causal connection, such as when it is (and is not) likely to be active, the 

steps by which the cause at the start of the mechanism leads to the effect 

at the end, and so forth. Moreover, this additional causal knowledge makes 

a difference: if two potential causes have the same correlation with the 

effect, then people disproportionately select the factor about which they 

have more mechanism information as  “ the ”  cause ( Ahn  &  Bailenson, 1996 ; 

 Ahn, Kalish, Medin,  &  Gelman, 1995 ). As a concrete example, suppose a car 

accident occurs when the road was icy, and also the driver took a medica-

tion that (somehow) causes one to be more likely to have a car accident. 

Furthermore, suppose that the correlation between the medication and a 

car accident is equal to that between icy roads and a car accident. In this 

example, people will be much more likely to select the icy road as  “ the ”  

cause, at least partly because they know a mechanism by which road condi-

tions can lead to a car accident, while that type of mechanism information 

is missing for the medication. This finding is relatively unsurprising, since 

the mechanism information helps us to have more confidence, for exam-

ple, that this situation is one in which the mechanism could have been 

active, whereas knowledge of the correlation supports no such claims.  12   The 

relevant question here is whether this finding can be explained in terms of 

operations on a DAG-based graphical model. 

 To answer this question, we need to understand better what is involved in 

the  “ mechanism ”  information in these experiments. In practice, the focus 

has been on information about how some causal factor brings about the 

effect. For example, an icy road leads to a car accident because the wheels 

slip and the driver loses control over the vehicle. As this example shows, 

this type of mechanism information is largely about intervening variables 

on the causal pathway: instead of  Ice   →   Accident , we have  Ice   →   Slipping   →  

 Loss of control   →   Accident . That is, people tend to select factors as  “ the ”  cause 

when they know about the mediating factors along the causal pathway. The 
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relationship between mediating variables and the overall causal relation is 

easily captured in the graphical models framework (through the notion of 

marginalization; see sec. 4.3.1 for the technical details). And we can use 

this technical machinery to explain and justify the overall preference: if 

people make reasonable inferences from the stories that they are told, then 

they should (justifiably) think it is more likely that the factor with a known 

mechanism is the actual cause. 

 One final way of investigating causal reasoning is simply to look at the 

way that we use causal talk in our everyday language. Rather than present-

ing people with novel situations or sequences of cases, we could instead try 

to determine the meanings of causal terms in natural language. For exam-

ple, one could ask about the content of the terms  “ cause ”  and  “ enable ”  

such that people readily utter sentences such as  “ the spark caused the fire, 

but the oxygen in the room enabled it, ”  with the implied contrast between 

 “ cause ”  and  “ enable. ”  In general, this type of everyday language turns out 

to be (arguably) best explained in terms of  “ force dynamics ”  ( Talmy, 1988 ; 

 Wolff, 2007 ;  Wolff  &  Song, 2003 ). More specifically, this account says that 

people think about the world in terms of forces that, like those in naive 

physics, have direction and magnitude.  13   When I raise my coffee mug, for 

example, the force of gravity pulls the mug downward, and the force pro-

duced by my arm directs it upward. When the force from my arm exceeds 

that from gravity, the mug moves toward my mouth, and most people 

would say that my arm  caused  the mug to move  despite  gravity. If the force 

of gravity is stronger than my muscles, however, then people say that grav-

ity  caused  the mug to stay still  despite  my arm. More generally, the force 

dynamics model provides semantic content for many different causal verbs 

in terms of patterns of relative directions and magnitudes of the relevant 

forces ( Talmy, 1988 ;  Wolff, 2007 ;  Wolff  &  Song, 2003 ). 

 The force dynamics model is frequently expressed using arrows to rep-

resent forces, but the account is very different from the graphical-models-

based approach advocated in this book. The edges in the graph part of a 

graphical model represent only qualitative relations of direct relevance. In 

contrast, the arrows in a force dynamics model encode  quantitative  informa-

tion about the direction and magnitude of the force. Both types of accounts 

use arrows, but they mean very different things by those arrows, and so the 

force dynamics model appears to represent a serious challenge to the graph-

ical-models-based view. They are, however, potentially more compatible 
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than initially appears, as they seem to be based on different sets of  “ causal 

representational simples ”  (for a similar point, see  Gerstenberg, Goodman, 

Lagnado,  &  Tenenbaum, 2012 ).  

 Most of the work supporting the force dynamics model has looked at 

causal language in the manipulation and use of physical objects, or cases for 

which physical object manipulation provides a natural analogy. This type 

of causal reasoning is almost certainly based on causal knowledge derived 

from causal perception. In contrast, reasoning about the effect of aspirin on 

my headache does not seem to be based in analogies with the manipulation 

of physical objects but rather depends on causal knowledge from causal 

inference. I will argue in section 4.4 that, in contrast with representations 

from causal inference, the products of causal perception are likely  not  well 

modeled using graphical models. Thus causal terms in everyday language 

may be grounded in two different representational bases, depending on the 

particular problem, domain, or knowledge source (perception versus infer-

ence). Of course, this assumes that the semantics of everyday causal lan-

guage about knowledge gained from causal inference can be captured using 

graphical models. To my knowledge, this is essentially an open problem, 

though it seems likely given the other evidence reported in this section. 

 4.3.1   Causal Reasoning as Graphical Model Reasoning* 

 Causal reasoning experiments that ask for judgments about the likelihood 

of different events are essentially just asking for conditional probability 

judgments; in fact, the experimental probes sometimes ask exactly that 

question. In these situations, the normative response is to give the actual 

conditional probability. As a running example, suppose that the causal 

structure is  C   →   M   →   E . This structure implies that the joint probability 

distribution factors into  P ( C  =  c ,  M  =  m ,  E  =  e ) =  P ( C  =  c )  P ( M  =  m  |  C  =  c ) 

 P ( E  =  e  |  M  =  m ). For simplicity, we can assume that all three variables are 

binary valued. Now, suppose that we want to infer the likelihood that  E  

is present given that  C  is present; that is, we want to compute  P ( E  = 1 |  C  

= 1). Given the Markov factorization of the joint probability distribution, 

this conditional probability can straightforwardly be computed as  P ( E  = 1 

|  M  = 1) P ( M  = 1 |  C  = 1) +  P ( E  = 1 |  M  = 0) P ( M  = 0 |  C  = 1). More generally, 

there are easy algorithms for translating any conditional probability into 

this type of  “ sum of products ”  of terms in the Markov factorization. There 

are also various distributed methods for carrying out this inference, such 
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as message-passing algorithms ( Pearl, 1988 ). In a message-passing algo-

rithm, the nodes  “ talk ”  to one another along the edges; essentially nodes 

 “ know ”  their own probability distribution, and they  “ tell ”  their neighbors 

whenever their own estimate changes. These algorithms are typically quite 

fast and relatively low computation and thus appear to be psychologically 

plausible. Message-passing algorithms have even been suggested as neurally 

plausible models for these kinds of inferences ( Lee  &  Mumford, 2003 ). 

 The systematic review by  Rottman and Hastie (2014)  told us that peo-

ple do not always provide the normatively correct response; normatively 

correct message-passing algorithms capture much of human behavior but 

cannot be fully descriptively accurate, at least at the cognitive level. As a 

reminder, I focus here on the relative underweighting of information in 

causal reasoning and postpone (until chap. 5) a discussion of the claim 

that people violate the Markov assumption. We currently have no well-

specified causal reasoning algorithms that can fully account for the experi-

mental data, but several plausible options immediately suggest themselves. 

One natural proposal is that inference proceeds through message passing 

in which the messages simply do not have the normatively correct impact 

on the receiving node ’ s  “ self-distribution. ”  This proposal is underspecified, 

however, as no account is provided for when and why the messages fail 

to have the correct impact. People do sometimes engage in normatively 

correct causal reasoning (multiple examples are discussed in  Rottman  &  

Hastie, 2014 ), and so any message-passing algorithm that simply discounts 

messages across the board will fail to capture the empirical data. 

 A very different type of reasoning algorithm is based on  “ sampling ”  our 

causal knowledge. Almost all graphical models are also generative models 

that can be used to produce a simulated or imaginary data set. We first 

generate values for the exogenous (i.e., parentless) variables by sampling 

from their unconditional probabilities; note that  P ( X ) is a term in the Mar-

kov factorization for any exogenous  X , so this is easy. Given values for the 

exogenous variables, it is straightforward to probabilistically determine the 

values of their children, and then their children ’ s children, and so forth. 

At each step, the probabilistic  “ choice ”  is simply a sample from a condi-

tional distribution term in the Markov factorization, and so this procedure 

is fast and easy. At the end, we have a data set of imaginary but fully speci-

fied cases that mirrors (up to sampling variability) the joint distribution 

in the quantitative component of the graphical model. One method for 
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determining  P ( E  = 1 |  C  = 1) would thus be to generate an imaginary data set 

in which every  “ individual ”  has  C  = 1, and then just compute the frequency 

(in that data set) of  P ( E  = 1). Introspectively, the data set generation seems 

easy: just imagine a bunch of individuals with  C  and then let the causal 

structure  “ flow ”  forward until you have an idea about how many have  E . 

The output of this type of  “ reasoning as sampling ”  algorithm (Vul, Good-

man, Griffiths,  &  Tenenbaum, 2009; see also  Denison, Bonawitz, Gopnik,  &  

Griffiths, 2013 ) will converge to the normatively correct answer as the size 

of the imaginary data set grows, but it can give decidedly nonnormative 

responses if one generates very small, or even just single-data-point, data 

sets (Vul, Goodman, Griffiths,  &  Tenenbaum , 2009 ). It is an open theoreti-

cal and empirical question whether this type of reasoning algorithm can 

account for the nonnormative behavior found in causal reasoning from 

observations, but it is a promising alternative to  “ simple ”  underweighting 

that can also explain a number of nonnormative behaviors in other areas 

of cognition. More importantly, these two proposals together show that 

we have little reason to conclude that DAG-based graphical models are an 

insufficient representation for causal reasoning, as there are reasoning algo-

rithms that (likely) can predict people ’ s nonnormative behavior. 

 Now consider trying to reason causally about the impact of an action or 

intervention. The experimental literature has focused almost exclusively 

on  “ hard ”  interventions that break all other arrows into (but not those 

out of) the target of the intervention whenever the intervention is active. 

When one performs a hard intervention or action, a highly predictable 

change occurs in the graph component of the graphical model, and thus a 

predictable corresponding change in the Markov factorization of the joint 

probability distribution.  14   For example, suppose we intervene to force  M  

= 1. In this case, the  C   →   M  edge is removed from the graph in our run-

ning example because  C  no longer matters for  M , but the  M   →   E  edge is 

left intact. The resulting joint probability distribution factors as  P ( C  =  c , 

 M  =  m ,  E  =  e ) =  P ( C  =  c )  P ( M  =  m )  P ( E  =  e  |  M  =  m ), where  P ( M  = 1) = 1. 

The important point here is that the result of the intervention operation is 

just another well-specified graphical model. Thus postintervention causal 

reasoning is formally identical with postobservation causal reasoning, but 

with a (potentially) modified graph. All the arguments and observations 

from the previous discussion thus apply equally to postintervention causal 

reasoning. In particular, we have a set of possible reasoning algorithms that 
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can explain people ’ s nonnormative behavior (again, leaving possible viola-

tions of the Markov assumption to sec. 5.3) as inferences in a DAG-based 

graphical model. 

 Now consider the causal reasoning problem of determining  “ the ”  cause 

in some particular case. Because we have a specific case, we have definite 

values for (most of) the variables, and so this causal reasoning problem is 

not obviously a conditional probability judgment problem, and we cannot 

straightforwardly use the algorithms and observations from the preceding 

paragraphs. Judgments about  “ the ”  cause arise precisely because we rec-

ognize that a cause variable can be present without  actually  causing the 

effect. For example, suppose a drunk driver is completely stopped at a light 

and someone else runs into him. There are clearly versions of this scenario 

in which the driver ’ s being drunk was causally irrelevant to the accident, 

though being drunk is, in general, a cause of car accidents.  15   One natural 

way to capture this in DAG-based graphical models is to add an unobserved 

variable  CP  for each separate causal  “ pathway ”  that indicates whether that 

particular pathway was active on this particular occasion.  16   In the case of 

the drunk driver, the standard causal pathway from  Drunk  to  Accident  is 

not active, though both  Drunk  and  Accident  have the value  Yes . There are 

serious questions about exactly how to individuate causal pathways, but 

various proposals aim to solve this problem (e.g.,  Hausman  &  Woodward, 

2004 ), and the distinction is often clear in practice. Given such an indi-

viduation, the challenge of determining  “ the ”  cause becomes the problem 

of determining which causal pathway (with the cause present) was most 

likely active. 

 To give a concrete example (and to see how the mathematics work), 

suppose that we have the causal structure  C  1   →   E   ←   C  2 , where (i)  C  1  and 

 C  2  influence  E  along separate causal pathways; (ii)  C  1 ,  C  2 , and  E  all actually 

occur; and (iii) the conditional probabilities for  E  are  P ( E  = 1 |  C  1  = 1,  C  2  = 

1) = 0.875;  P ( E  = 1 |  C  1  = 1,  C  2  = 0) = 0.75;  P ( E  = 1 |  C  1  = 0,  C  2  = 1) = 0.5; and 

 P ( E  = 1 |  C  1  = 0,  C  2  = 0) = 0. (These conditional probabilities correspond to 

a noisy-OR structure (see sec. 4.2.1) with  w  1  = 0.75 and  w  2  = 0.5.) If we aug-

ment the DAG-based graphical model to include the  CP  variables, then we 

get the graph in   figure 4.2,  and the conditional probability of  E  changes to 

be a deterministic function in which  E  occurs if and only if both  C  1  and  CP  1  

are present, or both  C  2  and  CP  2  are present.    

 To fully specify the graphical model, we must also provide the uncon-

ditional probabilities of  CP  1  and  CP  2 , but those are simply the probabilities 
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of  E  given that only the corresponding cause variable is present; that is, 

they are 0.75 and 0.5, respectively. Given this augmented graphical model, 

one can determine  “ the ”  cause by computing the relative probabilities that 

each  CP  variable is present, given that  C  1 ,  C  2 , and  E  all actually occur. In 

this particular case, it is straightforward to compute that  P ( CP  1  = 1 |  C  1  =  C  2  

=  E  = 1)  >   P ( CP  2  = 1 |  C  1  =  C  2  =  E  = 1), and so people should judge  C  1  to be 

more likely to be  “ the ”  cause. More generally, this approach predicts that 

judgments about which factor is the cause (given multiple options) should 

be in relative proportion to their reliability to bring about the effect (i.e., 

the likelihood that their causal pathway is active); in unpublished experi-

ments with David Rose and Edouard Machery, we found people exhibiting 

exactly this behavior. 

 Now, consider what it means to know the existence of a mechanism. In 

the relevant experiments, this information is invariably knowledge about 

the intervening variables by which some cause can bring about the effect. 

For example, I know that the switch causes the lights by controlling the 

flow of electricity in the wires; instead of just  Switch   →   Lights , I know that it 

is  Switch   →   Electricity in wires   →   Lights . There may be other information that 

we would want to call mechanism knowledge ( Machamer et al., 2000 ), but 

these causal reasoning experiments focus on this type of knowledge. One 

nice feature of graphical models is that we can straightforwardly use them 

to model the inclusion or exclusion of mediating variables ( Richardson, 

2003 ;  Richardson  &  Spirtes, 2002 ). In particular, if one marginalizes out 

(i.e., ignores) an intermediate variable in some causal chain — for example, 

 M  in the causal structure  C   →   M   →   E  — then the resulting graphical model 

simply has a direct edge from the cause to the effect:  C   →   E . Technically, 

these procedures require the use of acyclic directed  mixed  graphs (ADMGs) 

rather than standard DAGs, since a variable being ignored might be a com-

mon cause of multiple variables in the graph (which produces a bidirected 

E 

C1CP1 CP2C2

 Figure 4.2 
 Causal graph augmented with causal pathway (mechanism) variables. 



92 Chapter 4

edge  “  ↔  ”  in the graph). None of the experimental cases involve cases like 

these, though, and so marginalization yields DAGs. 

 We can combine these two ideas — the model of judgments of  “ the ”  

cause and mechanism information as knowledge of intervening variables —

 to understand the causal reasoning results showing a preference for factors 

for which we know the causal mechanism. More specifically, suppose we 

know the causal structure  C M    →   E   ←   C C   and we have mechanism informa-

tion for  C M    →   E  but not  C C    →   E . Since we do not have mechanism informa-

tion for  C C  , we need to introduce a variable  CP CC   indicating whether that 

causal pathway is active. In contrast, we can change  C M    →   E  into  C M    →   M   →  

 E , reflecting our mechanism knowledge. Moreover, this mechanism infor-

mation means that we do  not  need to add a  CP CM   variable to the graph, since 

the  C M   pathway being active  just is M  being present. Instead we need to add 

a variable  CP M   indicating whether the  M   →   E  pathway is active. That is, the 

full graph is not the simple common effect model from the beginning of 

the paragraph but rather the more complicated graph shown in   figure 4.3 .    

 Now consider the experimental setting in which we know that  C M  ,  C C  , 

and  E  all are present, and the correlation between  C M   and  E  is the same as 

the correlation between  C C   and  E . To identify  “ the ”  cause, we must deter-

mine which causal pathway variable has higher probability. Importantly, 

however,  CP CC   is compared not with  CP CM   but with  CP M  . The matching of 

correlations implies that  P ( CP CM   |  C M  ,  C C  ,  E ) =  P ( CP CC   |  C M  ,  C C  ,  E ). At the same 

time, it is simple to prove that  P ( CP M   |  M ,  C C  ,  E )  >   P ( CP CM   |  C M  ,  C C  ,  E ), assum-

ing that the mechanism is generative. Thus the variable with mechanism 

E 

CM CC CPCC

CPM M

 Figure 4.3 
 Expanded graph with mechanism information. 



Causal Cognition 93

information should be chosen as  “ the ”  cause just when we know (or believe) 

that  M  occurred. In all the standard psychological experiments, either the 

mechanism variable is explicitly known to occur, or nothing at all is men-

tioned about it. In the latter case (and given that all these mechanisms are 

relatively reliable and well-known), a natural inference is that absence of 

mention implies nothing unusual or abnormal; that is, participants can 

very naturally infer that  M  is present. And putting these pieces together, 

we see that there is a normative explanation of the preference for choosing 

as  “ the ”  cause exactly those variables about which we have mechanism 

information. 

 I have focused here on a computational explanation for this preference, 

since it makes the most direct case for the graphical models framework. 

Other types of reasoning could also potentially explain this preference, 

and these alternatives are equally consistent with cognitive representations 

of causal structure being DAG-based graphical models, though they do not 

depend quite so centrally on it. For example,  Hitchcock and Knobe (2009)  

have argued that people choose as  “ the ”  cause exactly those variables 

that are better targets for future interventions. Many different types of 

mechanism information can inform our intervention decisions, including 

the actions or form that those interventions take. Hence variables about 

which we have mechanism information will be better targets for interven-

tion. This explanation depends, however, on people actually having the 

preference that Hitchcock and Knobe suggest ( “ the ”  cause should be 

something suitable for intervention), and there is reason to question that 

empirical claim ( Sytsma, Livengood,  &  Rose, 2012 ). More importantly, 

this explanation differs at the level of processing algorithm, not repre-

sentations. Hitchcock and Knobe ’ s idea can easily be translated into the 

graphical models framework, and so it provides no reason to think that the 

preference — variables with mechanism information are more preferred as 

 “ the ”  cause — poses any challenge to the view expressed here. In contrast, 

one particular kind of causal cognition  does  pose such a threat, as we see 

in the next section. 

 4.4   Causal Perception 

 Any exploration of causal cognition would be incomplete without some dis-

cussion of causal perception. The canonical example of causal perception is 
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the so-called launching effect, investigated extensively by  Michotte (1946) . 

The launching effect is essentially an abstract version of a moving billiard 

ball hitting a stationary one. Picture a square at rest in the middle of a 

screen, and then another square moving toward it from offscreen. When 

the moving square makes contact with the stationary square, the moving 

one stops, and the stationary one begins moving offscreen. In cases such as 

these, people almost universally declare that they saw the first square  cause  

the second one to move. The perception of this sequence is not simply as 

a set of motions but rather as an event that involves a rich (in some sense) 

causal connection. Moreover, this causal perception is quite sensitive to 

spatiotemporal characteristics of the sequence; a spatial gap between the 

blocks or a temporal mismatch (the motionless block moving either too 

early or too late) can destroy the phenomenological experience of causa-

tion ( Michotte, 1946 ;  Schlottmann  &  Anderson, 1993 ). Causal perception 

extends beyond just the simple launching effect. People also directly per-

ceive other types of physical causal relations such as pulling, shattering, or 

exploding ( Michotte, 1946 ;  White  &  Milne, 1997 ,  1999 ). Causal perception 

even extends into the social and psychological domain, as some motion 

sequences lead to the direct perception of personality traits: for example, if 

one sees a square move erratically across a screen with a triangle smoothly 

following it, then one often thinks that the square is scared and the tri-

angle is chasing it ( Csibra, Gergely, Biro, Koos,  &  Brockbank, 1999 ;  Gergely, 

Nadasdy, Csibra,  &  Biro, 1995 ;  Heider  &  Simmel, 1944 ). 

 The launching effect reliably emerges around six months of age, fol-

lowed by more complex, sophisticated types of causal perception (including 

social causal perception) over the following six months ( Csibra et al., 1999 ; 

 Leslie, 1982 ;  Oakes  &  Cohen, 1990 ). Causal perception does not seem to be 

subject to top-down cognitive influences ( Blakemore et al., 2001 ), which 

has led some authors to suggest that causal perception might be a modu-

lar process ( Scholl  &  Tremoulet, 2000 ), though the evidence on that spe-

cific point is mixed ( Schlottmann, 2000 ). Causal perception exhibits many 

interesting context effects: whether an ambiguous stimulus is perceived 

causally depends on other events that occur around that time, as well as 

our attentional focus and other factors ( H. Choi  &  Scholl, 2004 ,  2006 ;  Gao, 

Newman,  &  Scholl, 2009 ;  Scholl  &  Nakayama, 2002 ). Causal perception 

also does not occur in a vacuum, as it is connected with other aspects of 

cognition such as our knowledge of forces and haptic information ( White, 
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2009 ,  2012 ) or our perception of the spatial locations of various objects 

( Scholl  &  Nakayama, 2004 ).  Rips (2011)  and  Scholl and Tremoulet (2000)  

provide recent reviews of empirical phenomena related to causal perception 

(see also  Danks, 2009 ). But most important for our present purposes, both 

neuropsychological and behavioral evidence seem to demonstrate that 

causal perception and causal inference are cognitively distinct processes 

( Roser et al., 2005 ;  Schlottmann  &  Shanks, 1992 ). As a result, we cannot 

simply transfer the graphical-models-based analyses from previous sections 

to causal perception. 

 In fact, I argue in the remainder of this section that we have good rea-

sons to think that a graphical-models-based analysis of causal perception 

is unlikely to be forthcoming. It is difficult to draw definitive conclusions 

about the possibility of a model of causal perception based on graphical 

models, as there are currently no well-specified formal or computational 

models of causal perception in  any  framework, so we have no standard 

against which to judge proposals. However, there are important ways in 

which the graphical models framework does not seem to  “ fit the phe-

nomena ”  of causal perception appropriately. In particular, causal percep-

tion depends on fine-grained spatiotemporal details about the objects in 

question. In contrast, graphical models have principally been (successfully) 

applied to relatively  dis continuous phenomena, either discrete-time causal 

structures (e.g., DAG-based time series models in econometrics) or causal 

relations between spatially distinct spatial regions (e.g., UG-based models 

of disease spread in epidemiology). One idea would be to integrate these 

two types of models into a single causal structure of motion and collisions 

in the world, where causal perception is some type of inference using that 

model. Although this seems initially promising, there are many challenges 

to making it work. 

 To see some of the difficulties, consider a natural way to try to use 

graphical models to capture just the launching effect. We start with a large 

spatial grid in which each location corresponds to a graphical node (with 

node value denoting whether an object is present at that location). We 

also assume that time is suitably discretized into a sequence of distinct 

timesteps. We can then represent movement by using two sets of nodes —

 one for time  t  and one for time  t +1 — where there is an edge from node  A  in 

the  t -graph to node  B  in the  t +1-graph just in case it is possible for an object 

to move from  A  to  B  in one timestep. This graph is insufficient, however, as 
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it cannot properly represent the acceleration of an object. To capture those 

features, we need to include at least three timesteps in our graph: edges 

from  t  to  t +1 indicate movement with a given velocity, while edges from  t  

to  t +2 provide information about the acceleration (so that we can predict 

where the object should be in the next timestep). Given these edges, we can 

parameterize the graph to encode folk beliefs about the behavior of objects 

(e.g., an object in motion tends to stay in motion, except when friction 

slows it down). Finally, to capture the idea of a collision, we need to adjust 

the parameterization so that an object  O  at node  A  that is not moving  17   at  t  

begins to move at  t +1 when an object  M  occupies an adjacent node at  t , and 

 M  would (if not for  O ) occupy node  A  at  t +1. 

 This complicated graphical model  might  capture the launching effect, 

though it cannot yet handle, for example, the possibility of objects that 

are large enough to be distributed across multiple spatial nodes. More 

importantly, though, this graphical model falls far short of modeling causal 

 perception : it includes no role for, among other things, the influences of 

context, attentional grouping, spatiotemporal timing, or mass and force 

information. And matters get even trickier when we consider more com-

plex types of causal perception, such as exploding (where the cause does 

not necessarily touch the effect objects) or social causal perception (where 

fine details about the long-term movement patterns are often relevant). It 

simply does not appear promising to model causal perception as inference 

over some causal  “ motion ”  graph. 

 One diagnosis for these difficulties is that they arise from the identi-

fication of graphical nodes with spatial locations; perhaps it would work 

better to use an  “ object-oriented ”  model in which the nodes correspond to 

properties of the blocks themselves. That is, one might consider a graphi-

cal model in which the nodes are, say, the spatial locations, velocities, 

and accelerations of block  A , block  B , and so forth. One could then build 

distinct graphical models such as  M launch  ,  M explode  , or  M chase   corresponding to 

different ways that the position, velocity, and acceleration of each block 

can be caused by its own previous state, as well as the states of the other 

blocks (depending on their location and movement). One would also need 

a  “ something else ”  model that encodes movement patterns that do not fit 

any causal perception pattern.  18   Once we have this assortment of models, 

causal perception becomes a matter of model choice: given some perceptual 
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input, one determines which model is the most likely to have produced 

that particular observation. 

 There does seem to be something right about the idea of causal percep-

tion involving some sort of model choice. Analyses of causal perception in 

terms of schema activation (or related ideas, such as selecting an intuitive 

physics model) share this intuition that causal perception involves selec-

tion of one possibility from among a larger set ( Gerstenberg et al., 2012 ; 

 Scholl  &  Nakayama, 2002 ;  White, 2009 ). The problem, however, is that 

graphical models do not appear to be the right way to express those dif-

ferent possibilities. First, one cost of using object-oriented graphical mod-

els is that we need to have different models depending on the number 

of objects in the scene. Various computational techniques can handle this 

problem using plate notation ( Koller  &  Friedman, 2009 ), but the need for 

this change already calls into question whether graphical models are an 

appropriate modeling framework. Second, even if we fix the number of 

objects, all the different graphical models will be structurally identical. The 

explanatory work is done entirely by the parameterizations, and those para-

metric differences will typically be quite subtle and complex. As a result, 

any insight is unlikely to be due to the graphical models aspect of the 

framework but rather will arise from something like the fact that these are 

generative models ( Gerstenberg et al., 2012 ). Third, the previously men-

tioned context effects depend in part on the fact that causal structures can 

encompass multiple objects. We thus need to augment all these perceptual 

models with various possible causal structures over the different objects, 

thereby further complicating the model choice problem in important ways. 

 I should reiterate here that I have no definitive proof that causal percep-

tion can  not  be fruitfully explained using the graphical models framework. 

In fact, something  “ graphical ”  might very well turn out to be critical, given 

the importance of force information to causal perception ( White, 2009 ; 

 Wolff, 2007 ) and the frequently used graphical representation of force 

dynamics. These graphs are not, however, the same as the graphical models 

that I employ in this book. As noted earlier, the arrows in a directed acyclic 

graph are quite different from the arrows in a vector diagram; as just one 

example, the length of an edge in a DAG is meaningless, whereas the length 

of an arrow in a vector diagram communicates critical information about 

the magnitude of the force. We must be careful not to take evidence in 
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favor of vector force diagrams to be evidence in favor of DAG-based graphi-

cal models of causal structure of the sort that we discussed earlier. It might 

be possible to unify the two types of graphs in some way (see also  Danks, 

2009 ); in section 10.1 I briefly revisit the challenge of spatiotemporally 

continuous phenomena for graphical models. In the meantime, we should 

recognize the possibility that some key cognitive phenomena might not 

naturally be understood as inference on cognitive representations struc-

tured as graphical models. 

 4.5   Conclusion 

 Causal cognition as a subject is wide-ranging, and instances of it can be 

found throughout cognition more generally. It is thus critical that any 

attempt to unify the mind have a serious engagement with causal learning 

and reasoning. As I have shown throughout this chapter, we can straight-

forwardly understand large aspects of our causal cognition as operations 

on graphical models, specifically DAG-based ones. At the same time, causal 

cognition was a relatively easy target, as it is arguably the area of cogni-

tive science in which graphical models have already been most widely used 

and adopted. DAG-based graphical models were originally motivated and 

developed in part to capture causal relations ( Spirtes et al., 2000 ), so it is 

perhaps unsurprising that we can use them to unify much of causal cogni-

tion (at least to the extent that we think that our cognition tracks or mirrors 

the world around us). A decidedly more challenging task is showing that 

graphical models are useful for other types of cognition, so we turn now to 

the many types of cognition involving concepts. 

 

 
 



 5   Concepts, Categories, and Inference 

 5.1   Concepts as Fundamental Building Blocks 

 The previous chapter showed how to use graphical models to capture our 

cognitive representations of causal structure, and the operations we per-

form in causal learning and reasoning. As I noted there, however, causal 

cognition was arguably an easy target, as one of the principal uses of graphi-

cal models over the past twenty years has been to model causal structures in 

the world. If our cognitive representations track the world to any significant 

degree, then we should expect that much of our knowledge about causal 

structures should be structured approximately as a DAG-based graphical 

model. A far more challenging task is to show that other cognitive repre-

sentations can usefully be understood as graphical models. In this chapter, 

I attempt to do just that for concepts. 

 Concepts are used throughout our cognition to carve up the world 

( “ that ’ s a cat, while that ’ s a dog ” ), make inferences about new individuals 

or objects ( “ that plant has red berries, so they are probably tasty ” ), orga-

nize our knowledge about diverse sets ( “ cats and whales are very different, 

but they are both mammals ” ), and perform many other functions. It is 

natural to think of them as the foundational elements or building blocks 

for almost any cognitive representation ( Murphy, 2004 ). For example, the 

causal structures discussed in the previous chapter were partly built out of 

concepts: when I believe  “ flipping the switch causes the light to turn on, ”  

I am using many different concepts, including  SWITCH ,  LIGHT ,  FLIP , and so 

forth. (For convenience, I will use  SMALL CAPS  to indicate concepts.) This 

chapter focuses on how to use graphical models to understand these basic 

building blocks. The overall thesis of this book — large pieces of our cog-

nition can be unified by understanding them as different operations on 
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shared cognitive representations that are structured (approximately as) 

graphical models — would clearly not be believable if concepts could not 

be incorporated, since they are a, perhaps  the , key aspect of our cognitive 

representations. This chapter is thus essential, as it provides the grounding 

(in graphical models) of one of the core constituents of cognition. At the 

same time, this chapter is but one piece in a broader picture, and so it will 

at times paint with a broad brush: some distinctions will be blurred (e.g., 

between a concept and a category), and not every facet of concepts qua 

knowledge structure will be explored.  1   I will instead focus on showing how 

many of the key cognitive operations involving concepts — feature infer-

ence, categorization, hierarchical inference, and more — can be understood 

as operations on graphical models. 

 There is a massive array of different models of concepts. In this chapter, 

I focus on three major ones — exemplar, prototype, and (one type of) theory 

theory accounts — all of which have corresponding computational versions. 

There are certainly many other theories about concepts, some of which 

are computationally well specified (e.g.,  Love, Medin,  &  Gureckis, 2004 ), 

and others that are stated in less mathematical terms (e.g.,  Barsalou, 1999 ). 

My goal in this chapter is not completeness about theories of concepts, as 

that would require at least a full book on its own, as others have shown 

(e.g.,  Murphy, 2004 ;  Pothos  &  Wills, 2011 ). Instead I aim to demonstrate 

that (i) three of the  “ biggest names ”  in theories of concepts can be under-

stood as describing particular types of graphical models; (ii) many cognitive 

processes involving concepts can be understood as operations using these 

graphical models; and (iii) the graphical models framework can help us to 

make sense of experimental results, and also some of the ways in which 

concepts can be related to one another. In the remainder of this section, 

I outline the conceptual foundations of these three theories of concepts. 

Sections 5.2 through 5.4 then show qualitatively how goals (i) through (iii) 

can be met using the graphical models framework, and section 5.5 provides 

the relevant mathematical details. 

 One major theory of concepts holds that they are sets of exemplars —

 salient, previously observed members of the category ( Kruschke, 1992 ; 

 Lamberts, 1998 ,  2000 ;  Medin  &  Schaffer, 1978 ;  Nosofsky, 1984 ,  1986 ,  1991 ; 

 Nosofsky  &  Palmeri, 1997 ;  Nosofsky  &  Zaki, 2002 ;  Zaki, Nosofsky, Stanton, 

 &  Cohen, 2003 );  Logan (2004)  provides a good overview of exemplar-based 

theories of concepts. The underlying intuition for these theories is that 
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each concept is defined by a set of  “ canonical cases ”  that were previously 

observed to be a member of the relevant category. For example, the con-

cept  TIGER  would be represented by my previous observations of tigers, or 

at least the salient observations. This set of exemplars provides an implicit 

encoding of the relevant information about the concept, including its key 

properties, representative instances, and relations with other concepts. For 

example, properties that are possessed by every exemplar will tend to be 

critical for categorization judgments. Importantly, exemplar-based theo-

ries require only that the relevant or salient features of the category exem-

plars be encoded. The theories are not committed to the computationally 

implausible claim that I remember every feature of every tiger that I have 

ever seen; rather, I encode just the features that I learn or believe to be 

important for the category. Exemplar-based theories of concepts are par-

ticularly good at explaining our ability to recognize unusual members of a 

category and also provide a basis for multiple cognitively plausible theories 

of concept learning. 

 A second major theory is that concepts are defined by some prototypi-

cal case ( Minda  &  Smith, 2001 ,  2002 ;  Posner  &  Keele, 1968 ;  Reed, 1972 ). 

A prototype-based concept is similar in many ways to an exemplar-based 

one with only one exemplar, except that the prototypical instance need not 

have been observed. In fact, the prototypical instance can have features that 

cannot occur in the real world. For example, every actual bird either can fly 

or cannot; the prototypical instance for the concept  BIRD , in contrast, could 

have some intermediate value to indicate that only some individuals in the 

population of birds actually fly. In general, the precise interpretation of the 

prototype is usually ambiguous between two interpretations. In some set-

tings, the prototype is supposed to represent the stereotypical instance of 

the category (e.g., the stereotypical bird is 95 percent of a  “ flyer ” ), where 

that case clearly need not occur in the world. On other occasions, the pro-

totypical instance encodes summary information about the observed cases 

(e.g., 95 percent of birds fly). These two different interpretations typically 

do not conflict, though they are obviously conceptually distinct: the ste-

reotypical instance need not have features that exactly match the observed 

statistics. Thankfully, this ambiguity will not be an issue for us. Prototype-

based theories of concepts are particularly good at explaining phenomena 

such as our ability to rapidly identify stereotypical instances of a category, 

even when we have never before seen that particular instance. 
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 A third major class of models of concepts is the so-called theory theory, 

which holds that concepts are either small (quasi-scientific) theories or key 

terms in such a theory ( Carey, 1985 ;  Gopnik, 1988 ;  Gopnik  &  Meltzoff, 

1997 ). That is, concepts are determined by the roles that they play in our 

broader knowledge structures, rather than being solely driven in a bottom-

up fashion by the observations that we make. There are many different 

ways of understanding a  “ theory, ”  and so the theory theory is better under-

stood as a very large set of distinct accounts of concepts. Moreover, many 

of these accounts have not been clearly specified but rather have relied on 

relatively qualitative explications. One well-specified version that has been 

heavily tested is causal model theory ( Oppenheimer, Tenenbaum,  &  Kryn-

ski, 2013 ;  Rehder, 2003a ,  2003b ;  Rehder  &  Hastie, 2004 ;  Rehder  &  Kim, 

2006 ), which focuses on causal structures as the key type of theory. More 

precisely, causal model theory holds that some categories are determined 

by identity of underlying causal structure. That is, individual members of 

a category are bound together by having the same underlying causal struc-

ture, at least for the relevant observed features. For example, any animal 

with the appropriate causal structure would be classified as a  TIGER , even 

if it had no observable features in common with  “ normal ”  tigers. Causal 

structures support counterfactuals, and so even though an animal might 

not look like a tiger at this moment, the key question is whether the cog-

nizer believes that the animal  would have been  a  “ normal ”  tiger in various 

counterfactual situations. Causal model theory is particularly well suited to 

explaining our ability to reason about complex counterfactuals involving 

members of a category, as well as why the statistical frequency of a property 

(within a category) is often a poor guide to the property ’ s importance in 

reasoning about the category. 

 As noted earlier, these three types of theories cover many of, though 

certainly not all, the proposed accounts of concepts. At the same time, all 

three of these theory types can fruitfully be understood within the frame-

work of graphical models. The next section shows qualitatively how this 

representation can be done. Section 5.3 then shows how various cognitive 

processes involving single concepts (e.g., feature inference) can be under-

stood as operations on those graphical models. Section 5.3 also shows 

how to understand categorization (i.e., between-concept competition) in 

the graphical models framework. Section 5.4 then examines the various 

between-concept relationships that can obtain, such as one concept being 
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superordinate to another. The mathematical details for all the qualitative 

claims in sections 5.2 through 5.4 are provided in section 5.5. As in chap-

ter 4, much of the work of this chapter is to show that different extant 

cognitive theories can be captured in the graphical models framework, 

so I will not dwell on many of the important empirical disputes about 

concepts. Throughout, it is important to bear in mind the overarching 

theme of this book: we can fruitfully understand disparate types of cogni-

tive activity as different processes operating on a shared store of cognitive 

representations, expressed as graphical models. The following sections aim 

to show that this thesis holds for basic cognitive operations involving 

concepts. 

 5.2   Concepts, Probability Distributions, and Graphical Models 

 Probability distributions have long been used to provide precise content for 

different qualitative concept types. More precisely, we first assume that, for 

each concept  C , there is some (possibly quite large) collection of features 

and properties that are relevant to  C . For example, the concept  DOG  pre-

sumably involves properties such as barking, typically having four legs, and 

so forth. These features can all be straightforwardly understood as variables 

that could take on different values; the property of barking might be treated 

as the variable  Barks  with possible values  “ yes ”  or  “ no. ”  This set of variables 

 F  (again, possibly quite large) is exactly the sort of thing over which we 

can define a probability distribution. And the qualitative intuitions under-

lying the concept types can then be understood in terms of constraints 

on acceptable probability distributions, where any particular concept  C  is 

represented by a specific probability distribution over the relevant features. 

For example, a set of exemplars (implicitly) determines a probability dis-

tribution, so we can represent (aspects of) the concept with that distribu-

tion. It is important to recognize that  “ represented by ”  is not the same as 

 “ identical with. ”  In particular, we can use probability distributions in this 

way without being committed to the implausible claim that concepts are 

 nothing more  than those distributions; rather, the idea is to use probability 

distributions to make precise some of the qualitative ideas underlying each 

concept type. For convenience, I will denote the probability distribution 

for a particular concept by  P C  ( F ), but all the mathematical details will be 

confined to section 5.5. 
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 Several different theories of concepts (and categorization; see sec. 5.3) 

have previously been understood directly in terms of constraints on the 

possible probability distributions for particular concepts of that type ( Ashby 

 &  Alfonso-Reese, 1995 ;  Ashby  &  Maddox, 1993 ;  Myung, 1994 ;  Rosseel, 

2002 ). In contrast, my core thesis requires that I translate these theories 

of concepts into constraints on graphical models (and their accompany-

ing probability distributions); since not every probability distribution has a 

perfect graphical model representation (recall sec. 3.4), my task goes further 

than that previous work. The translation of concepts into graphical models 

is trivial in the case of causal model theory, as it is already stated in the 

language of causal DAG-based models. More precisely, causal model the-

ory is defined as the theory that concepts are determined by shared causal 

structure, where that causal structure is expressed as a DAG-based graphical 

model, just as we saw causal structure represented in chapter 4. As a result, 

causal model theory concepts are already required to use only probability 

distributions  P C  ( F ) that satisfy the causal Markov and Faithfulness assump-

tions for a DAG encoding that causal structure. 

 The translation into graphical models and accompanying probability 

distributions is less straightforward for exemplar- and prototype-based 

models, as they have not previously been expressed in the graphical mod-

els framework. In general, the intuition behind exemplar-based concepts is 

that the connection between an individual  X  and a concept  C  should be 

based on the similarity between  X  and each of the exemplars of  C . If  X  is 

very similar to most of the exemplars, then it is probably a  C ; if it is quite 

different from most of the exemplars, then it is probably not a  C . There are 

many different quantitative versions of exemplar-based models, where the 

best-known one is  Nosofsky ’ s (1986)  generalized context model (GCM). All 

these different quantitative models formalize the intuition that similarity 

is the basis of categorization by defining the  “ fit ”  of  X  into concept  C  to 

be the (weighted) average similarity between  X  and each exemplar of  C .  2   

Different methods of assessing similarity lead to different cognitive theo-

ries, though we find shared features across theories: for example, things 

are always more similar to themselves than anything else. Each precise 

notion of  “ fit ”  or  “ average similarity ”  determines a probability distribution 

for the concept  C , where  P C  ( F ) is maximal for the instances that best fit  C , 

and the probability decreases proportionally as the fit worsens. That is, the 
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probability distribution for an exemplar-based concept tracks the similarity 

function that is determined by the set of underlying exemplars.    

 At the same time, consider the graphical model shown in   figure 5.1 , 

where  U  is unobserved. In this graphical model, each observed variable/

feature  F i   depends directly on only the unobserved cause, rather than on 

any of the other observed variables/features. In machine learning contexts, 

this type of DAG is frequently labeled a naive Bayes model ( Mitchell, 1997 ), 

but there is nothing inherently Bayesian about the DAG. It is simply a rep-

resentation of the structures in which every pair of observed features is 

associated, but those associations are entirely due to an unobserved com-

mon cause. 

 It turns out that there is a tight connection between the DAG in   fig-

ure 5.1  and exemplar-based concepts. In particular, suppose  EC  is the set 

of  P C  ( F ) for exemplar-based concepts; that is,  EC  is the set of probability 

distributions that correspond to some exemplar-based concept. Also, sup-

pose  GM EC   is the set of probability distributions that satisfy the Markov and 

Faithfulness assumptions for the DAG in   figure 5.1 ; that is,  GM EC   is the set 

of probability distributions that can be perfectly represented by the   figure 

5.1  DAG. We can then prove (see theorems 5.1 and 5.2 in sec. 5.5) that 

 EC  =  GM EC  . In other words, there is a direct translation in both directions 

between (the mathematical statement of) any exemplar-based concept and 

a graphical model with the   figure 5.1  DAG (under mild assumptions). In 

fact, theorems 5.1 and 5.2 provide a recipe for both directions: given precise 

numbers for one side, one can immediately derive the appropriate numbers 

for the other side. 

 Now consider prototype-based concepts. Concepts involving only the 

set of variables/features  F  are essentially always mathematically character-

ized as  “ exemplar-based concepts with only one exemplar. ”  The fit of any 

U

…F2F1 Fn

 Figure 5.1 
 Graphical model for exemplar-based concepts over  F . 
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particular individual  X  is therefore just the similarity to the prototypical 

instance, and that function determines a corresponding probability distri-

bution. Of course, the learning algorithms for prototype-based concepts are 

quite different from those for exemplar-based concepts, since exemplars 

must actually have been observed, while prototypes need not. However, the 

mathematics for the resulting concepts are essentially the same when the 

prototype is defined over only  F . We can define  PC1  to be the set of prob-

ability distributions for prototype-based concepts involving only  F .    

 On the graphical models side, consider the graph in   figure 5.2 . This 

is a so-called empty graph: there are no edges between any of the nodes. 

Empty graphs can be considered as either DAGs or UGs, so we can regard 

the resulting graphical model in multiple ways, including as a causal Bayes 

net (DAG) or Markov random field (UG). Let  GM PC1   be the set of probability 

distributions that satisfy the Markov and Faithfulness assumptions for the 

empty graph in   figure 5.2 ; that is,  GM PC1   are the probability distributions 

that can be perfectly represented by the   figure 5.2  graph. We can then prove 

(see theorems 5.3 and 5.4 in sec. 5.5) that  PC1  =  GM PC1  . In other words, the 

probability distributions for prototype-based concepts (involving only  F ) 

are exactly those that can be perfectly represented by the graph in   figure 

5.2 . 

 Prototype-based concepts involving only  F  can capture the idea that pro-

totypes should be the  “ stereotypical ”  case, but they are arguably unable to 

satisfy the intuition that the prototypical instance should encode (in some 

sense) the previously observed cases. In particular, any summary of the 

observed data needs to be able to represent patterns over multiple features. 

A simple way to encode these patterns is through the use of second-order 

features: features whose value is entirely determined by the values of two 

variables/features in  F  ( Gluck  &  Bower, 1988 ;  Rehder, 2003a ,  2003b ). For 

example, flying with wings is important for the concept  BIRD ; birds are not 

just animals that fly and have wings but rather fly with those wings. In this 

case, we can define a second-order variable  Winged Flyer  that takes the value 

 “ yes ”  just when both  Flies  and  Wings  are  “ yes. ”  This particular second-order 

…F2F1 Fn

 Figure 5.2 
 Graphical model for prototype-based concepts over  F . 
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feature is based on the logical operation of AND; other natural ways of 

defining second-order features could use logical OR, or the joint similarity 

of multiple features/variables in  F , or many other functions. More generally, 

a growing body of experimental evidence suggests that interactions among 

features must somehow be modeled, at least for some concepts ( Gluck  &  

Bower, 1988 ;  Murphy, 1993 ;  Neumann, 1974 ;  Rehder, 2003a ,  2003b ;  Wat-

tenmaker, Dewey, Murphy,  &  Medin, 1986 ). 

 If we have second-order features, then the fit of an individual  X  is not 

the similarity to the prototypical instance over just  F  but rather the similar-

ity based on  F   plus  the second-order features. We have additional dimen-

sions that matter for similarity. As a result, when the second-order features 

are nontrivial, we can get quite different similarities for particular individu-

als, and thus a much larger set of possible probability distributions. Let  PC2  

be the set of probability distributions for prototype-based concepts with 

second-order features. On the graphical models side, we can let  GM PC2   be 

the set of probability distributions that satisfy the Markov and Faithfulness 

assumptions for a UG-based graphical model (plus some minor quantita-

tive assumptions). We can then prove (see theorems 5.5 and 5.6 in sec. 5.5) 

that  PC2  =  GM PC2  ; that is, the probability distributions for prototype-based 

concepts with second-order features are the same as the distributions for 

UG-based graphical models (with minor constraints). Moreover, we have 

a recipe for translating between prototype-based concepts and graphical 

models: given precise numbers for one, we can derive the numbers for the 

other. In particular, the edges in the graph correspond exactly to the sec-

ond-order features. We can even extend the mathematical derivations in 

section 5.5 to allow for third- or higher-order variables/features, though 

such features are rarely used in cognitive models. 

 This result provides us with a clear characterization of the expressive 

power of second-order features within prototype-based concepts and, more 

generally, of the amount that they add to the expressive power of models of 

concepts. Substantial experimental evidence demonstrates that psychologi-

cal models of concepts must have some way of representing important con-

nections between features, and second-order features have been a popular 

way to model these connections in prototype-based concepts (though see 

 Rehder, 2003a ). At the same time, the precise content and value added by 

second-order features have not always been clear.  3   Prototype-based concepts 

with second-order features are much more expressive than those without 
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them, suggesting that models of such concepts should receive more atten-

tion than has traditionally occurred. 

 These various translations into the framework of graphical models pro-

vide a novel method for analyzing the conditions in which the cognitive 

theories of concepts are, or are not, distinguishable from one another. More 

precisely, because the different models of concepts — exemplar, prototype, 

and causal model based — correspond to different sets of graphical model 

structures, we can use known results about the expressive power of those 

graphical models to understand when the different psychological models 

make distinct behavioral predictions. 

 For example, if  U  in   figure 5.1  has more than one value, then (assuming 

Markov and Faithfulness) any pair of features that are adjacent to  U  will be 

associated with each other regardless of what else we know. The only graph-

ical models over only  F  that can express this fact (assuming Markov and 

Faithfulness) are those that have an edge between every pair of  U -adjacent 

(in   fig. 5.1 ) features. Since prototype-based concepts without second-order 

features correspond to empty graphs, we can thus immediately conclude 

that no (interesting) exemplar-based concept can possibly be represented 

as a prototype-based concept without second-order features. At the same 

time, exemplar-based concept models are unable to perfectly represent any 

causal-model-based concept that is not a complete graph, or any prototype-

based concept with second-order features for only some pairs of features.  4   

 These translations can also help us to understand the relationship 

between causal-model-based concepts and prototype-based ones with 

second-order features. In section 3.4, we explored the relative expressive 

powers of DAG-based and UG-based graphical models and found that they 

overlap: some probability distributions can only be represented by a DAG, 

others only by a UG, and some by both. Specifically, if the representing 

DAG has an unshielded collider (e.g.,  X   →   Y   ←   Z , where  X  and  Z  are not 

adjacent) or the representing UG is nonchordal (e.g., a diamond), then 

the other type of graphical model can  not  represent that distribution. Oth-

erwise one can represent the probability distribution with either type of 

graphical model. 

 With these results in mind, consider two conditions from  Rehder (2003a) . 

In the common cause condition, participants are taught a causal-model-

based concept whose underlying causal structure is  A   ←   B   →   C . This DAG 

has no unshielded colliders, and so any probability distribution for it can 
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also be represented by the UG  A   —   B   —   C . If participants actually learned 

the underlying causal structure, then we should therefore expect identical 

model fits for a causal-model-based concept and a prototype-based concept 

with second-order features, since each can fit the corresponding probabil-

ity distribution equally well. This is exactly what  Rehder (2003a)  found 

(see Rehder ’ s table 5 on p. 729). On the other hand, consider the common 

effect condition in which participants learned a causal-model-based cate-

gory with causal structure  X   →   Y   ←   Z . This DAG has an unshielded collider, 

so no UG can perfectly represent the probability distribution. As a result, 

prototype-based concepts, even with second-order features, should not pro-

vide a good model of human behavior with this concept (again, assuming 

people learned the intended causal structure). The model fits again bear this 

out: causal-model-based concepts fit human responses significantly better. 

We thus have a principled explanation for why the psychological models 

had the same fit to data in one condition but a quite different fit to data 

in another. With these benefits in mind, we turn now to the question of 

how to model cognitive processing with either single or multiple concepts 

in light of all these translations of the different types of concepts into the 

graphical models framework. 

 5.3   Reasoning with Concepts 

 Much of our reasoning about and with concepts involves only a single con-

cept. For example, I might know that my friend has a dog, and so wonder 

whether it is likely to bark. To answer this question, I only need to have the 

concept  DOG ; I do not need to know anything about any other animals. 

Alternately, I might wonder which properties of a concept are  “ important, ”  

in some sense of that word; again, I can presumably determine this without 

knowing (much) about other concepts.  5   These different cognitive opera-

tions have in common that I know that some individual falls under con-

cept  C , and I then want to make various inferences about that individual ’ s 

features. A natural issue, therefore, is how such inferences are possible in 

the graphical-model-based understanding of these different theories of 

concepts. 

 The basic challenge of so-called feature inference is to determine the 

likely features or properties of some individual, given that I know that the 

individual falls under some concept  C , and where I might also know some 
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other properties of the individual. The example from the previous para-

graph of inferring whether a dog likely barks is exactly such a case. This type 

of inference is essentially asking for a conditional probability: what is the 

probability that this individual barks, given that this individual is a dog? 

Using the notation of the previous section, the challenge is to determine 

 P C  ( F  |  G ,  H ,  … ) for features  F ,  G ,  H ,  …  in  F .  6   Graphical models were originally 

developed partly to optimize the computation of such conditional prob-

abilities, and so this type of inference is completely straightforward if our 

concepts are structured approximately as graphical models. Many different 

algorithms can efficiently compute conditional probabilities in a graphical 

model, but the exact details do not matter here. The relevant point is that 

any analysis of feature inference as computing conditional probabilities can 

easily be translated into the framework of graphical models, now that we 

have in hand the translations of the different types of concepts into that 

same framework. 

 For example, consider the task in experiment 1 of  Rehder and Burnett 

(2005) . They taught people a concept by explaining the causal structure 

underlying members of that category. They then provided a member of 

that category along with information about its values for three of the four 

properties. Participants had to determine the likelihood that the individual 

had some fourth property. As a concrete example, participants might learn 

that Lake Victoria shrimp (an imaginary species) have the causal structure 

given in   figure 5.3 .    

 A particular Lake Victoria shrimp is then chosen at random, and the 

participants are told, say, that it has (a) high levels of ACh neurotrans-

mitter, (b) rapid flight response, and (c) accelerated sleep cycle. The tar-

get question of interest is: how likely is it that this particular shrimp has 

high body weight?  Rehder and Burnett (2005)  show that people ’ s inferences 

Flight response Sleep cycle Body weight 

ACh neurotransmitter 

 Figure 5.3 
 Causal structure for Lake Victoria shrimp. 
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track the conditional probabilities dictated by the concept (at least mostly; 

see the next paragraph). In fact, many experimental studies have demon-

strated that feature inferences track conditional probabilities, where those 

conditional probabilities are determined by whatever concept people have 

inferred, whether exemplar, prototype, or causal model based ( Johansen 

 &  Kruschke, 2005 ;  Rehder  &  Burnett, 2005 ;  Yamauchi  &  Markman, 1998 , 

 2000 ). The mapping from feature inference to conditional probability infer-

ence in a graphical model seems to be empirically well supported. 

 People, however, do exhibit one notable divergence from this generaliza-

tion: they systematically use information about features that ought (proba-

bilistically) not to matter for the feature inference task. This behavior is 

sometimes described as a  “ violation of the Markov assumption ”  ( Rehder 

 &  Burnett, 2005 ;  Rottman  &  Hastie, 2014 ) and was previously mentioned 

in section 4.3.  7   I argue here that this description is actually incorrect. First, 

we need to understand the empirical phenomenon. In chapter 3, we saw 

that the Markov assumption essentially tells us about (ir)relevance: nodes 

that are not adjacent in the graph are informationally independent con-

ditional on some set of other nodes in the graph. If we apply the Markov 

assumption to   figure 5.3 , for example, we get the prediction that  Sleep cycle  

should be independent of  Flight response  given  ACh neurotransmitter . That 

is, once we know the value for  ACh neurotransmitter , learning about  Sleep 

cycle  does not provide us with any additional information about the value 

of  Flight response . This is not, however, what people do.  Rehder and Burnett 

(2005)  present experimental evidence that predictions about  Flight response  

depend partly on the value of  Sleep cycle , even when  ACh neurotransmitter  is 

known. Moreover, this general finding has since been replicated multiple 

times ( Mayrhofer, Goodman, Waldmann,  &  Tenenbaum, 2008 ;  Mayrhofer, 

Hagmayer,  &  Waldmann, 2010 ;  Walsh  &  Sloman, 2007 );  Rottman and Has-

tie (2014)  review the different relevant experiments. We thus seem to have 

a stark disconfirmation of the idea that these cognitive representations are 

structured as graphical models: even when people are explicitly taught a 

causal-model-based category using a graph, they seemingly do not make 

inferences according to it. 

 This conclusion is, however, too hasty, as there are at least two natural 

explanations for this behavior. First, causal connections are frequently tied 

together in various ways: the operation of one biological pathway often 

depends on the proper functioning of other biological pathways, or both 
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can depend on the overall functioning of the organism. If pathway func-

tioning is correlated in this way, then apparent violations of the Markov 

assumption are actually the normatively correct inferences ( Mayrhofer et 

al., 2008 ). At the extreme, inferences about shared mechanisms should 

almost certainly not obey the Markov assumption, and those are exactly 

the conditions in which people seem to be the most  “ non-Markov ”  ( Park 

 &  Sloman, 2013 ). That is, what appears to be a normative violation or error 

may actually be exactly the right inference. For example, plausible domain 

knowledge suggests that the proper causal structure for Lake Victoria shrimp 

is not the one in   figure 5.3  but rather something like the graph in   figure 5.4 . 

And in   figure 5.4 , the effects of the common cause are  not  independent of 

one another given just the observed common cause feature, and so people ’ s 

behavior is entirely consistent with their cognitive representations being 

structured as graphical models.    

 A second plausible explanation for these apparent violations of the Mar-

kov assumption is that participants believe that there is some possibility 

of error in identifying the species of the novel individual. If there is even 

a small chance of misidentification, then (for almost any alternative) the 

observations of the different effects are informative, even given knowledge 

of the common cause  ACh neurotransmitter , about the likelihood that this is 

 really  a Lake Victoria shrimp. That is, learning that the individual has, say, 

both a rapid flight response and an accelerated sleep cycle makes it quite 

certain that it is really a Lake Victoria shrimp rather than some other kind 

Flight response Sleep cycle Body weight 

ACh neurotransmitter 

Functioning organism

 Figure 5.4 
 Alternative causal structure for Lake Victoria shrimp. 
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of shrimp. And changes in the likelihood of really being a Lake Victoria 

shrimp should influence judgments about the various factors, so we have a 

second explanation of the apparent violations of the Markov assumption. 

Moreover, these two explanations do not compete; both could be correct. 

Of course, it is also possible that both of these possible explanations could 

be shown to be empirically false; perhaps people are not thinking about 

these cases in these ways. In the absence of such a demonstration, however, 

these experimental results do not, despite much of the rhetoric surround-

ing them, yet present a problem for a graphical-models-focused account of 

cognitive representations. 

 Returning to feature inference in general, multiple experiments have also 

examined whether people learn different concepts depending on whether 

they are taught by repeatedly categorizing instances or by repeatedly doing 

feature inference ( Chin-Parker  &  Ross, 2002 ,  2004 ;  Markman  &  Ross, 2003 ; 

 Yamauchi  &  Markman, 1998 ). In other words, do we learn something dif-

ferent about a concept when we do feature inference, rather than simply 

being provided with many instances of the concept? A consistent finding 

in these studies is that people do learn differently in these two conditions 

( Markman  &  Ross, 2003 ;  Yamauchi  &  Markman, 1998 ). This result is not 

predicted by many standard accounts of concept learning, as the category 

label appears to be  “ just another feature, ”  and so the two modes of learning 

should be essentially the same ( Anderson, 1991b ). In the graphical models 

account, however, this finding is unsurprising: learning a category or con-

cept requires learning an entire graphical model (including probability dis-

tribution); learning to infer features requires only learning the part of the 

graphical model that involves that feature. We thus have a natural explana-

tion for why, in many cases, these two types of learning result in different 

understandings of the concept. 

 A different mode of reasoning about individual concepts is determining 

which features are the most important, in some sense of that word. Mul-

tiple studies have shown that causally  “ earlier ”  features contribute more to 

judgments about a concept than do causally  “ later ”  ones ( Ahn, Kim, Lassa-

line,  &  Dennis, 2000 ;  Rehder  &  Kim, 2006 ,  2010 ;  Sloman, Love,  &  Ahn, 

1998 ). For example, if concept  C  is given by the underlying causal struc-

ture  X   →   Y   →   Z , then when all else is held equal about the features (e.g., 

salience, etc.),  X  will be judged by multiple measures to be more important 

than  Y  or  Z  for the concept  C . One model of this so-called causal status 
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effect is that features with more and stronger causal dependents — direct 

and indirect effects — are simply more important ( Sloman et al., 1998 ). In 

contrast, Rehder and colleagues have argued over multiple studies ( Rehder, 

2006 ;  Rehder  &  Kim, 2006 ,  2010 ) that the disproportionate impact of caus-

ally earlier features is entirely normative and arises because those factors 

typically have a larger impact on the various probabilities used in reason-

ing about and with concepts. That is, people weight earlier factors more 

because they really do matter more (normatively). For example, suppose I 

am doing feature inference, and I want to decide whether a novel instance 

of  C  has the feature  Y  (where  X   →   Y   →   Z , as before). In this case, it turns out 

that (for most quantitative components for that graph) learning whether 

 X  obtains will lead to a larger change in my estimate of  P ( Y ) than learning 

whether  Z . The key point for this chapter is that the causal status effect can 

straightforwardly be explained by causal-model-based concepts, which was 

one of the three concept types that I showed (in the previous section) cor-

responds to cognitive representations based on graphical models. 

 Of course, not all reasoning with concepts is about individual concepts; 

we sometimes need to work with sets of them. For example, another key 

function of concepts is grouping: when I determine that multiple animals 

in my house fall under the concept  CAT , I thereby group them together 

as similar in certain respects. This cognitive operation necessarily involves 

 multiple  concepts: grouping is valuable precisely because some individuals 

are not in the group, and so different inferences are possible depending on 

the group. More generally, groups are determined at least in part by what 

they are not, and thus by the alternative possibilities for some individual. 

In experimental settings, this categorization behavior is studied directly 

by (i) teaching a set of distinct concepts to the participant, (ii) presenting 

a novel instance, and (iii) seeing how it is categorized. Categorization in 

many natural settings is a probabilistic phenomenon: the same case can be 

classified, by the same individual, sometimes as an  A  and sometimes as a  B , 

particularly if the test case is ambiguous in various ways. Models of catego-

rization behavior must allow for this possibility. 

 An enormous variety of categorization models have been proposed; 

many of the computationally well-specified ones are discussed in  Pothos 

and Wills (2011) . I focus here on categorization models for exemplar-, 

prototype-, and causal-model-based concepts. In practice, these categori-

zation models are essentially all constructed as two-step models: given a 
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novel instance, the categorizer (i) computes the similarity or fit between 

the novel instance and each possible category and then (ii) uses these simi-

larities to make a choice. The similarities in step (i) are exactly the ones 

that we discussed in section 5.2, and that determine the probability dis-

tributions for concepts. By a wide margin, the most common choice rule 

for integrating similarity scores in step (ii) is the Shepard – Luce rule ( Luce, 

1963 ;  Shepard, 1957 ), which is discussed in more mathematical detail in 

section 5.5. This choice rule basically just converts the similarities into 

probabilities (possibly weighted by  “ salience ”  or base rates) and then uses 

the resulting probability distribution (over the possible concepts) to cat-

egorize the novel instance. 

 In the graphical models framework, the problem of categorization is 

essentially one of model choice: given a set of possible graphical models 

and some new individual, what is the likelihood that each graphical model 

could have produced that individual? The optimal or normative way to 

answer this question is to compute  P ( C i   |  X ) for each concept  C i   — the prob-

ability of each concept given the individual  X . We can use Bayes ’  theorem 

to express these conditional probabilities in different terms, but the precise 

mathematical details are not important (though see sec. 5.5). The key is 

that one part of the result depends on  P ( X  |  C i  ) — the probability of seeing 

an individual like  X  given that we know that it is a  C i  . As we saw in section 

5.2, this is just  P C  ( F ); that is, one part of the normative graphical model 

choice is exactly what is computed in step (i) of the two-step psychologi-

cal categorization models. Moreover, the remaining parts of the graphical 

model choice turn out to be exactly what is calculated in the Shepard – Luce 

rule used in step (ii). That is, categorization using these types of concepts 

just is optimal classification using graphical models, and vice versa.  8   More 

generally, this translation into the graphical models framework provides 

a measure of unification to disparate categorization theories by showing 

how they differ only in the graphs that underlie their probability distribu-

tions. We can thus talk sensibly about categorization decisions involving 

concepts of different types; for example, the cognitive agent might need to 

decide whether some novel individual falls under exemplar-based concept 

 E  or prototype-based concept  P . Such situations fall outside the scope of 

standard categorization models, since the concepts are of different types, 

but are easy to model if our cognitive representations (of concepts) are 

understood as graphical models. 
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 5.4   Building Webs 

 Categorization involves concepts competing with one another. However, 

many interesting between-concept relations do not involve competition. 

For example, the same individual can fall under both the  ANIMAL  and  DOG  

concepts. One standard view is that many concepts are arranged hierar-

chically, though any particular concept or individual can participate in 

multiple hierarchies. More specifically, many groups of concepts have a 

 “ basic level ”  concept that is most natural, typical, and so on, and the other 

concepts are either superordinate or subordinate to that basic level ( Rosch, 

1973 ;  Rosch, Mervis, Gray, Johnson,  &  Boyes-Braem, 1976 ).  DOG  is a sub-

ordinate category of  ANIMAL , since any individual that falls under  DOG  also 

falls under  ANIMAL  (though not vice versa); alternately, we can say that  ANIMAL  

is a superordinate category of  DOG . An extensive literature examines these 

conceptual hierarchies, much of which has focused on the characteristics 

that determine the basic level for a particular group of concepts ( Johnson 

 &  Mervis, 1997 ;  Markman  &  Wisniewski, 1997 ;  Murphy  &  Lassaline, 1997 ; 

 Rosch et al., 1976 ). Some experiments suggest that people might not always 

understand these multiconcept structures as strict, exceptionless hierar-

chies ( Sloman, 1998 ), but diverse evidence also suggests that many of our 

concepts are structured at least approximately hierarchically. 

 Such quasi hierarchies are easily captured in the graphical models frame-

work if we make an additional move. Each concept can (mathematically) be 

represented as a graphical model, but we are concerned here with inferences 

between  multiple  concepts, so we need some way to bring these diverse 

single-concept graphical models into the same structure. The basic idea is 

to introduce new nodes that indicate whether an individual falls under one 

or another  concept , and then have those new nodes be the graphical parents 

of the features that matter for each of those concepts. This idea is perhaps 

easiest to explain with an example, so consider the concepts  DOG  and  CAT  

with graphical models  G D   and  G C   for them, involving features  F  D  and  F  C . 

  Figure 5.5  gives incredibly simple toy examples.    

 We can now build a single graphical model  G  that has nodes for all of 

 F  D  and  F  C , as well as a new node  A  that is a graphical parent of all of them, 

as in   figure 5.6 . (For ease of comparison with   fig. 5.5 , nodes from just  F  C  

are in dashed boxes, the node from just  F  D  is in a dotted box, and nodes 

from both are in solid boxes.)  A  can take on two values { Cat ,  Dog } and 
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Running speed 

Leg length # of legs 

Running speed 

Has claws 
(b)

(a)

# of legs 

Climbing ability 

 Figure 5.5 
 Toy example graphs for (a)  DOG  and (b)  CAT.  

Running speed 

Leg length Has claws # of legs 

A = {Cat, Dog}

Climbing ability 

 Figure 5.6 
 Multiple-concept graphical model. 

functions as a  “ context node ”  ( Boutilier et al., 1996 ), switching the edges 

over features depending on its value. When  A  =  Cat , for example, the edge 

between  Has claws  and  Climbing ability  is active, but the one between  Leg 

length  and  Running speed  is not. These mutually exclusive concepts can thus 

be incorporated into a single graphical model by introducing a variable that 

(a) ranges over those concepts and (b) changes the feature probabilities and 

connections appropriately depending on its value.  9      

 If we incorporate enough different values for  A , then this node (with the 

rest of the graphical model) arguably becomes the concept of  MAMMAL , since 
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it encodes the relevant hierarchical information that every mammal — every 

individual with a value for  MAMMAL  — is a dog, or cat, or human, or other 

appropriate species (i.e., has that species as the  Mammal  variable value). 

Moreover, since this new node is  “ just ”  another node in the graphical 

model, we can repeat this process to introduce, for example, a variable cor-

responding to  ANIMAL . Features that are distinctive of  MAMMAL  (i.e., shared by 

all mammals, but not necessarily all animals) can then be direct graphical 

children of  ANIMAL , thereby encoding the fact that the value of  MAMMAL  (dog 

versus cat versus  … ) does not matter directly for those features. By iterat-

ing this process, we can build a much larger, richer graphical model that 

can account for diverse between-concept relations, since the edge between 

 ANIMAL  and the node corresponding to  MAMMAL  can itself be probabilistic in 

various ways (see also  Danks, 2007b ). 

 This rich graphical model can be used to help make sense of the lit-

erature on inductive reasoning involving concepts. Suppose, for example, 

that you are told that cats have chemical  X  in their bloodstream, and you 

want to decide whether whales also have chemical  X . This is a single-

premise inductive inference, as the conclusion ( “ whales have chemical  X  ” ) 

is evaluated on the basis of only one premise ( “ cats have chemical  X  ” ). 

The standard finding here is that, for both children and adults, induction 

goes up with increases in either the typicality of the premise category 

or the premise-conclusion similarity ( Gelman, 1988 ;  Gelman  &  O ’ Reilly, 

1988 ;  Heit, 2000 ;  Osherson, Smith, Wilkie, Lopez,  &  Shafir, 1990 ). In the 

graphical models framework, learning the premise amounts to adding a 

node and edge to the existing graphical model; for example,  “ cats have 

chemical  X  ”  implies that we should add a  “ chemical  X  ”  node and con-

nect it appropriately. Crucially, however, there are multiple places where 

we could add the edge, corresponding to whether the property  “ attaches ”  

to  CAT ,  MAMMAL ,  ANIMAL , or some other concept. Once the proper graphical 

parent is determined, the reasoner must then determine the appropriate 

parameters to use in the quantitative component of the (new) graphical 

model.  10   In general, we can think about typicality effects as arising because 

features of  “ typical ”  categories (e.g.,  DOG  is typical of  ANIMAL ) are more likely 

to be due to the feature  actually  arising from the superordinate category; 

similarity effects arise because the concepts are closer in the full graphi-

cal model, and so it is easier (in some sense) to attach the feature to the 

conclusion concept.  11   
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 Alternately, you could be provided with multiple premises — for exam-

ple, also the information that  “ mice have chemical  X  ”  — before evaluating 

the putative conclusion. The key empirical finding here is a diversity effect 

( Osherson et al., 1990 ): the induction becomes stronger as the diversity of 

concepts in the premises increases. For example, the inference to  “ whales 

have chemical  X  ”  is stronger from premises about mice and cats, compared 

to the cat premise coupled with one about dogs. Again, this effect is straight-

forwardly modeled in the graphical models framework, as the increased 

diversity makes it more probable that the new feature actually attaches to 

the node corresponding to a superordinate category. It is important in all 

this modeling, however, to ensure that we have the appropriate graphical 

model, as substantial empirical evidence indicates that the same concept 

can appear in multiple hierarchies, such as  DOG  being in both a taxonomic 

hierarchy as subordinate to  MAMMAL , and also in a food-based hierarchy as 

subordinate to  OMNIVORE  ( Heit  &  Rubinstein, 1994 ;  Ross  &  Murphy, 1999 ; 

 Shafto  &  Coley, 2003 ). A significant open question is how the appropriate 

graphical model is actually selected. 

 5.5   Putting Together the (Mathematical) Pieces* 

 The previous sections made a number of bold claims about concepts that 

were supported by translating them into graphical models and then using 

that representation to make sense of many cognitive operations using con-

cepts. The goal of this section is to provide the mathematical statements 

and justifications for those claims. In particular, section 5.5.1 shows pre-

cisely how to translate between the three concept types and the graphical 

models framework. Section 5.5.2 then shows how to translate the various 

cognitive processes into that same framework. This section is substantially 

more formal and technical than the mathematical sections of chapter 4, 

precisely because theories of concepts have largely not been expressed using 

graphical models, while many of the theories of causal cognition are quite 

explicitly stated in that language. I thus have to provide more machinery 

(which the reader may unfortunately have to work harder to understand) to 

connect cognitive representations of concepts with graphical models, but 

the payoff is arguably larger as a result. Throughout this section, I assume 

that an individual can be defined by an  m -dimensional feature vector  <  F  1 , 

 …  ,  F m   > , where the features (i.e., variables) are either all continuous valued 
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or all discrete valued. For ease of presentation, I assume that discrete-valued 

features are binary valued; this assumption is solely for rhetorical purposes, 

as discrete-valued features with more than two values can be represented 

by sets of binary features ( Love et al., 2004 ). Particular individuals will be 

denoted by  X , where  X i   denotes the value of feature  F i   for  X . 

 5.5.1   Concepts as Probability Distributions* 

 The first task is to show how to translate, for each of the concept types, 

between the similarity or fit functions for that concept type and graphical-

model-based probability distributions. If we denote the similarity function 

for a concept  C  by  S C  ( X ), then this amounts to proving that  S C  ( X )  ∝   P G  ( X ) 

for every  S C   for a concept type and  P G   for a graphical model type. The rela-

tionship is only one of proportionality because the range of values for the 

similarity functions need not be restricted to [0,1], while probabilities are 

restricted in that way. It is easy — in fact, trivial — to establish this propor-

tionality/equivalence for causal-model-based concepts. The standard cog-

nitive theory based on those concepts says that the fit of an instance  X  to 

concept  C  is simply the probability that  X  would be generated by the causal 

Bayesian network corresponding to  C . That is, the psychological theory is 

explicitly defined as  S CM  ( X ) =  P BN  ( X ), where  S CM   is a similarity function for 

a possible causal-model-based concept, and  P BN   is a probability distribution 

that satisfies the Markov and Faithfulness assumptions for some DAG-based 

graphical model (typically a Bayes net). Causal-model-based concepts are 

essentially already defined in terms of graphical-model-based probability 

distributions, and so no additional mathematical work is required. 

 Matters are not so simple for exemplar- and prototype-based concepts, as 

we first need to specify the cognitive theories. Similarity functions for these 

theories all start with similarity between two different individuals — either 

an exemplar and  X  or the prototype and  X . There is a relative standard defi-

nition of the plausible, cognitively sensible similarity functions between 

two different individuals: 

  Definition :  Sim ( X ,  Y ) is a  proper similarity function  if and only if: 

 (a)    Sim Sim X Yi i
i

m

( ) ( ),X Y, =
=

∏
1

  

 (b)   for all  i ,  Sim ( X i  ,  Y i  ) =  s i  (| X i    –   Y i  |), where  s i  (  ϵ  ) is positive and a strict maxi-

mum at  s i  (0). 
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 (c)    s di( )ε ε < ∞
∞

∫0
  

 Condition (a) is a decomposability constraint that the overall similarity 

be the product of the similarities along each feature dimension. Condi-

tion (b) constrains each feature-specific similarity to be a function (always 

greater than zero) of only the relative difference between the two feature 

values, rather than the absolute feature values. In addition, any particular 

feature value must be more similar to itself than to any other value. Finally, 

condition (c) ensures that the feature-specific similarity function behaves 

 “ nicely ”  as the distance varies. Overall this is an extremely general defini-

tion of a similarity function:  Sim  need not be a distance metric, it need not 

be monotonically decreasing as   ϵ   increases, and so forth. More importantly, 

every extant psychological model expressed in terms of similarity conforms 

to this definition (see also  Ashby  &  Alfonso-Reese, 1995 ). 

 For exemplar-based concepts, overall similarity is  “ weighted similarity to 

the exemplars, ”  and so an  exemplar similarity function  is defined to be 

  S W SimE k
k

k

e

( ) ( )X X E=
=

∑ ,
1

  

 where  E   k   is the  k -th exemplar,  W k   is the exemplar weight, and  Sim ( X ,  E   k  ) 

is some proper similarity function. Prototype-based concepts are essen-

tially just exemplar-based concepts with a single exemplar; if there are  r  

second-order features (defined in the next paragraph), then the prototype, 

individuals, and proper similarity function are all defined in terms of  m + r -

dimensional feature vectors.  12   We thus define a  prototype similarity function  

to be  S P  ( X ) =  Sim ( X ,  R ), where  R  is the fixed concept prototype, and  Sim ( X , 

 R ) is a proper similarity function. For convenience, I will use  S P1  ( X ) to pick 

out prototype similarity functions involving only first-order features, and 

 S P2  ( X ) for functions that involve at least one second-order feature. 

 All that remains on the similarity function side is to define the space of 

possible second-order features for  S P2  ( X ). It is notationally simpler to define 

second-order features in terms of the component features ’  distances from 

their prototypical values, rather than their particular values. We thus let   δ  i   

= | R i    –   X i  | and define a  second-order feature  to be any deterministic function 

 h k  (  δ  i  ,   δ  j  ). This definition does not assume that the second-order feature is 

symmetric in the two arguments, and is generally weak; the key constraint 

is simply that the second-order feature is a function of the two  “ distances 
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from prototype, ”  rather than the absolute feature values. Moreover, this 

characterization clearly covers all the intuitively natural cases, including 

logical OR and AND for binary features, and joint Euclidean distance from 

the prototype for continuous features. To ensure that we use only second-

order features that are actually meaningful, we further require that the 

similarity function for the second-order feature not be expressible as the 

product of similarities over the first-order features. More precisely, if  F k   is 

a second-order feature for  F i   and  F j  , then there cannot be  f (  ϵ  ),  g (  ϵ  ) such 

that  s k  (| h k  ( X i  ,  X j  )  –   h k  ( Y i  ,  Y j  )|) =  f (  ϵ  i  )  g (  ϵ  j  ) for measure one of (  ϵ  i  ,   ϵ  j  ). If we 

could decompose  s k   in this way, then there would be no need to include the 

second-order feature; all the work could already be done by the first-order 

features. We thus have a complete specification of the similarity functions 

for exemplar- and prototype-based concepts, regardless of whether there 

are second-order features. 

 We now turn to graphical models and probability distributions. Define 

an  edge-deletion transform of  G to be any graph  G * with the same nodes as  G , 

but where the edges in  G * are a (not necessarily proper) subset of the edges 

in  G . In other words,  G * is just  G  with zero or more edges removed from 

it. Given an additional variable  U  with  u  distinct values, we define  P E  ( X   ∪  

 U ) to be the class of probability distributions and densities that satisfy the 

following conditions: 

 (a)  P E  ( X   ∪   U ) satisfies the Markov and Faithfulness assumptions for some 

edge-deletion transform of the graph in   figure 5.1.  

 (b) For all values  j  of  U , there is an  m -dimensional point  R j   such that, for all 

 i ,  P ( X i   |  U  =  j ) =  f ij  (| R i  
j    –   X i  |), where  f ij   is a strict maximum at  f ij  (0). 

 (c) For all  k   >  1, there is a  Q ik   such that  P ( X i   |  U  =  k ) =  P ( X i   +  Q ik   |  U  = 1) for 

all  X i  . 

 Condition (a) is obviously the most important one for the overall thesis of 

this book, as it connects the set of distributions  P E   with graphical models. 

Condition (b) simply says that each  U -conditional distribution has a point 

of maximal probability for each  u  and is symmetric around that point. 

Condition (c) requires that, for each feature  F i  , the different  U -conditional 

distributions are identical up to translation of the maximal point. We can 

now prove the following theorems (for readability, all proofs are provided 

in the appendix): 
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  Theorem 5.1 : For all  S E  ( X ), there exists a  P E   such that  S E  ( X )  ∝   P E  ( X   ∪   U ), where 

 U  has  e  many values (and measure zero of the  P E   ’ s violate Faithfulness  13  ). 

  Theorem 5.2 : For all  P E  ( X   ∪   U ), there exists an  S E   such that  S E  ( X )  ∝   P E  ( X   ∪   U ), 

where  S E   has  u  exemplars. 

 That is, we can translate any  S E   into a  P E   and vice versa; similarity functions 

for exemplar-based concepts are the same (mathematically) as suitably sym-

metric probability distributions that satisfy Markov and Faithfulness for the 

  figure 5.1  DAG. Moreover, the proofs of these two theorems provide an 

explicit construction algorithm for transforming models of one type into 

models of the other type; I later use this translation with the generalized 

context model (GCM). 

 We can further restrict  P E   by requiring that  U  have only a single value; 

denote that set of probability distributions by  P P1  ( X ). Since  U  is a constant, 

there is no need to include it in the distribution, and it is necessarily inde-

pendent of all other variables. The graph for every distribution in  P P1   must 

therefore be the empty graph, which can be considered as either a DAG or 

a UG. It is straightforward to prove: 

  Theorem 5.3 : For all  S P1  ( X ), there exists a  P P1   such that  S P1  ( X )  ∝   P P1  ( X ). 

  Theorem 5.4 : For all  P P1  ( X ), there exists an  S P1   such that  S P1  ( X )  ∝   P P1  ( X ). 

 In other words, we can use the construction algorithms in the proofs to 

translate similarity functions with no second-order features into probability 

distributions that satisfy the Markov and Faithfulness assumptions for the 

empty graph. 

 Finally, we can expand  P P1   to include all distributions that satisfy the 

Markov and faithfulness assumptions for a UG over  F , rather than the 

empty graph. Recall from chapter 3 that a probability distribution for a 

UG is decomposed into a product of clique potentials — functions  g D  ( X ) 

that depend only on the values of variables in the (maximal) clique  D . 

We can additionally impose a factorization constraint on the clique 

potentials to keep the probability distribution from getting too complex: 

 g f X XD ij i j
i j

( ) ( , )
,

X D
D

=
∈

∏ ,  . This constraint requires that each clique potential 

be expressible as the product of functions that depend only on pairs of 

variables in the clique. It is trivially satisfied for cliques of size two, though 

it is a nontrivial constraint for cliques of size three or more. Even in those 
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cases, though, the constraint is still relatively weak, since no restrictions 

are placed directly on the  f   D    ,ij   functions beyond their product matching  g D  . 

Denote the probability distributions that satisfy this constraint (and Mar-

kov and Faithfulness for a UG with at least one edge) by  P P2  ( X ). We can 

then prove: 

  Theorem 5.5 : For all  S P2  ( X ), there exists a  P P2   such that  S P2  ( X )  ∝   P P2  ( X ), where 

there is an edge in the  P P2   UG for each second-order feature in  S P2   (and mea-

sure zero of the  P P2   ’ s violate Faithfulness). 

  Theorem 5.6 : For all  P P2  ( X ), there exists an  S P2   such that  S P2  ( X )  ∝   P P2  ( X ), where 

 S P2   has a second-order feature for each edge in the  P P2   UG. 

 In other words, just as with exemplar- and (first-order) prototype-based 

concepts, we can translate between similarity functions for (second-order) 

prototype-based concepts and graphical-models-based probability distribu-

tions, where UGs (rather than DAGs or the empty graph) provide the rel-

evant graphical models in this case. 

 The preceding results are all in terms of extremely high-level similar-

ity functions. In practice, cognitive models that use these types of con-

cepts do not function at such a high level of generality. To see how these 

results could be used in particular cognitive models, consider the well-

known GCM ( Nosofsky, 1986 ) that is the base similarity function for many 

exemplar- and prototype-based cognitive models; a similar example could 

easily be provided for the more complex case of  S P2  . Similarity between  X  

and  Y  in the GCM is defined as  S eGCM
c dist( ) ( )X Y X Y, ,= − × γ

 , where  c  is a global 

weighting parameter and  dist ( X ,  Y ) is the weighted (by the salience of  F i  ) 

distance between  X  and  Y :  dist X Yi i i
d

i

m d

( )
/

X Y, = −⎛
⎝⎜

⎞
⎠⎟=

∑α
1

1

 . The  S GCM   function 

factors as required for a proper similarity function only if   γ   =  d  ( Ashby  &  

Alfonso-Reese, 1995 ), so we focus on   γ   =  d  = 1 and   γ   =  d  = 2. In those cases, 

 s X Y ei i i
c m X Yi i i

d
−( ) = − −( / )α   for  d  = 1, 2, which clearly satisfies all the relevant 

properties for a feature-specific similarity function. 

 We can now provide a  “ bridge principle ”  that yields GCM-specific cor-

ollaries to theorems 5.1 through 5.4:  14    S ( X ) is GCM based if and only if, 

for all  i ,  j ,  P ( X i   |  U  =  j ) is either a double Laplace ( d  = 1) or Gaussian ( d  = 2) 

distribution with mean   μ  ij   and variance   σ  i   
2 . In other words, GCM-based 

similarity functions correspond to probability distributions in which all 

 U -conditional distributions (or unconditional distributions for members of 
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 P P1  ) are members of the same distribution family, and for each feature, the 

corresponding  U -conditional distribution has the same variance for all val-

ues of  U , though the means of that conditional distribution can vary (since 

the means are the corresponding exemplar feature values). 

 For example, suppose we have a GCM category with three continuous 

features for two equally weighted exemplars:  < 1.0; 1.0; 1.0 >  and  < 0.0; 0.0; 

0.0 > , and the following (randomly chosen) GCM parameters:  d  =   γ   = 2;  c  = 

2.3;   α   1  = 0.46;   α   2  = 0.11; and   α   3  = 0.19. The graphical model version of this 

exemplar-based category includes  U  with two values and all the edges in 

  figure 5.1 . Because the exemplars are weighted equally, we have  P ( U  = 1) = 

 P ( U  = 2) = 0.5. Because  d  = 2, all the  U -conditional distributions are Gauss-

ian, and their means (variances  15  ) are given in   table 5.1 .   

 The theorems presented in this section are not only theoretically useful 

in unifying various concept types but also practically useful, since they pro-

vide explicit translation methods, not just representation theorems. 

 5.5.2   Feature Inference, Categorization, and Conceptual Hierarchies* 

 Given that concepts are represented as graphical-model-based probability 

distributions, it is straightforward to capture the standard cognitive opera-

tions involving concepts. Feature inference is essentially the problem of 

computing  P C  ( F i   |  K ( F )), where  K ( F ) denotes information (possibly empty) 

about the other feature values. That is, feature inference involves determin-

ing the probability of one variable conditional on values of other variables. 

Graphical models were partly developed exactly to speed these computa-

tions, and we have many well-known and well-studied algorithms for infer-

ring conditional probabilities for arbitrary graphical models ( Bishop, 2006 ; 

 Pearl, 1988 ). In addition, as explained in section 5.3, apparent violations 

of the Markov assumption in these inferences (whether for causal-model-

based or other concepts) are naturally and easily explained through the 

  Table 5.1 
 Parameters for  U -conditional Gaussians for example GCM  

  U  = 1   U  = 2 

  P ( X  1  |  U  =  … )  1.0 (1.42)  0.0 (1.42) 
  P ( X  2  |  U  =  … )  1.0 (5.93)  0.0 (5.93) 
  P ( X  3  |  U  =  … )  1.0 (3.43)  0.0 (3.43) 
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introduction of an unobserved variable that indicates, for example, that the 

mechanisms underlying the causal structure are functional. The introduc-

tion of such a variable is a straightforward matter, given that we have the 

graphical-model-based representation of the joint probability distribution; 

 Mayrhofer et al. (2008)  provide one natural way to do it. 

 Categorization is similarly straightforward given that our cognitive rep-

resentations are structured like graphical models. In practice, categorization 

models are almost always two-step: one first computes a similarity score for 

each concept and then chooses (probabilistically) the concept using the 

Shepard-Luce rule ( Luce, 1963 ;  Shepard, 1957 ): 

  P C
S

S
C C

Q QQ

( | )
( )

( )
choose X

X
X

Q

=
∈∑

β
β   

 where  Q  denotes the set of possible concepts and   β  Q   is the response bias 

for category  Q . The previous section showed that similarity functions  S C  ( X ) 

correspond to probability distributions  P C  ( X ). Response biases are typically 

understood to be the  “ default ”  response rate for the category, which is 

essentially the concept base rate  P ( C ). Now, consider the Bayes ’  theorem 

expression of  P ( C i   |  X ): 

  P C
P C P C

P
i

i i( | )
( | ) ( )

( )
X

X
X

=   

 Since  P C  ( X ) =  P ( X  |  C ), we can immediately see that the expressions for 

 P (choose  C  |  X ) from the Shepard-Luce rule and  P ( C  |  X ) from Bayes ’  theo-

rem are identical; that is,  P (choose  C  |  X ) =  P ( C  |  X ). It is thus immediately 

the case that two-step categorization models all correspond to optimal cat-

egorization for graphical models corresponding to that type of concept.  16   

 Now consider the matters of conceptual hierarchies and inductive infer-

ence discussed in section 5.4; the modeling here will be more qualitative, 

as there are relatively few precise computational models of these processes. 

The key to modeling conceptual hierarchies is the use of context nodes 

whose values range over mutually exclusive categories, such as  CAT  versus 

 DOG  versus  MOUSE  ( Boutilier et al., 1996 ;  Poole  &  Zhang, 2003 ;  Zhang  &  

Poole, 1999 ). Importantly, these nodes are  parametrically  special, not struc-

turally so; they are distinctive because of the quantitative relationships that 

they have with their children (typically acting as a  “ switch ”  for between-

children edges), rather than being marked in any qualitative or structural 

way. It thus suffices to show how to introduce these context nodes. Given a 
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set of graphical models  G  1 ,  …  ,  G m   (over nodes  N  1 ,  …  ,  N  m ) corresponding to 

mutually exclusive concepts, let  G  be a graphical model over  N  =  N  1   ∪   …   ∪  

 N  m   ∪  { C }, where  C  is a novel variable with  m  values. For all  X ,  Y   ∈   N , if  X   →  

 Y  in some  G i  , then include  X   →   Y  in  G . Also, for all  X   ∈   N , include  C   →   X  in 

 G . Finally, the quantitative component of  G  is chosen so that  P G  ( N  i  |  C  =  i ) 

=  P i  ( N  i ). That is, if  C  =  i , then the relevant variables  N  i  have the probability 

distribution that they had in  G i  . This obviously underdetermines  P G  , since it 

does not specify the probability of variables in  N  \  N  i  when  C  =  i , but there 

are many natural ways to fill in these blanks. And, of course, we can iterate 

this process if there is another graphical model  H  for mutually exclusive 

concepts  H  1 ,  …  ,  H k  , but where  G  and  H  are mutually exclusive (e.g.,  ANIMAL  

versus  PLANT ). At the same time, note that the graphical model  M  for a con-

cept can participate in  multiple  hierarchies by starting with distinct sets of 

mutually exclusive concepts. 

 A graphical model  G  with one or more context nodes can be used for 

single- and multiple-premise inductive inference. Suppose our inductive 

inference involves premise concepts  B  1 ,  …  ,  B n   and conclusion concept  C . 

Let  J  be the  “ lowest ”  context node such that  C  and each  B i   are each values 

either of  J  or of a context node descendant of  J . All inductive inference 

consists of (i) adding a node to the graph  G  for the novel feature  F , (ii) mak-

ing  F  the child of  J ,  17   and (iii) specifying the (possibly qualitative) paramet-

ric information. Steps (i) and (ii) are clearly unproblematic; the interesting 

work happens in step (iii), as we must specify parametric information for  F  

conditional on  J  =  C . The natural model is that we consider two factors: (a) 

the  F -relevant information in concepts (i.e., alternate values of the context 

node) that are similar to  C  (i.e., concepts  A  such that  P ( N  |  J  =  A ) is similar 

to  P ( N  |  J  =  C )); and (b) whether parametric information about  non - F  fea-

tures of the  B s are shared by other concepts, including  C  (i.e., whether  P ( N  

|  J  =  B ) is predictive of  P ( N  |  J  =  A ) for arbitrary  A ). But this process imme-

diately yields the similarity and typicality effects for single-premise induc-

tions. And the diversity effect for multiple-premise inductions arises both 

because different sets of  B s can lead to using different context nodes  J , and 

because the information available for factors (a) and (b) can change as we 

vary the typicality and similarity of the premise concepts. Finally, I note as 

an aside that this formal model can also potentially explain some of the 

non-monotonicity phenomena observed by  Osherson et al. (1990) , though 

that aspect has not yet been worked out carefully. 
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 5.6   Conclusion 

 Concepts are a foundational aspect of our cognition, and so they are unsur-

prisingly perhaps the most-studied type of cognitive representation. The 

results in this chapter show that many aspects of concepts can be captured 

in the same graphical models framework that can capture our causal knowl-

edge (chap. 4). We thus have a unification of the cognitive representations 

for these two domains of cognition, though different cognitive processes 

are applied to that common representational store. Of course, learning 

and inference are relatively useless without some connection to decision 

and action, and so we now turn to understanding human decision making 

using the framework of graphical models. 

 

 

 

 

 

 
 



 6   Decision Making via Graphical Models 

 6.1   Roles for Causal Knowledge in Decision Making 

 The previous two chapters focused on using graphical models to represent 

our causal and conceptual knowledge. Those cognitive representations 

are, however, essentially impotent on their own; they are only useful if 

they are connected in some way with decision-making processes that can 

(intelligently) use them. The first section of this chapter aims to show that 

causal knowledge — represented as a DAG-based graphical model — plays a 

key role in much of our decision making. In particular, causal knowledge 

can guide us to attend to the proper factors and enable us to better predict 

the outcomes of our own actions. One type of decision making can thus 

be understood as operations on graphical models. Graphical models are 

not restricted, however, to serving as input to standard decision-making 

algorithms. In section 6.2, I describe two novel decision-making algorithms 

that are inspired and shaped partly by the advantageous features of their 

graphical model input. These novel algorithms still show only that graphi-

cal models can be an input to our decision making. I thus turn in section 

6.3 to model the decision-making process itself as operations on decision 

networks (also called influence diagrams), a generalization of the DAG-

based graphical models used in previous chapters. But first we look at the 

 “ easy ”  case: causal knowledge (structured as a DAG-based graphical model) 

provides a basis for intelligent decision making. 

 One important challenge in judgment and decision making is determin-

ing which factors should be the focus of one ’ s attention; that is, my deci-

sion making requires that I pay attention to possibly relevant factors, rather 

than the definitely irrelevant ones. Many accounts of human decision mak-

ing assume that this information search problem has already been solved, 
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as they assume that relevant features of the decision situation are provided 

as input. We can instead determine the relevant factors dynamically using 

causal knowledge, particularly if it is structured as a graphical model. In 

particular, suppose that my decision depends on some factor  T  that I do not 

know and thus need to predict. In that case, I should presumably focus on 

 T  ’ s direct causes and direct effects. This intuition has been explored exten-

sively in the context of the  “ Take the Best ”  (TTB) heuristic for binary forced 

choices ( Gigerenzer, 2000 ;  Gigerenzer  &  Goldstein, 1996 ), and so we need a 

brief digression to explain TTB. It is important to recognize, however, that 

what matters is how causal knowledge can, in general, support information 

search in decision situations; the focus on TTB is a purely contingent mat-

ter. In particular, I will not discuss whether TTB is empirically correct, since 

we are principally interested in a functional role of causal knowledge (in 

information search) for decision contexts. 

 Consider making a choice between two options relative to some crite-

rion, such as which washing machine is better or which city is larger. The 

basic idea of TTB is that people sequentially consider different cues — prop-

erties or features of the options — until they find a cue for which the options 

have different values (e.g., positive versus negative versus unknown), and 

then people choose the one with the  “ better ”  cue value. To take a simple 

example, suppose one is trying to decide which of two American cities is 

larger. One feature of American cities (that is related to size) is whether they 

have a professional (American) football team; TTB says (again, roughly) that 

if one city has a professional football team (positive cue value) but the other 

does not (negative cue value), then one should choose the city with a team 

as larger. Alternately, I might be trying to purchase a washing machine and 

decide between two options based solely on which is cheaper, or which has 

the longer warranty. Many papers provide empirical evidence that people 

behave roughly as predicted by TTB, though the precise empirical scope of 

TTB is a complicated matter ( Broder, 2000 ;  Gigerenzer, 2000 ;  Gigerenzer  &  

Goldstein, 1996 ;  Goldstein  &  Gigerenzer, 1999 ;  Newell  &  Shanks, 2003 ). 

 At the same time, it is somewhat puzzling that people would use TTB, as 

this strategy appears to be highly suboptimal. In TTB, decisions ultimately 

rest on only a single cue; it is, to use the jargon, noncompensatory: no 

amount of information in other cues can compensate for the single, criti-

cal difference. Thus, for example, one might judge Pittsburgh to be larger 

than Los Angeles, since Pittsburgh has a professional American football 
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team and Los Angeles does not, despite the numerous other cue differences 

telling us that Los Angeles is much larger. Perhaps surprisingly, however, 

the suboptimality of TTB is only apparent, not actual. In practice, TTB fre-

quently produces close-to-optimal performance on various tasks ( Chater, 

Oaksford, Nakisa,  &  Redington, 2003 ;  Gigerenzer, Czerlinski,  &  Martignon, 

1999 ;  Hogarth  &  Karelaia, 2006 ;  Martignon  &  Hoffrage, 1999 ), principally 

because cues are  not  considered in a random order. Rather, TTB assumes that 

people consider the different cues in order of their cue  validity : the prob-

ability that a cue provides an accurate decision, given that it discriminates 

between the options at all. TTB works well precisely (and only) because 

the order in which people consider cues tracks their likelihood of giving 

the right answer ( Newell  &  Shanks, 2003 ). This assumption that cues are 

considered in order of their validity is relatively innocuous in experimental 

settings, as participants are often told the cue validities (or are assumed to 

know them from life experience). In the real world, however, it is unclear 

how people identify possibly relevant cues, how they learn the appropriate 

validities, or whether they consider the cues in the proper order even if they 

have somehow learned the validities. 

 Causal knowledge potentially provides a solution to this problem of 

knowing what factors matter for a decision ( Garcia-Retamero  &  Hoffrage, 

2006 ;  Garcia-Retamero, Wallin,  &  Dieckmann, 2007 ). In particular, causes 

and effects of the decision-relevant attribute  T  are more likely to be valid 

cues for  T  ( Garcia-Retamero  &  Hoffrage, 2006 ). For example, having a pro-

fessional American football team is an effect of a city ’ s size, as a large popu-

lation base is one cause of whether sufficient financial and political support 

exists for a team. Conversely, being a state capital is plausibly a cause of a 

city ’ s size, as the presence of the state government causes there to be more 

jobs (all else being equal) and so more people. One might thus expect that 

both being a state capital and having a professional American football team 

would have significant, nonzero cue validities for city population, as they 

in fact do. On the other hand, the length of a city ’ s name is not plausibly a 

cause or effect of the city ’ s size, so we should expect that its validity would 

be essentially zero. 

 We thus seem to have a potential solution to the problem of the source 

of cue validity orderings and values: we use our causal knowledge to iden-

tify direct causes and effects and then compute cue validities for them ( Gar-

cia-Retamero  &  Hoffrage, 2006 ). We previously saw (in chap. 4) that our 
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causal knowledge seems to be structured as DAG-based graphical models. 

The identification problem is easily solved using such a graphical model, 

as the direct causes and effects are simply the factors that are (graphically) 

adjacent to  T . And cue validities can easily be computed from the paramet-

ric information contained in the graphical model,  1   so we can order the cues 

correctly. Moreover, experiments have found that people perform substan-

tially better on these types of binary forced-choice problems when they 

can use their causal knowledge, compared to having to estimate cue validi-

ties from observations ( Garcia-Retamero et al., 2007 ); observed cue validity 

information is sometimes employed but requires some pretraining ( Garcia-

Retamero, Muller, Cantena,  &  Maldonado, 2009 ). It thus seems that TTB in 

real-world situations is plausibly an operation on a DAG-based graphical 

model. More generally, causal knowledge can provide the necessary struc-

ture for successful information search in decision situations. 

 We now turn to examining a role for causal knowledge in the actual 

decision-making process, not just as an attentional focusing mechanism. 

An almost-ubiquitous schema for cognitive models of decision making is 

that people (i) have a set of possible actions; (ii) consider for each action the 

various probabilistic outcomes of that action; and (iii) choose the action 

that has the best (probabilistic) value. There are, of course, many ways of 

instantiating this schema and many processing variants. However, this basic 

schema — evaluate the possible outcomes of different actions and choose 

the  “ best ”  — underlies almost all psychological models of choice (and most 

normative ones). One issue for any model of decision making is explaining 

step (ii): how does the decision maker determine the probabilistic outcomes 

of an action? One cannot simply compute (naive) probabilities conditional 

on the state resulting from the action, since those do not distinguish 

between causes and effects. For example, the probability of being over fifty 

conditional on having gray hair is  not  the same as the probability that I will 

be over fifty if I dye my hair gray. Actions on  T  presumably (though see sec. 

6.3) only lead to probabilistic changes in  T  ’ s effects, not  T  ’ s causes, and so, 

to ensure correct predictions in step (ii), we need to know which associated 

factors are causes and which are effects ( Joyce, 1999 ;  Lewis, 1981 ). 

 The graphical-models-based approach can easily make sense of this criti-

cal distinction if I understand my decisions or actions as interventions that 

override (or  “ break ” ) the normal causal structure. As we have seen several 

times earlier in the book, interventions on  T  break the edges into  T , but not 
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the ones out of  T  ( Pearl, 2000 ;  Spirtes, Glymour,  &  Scheines, 2000 ), and this 

behavior exactly satisfies the requirement from the previous paragraph.  2   

This complication did not arise when discussing TTB, since the decisions in 

that process are based on causal structure but do not change it. Both causes 

and effects can provide valuable cues for TTB, since both carry information. 

In contrast, actually acting in the world requires that we distinguish (cor-

rectly) between causes and effects in both learning and reasoning. 

 Thus, to the extent that people actually understand their choices as 

interventions, causal knowledge (represented as a DAG-based graphi-

cal model) can satisfy a critical role in decision making by providing the 

resources to solve step (ii). Substantial empirical evidence now shows that 

people do think about their own actions in this way. For example, if people 

believe that  C  causes  E , then they conclude that an action on  E  will make 

no difference to  C , while actions on  C  will be a good means to bring about 

 E  ( Hagmayer  &  Sloman, 2009 ;  Sloman  &  Hagmayer, 2006 ;  Waldmann  &  

Hagmayer, 2005 ). In addition, quantitative aspects of the causal knowledge 

matter: stronger causes are more likely to be chosen when people are try-

ing to bring about some effect ( Nichols  &  Danks, 2007 ). Of course, one 

might wonder whether the causal  knowledge  is really being used for deci-

sion making, rather than people relying on habits or implicit learning. It 

is surely the case that some  “ decisions ”  actually arise from habit and so 

might not be based on causal knowledge. Just as surely, not all decisions are 

habitual; many decisions are based on conscious deliberation, whether that 

reasoning occurs spontaneously (e.g., in novel situations) or in response 

to a prompt. Moreover, when people deliberate on their decision, then 

they make different, and better, choices than when simply responding 

immediately or automatically ( Mangold  &  Hagmayer, 2011 ). This result 

suggests that many decisions are actually based on reasoning about the 

system. Finally, changes in one ’ s beliefs about the causal structure lead to 

corresponding changes in decisions that cannot be explained simply on 

the basis of observed associations ( Hagmayer  &  Meder, 2013 ). We thus have 

multiple threads of evidence that people ’ s decision making frequently uses 

their distinctively causal knowledge to predict outcomes of interventions or 

actions. More importantly for me, this causal knowledge is best understood 

in terms of DAG-based graphical models; that is, decision making arguably 

depends (often) on exactly the shared representational store that underlies 

cognition about causation and concepts. 
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 6.2   Novel Decision-Making Algorithms 

 The previous section focused on ways in which traditional, empirically 

supported decision-making algorithms can be understood as operations 

on cognitive representations of causal knowledge (structured as DAG-

based graphical models). The graphical models framework can also suggest 

some novel ways to approach decision making, and I explore the compu-

tational aspects of two proposals here. Unfortunately, no empirical tests 

have occurred for either proposal, so we cannot determine whether either 

is descriptively correct. I thus focus more on the ways that novel decision-

making theories can arise if cognitive representations are (approximately) 

graphical models. 

 The first novel approach starts with the observation that standard deci-

sion-making algorithms assume that people calculate, perhaps implicitly, 

the (probabilistic) outcomes of their actions to make a choice. In situa-

tions with complex causal structures, however, these computations can 

be quite complex, so we might hope to avoid them by using a suitable 

heuristic.  Meder, Gerstenberg, Hagmayer, and Waldmann (2010)  propose 

an Intervention-Finder heuristic: in trying to bring about some  E , people 

consider each of the possible causes of  E  (identified by statistical or other 

cues) and simply choose the option  C  that maximizes the observed (not 

causal) conditional probability of  E  given  C ,  P ( E  |  C ). That is, their heuris-

tic uses causal knowledge to narrow the scope of deliberation to just the 

potential causes (rather than effects) but does not use that knowledge for 

the probability calculations. In particular, the Intervention-Finder heuristic 

does not attempt to account for common causes or other reasons why  P ( E  

|  C ) might be large; it simply uses the observed conditional probability as a 

 “ good estimate ”  of what (probabilistically) would happen if one acted on  C . 

Unsurprisingly, this heuristic works best when the different possible causes 

are not highly associated with one another; surprisingly, it performed close 

to optimally in a large-scale simulation study ( Meder et al., 2010 ). Although 

the Intervention-Finder heuristic ignores causally important information, 

it turned out (in that simulation study) that the information being ignored 

did not usually make a difference as to which action was selected: the 

additional causal knowledge typically changed the value estimates of the 

actions, but not the overall rank order of them. This heuristic thus shows 

one way in which causal knowledge (structured as a DAG-based graphical 
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model) can suggest a novel decision-making algorithm that is normatively 

incorrect (since it does not actually try to determine the outcome probabili-

ties) but nonetheless successful. Unfortunately no empirical studies have 

yet explored whether the Intervention-Finder heuristic is actually used by 

people, though the theoretical possibility is intriguing. 

 A somewhat more radical novel decision-making model emerges when 

we reflect on the assumption (of the standard decision-making schema) 

that the decision maker is presented with a set of actions to consider. More 

than fifty years ago, Duncan  Luce (1959 , pp. 3 – 4) wrote: 

 There seems to have been an implicit assumption [in decision models] that no dif-

ficulty is encountered in deciding among what it is that an organism makes its 

choices. Actually, in practice, it is extremely difficult to know.  …  All of our choice 

theories — including this one — begin with the assumption that we have a mathe-

matically well-defined set, the elements of which can be identified with the choice 

alternatives. How these sets come to be defined for organisms, how they may or may 

not change with experience, how to detect such changes, etc., are questions that 

have received but little illumination so far. 

 The situation arguably has not improved substantially since the publication 

of Luce ’ s book. In response, one could flip the definition of a decision prob-

lem from being  “ action based ”  to  “ goal based ” : that is, a decision problem 

can potentially be characterized by a desired outcome state, rather than a 

set of possible actions. Goal-defined decision problems are surely not the 

only type that we face, but they seem to constitute a large set of everyday 

choices. 

 Given that we have only a desired outcome state and not a set of actions, 

we can use our causal knowledge — structured as a DAG-based graphical 

model — to dynamically construct possible choices. At a high level, the deci-

sion maker starts with the target variable  T  and considers actions on its 

direct causes (according to her causal knowledge), given observations of the 

factors adjacent to  T . That is, the decision maker first considers only those 

factors that her causal knowledge deems to be immediately relevant to  T . 

If one of those actions is acceptable,  3   then the decision maker performs 

that action. If no actions are acceptable, then the decision maker moves 

her scope  “ out ”  one step on the basis of her causal knowledge: rather than 

considering actions that affect the direct causes (i.e., parents) of  T , she con-

siders actions that change the causes of the causes (i.e., grandparents) of  T . 

And if none of  those  is acceptable, then she iterates back yet another step. 
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The process continues until the decision maker either finds an acceptable 

action or decides to stop for other reasons, whether boredom, frustration, 

or other demands on her cognitive resources. This method thus naturally 

constructs an appropriate set of possible actions, and so we seem to have 

the beginnings of a response to Luce ’ s challenge. 

 Moreover, this algorithm can be extended in intriguing ways. Dynamic 

information gathering can be incorporated immediately, since, for any 

action  A , the most relevant other factors that need to be considered are 

alternative causes of  A  ’ s descendants. That is, if I am considering an action 

on node  A , I can easily use my causal graph to determine the other variables 

that might interact with my action to produce good or bad effects. A small 

adjustment to the algorithm thus yields a dynamic attentional focusing 

mechanism. Alternately, a challenge for decision making is recognizing and 

accounting for side effects of our choices. Such side effects can readily be 

determined for each action because the algorithm does not use a fixed vari-

able set, though this additional computation does have some cost. Finally, 

planning behavior can be modeled by evaluating multiple actions rather 

than simply single ones, though that extension is still only hypothetical. 

 At any particular moment in the decision process, this method looks 

quite similar to the standard decision-making schema: the decision maker 

is considering the (probabilistic) impacts of a potential action to decide 

whether it is worth doing. Overall, however, there are several crucial dif-

ferences. Perhaps most importantly, this decision method is fundamentally 

dynamic in scope, and so one ’ s information-gathering and  “ action possibil-

ity ”  space are constantly changing. The decision maker never evaluates all 

possible actions but instead evaluates, and either accepts or rejects, each 

choice individually. The set of possible actions changes throughout the 

course of deliberation, as do the variables that are relevant for value judg-

ments. Decision making thus shifts from the standard model of a process 

in which the decision maker is selecting from a menu of options to one in 

which the decision maker can dynamically explore and construct the very 

possibility set being evaluated. As a result,  “ choose the optimal action ”  can-

not possibly be a decision criterion, since the decision maker will not nec-

essarily ever know what constitutes  “ optimal. ”  In many cases, the decision 

maker will be in a state of uncertainty about whether a better option poten-

tially lurks over the horizon if she would consider just one more action. 

Roughly speaking, the agent can safely stop looking for better options only 
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if there is a  “ dominant ”  cause that is more efficacious than combinations 

of other changes and cannot reliably be brought about through indirect 

means.  4   There must inevitably be a satisficing aspect to many of the deci-

sions made by this process: the eventual decision is selected because it is 

judged to be  “ good enough, ”  not because it is known to be optimal (though 

it might be). 

 Despite these limitations, simulation tests that I conducted with Ste-

phen Fancsali revealed that (a fully precise version of) this algorithm per-

forms close to optimally using significantly fewer computations. For these 

simulations, we used a version of this algorithm that regards an action as 

 “ acceptable ”  if its value — operationalized as expected value — exceeds some 

threshold  τ ; obviously, much more sophisticated versions are possible. We 

used two additional simplifications in these simulations: (i) when actions 

have costs, they depend only on the variable, not the value to which it 

is set; and (ii) the target  T  being in the desired state is worth one unit of 

value, and all other results are worth zero. These assumptions mean that 

the value of an action is always less than or equal to one and can be nega-

tive (if the action is costly but unlikely to produce the desired state). We 

tested the algorithm on a large number of different causal structures under 

a wide range of parameter settings. I group together causal structures with 

the same number of variables (denoted by V), as this is a major driver of 

computational challenges. We otherwise simply average over performance 

for each graph size; the graphs in figures 6.1 through 6.3 provide mean 

performance for roughly 100,000 (V = 4), 300,000 (V = 6, 8, 10), or 10,000 

(V = 15) graphs. Note that these results are for random graphs and param-

eterizations. There are obviously specific graphs on which this algorithm 

does quite poorly; I give an example later in this section when discussing 

empirical tests of this algorithm. One open question is what causal belief 

structures are  “ typical, ”  and whether this algorithm performs particularly 

well on those graphs. 

 A first question is whether this algorithm typically finds the optimal 

action.   Figure 6.1  plots the fraction of times that the algorithm selected the 

optimal action (vertical axis) against  τ , the value threshold for  “ acceptabil-

ity ”  (horizontal axis). Unsurprisingly, the probability of choosing the opti-

mal action increases as  τ  does; if one is choosier about the action, then one 

is more likely to wait until the truly optimal action is found. More interest-

ingly, the mean match rate only exceeds 95 percent for  τ  = 0.8. For small 
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 Figure 6.1 
 Match rate as a function of value threshold. 

value thresholds — that is, if the algorithm is not particularly  “ choosy ”  — the 

algorithm rarely selects the optimal action.    

 An immediate follow-up question to this first analysis is: How good 

are the actions that  are  selected? Although the algorithm rarely selects the 

optimal action, is it choosing ones that are nonetheless reasonably good? 

  Figure 6.2  shows the expected loss as a function of  τ ; recall that the values 

of all choices are between zero and one (since their values must be less than 

or equal to one, and the algorithm can always choose to do nothing and 

receive at least zero units of value). Unsurprisingly, the mean loss decreases 

as  τ  increases: if one is more stringent about what one will accept, then one 

should ultimately make a better choice. More surprisingly, the algorithm 

performs quite well with only small losses in (absolute) expected value for 

small values of  τ . Even in the extreme case of  τ  = 0 (i.e., accept the first 

considered action with a positive expected value), the algorithm performed 

reasonably well. At the upper end, the mean expected value loss for  τ  = 0.6 

was less than 0.01. This latter result is particularly notable given that the 

algorithm only chooses the optimal action 80 percent of the time when  τ  

= 0.6.    
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 Part of the cognitive plausibility of this algorithm is that it appears to 

be computationally much simpler. To confirm this idea, we compared the 

number of actions checked by the algorithm (including the  “ null ”  action 

of doing nothing) and the number of actions that were checked in find-

ing the optimal choice.   Figure 6.3  shows the former divided by the latter 

as a function of  τ , so smaller numbers indicate that the present algorithm 

considered fewer possible actions. Note that this measure ignores memory 

and other costs involved in information search when trying to find the 

optimal choice. A value of 1.0 indicates that optimal search and this algo-

rithm evaluated the same number of actions; in these simulations, that 

point generally occurred around  τ  = 0.6. One might be surprised to see 

numbers greater than 1.0. These are possible because the present algorithm 

collects information only gradually and thus rechecks the null action ( “ do 

nothing ” ) after each new observation, while the optimal search algorithm 

checks it only once.    

 The key to these simulations is to consider   figures 6.1 through 6.3  

together, as they show the following two points: for small values of  τ , this 

algorithm is computationally much simpler (10 – 30 percent of the compu-

tational cost) and achieves close-to-optimal performance; for large values 
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 Expected loss as a function of value threshold. 
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of  τ , the algorithm is only slightly more complicated and successfully finds 

the optimal choice. Perhaps most importantly, as V gets larger, the compu-

tational advantage increases, and the expected value loss decreases. Given 

that people ’ s causal knowledge presumably ranges over thousands of vari-

ables (or more), it is important that the performance trends of this algo-

rithm are headed in the correct direction. Moreover, these changes as V 

increases are unsurprising, as this algorithm is explicitly designed to first 

check the options that are most likely to be best, while the optimal algo-

rithm must check every conceivable option. By exploiting the relevance 

relations encoded in the causal knowledge graphical model, this algorithm 

exhibits a performance profile that fits the decision maker ’ s needs and can 

usefully and sensibly be tuned as appropriate. 

 Of course, these simulations do not tell us that people ’ s decision mak-

ing actually uses something like this algorithm. I thus close this section by 

considering three ways to empirically test the algorithm. The real keys here, 

though, are not the particular experiments but (a) the way that the graphi-

cal models framework inspires a novel decision-making algorithm, and (b) 

that these experiments would arguably not be conducted without thinking 
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 Fraction of actions checked relative to optimal algorithm. 
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about decision making through a graphical model lens. The first experi-

ment looks at people ’ s information acquisition patterns when confronted 

with a novel choice problem. Specifically, this proposed algorithm predicts 

that people will seek out information about direct causes before indirect 

causes. This prediction can be tested straightforwardly by teaching people a 

novel causal structure and then introducing a cost to information retrieval 

(e.g., forcing people to move a mouse over an on-screen box to learn a vari-

able value). We can then investigate the patterns of information search that 

people exhibit.    

 A second experiment focuses on the dynamic  “ satisficing ”  aspect of the 

algorithm. More specifically, suppose that people learn, either from experi-

ence or from description, the causal structure in   figure 6.4 . This graphical 

model can have natural causal strength parameters that imply that  A  is a 

more efficacious action than either  X  or  Y  alone. For example, suppose  X  

and  Y  are both relatively weak causes of  T , but  A  is a strong cause of both 

of them. In this case, acting on  A  makes  T  more likely than an action on 

 X  or  Y  alone, precisely because there are two causal pathways from  A  to  T . 

The present algorithm predicts, however, that people should sometimes act 

suboptimally in cases such as these. That is, there should be conditions in 

which people will choose to do either  X  or  Y  rather than  A , such as when 

there is time pressure or when the stakes are very low (and so people might 

be willing to perform actions even when they are not obviously close to 

optimal).    

 A third experiment is similar but instead uses the causal structure in 

  figure 6.5 , where we additionally assume that  X  is a deterministic effect 

of  A  —  X  occurs if and only if  A  does — and that  Y  is relatively ineffective. 

Because  X  is a deterministic effect of  A , actions on  A  and  X  result in exactly 

the same probability of  T . If actions on  A  and  X  have the same cost, then 

almost all models of decision making predict that people should choose 
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 Figure 6.4 
 Structure to test decision-making algorithm. 
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either randomly between  A  and  X  or on the basis of value-irrelevant factors 

(e.g., perceptual salience). If actions on  A  and  X  have identical impacts, 

then we seem to have no basis for picking one rather than the other. At 

the least, it is straightforward to develop experimental stimuli for which 

 “ always act on  X  ”  is not the predicted action. In contrast, the present algo-

rithm predicts that people will always choose to intervene on  X . Of course, 

for all these experiments, it is important that people learn the causal struc-

ture without reflecting deeply on it; if they have ample time to think about 

all the possibilities, then even the present algorithm predicts that people 

should make optimal choices. Nonetheless we have straightforward empiri-

cal tests for a novel decision-making algorithm prompted by modeling our 

causal knowledge as a DAG-based graphical model. 

 6.3   Graphical-Model-Based Decision Making 

 The previous two sections showed ways in which decision making can 

use graphical-model-based cognitive representations, both in the context 

of traditional models of decision making and to suggest novel algorithms 

(that remain to be empirically tested). Those demonstrations do fall short, 

however, of what was shown in chapters 4 and 5, where graphical models 

played an integral role in understanding the very cognitive processes; those 

representations were not simply (optional) inputs to the process. This sec-

tion aims to show that graphical models can similarly play a central role in 

decision making. The DAG-based graphical models in the previous sections 

treated every node identically: they all represented variables that could take 

different values. The factors that are relevant to a decision-making situa-

tion are not, however, all of the same type. Rather, it seems natural to dis-

tinguish four different types of things that we would like to represent in 

our model: actions, values, factors in the world, and the decision-making 
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 Figure 6.5 
 Alternative structure to test decision-making algorithm. 
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method itself. The variables that we have seen all along in our graphical 

models correspond to the factors in the world; to incorporate the other 

three, we need to expand the representational language of our graphical 

models. 

 Decision networks, also called influence diagrams, are DAG-based 

graphical models containing four distinct node types corresponding to the 

four types listed earlier ( Howard  &  Matheson, 1981 ;  Shachter, 1986 ). I will 

follow standard notational conventions and represent the different node 

types using different shapes. Nodes corresponding to events or factors in 

the world (i.e., outside the decision agent herself) are drawn in ovals, and 

all edges into them correspond to causal connections. Nodes representing 

the actions taken by the decision maker are drawn in rectangles; edges into 

such nodes capture informational or cognitive connections. Value nodes 

are denoted by diamond shapes, and edges into them indicate the factors 

that determine the value that the decision maker receives at a moment in 

time. Finally, the decision-making process itself is drawn in a triangle and 

is typically required not to have edges into it. This is all quite complex in 

the abstract, so it is perhaps easiest to understand by working through an 

example. Consider the simple problem of deciding whether to turn on the 

lights in a room with windows, where we assume that the decision maker 

wants to be able to see but does not want to waste electricity. A plausible 

decision network for this situation is shown in   figure 6.6 .    

  Time of day  encodes whether it is daytime or nighttime, which is obvi-

ously outside the control of the decision maker.  Max utility  indicates that 

the decision maker is using a decision process in which she attempts to 

maximize her utility; for probabilistic decisions, one could instead use a 

strategy such as  “ choose the action that has the maximal probability of 

yielding a utility of at least  U . ”  The  Flip switch  node represents the action 

Flip switch

Time of day

UtilityMax
utility

 Figure 6.6 
 Example decision network. 
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that the decision maker actually takes, either  “ yes ”  or  “ no. ”  That action is 

determined by the decision-making process ( Max utility ) given information 

from  Time of day . Finally,  Utility  is a function of the time of day and the 

action, where her value presumably depends on (a) being able to see, but 

with (b) a cost for using electricity. 

 If we have a fully specified decision network, then we can use informa-

tion about the world to derive a probability distribution for the possible 

actions (perhaps concentrated entirely on one choice, if we use a decision 

rule such as  “ maximize expected utility ” ). More generally, a decision net-

work provides a representation of the decision situation that is faced by 

the decision maker, and so it encodes (in a graphical model) exactly the 

information required to make a decision in accordance with the specified 

decision rule (see also Solway  &  Botvinick, 2012). By providing additional 

information, a decision network goes beyond the types of graphical models 

that we have seen in previous chapters. For example, consider trying to 

represent the decision problem of  “ should I turn on the lights? ”  in an  “ ordi-

nary ”  DAG-based graphical model. The causal structure is clear:  Light switch  

 →   Ability to see   ←   Time of day . But that causal graph tells us nothing about 

what I value, my abilities or capacities for action, or how I make decisions. 

These additional node types are required to make sense of decisions using 

just a graphical model. 

 These observations might seem to be in tension with sections 6.1 and 

6.2, since I argued there that decision making could be understood using 

 “ ordinary ”  DAG-based graphical models. In those sections, however, the 

graphical model was actually  not  sufficient to explain the full decision-mak-

ing process; it only captured one informational component or cognitive 

representation, rather than all elements of the process. The other relevant 

pieces (e.g., value function, decision-making process, etc.) were contained 

in processes or algorithms that sat outside the DAG-based graphical model, 

though they obviously used that graphical model. In contrast, the decision 

network framework enables us to put all those pieces into a single graphical 

model, thereby providing a much stronger graphical-model-based unifica-

tion of the relevant decision-making representations. For example, the iter-

ative decision search algorithm discussed in section 6.2 operated on causal 

knowledge but also used values, costs, thresholds, and other elements 

that were not in the causal graphical model. Using decision networks, we 

can represent almost all the pieces of that algorithm in a single graphical 
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model: (a) add a single value node that is the child of only the target vari-

able; (b) for every variable on which I can act, include an action node that 

is its parent; and (c) add a single decision rule node that is the parent of 

every action node and has the iterative procedure as its value. The resulting 

decision network makes the same predictions as the algorithm from section 

6.2, though at the cost of including more graphical nodes. These additions 

are worthwhile, however, precisely because they force us to be clear about 

the relevant elements, and also reveal assumptions (e.g., only single actions 

are allowed) that could naturally be relaxed. Similar characterizations can 

be provided for all of sections 6.1 and 6.2, not just the iterative decision 

algorithm. 

 All these observations about decision networks leave unaddressed the 

key descriptive question: do people ’ s actual decisions suggest that they rep-

resent particular decision situations using decision networks? This ques-

tion turns out to be trickier to answer than we might have expected, as 

most standard decision-making experiments do not test predictions that 

are relevant to this question. Instead those experiments typically focus on 

how people determine the value of a choice with multiple attributes, or 

how those values are used in choice, or both. Put into the language of deci-

sion networks, those experiments aim to determine the settings of the deci-

sion process and value nodes, rather than understanding and exploring the 

broader causal/informational structure in which they reside. At the same 

time, experiments that estimate those values are easily captured using deci-

sion networks precisely because they do not specify the settings of those 

nodes a priori. Standard decision-making experiments thus help to estimate 

some  “ free parameters ”  in the decision network graphical model, rather 

than testing the overall viability of the framework. To see whether people ’ s 

choices can be understood as if they represent situations using decision net-

works, we need to find choice problems with more complex causal/infor-

mational structure. 

 Because the decision networks framework is still quite new in cogni-

tive science, relatively few experiments have directly investigated it. Some 

such experiments do exist that explore distinctive predictions of decision 

networks, however, and they suggest that decision networks provide good 

(graphical) models of our cognitive representations of some decision situ-

ations. One set of experiments explores the ways in which decision net-

works can support inferences about the preferences of  other  people, given 
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observations of their choices. That is, if people understand their own choice 

situations using decision networks, then they plausibly represent others ’  

choice situations in the same way. And just as decision networks can be 

used to generate my own choices, they can also provide the foundation 

for  “ backward ”  inference about others, from their choices to their prefer-

ences. For example,  Jern and Kemp (2011)  looked at inferences about the 

complex, structured preferences of others from pairwise choices over sets 

of objects. They found that participants ’  inferences about others ’  prefer-

ences (based on the choices that the others made) corresponded closely to 

the inferences that result from trying to estimate parameters in a decision 

network. That is, the conclusions we draw about what someone else likes or 

dislikes can naturally be understood as inferences about a decision network 

that models the other person ’ s choices. 

 A second, and more interesting, set of experiments examines how we 

use observations of someone ’ s choices to learn more about what they know 

and can do ( Jern, Lucas,  &  Kemp, 2011 ). For example, suppose someone is 

playing a game in which the computer displays five letters on a screen, and 

the player has to write down a sixth letter that is different from the others. 

Additionally, suppose that a cover over part of the screen can obscure one or 

more of the letters. If I observe only the six letters (five from the computer, 

one from the contestant), can I learn the shape of the cover? Intuitively, 

the answer is clearly yes: the contestant would never knowingly choose a 

letter that matches one of the computer ’ s letters (assuming she understands 

the game, responds sensibly, and so forth), and so if there is such a match, 

then that letter must be covered on the screen. Standard models of deci-

sion making cannot easily handle this type of situation, since they do not 

have a transparent representation of these types of informational links. In 

contrast, the player ’ s choice problem can readily be modeled as a decision 

network, where the structure of the cover implies missing informational 

links. In fact, we can represent all the different decision networks that cor-

respond to all the different covers that could be placed over the screen. 

Learning the structure is then just a matter of learning which decision net-

work is the actual one; that is, learning is determining which decision net-

work best predicts the player ’ s actual choices.  Jern et al. (2011)  performed 

experiments structurally similar to this one and found that people gave 

responses that closely tracked the decision network predictions. Although 

experiments about decision networks in cognition have only just begun, 
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these results — coupled with the ability of decision networks to capture 

many standard results — give reason to suspect that many of our decisions 

are made using cognitive representations much like decision networks. 

 A general concern, however, lingers about  any  approach (including deci-

sion networks) that attempts to model choices as occurring within the 

causal structure of the world. From the decision maker ’ s perspective, choice 

is almost always understood as exogenous and lying outside the relevant 

causal structure; if I think that my decisions are interventions (which has 

been repeatedly demonstrated), then I cannot think that they are caused by 

factors in the decision situation. Moreover, most models of decision mak-

ing mirror this stance: standard decision theory, for example, represents 

the decision maker ’ s choice as  “ free ”  and unconstrained by the other rep-

resented factors. From an outside observer ’ s perspective, however, one can 

frequently understand a choice as being caused by other factors in the envi-

ronment. For example, the outside temperature is clearly a (partial) cause 

of whether I decide to wear a sweater to work. In fact, whole research pro-

grams center on understanding the ways in which external factors (rather 

than rational deliberation) can cause our choices (e.g., the work described 

in  Ariely, 2008 ). Whether anything causes choice thus depends on one ’ s 

perspective ( Sloman  &  Hagmayer, 2006 ), and uncertainty about the proper 

perspective might underlie self-deception phenomena (Fernbach, Hag-

mayer,  &  Sloman, 2014; Sloman, Fernbach,  &  Hagmayer, 2010). Moreover, 

this ambiguity and uncertainty raise concerns about the coherence between 

deliberation/choice and self-prediction ( Levi, 1997 ,  2000 ,  2007 ;  Rabinow-

icz, 2002 ), and even of standard decision theory itself ( Kusser  &  Spohn, 

1992 ), though decision theorists have resources with which to respond 

( Joyce, 2002 ). More generally, the worry is that graphical models, and deci-

sion networks in particular, cannot possibly provide a model of our cogni-

tive representations about choice if we have no coherent understanding of 

choice in the first place. 

 The fundamental incompatibility between these two perspectives on 

the causal status of choice — outside versus inside the causal structure of 

the decision situation — arguably underlies the difficulties posed by New-

comb-type problems ( Glymour  &  Meek, 1994 ;  Hagmayer  &  Sloman, 2006 ). 

Newcomb ’ s problem ( Nozick, 1970 ) supposes that a decision maker is con-

fronted with a seemingly simple choice between receiving the contents of 

(i) one covered box or (ii) that same covered box plus a transparent box 
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that has $1,000 in it. The tricky part of the problem comes in the way that 

the contents of the covered box are determined: an incredibly accurate (in 

the past) predictor places $1,000,000 in that box if she predicts that the 

decision maker will make choice (i), but nothing at all if the prediction is 

choice (ii). If we think about choice as exogenous, then it seems clear that 

the decision maker should choose both boxes. The prediction has already 

been made at the time of choice, and so the money is either in the covered 

box or not. Since the choice is outside the causal structure of the world, 

the  actual  decision cannot change whether the money is there. One should 

thus take both boxes, thereby receiving $1,000 more than whatever is in 

the covered box. If we instead adopt the perspective of choice as part of the 

causal structure of the world, then we understand our choices as presum-

ably caused by our earlier selves. Those earlier selves can be known by the 

predictor, and so one ’ s actual decision is  not  independent of whether the 

money is there; rather, both are effects of a common cause — namely, one ’ s 

earlier self. Thus, given that the predictor has been accurate in the past, 

the decision maker should make choice (i) to maximize the chance that 

$1,000,000 is in the covered box. 

 Our responses to Newcomb ’ s problem depend on whether we understand 

choice as exogenous or endogenous — outside or inside the causal struc-

ture of the world, respectively. These perspectives are incompatible with 

each other, however: we cannot simultaneously understand our choices as 

 both  exogenous  and  endogenous but rather must choose a perspective at a 

moment in time. As a result, Newcomb ’ s problem has been thought to pose 

a challenge to all precise models of decision, whether based on graphical 

models or not. I suggest, however, that graphical models are particularly 

well situated to respond to Newcomb ’ s problem, precisely because the per-

spective that one takes in a moment is transparently represented in the 

corresponding graphical model. In a decision network, actions are always 

understood to be  “ regular ”  causal nodes that can be influenced or shaped 

by other factors (e.g., the temperature outside). If choice is understood as 

endogenous, then there is nothing more to be done; the representation 

already captures the idea that my actions are caused by the world around 

me. If, however, choice has an exogenous component, then we simply add 

a decision process node with an edge into the action node; the addition of 

such a node exactly encodes the idea that some part of choice lies outside 

the rest of the causal structure (since decision process nodes never have 
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edges into them). These two perspectives on choices are truly irreconcil-

able, so no single framework can represent both simultaneously. The best 

that we can ask is that the framework clearly represent each possibility, as 

well as the different inferences that can be drawn in each. The graphical 

models framework does exactly that (see also Fernbach et al., 2014). 

 Over the course of the past three chapters, we have seen how the graphi-

cal models framework can represent the knowledge structures that under-

lie three major areas of cognition: causal learning and reasoning, concept 

acquisition and application, and decision making of different types. The 

next chapter turns to the challenge of putting these pieces together into a 

single cognitive architecture. 

 

 

 

 

 
 





 7   Unifying Cognition 

 7.1   Shared Representations and Unified Cognition 

 The previous three chapters explored three distinct types of cognition, 

focusing on causation, concepts, and decision making. Although these 

cognitive processes were considered separately, the analyses were bound 

together by the thread of graphical models: all three types of cognition 

were understood using that computational/mathematical framework. This 

chapter now argues for the position that was explicitly introduced in chap-

ter 1 but left largely implicit in chapters 4 through 6: I contend that large 

swaths of human cognitive activity can fruitfully be understood as differ-

ent operations on a shared representational store, where those cognitive 

representations are (approximately) graphical models. In some ways, this 

is a tricky argument to make, as there are not clearly articulated alterna-

tives against which I can juxtapose this account. In particular, as we will 

see in the next chapter, most other prominent cognitive architectures unify 

cognition through shared processes or model schemata, rather than shared 

representations. The remainder of this section is thus devoted to clearly 

articulating my account of unified cognition, including a description of 

some alternatives that it is  not . 

 Before turning to that task, though, I must address a lingering ambi-

guity.  1   The previous chapters all used the same framework of graphical 

models. However, the existence of a common mathematical representa-

tion for two systems does not imply the existence of something shared 

that is substantive or metaphysically  “ real. ”  For example, the motion of a 

weight on a spring and the steady state of an AC electrical circuit can both 

be represented using the same sinusoidal function, but we do not believe 

that the two systems share any deep metaphysical similarity or identity. 
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Analogously, the  “ mere ”  fact that the same mathematical framework can 

model the cognitive representations used in multiple types of cognition 

does not imply that there is necessarily any  actual  similarity or overlap 

between the representations used in those different cognitions. Such uni-

fication is perhaps nontrivial from a mathematical point of view, but that 

does not necessarily imply anything about cognition. The concern is that 

the same mathematical framework might be applicable to different cogni-

tions only because they happen to share some qualitative features, just as 

the (metaphysically quite different) causes in the weight/spring and electri-

cal circuit systems share certain qualitative properties. 

 The overall argument in this chapter is decidedly  not  this simplistic (and 

invalid) inference from shared mathematical description to metaphysical 

identity. I am not confusing mathematics and metaphysics but am instead 

making a more substantive claim. The argument in this chapter for the 

existence of a shared representational store — that is, some measure of meta-

physical identity — is that it provides the best explanation for the range of 

empirical data presented in section 7.2, principally about what we might 

call  “ cross-cognition transfer ”  (in contrast to the more commonly studied 

 “ cross-domain transfer ” ). I argued in chapter 2 that representational real-

ism implies a complex array of empirical commitments that are not implied 

just by the computational specification of a particular cognitive theory. The 

work of this chapter is to explicate those commitments for the particular 

case of shared cognitive representations structured as graphical models and 

then to provide both actual and potential empirical data about them. 

 To understand the commitments of this cognitive architecture, we need 

some understanding of the  “ possibility space ”  of accounts that can pre-

dict and explain the shared (or not) nature of cognitive representations. 

However, there are no obvious extant accounts that we can use to stake 

out positions in that possibility space; the extent to which one ’ s cognitive 

representations are shared across cognitive processes seems to have been 

relatively little considered, at least in the psychological literature. We can 

nonetheless consider some natural  “ points ”  (i.e., cognitive architectures) in 

this space. First, one might think that cognitive processes form  “ silos ”  such 

that there is no cross-process representation sharing.  2   On a natural imple-

mentation of this view, the representations that result from the process of 

causal learning would be simply unavailable to, for example, the process 

of feature inference. Causal learning can produce a cognitive representation 
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of causal structure, but that representation would be inaccessible when 

using partial observations to make inferences about other properties of an 

individual. Importantly, the silos here do  not  correspond to multiple mem-

ory systems; the discussion of shared representations in this chapter will 

be largely orthogonal to issues about, for example, the distinction (if any) 

between semantic and episodic memory. Rather, the notion of a silo con-

cerns a set of cognitive representations, regardless of which part of memory 

happens to encode them. 

 The overarching idea of silos actually corresponds to a whole family of 

views, depending on exactly how we individuate a cognitive process or its 

corresponding silo. At one (implausible) extreme, we could do an extremely 

fine-grained individuation, such that processes as closely related as causal 

learning and causal reasoning end up in different silos. This extreme view 

cannot be correct, as numerous psychological experiments have shown 

representation sharing between these types of very close processes, either 

explicitly in participant responses or implicitly because the experimen-

tal design makes no sense without such sharing. However, many slightly 

 “ coarser ”  individuations seem more plausible: for example, perhaps causal 

cognition is one silo, conceptual cognition forms a second one, and so 

forth. Of course, an extremely wide range of possible nontrivial individua-

tions exists, and they need not track our intuitions about distinct cognitive 

operations. 

 A second cognitive architecture in the  “ representation sharing ”  space 

arises naturally from the maximally coarse individuation in which just one 

silo includes all cognitive processes. At this endpoint, no cognitive pro-

cess is isolated (in cognitive representations) from any other. Importantly, 

this proposal is not that there is just one single, enormous representation; 

rather, there can be many distinct representations, though they must be in 

some shared (in a sense discussed later in this section) cognitive space. This 

 “ one silo ”  (or rather,  “ no silo ” ) view suffers from an important ambigu-

ity. If multiple relevant  3   cognitive processes can access the same cognitive 

representation(s), then we need to be clear about (a) which cognitive pro-

cesses are active at any particular moment, and (b) how to resolve conflicts 

if two cognitive processes are trying to make incompatible changes to some 

shared representation. One cannot simply stop after saying that represen-

tations are shared, as they could be shared in many different ways among 

multiple processes. Moreover, note that this issue does not arise if there 



154 Chapter 7

are multiple nontrivial silos, as the silos presumably include only cogni-

tive processes that are unlikely to be simultaneously active. For example, 

we have little evidence that people learn and reason about the same causal 

structure simultaneously, though they may rapidly cycle between these 

processes. 

 I will not attempt to map out all possible accounts of how cognitive 

representations could be shared across multiple processes, but rather focus 

on two natural alternatives. First, one might suppose that (a) all cognitive 

processes are, in some sense, active at all times, while being optimistic that 

(b) all incompatibilities are quickly resolved and so no significant conflict 

resolution method is required. This view might seem hopelessly Panglos-

sian, but it is actually a natural way to think about the idea that our repre-

sentations are  “ maximally informative. ”  More precisely, suppose that one 

thinks that we humans always aim to make fully informed inferences and 

decisions. As a result, we are constantly trying to operate with accurate 

and fully specified cognitive representations of the world (though we may 

fall short of this ideal in local instances). That is, our cognitive representa-

tions might (aspire to) be close to maximal, and approximately veridical, 

representations of the external world. Something like this view is implicit 

in threads of human vision research that aim to understand it as yield-

ing veridical, three-dimensional representations of our environment (e.g., 

 Marr, 1982 ). And a similar idea is actually quite natural for other parts of 

cognition: namely, that we are trying to understand the complete structure 

and constituents of our world by any means necessary. In this cognitive 

picture, the mind is presumably structured such that any cognitive process 

can influence any representation at any time, and the external world then 

provides the constraints that preclude (long-term) incompatibilities. 

 In contrast, one might think that very few cognitive processes — perhaps 

only one — are active at any particular moment. In that case, we do not 

need to worry about possible incompatibilities, since any representation 

that is modified by multiple processes would be changed sequentially, 

rather than simultaneously. For example, the processes of causal learning 

and feature inference might both access the same cognitive representation, 

but the cognizer would be engaged in only one of these processes at a time. 

This view is naturally suggested by introspection, and also by considering 

the relatively sequential nature of problem solving and goal satisfaction. 

Of course, ample evidence shows that some cognitive processes function 
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entirely implicitly or unconsciously and so we should not overweight the 

importance of introspective judgments. It is however plausible (or at least 

possible) that many types of higher-order cognition run in a more serial 

fashion rather than in parallel.  

 If these processes modify cognitive representations sequentially, then 

the issue of incompatibilities simply does not arise, though there could be 

cycles of changes in which (i) process  P  1  changes the representation to  R , 

followed by (ii)  P  2  changing it to something  R * that is incompatible with 

 R , followed by (iii)  P  1  changing it back to  R . The possibility of such cycles 

highlights that this account implies that the content of our representations 

should exhibit significant order or process effects. Any particular learning 

or reasoning process presumably depends on only some of the information 

in the environment and thus will only use or modify the cognitive repre-

sentation along those lines. For example, feature inference depends on only 

the probabilistic structure of a category, not its causal structure. Learning 

based on feature inference should thus not, in a single-process account, 

lead to changes in one ’ s representation of causal structure. In particular, if 

I have not yet learned the causal structure, then if feature inference is the 

only learning process at work in me, then I will continue to not know the 

causal structure. This contrasts with the multiple-process learner who does 

feature inference learning and causal learning all at the same time. The sin-

gle-process account predicts that our cognitive representations should carry 

detectable residues of our cognitive process histories, precisely because we 

do not try to learn and reason about everything. 

 We have identified three salient cognitive architectures in the  “ possible 

theory space ”  depending on the number of representational stores and the 

number of simultaneously active processes: (i) the  multiple-stores  view (for 

which it does not matter how many processes are simultaneously active); 

(ii) the  single-store, multiple-processes  view; and (iii) the  single-store, single-

process  view. At a high level, the number of representational stores matters 

for the  “ portability ”  of representations between cognitive processes, while 

the number of simultaneous processes determines the maximality (versus 

task dependence) of the representations that are acquired and used. For 

each type of account, we can thus make some high-level predictions about 

the kinds of behavior that we should expect to see. 

 For the multiple-stores accounts, we should expect to find very little 

cross-cognition transfer. Representations acquired through one cognitive 
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process should be relatively inaccessible to other types of cognitive pro-

cesses, or accessible only after substantial transformation or deformation. 

This lack of cross-cognition transfer is just what it means to have multiple 

representational stores rather than a single one and thus is an important 

empirical constraint implied by these accounts. Moreover, since each rep-

resentation comes from just one (or a few) cognitive process, we should 

expect to find  “ marks ”  of those processes in the representations. That is, 

a close connection should exist between the particular cognitive learning 

process and the resulting representational structure and content. In con-

trast, the single-store, multiple-process account predicts substantial cross-

cognition transfer, since the different cognitive processes can access and 

modify the same information, leading to full encoding of the knowledge 

required for the transfer task. For example, even when causal learning does 

not require category information, this account predicts that people ’ s cat-

egorization performance (after causal learning) should be approximately 

as good as if that were the focal task. That is, since multiple cognitive pro-

cesses are running simultaneously, the information in the representation 

should be (close to) maximal. We should thus expect to not see substantial 

task or process dependence in the representational structure or content: 

people should (in these accounts) be extracting most of the information 

available to them, regardless of the particular task they have been provided. 

 The single-store, single-process accounts carve out an intermediate posi-

tion between the other two. On the one hand, they predict that significant 

cross-cognition transfer should occur, since there is a single representa-

tional store that all (relevant) cognitive processes can access. Information 

acquired using one cognitive process should be available to many other 

cognitive processes; causal learning, for example, should yield represen-

tations usable for categorization. On the other hand, the representations 

should show signs of the cognitive processes by which they were learned 

or used, since only a single cognitive process modifies them at each point 

in time, and so only the information relevant to the focal task should be 

encoded or learned. This process or task dependence is predicted to mani-

fest in distinctive patterns during the cross-cognition transfer. For example, 

if a representation is acquired through causal learning, then categorization 

behavior based on it should be different than if the representation were 

acquired through  “ standard ”  category learning. 
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 7.2   What Do the Data Say? 

 Empirical data discriminating between these different kinds of architec-

tures come in two types. Data about whether there is any substantive cross-

cognition transfer at all can distinguish between the multiple-store and 

single-store accounts. To the extent that such transfer occurs, the level and 

pattern (if any) of process or task dependence can distinguish between the 

single-process and multiple-process versions of the single-store accounts. 

The published literature, however, contains relatively little empirical data 

of either type: cross-cognition transfer is an understudied part of cognitive 

science. Moreover, the few experiments that aim to explicitly study such 

transfer have tended to focus on whether transfer occurs at all, not what 

patterns arise in the posttransfer cognition that could provide insight into 

whether one or multiple processes access the representation(s). Thus, after 

considering the extant data in this section, I provide a number of novel 

experiments in section 7.3 that could be performed to gain more insight 

into cross-cognition transfer.  4   

 In general, experiments on cross-cognition transfer ask people to learn 

through one cognitive process or with one cognitive goal, and then test 

people by asking them to use that knowledge in the same situation, but 

with a different type of cognitive process. Cross-cognition transfer is thus 

importantly different from the transfer of learning from one problem situ-

ation to another that has been widely studied, particularly in educational 

psychology ( Cormier  &  Hagman, 1987 ;  Haskell, 2000 ;  Singley  &  Anderson, 

1989 ). Transfer of learning typically involves challenges in which the task 

is relatively constant but the situation changes. For example, one might 

examine whether people who have learned to solve one type of geometry 

problem can apply that knowledge to a new geometry problem. In con-

trast, I am interested here in cross-cognition transfer, where the situation is 

held relatively constant, while the task varies. Much of the research that is 

described as investigating  “ transfer ”  is thus not applicable to the study of 

cross-cognition transfer. 

 As an example of the kind of experiments that are relevant, consider a 

series of experiments performed by William Nichols and me ( Nichols  &  

Danks, 2007 ). Experimental participants were presented with two differ-

ent possible causes of a plant blooming and were told that, after learning, 
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they would pick one of the two factors to apply to a new plant. Moreover, 

they would receive a monetary bonus if the plant actually did bloom after 

applying the chosen factor. That is, from the participants ’  point of view, 

their task was to learn for decision-making purposes. After participants 

made their decision, however, we surprised them by asking about the causal 

 strength  of each factor. Causal strength information is not actually required 

to solve the decision-making problem; one could make an optimal deci-

sion by, for example, simply tracking whether there are more cases of the 

effect with factor 1 or with factor 2. More generally, the decision-making 

problem requires only knowledge of the rank order of the causal strengths, 

not their absolute strengths. At the same time, numerous causal learning 

experiments have shown that people are able to learn quantitative causal 

strengths when asked to do so (see the many references in sec. 4.2). 

 What would the different cognitive architectures outlined in section 7.1 

predict for this experiment? It is not clear whether we should think that 

 “ learning for decision making ”  and  “ causal strength learning ”  fall into dif-

ferent representational stores (silos) in a many-stores account. If they do, 

then the prediction is that people ’ s causal strength ratings should be close 

to random. In these many-stores accounts, people generate a representa-

tion of the situation to make a decision, but this representation is relatively 

inaccessible to causal reasoning processes, so the information required to 

answer the probe question will be unavailable. As a result, we should expect 

people to respond quasi-randomly; at most, their responses might have a 

rank order that justifies their decision, since we asked the causal strength 

question after the decision was made. If they chose factor 1, for example, 

then they might respond that factor 1 is stronger than factor 2, but only 

because it enables them to rationalize or justify the decision that was just 

made, not because they have a representation of the causal structure. There 

is no prediction that the responses should be close to the actual causal 

strengths. 

 Now consider the two single-store views. If multiple processes can access 

the single representational store, then we should expect people ’ s causal 

strength ratings to be quite accurate. We know that people are capable of 

learning such strengths, and so the causal strength learning process should 

be able to encode that information in the shared representation, though 

it is not strictly required to make an appropriate decision. In contrast, if 

only a single process is (substantively) active at any point, then we would 
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predict better-than-random causal strength ratings, though they should 

not be as accurate as in a standard causal learning experiment. The process 

of learning to make an appropriate decision will sometimes modify the 

shared representation, and as noted earlier, that process needs to learn only 

the rank order of the factors ’  strengths. Causal strength learning should 

thus be partially  “ impaired, ”  though this decrease in accuracy should be 

restricted to the precise numeric values; both processes aim to learn the 

rank order (either explicitly or implicitly), so there should be no decrease in 

performance in that regard. 

 These three predictions exactly track the general pattern for which I 

argued at the end of section 7.1. In particular: (a) a many-stores account 

predicts essentially no transfer and thus very poor performance on the 

transfer task; (b) a single-store, many-process account predicts substantial 

transfer task learning (by the other process) and thus performance on the 

transfer task that is comparable to when that task is focal; and (c) a single-

store, single-process account predicts that transfer task performance should 

depend on the learning task, and so people should exhibit a characteristic 

pattern of performance decrease on the transfer task. The data from two 

different experiments in  Nichols and Danks (2007)  best match prediction 

(c), which suggests a single-store, single-process account. In particular, we 

found that the quantitative strength estimates were skewed in particular 

ways: for example, when the weaker causal factor was a nonfactor (i.e., had 

zero causal strength), participants regularly reported that it actually had 

slightly  negative  causal strength (i.e., it prevented blooming). Thus option 

(b) does not seem to be correct in this setting. At the same time, participants 

in the experiments were excellent at reporting the rank order of the factors ’  

causal strengths; more generally, their strength estimates were biased but 

clearly not random. A many-stores account thus also seems implausible in 

these experiments. Rather, it seems that there is a common representational 

store that is being modified in limited ways. 

 The  Nichols and Danks (2007)  experiments provide a nice illustrative 

example, but they suffer from some significant flaws. Most importantly, 

they were originally conducted simply to see whether people could use 

causal learning to guide their decisions (in the spirit of some of the theories 

discussed in sec. 6.1), rather than to study cross-cognition transfer. We thus 

had no measures to determine, for example, whether people ’ s success at 

getting the rank order of the causal strengths was due to learning or post 
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hoc rationalization of their previous decisions. Perhaps more importantly, 

we did not attempt to measure people ’ s representations before learning, so 

we do not know exactly how the task dependence arose. One possibility 

is that people represented the situation using a  “ rich ”  causal representa-

tion (including numeric causal strengths), but the causal learning process 

was insufficiently active or influential to move the strength estimates to 

their proper values. An alternative possibility is that the framing in terms 

of a decision-making goal led people to use an impoverished representa-

tion involving only some combination of rank order information and more 

qualitative causal strengths (since that is all they require to succeed), and 

then they learned as much as possible about that reduced representation. 

That is, it is possible that learning began with a directed graphical model 

and only a qualitative representation of causal strengths (e.g.,  “ none, ”  

 “ weak, ”   “ strong, ”  or  “ very strong ” ). If the to-be-learned representation 

had this structure, then performance could decrease even if causal learning 

was constantly active. In general, this kind of underdetermination poses 

a problem for many experiments on cross-cognition transfer: it is often 

unclear whether there was reduced learning of a rich representation or full 

learning of an impoverished representation. More generally, learning and 

representations are remarkably hard to tease apart, and these studies are no 

different. I consider some ways to distinguish these possibilities in the next 

section, but this underdetermination may ultimately prove largely insur-

mountable (at least using typical behavioral data). 

 One final concern about the  Nichols and Danks (2007)  experiments is 

that the cover story (about plant blooming) was written using causal lan-

guage. As a result, participants might have been primed to track (at least 

somewhat) the causal strengths. That is, perhaps a multiple-stores view is 

actually correct, but participants nonetheless partially learned the causal 

strengths because the cover story language suggested that they should. It 

would be preferable if the cover story used as little causal language as pos-

sible while the situation is still one in which decision making matters. We 

start to see these features in the next experiment we consider. 

  Hagmayer et al. (2010)  presented participants with a control task in 

which they repeatedly chose actions (specifically, energy rays that stimu-

late brain areas) to keep a target (a mouse ’ s neurotransmitter levels) at an 

appropriate level. The value of the target at each moment was a complex 

function of the action chosen and the previous state of the target. This 
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dynamical system was thus reasonably complex and difficult to control, 

particularly since the participants only saw the impact of the chosen action 

(the brain area activations) and the resulting level of the target. Participants 

learned to control the system through repeated actions and improved over 

time at keeping the target close to the desired level. So far, this experiment 

simply tested people ’ s ability to learn to control a dynamical system. The 

cross-cognition transfer arose because, unbeknownst to the experimental 

participants, some of the brain regions actually caused one another. We can 

thus use the representations that participants spontaneously learn about 

this between-region causal structure to determine their cross-cognition 

transfer.  Hagmayer et al. (2010)  are explicit that they have this goal:  “ We 

investigate whether decision makers  spontaneously  acquire causal models ”  

(p. 145; italics in original). In terms of the three central theoretical options 

discussed in this chapter, the predictions are clear about what should be 

learned about causal structure:  “ many stores ”  says  “ nothing ” ;  “ single store, 

many process ”  says  “ as much as if causal structure learning were the goal ” ; 

and  “ single store, single process ”  says  “ only as much structure as is required 

to solve the control problem. ”  

 In both of their experiments,  Hagmayer et al. (2010)  found that a large 

majority of the participants in each experiment learned about the causal 

structure between the brain regions. In particular, when given a forced 

choice between (i) the structure with no causal connections between brain 

regions and (ii) the structure with a causal connection between one par-

ticular pair of brain regions, most (80 – 85 percent) participants correctly 

selected option (ii). This measure (and others discussed in the following 

paragraphs) suggests that the many-stores view is incorrect, since cross-

cognition transfer does seem to occur. It is less clear what conclusions to 

draw about the process question. The relatively good performance might 

suggest that people are doing  “ full ”  causal learning, but this conclusion is 

too quick. The experimental measure of causal knowledge was relatively 

coarse, as it was simply a forced choice between two given options. More 

importantly, both experiments provided explicit temporal information to 

participants. That is, the causal learning data for participants involved not 

just co-occurrence of brain region activation but also timing information 

such that region  B  was frequently activated  after  region  A . 

 This type of temporal information makes causal structure inference 

much easier, and people appear to exploit it spontaneously ( Fernbach  &  
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Sloman, 2009 ;  Lagnado, Waldmann, Hagmayer,  &  Sloman, 2007 ). The 

causal structure learning in this experiment was thus arguably sufficiently 

easy that even single-store, single-process accounts can explain it. The sin-

gle-process views hold only that performance should (potentially, depend-

ing on the learning task) decrease, not that  no  learning at all should occur. 

The forced-choice measure arguably has a sufficiently low threshold for suc-

cess that no decrease in performance could be observed. As further evidence 

for this explanation,  Meder and Hagmayer (2009)  used a similar experi-

mental design but asked participants to produce the full causal structure, 

rather than make a forced choice. They found that participants  “ spontane-

ously ”  learned causal structure but were much worse at reporting the exact 

structure. For example, 40 percent of the participants in their experiment 2 

produced causal graphs that were inconsistent with even just the temporal 

aspects of the learning data. The two papers together suggest that forced 

choices over two causal structures do not provide sufficiently fine-grained 

information to distinguish single- and many-process accounts. 

  Hagmayer et al. (2010)  also assessed causal learning using more indirect 

measures, such as predictions about what would happen if various inter-

ventions were performed on the brain regions directly (thereby potentially 

breaking causal connections). These measures provide additional evidence 

that experimental participants learned about the causal structure, and so 

the many-stores view is unlikely to be correct. At the same time, people ’ s 

performance exhibited substantial deviations from the normatively correct 

responses that they should have given if they had learned the full causal 

structure (including numeric causal strengths). However, these deviations 

do not automatically imply that a single-process view is correct, since they 

have at least two alternative explanations. First, as discussed in section 4.3, 

people ’ s causal reasoning typically exhibits some systematic deviations 

from the normative responses. The errors found in these experiments could 

be a product of whatever reasoning process generates those errors. Second, 

participants did not reach perfect performance on the learning task (i.e., 

figuring out how to control the dynamic system), and so it is possible that 

people simply failed to fully learn the quantitative structure. Nonetheless 

these experiments suggest that something like the single-store, single-pro-

cess view might be right. Also, although graphical models are not the main 

focus of this chapter, it is interesting to note that those studies consistently 

found support for that representational framework. People ’ s performance 
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was suboptimal, but their pattern of behavior was still best explained as 

operations on graphical model representations, rather than one of the other 

decision-making representations that  Hagmayer et al. (2010)  considered. 

 As noted at the start of this section, relatively few experiments have 

directly investigated cross-cognition transfer across different cognitive 

domains. Moreover, even some experiments that appear relevant at first 

glance turn out not to be particularly informative. For example,  Waldmann 

and Hagmayer (2006)  examined the impact of previously learned concepts 

on causal learning from data and argued that people learn causal graphs 

using their preexisting concepts as nodes. No real transfer occurred in their 

experiments, however, since the previously learned concepts functioned 

simply as labels in the data and nodes in the graph. In particular, the causal 

learning parts of their experiments did not use anything about the struc-

tured representations underlying the concepts, so the only  “ transfer ”  was 

one cognitive process passing a label to another.  5   Similarly,  Lien and Cheng 

(2000)  showed that people spontaneously construct novel categories that 

are maximally helpful in causal reasoning. That is, their results demonstrate 

that unsupervised concept learning can be guided by the role of the con-

cepts in the subsequently learned causal structure.  6   As with  Waldmann and 

Hagmayer (2006) , though, these concepts simply provided nodes for the 

subsequent causal learning; there was no interesting transfer of the repre-

sentation of the concept itself. 

 We can, however, find relevant data and experiments if we look for indi-

rect evidence of cross-cognition transfer. Many of the studies cited in previ-

ous chapters already provide quite a lot of indirect evidence. For example, 

causal reasoning has been assessed by asking people to choose particular 

interventions (e.g.,  Gopnik et al., 2004 ). This measure depends implicitly 

on there being some level of cross-cognition transfer: if the products of 

causal learning could not be used for this type of decision making, then 

people should be unable to appropriately select interventions. Similarly, 

almost all the experiments on causal graph-based decision making use 

response measures that necessarily depend on decision-making processes 

having some level of access to causal knowledge. When we combine this 

wealth of indirect evidence with the data already mentioned, it becomes 

extremely hard to see how any strong form of the many-stores view could 

be correct. Any defense of such a view would require not only explaining 

away the mathematical commonalities described in the previous chapters 
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but also accounting for how all these experimental measures end up work-

ing at all, let alone so successfully. To my knowledge, no such explanations 

have been proposed, and it is hard to see how they could be made suffi-

ciently compelling to offset this diverse empirical data. 

 This conclusion nonetheless leaves open the question of number of pro-

cesses. On this point, we have both direct and indirect evidence from within 

the cognitive domain of concepts. Since this research is within a particular 

domain, it cannot speak to the issue of number of stores, but it can still be 

informative about the number of processes. In terms of research directly 

on this problem, consider the experiments of  Ross (1997 ,  1999 ,  2000 ; see 

also  Jee  &  Wiley, 2007 ). Participants were taught how to classify individuals 

into a particular category; for example, they were taught to classify people 

as suffering from one or another disease. The participants then had to use 

their knowledge of the individual ’ s category to perform a second task (e.g., 

choose a treatment option); the two judgments — classification and second-

ary task — were performed either sequentially or in separate contexts. The 

key twist to the experiments was that some of the category features were 

relevant to the second task but not to classification. On a many-process 

account, these features should be (mostly) ignored whenever people clas-

sify, regardless of whether they had made the additional judgments. The 

 “ classification learning ”  process should, on this account, always be active, 

so the concept representation should continue to accurately encode the 

information required for classification, regardless of any additional tasks. In 

contrast, a single-process account predicts that people ’ s classification judg-

ments should be influenced by the additional treatment judgments, since 

the  “ learning to treat ”  process will potentially modify the representation of 

the concept without the  “ learning to classify ”  process being able to main-

tain the previously learned content. The results of the experiments clearly 

support a single-process account: after participants learned to perform the 

second task, their classification judgments were now influenced by factors 

that were previously (and correctly) ignored ( Jee  &  Wiley, 2007 ;  Ross, 1997 , 

 1999 ,  2000 ). 

 In contrast, research that speaks only indirectly to the number of pro-

cesses can be found in investigations of learning format effects in concept 

acquisition. Recall that the discriminating feature between the single-

process and many-process accounts is whether behavior on the transfer 

task depends in part on the learning task (assuming different learning tasks 
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involve the same data). Single-process accounts predict that there will usu-

ally be such learning dependence, while many-process accounts predict 

that it should be less likely. There are two major learning tasks used in 

the experimental study of concept learning, and a substantial amount of 

research has investigated learning task effects on the cognitive represen-

tations that are actually acquired ( Chin-Parker  &  Ross, 2002 ,  2004 ;  Hoff-

man  &  Rehder, 2010 ;  Markman  &  Ross, 2003 ;  Yamauchi  &  Markman, 1998 ; 

 Yamauchi, Love,  &  Markman, 2002 ). Both of these cognitive tasks were 

discussed in more detail in section 5.3. 

 Given a sequence of individuals, one way to learn a new concept is 

through classification learning in which I am told the category for each 

individual, perhaps after making an initial guess about its category. For 

example, I might be shown a picture of an animal and have to guess 

whether it is a dax or a grom (i.e., one of two made-up categories). I am pro-

vided feedback about whether I categorized the animal correctly and then 

move to the next image. This process continues until I can correctly classify 

the animals into their groups. A different learning task is feature inference, 

where I am shown an individual and told its category and then must infer 

one or more of its features. For example, I might be shown a picture of an 

animal known to be a dax and asked to determine how many legs it has. 

I receive feedback about my inference and then move to the next animal 

until I can correctly infer the relevant features. One nice feature of these 

two different learning tasks is that it is possible to present participants with 

exactly the same data, regardless of the learning task. For both tasks, people 

receive feedback and so end up having full knowledge of the individual and 

its category; as a result, the learning data can be perfectly matched.  7   If there 

were no learning task dependence, then we would expect people to learn 

essentially the same concepts regardless of learning condition (as predicted 

by  Anderson, 1991b ). Instead many different experiments have revealed 

substantial learning task effects in this cognitive domain ( Chin-Parker  &  

Ross, 2002 ,  2004 ;  Hoffman  &  Rehder, 2010 ;  Markman  &  Ross, 2003 ;  Yam-

auchi et al., 2002 ;  Yamauchi  &  Markman, 1998 ;  Zhu  &  Danks, 2007 ). 

 Mere dependence is insufficient to support a single-process account; the 

dependence must match the account ’ s predictions. In this case, the predic-

tion is that people should be accurate about only those factors that are 

relevant or necessary for success in the learning task, and should fail to 

represent (or should represent inaccurately) aspects of the concepts that 
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are relatively irrelevant to the learning task. A central intuition for single-

process accounts is that the limits on process access to the shared cognitive 

representations imply that people should learn — more generally, modify 

their representations — in highly limited ways. In this experimental con-

text, this intuition implies that people should learn (alternately, represent 

or encode) only those aspects of within-concept structure and between-

concept differences that are meaningful for the goal at hand. When we look 

to the empirical data, we find exactly this pattern of learning task effects: 

classification learning leads people to learn substantially more about the 

features that distinguish between categories, while feature inference results 

in learning more about the between-feature correlations within each partic-

ular category. This large body of experimental work thus strongly suggests 

a single-process view, at least within this cognitive domain. Of course, that 

does not show that a single-process account is correct across many cogni-

tive domains, but it provides significant indirect support for such an idea. 

 7.3   Novel Predictions, New Experiments, and Open Questions 

 Many of the experiments in the previous section provide only indirect evi-

dence or discrimination between the different theoretical alternatives pro-

posed in section 7.1. Other experiments, however, can potentially examine 

the issue more directly. This section outlines some of those experiments to 

give an idea about how to further test this cognitive architecture, as well 

as potentially resolve some ambiguities in the framework. To begin, notice 

that all the experiments discussed so far assume (perhaps implicitly in the 

data analysis) that there are no significant individual differences. That is, 

they all assume that people are generally the same in their cross-cognition 

transfer. That assumption helps to justify the inference from nonrandom, 

task-dependent patterns in cross-cognition transfer to a single-store, single-

process account. If we drop that assumption, then a different explanation 

arises for the data we have seen: perhaps everyone has multiple represen-

tational stores, but some people simply like learning new representations. 

That is, perhaps there is no cross-cognition transfer whatsoever, but some 

individuals learn multiple representations of the experimental system (one 

per store or process) because of their particular personality traits. If we con-

sider only average performance, then there is not necessarily any difference 

predicted between (i) everyone being single-store, single-process cognizers, 
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and (ii) a mixed population in which some people learn everything while 

some learn only the focal learning task. 

 To separate these two possibilities, we need to collect more fine-grained 

data. One option is to examine the individual responses, since option (ii) 

predicts that the distribution of responses should be strongly bimodal, 

where the two modes correspond to fully accurate and close-to-random 

responses. A closer examination of the  Nichols and Danks (2007)  data 

reveals no evidence that we had a mixed population of learners; the 

response distributions show no sign of being bimodal, though some are 

admittedly rather diffuse. Of course, this evidence comes from only one set 

of experiments that were not explicitly designed to look for different learn-

ing strategies. It is entirely conceivable that a more targeted experiment 

would find important differences in whether people learn about aspects of 

the world that are not immediately goal relevant. A different option is to 

try to determine whether an experimental participant is likely to be some-

one who tries to learn everything about an experimental situation. This 

type of intellectual curiosity has been examined under the name  “ need for 

cognition ”  ( Cacioppo  &  Petty, 1982 ;  Cacioppo, Petty,  &  Kao, 1984 ). More 

practically, well-studied scales seem to provide a good estimate of whether 

someone is likely driven to understand all of a situation, even when success 

at the learning task does not require such complete knowledge. In future 

experiments, it will be important to try to distinguish between options (i) 

and (ii), using both more careful data analysis and also more sophisticated 

measures of the individual participants. 

 Most of the experiments discussed in section 7.2 explored the inter-

actions between some cognitive domain and decision making. The skep-

tic might argue, however, that such experiments do not actually provide 

a strong test of the single representational store account, since it is (the 

skeptic argues) entirely unsurprising that decision making uses representa-

tions from other cognitive activities. According to this line of argument, 

decision making does not produce representations but only consumes 

them to generate actions. Decision making thus necessarily relies on cross-

cognition transfer, precisely because it is (in this argument) qualitatively 

different from cognitive activities such as categorization or causal reason-

ing. Of course, decision-making processes are clearly involved in learn-

ing. For example, participants in the  Hagmayer et al. (2010)  experiments 

(discussed in sec. 7.2) learned to control a dynamical system by making 
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decisions and observing the outcomes. The skeptic maintains, however, 

that learning and decision making are separable processes: given some rep-

resentation  R , I make a decision, and then the outcome information is used 

by some other process to modify  R . On this view, it is completely unsur-

prising that decision making shares representations with other cognitive 

processes or domains, since it must get them from somewhere and cannot 

produce them itself. Experiments involving decision making do not, on 

the skeptic ’ s view, give us any particular reason to think that there is a rich 

representational store that is shared across multiple cognitive processes that 

do not involve decision making. 

 One problem with this skeptical position is that it presupposes that we 

can cleanly carve out the set of  “ decision-making processes ”  that only con-

sume representations, rather than modifying them directly. For example, 

the skeptic must show how to divide causal reasoning — making predic-

tions, generating explanations, and so forth — into parts that modify rep-

resentations and those that actually make a decision in a way that changes 

nothing about the representation. Similarly, the skeptic must maintain that 

reasoning about concepts is divisible in this way. The problem is that our 

cognitive reasoning processes just do not seem to be neatly separable in this 

way into distinct components; the same reasoning that leads to a choice 

can also modify the representations over which the reasoning occurs ( Wil-

liams  &  Lombrozo, 2010 ). The skeptical position seems plausible only if 

we  define  decision making to be those cognitive processes that use repre-

sentations without modifying them but that begs the question against the 

single-store theories. More importantly, such a definition would be counter 

to the standard method of defining cognitive processes by their input, out-

put, and function and thus requires much more justification than just a 

general skeptical worry. 

 The skeptic ’ s argument, however, does contain a kernel of truth: the 

experiments on cross-cognition transfer have been restricted to always 

using decision making, and so the single-store account has not yet received 

the strongest possible test. Thankfully, obvious experiments can directly 

test this account. For example, one might ask participants to learn the 

causal structure  M  1  underlying a set of animals and then separately learn a 

causal structure  M  2  for different animals. If there is a single representational 

store (and if some concepts are defined by shared causal structure), then 

these causal structures should provide natural candidates for categorizing 
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novel instances. That is, people should naturally group novel animals based 

on whether they appear to have causal structure  M  1  or  M  2 , even though 

they have never been told that those causal structures each pick out a cate-

gory. On standard accounts of concept learning, people need either explicit 

instruction (e.g., labels) when engaged in supervised concept learning, or 

explicit contrasts for unsupervised concept learning. In this experiment, 

participants receive neither: there are no category labels or other markers 

indicating that the causal structures correspond to concepts, and the causal 

structure learning occurs in distinct episodes, so there are no (explicit) con-

trasts. If people nonetheless learn novel concepts based on those causal 

structures, then we have reason to think that there is a shared representa-

tional store.  8   Although some experiments have tried to link causal learning 

and our concepts ( Lien  &  Cheng, 2000 ;  Waldmann  &  Hagmayer, 2006 ), 

they have not looked for this type of  direct  transfer of representations 

between cognitive processes. 

 A similar experiment would reverse the order of operations: start with 

learning multiple categories, each determined by a different causal struc-

ture, and then ask participants to design novel interventions on members 

of those categories. A number of experiments have explored whether peo-

ple ’ s concepts exhibit structural features that are plausibly explained using 

graphical models, and causal models more specifically (see chap. 5). Those 

experiments have not, however, examined the intervention choices that 

people can or do make on the basis of that (conceptual) knowledge. As a 

result, it is unclear whether people are always learning  causal  structure when 

they learn concepts from data through categorization or feature inference 

learning.  9   We can thus perform an experiment in which participants learn 

concepts through one of the standard methods (e.g., categorization), where 

the concepts are actually defined in terms of shared causal structure. Once 

people have learned several such categories, they are then presented with 

new instances of those categories and asked to make (or reason about) inter-

ventions on the novel individuals. If representations are shared across mul-

tiple cognitive processes, then we should expect people to succeed at these 

inferences, at least to the extent that they actually learn causal-structure-

based categories. That last qualifier is necessary, since  “ failure to transfer ”  

is not necessarily disconfirming evidence if people never learned an appro-

priate cognitive representation in the first place. If, for example, someone 

learns an exemplar-based category instead of a causal-structure-based one, 
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then it would be entirely unsurprising (and unproblematic for my view) if 

they could not design appropriate interventions. It will thus be important 

to determine the cognitive representations that people actually learn, albeit 

in a way that does not prime participants to necessarily think causally. 

 The previous two experiments would look simply for successful cross-

cognition transfer, but as we saw in section 7.2, it can also be illuminating 

to look for patterns in the cross-cognition transfer that can reveal details 

about the learning and reasoning processes operating in particular situa-

tions. The  Nichols and Danks (2007)  experiments point toward the possi-

bility of a general pattern: people learn only as much as they need to learn 

to solve the learning task at hand. This  “ minimalist ”  learning contrasts 

with a more  “ maximalist ”  type of learning in which people learn all that 

they can about a situation, regardless of whether the additional informa-

tion seems immediately relevant. As noted earlier, minimalist strategies fit 

naturally with single-process accounts, while maximalist ones cohere better 

with a many-process view. One could perform many different experiments 

to distinguish between these possibilities. 

 In general, the types of learning task dependence predicted by single-

process views fit cleanly with an overarching goal dependence of learned 

representation, regardless of whether there is any cross-cognition transfer. 

For example,  Rehder, Colner,  &  Hoffman (2009)  used eye-tracking data to 

argue that feature inference learning focuses on the  expected  question items, 

rather than on learning all the relevant (internal) statistics. Sarah Wellen 

has recently developed (in collaboration with me) several experiments that 

explicitly explore whether people extract minimal information to succeed 

at their learning goals or rather learn maximal information about their situ-

ation. For example, suppose that people are confronted with four buttons, 

where pressing a button causes a number from 1 to 100 to be displayed. The 

numbers for any particular button are randomly generated from a prob-

ability distribution with unknown average and variance. Participants also 

know that, after learning, they will select a button to be pressed one more 

time, and their payment will go up if the number is either very large or, in 

a different condition, very small. That is, half of the participants are trying 

to figure out which button produces the largest numbers on average, while 

the other half are trying to determine which yields the smallest numbers 

on average. In actuality, two of the button averages are close together and 

small, and the other two are close and large. The true averages might, for 
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example, be 20, 30, 70, and 80. All participants see the exact same sequence 

of button values, regardless of whether they are trying to find the largest or 

smallest button. After the learning phase, we surprise participants by asking 

them not just to select a button but also to report the average values for all 

four buttons. 

 A maximalist learner should track all four button averages and thus give 

reasonably accurate estimates for all of them after learning. The responses 

should not vary as a function of the learning goal. In contrast, a minimalist 

learner can quickly detect (after only a few trials) that two of the buttons 

are almost certainly not winners, since they are either much too low or 

much too high (depending on whether the goal is to find the largest or 

smallest button, respectively). The minimalist learner can then focus her 

attention on only the pair of buttons that might be appropriate choices 

in the end. As a result, she should be reasonably accurate about the two 

buttons that match the learning goal, but be much less accurate about the 

two that are irrelevant for the goal. The prediction is obviously not that the 

minimalist learner will know  nothing  about the buttons that do not match 

the learning goal but that her learning should be significantly worse than 

individuals for whom the learning goal  does  match those particular but-

tons. That is, people are predicted to extract different information from the 

same sequence, based solely on whether their goal is to find the largest or 

smallest (on average) button. In preliminary versions of this experiment, 

we have found exactly the pattern of results predicted for the minimalist 

learner. People are quite good at learning which button best satisfies their 

goal, and even the precise values of the buttons that are plausible candi-

dates for their goal. They learn much less about the buttons that are far 

from their goal, and thus the learning goal significantly affects the resulting 

representations. There appears to be a general goal dependence on learning 

that is consonant with the single-process views in which representations 

are modified only by learning processes that are directly or immediately 

relevant to one ’ s goals. 

 Wellen has also designed an experiment to test a different type of poten-

tial goal dependence in causal learning. In general, one can make successful 

predictions from observations without actually having the correct causal 

structure. In contrast, if I know the full, correct causal structure, then I can 

infer key (conditional) probabilities based on either observations or inter-

ventions, perhaps with some systematic biases (as discussed in chap. 5; see 
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also  Rottman  &  Hastie, 2014 ). Thus, consider an experiment in which all 

participants are provided with the same data about variables  A ,  B , and  X , 

where the true causal structure is  A   →   X   →   B . Half of the people are tasked 

with learning to infer values of  X  based on  A  and  B , while the other half are 

charged with learning the underlying causal structure. After learning, all 

participants are asked  both  types of questions — causal structure and obser-

vational inference. The maximalist learning prediction is that there should 

be no difference between the two groups; all participants receive the same 

data, and so both groups can learn an equal amount about the situation. 

In particular, if the situation is one in which the causal structure is actu-

ally learnable,  10   then all participants should perform well on both tasks. 

In contrast, the minimalist learner should exhibit goal dependence in her 

learned representations. If her goal is to learn the full causal structure, then 

the minimalist will perform well on all questions (again, subject to poten-

tial systematic biases in causal reasoning). In contrast, if the learning goal 

is simply to make observational inferences about  X , then the participant 

needs only to learn the conditional probability of  X  given values of  A  and 

 B . That particular conditional probability is consistent with the incorrect 

causal structure  A   →   X   ←   B . The minimalist learner is thus predicted to 

make systematic errors on the causal structure questions (relative to partici-

pants who have the causal structure learning goal). The extent of people ’ s 

minimalism in experiments such as this one is currently unknown. 

 Across many different experiments, there does seem to be a consistent 

theme of people behaving like minimalists who learn just what is required 

to succeed at the learning task, rather than like maximalists who attempt 

to extract maximal information about their situation. Moreover, this pat-

tern of experimental data fits nicely with some results about causal mis-

conceptions in everyday life. As just one (extreme) example, many medical 

professionals and some textbooks (at least in the 1980s) believed that a 

larger heart caused an increased risk of congestive heart failure ( Feltovich, 

Spiro,  &  Coulson, 1989 ). The view was that the heart failed  because  it got 

too big and so lost the ability to pump blood effectively. Even at that time, 

though, the correct causal structure was known to be that congestive heart 

failure is caused by a failure of the heart muscles to be properly activated 

or  “ energized, ”  which thereby leads to an enlarged heart. That is, the true 

causal relationship between  Heart failure  and  Heart size  is exactly backward 

from the causal relationship as understood by medical professionals (again, 
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at least at that time). One might think that this misconception revealed 

some sort of failing on the part of the medical professionals, as many of 

them had incorrect beliefs while the truth was readily available. Impor-

tantly, however, the  “ backward ”  conception still enables successful infer-

ence by the medical professionals; their observational predictions do not 

suffer by virtue of believing the wrong causal model. Of course, their pos-

tintervention predictions  would  suffer from using the wrong causal model, 

but those predictions arise only if one can intervene directly on  Heart size  

or  Heart failure , which was not an option in the 1980s. The maximalist 

conception of learning cannot explain the medical professionals ’  seeming 

lack of concern about having incorrect causal beliefs ( Feltovich et al., 1989 ), 

since the correct causal structure was learnable by them. Minimalist learn-

ing can, however, account for their behavior. If medical professionals have 

the learning goal (for this system) solely of observational prediction, then 

they have not made a mistake using the  “ backward ”  conception, since it 

fully satisfies that learning goal.  11   

 The experiments discussed in this section have focused on predictions 

of the single-store, single-process view. However, another key theme of this 

book (albeit one that has mostly resided in the background) is that it is 

important for our cognitive representations to encode relevance informa-

tion. For the most part, I have not explicitly discussed this theme, since 

one of the main reasons to consider graphical models is precisely that they 

compactly represent relevance relations. All the arguments for graphical 

models as the proper framework for (many of) our cognitive representa-

tions are thus also arguments that our representations can, and do, encode 

relevance. At the same time, we could conduct experiments that attempt 

to directly test whether people are appropriately sensitive to relevance rela-

tions. Many experiments have shown that people attend to different parts 

of the environment to extract information that is (or is believed to be) 

relevant to the current cognitive task (e.g.,  Desimone  &  Duncan, 1995 ; 

 Downing, 2000 ;  Huang  &  Pashler, 2007 ;  Pashler  &  Harris, 2001 ). The key 

question for the cognitive architecture presented here is: do people ’ s atten-

tional or information-seeking strategies track relevance information in the 

way that the graphical model claims to represent? For example, if people 

learn that  A   →   B   →   C   →   D  and are then asked to predict the value of  D , do 

they first check the value of  C ? Many more complex examples could easily 

be constructed and even integrated with some of the other experiments 



174 Chapter 7

outlined in this section. There are significant methodological challenges 

for investigating information-seeking strategies (e.g., the complexity of eye-

tracking data). Those costs will be worthwhile, however, to the extent that 

these experiments can test the hypothesis that our cognitive representa-

tions track relevance relations approximately as a graphical model does. 

 Overall this chapter has aimed to present a clear, well-defended cogni-

tive architecture in which (a) there is a single representational store of (b) 

cognitive representations structured as graphical models, where (c) only 

single cognitive processes modify those representations at a time, such that 

(d) cross-cognition transfer exhibits predictable patterns of dependence on 

the tasks and goals during the learning of that representation. This psy-

chological account is the key positive proposal of the book, and the point 

toward which all the previous chapters have built. In the final two chapters, 

I consider a set of open issues that remain about this cognitive architecture. 

First, I have argued that this account unifies cognition in a deep and novel 

way, but there have been many proposals for how to  “ unify the mind. ”  The 

next chapter thus shows how my account differs in key ways from previous 

proposals, in both details and broad approach. Unification through shared 

representations is an interestingly different tactic than what is employed by 

most unifying cognitive architectures. Second, one might wonder whether 

this account really matters; perhaps it is simply a lot of mathematics to say 

something that we already knew. I hope this chapter has already dispelled 

that concern, as I have provided both interpretations of previous experi-

ments and predictions for novel experimental designs. Nonetheless, I step 

back in chapter 9 and ask about the broader morals and conclusions that 

one can draw from this cognitive architecture. 



 8   Alternative Approaches 

 8.1   Different Approaches for Unifying the Mind 

 The previous chapter provided an integrated cognitive architecture that 

aimed to unify many aspects of cognition as different processes on a shared 

store of cognitive representations, structured as graphical models. The goal 

of a unified model of much of cognition is obviously not new but rather has 

been a perennial target; we can even understand Plato ’ s account of the soul 

in the  Phaedo  as an attempt to build a unified understanding of the mind. 

The belief that my mind actually is a relatively unified, coherent object or 

process naturally arises from both self-introspection and other-observation. 

Demonstrations that aspects of cognition are not integrated are interesting 

to cognitive scientists precisely because unification and coherence are typi-

cally the (implicitly) assumed default state. All these observations suggest 

that we should expect cognitive architectures, and even many cognitive 

models, to explain cognitive unification. Models of  “ local ”  parts of cogni-

tion (e.g., causal inference) are valuable because they tell us what must be 

unified, but we should aspire to build accounts of human cognition that 

explain how those various local elements combine and interact. 

 Many different routes and strategies have been followed in pursuit of 

the goal of cognitive unification. In this book, I have argued for unifica-

tion through shared representations: our cognition is unified because we 

have stable, persistent cognitive representations that are shared across 

multiple cognitive processes and domains. In contrast, the vast majority of 

other approaches to unifying cognition have pursued different strategies. 

This chapter explores several of those alternatives to show how they differ 

from the account that I have offered. Each of these accounts could be, and 
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typically has been, the subject of a book in its own right. My presentations 

and discussions will thus necessarily be quite high-level, rather than getting 

into the technical and empirical details. My principal focus will be to illus-

trate important differences between my account and previous unifications. 

 At a high level, we can group alternative cognitive unifications into two 

types: schema-centered unifications and process-centered unifications. This 

way of grouping unifications is not necessarily standard and puts together 

accounts often thought to be quite different. Nonetheless this taxonomy 

appropriately highlights important conceptual and thematic similarities 

between different accounts. Schema-centered unifications arise when we 

have a collection of distinct cognitive theories and models that are none-

theless all instantiations of the same type of structure (in some sense). In 

other words, schema-centered accounts argue for cognitive  “ unification ”  in 

virtue of some common template that is shared by all the individual cogni-

tive models, rather than through shared cognitive elements (representa-

tions, processes, or both) across those models.  1   Of course, some elements 

might actually be shared — either cognitively or neurally — between different 

cognitive processes or representations, but that overlap does not play any 

central role in the unification. Rather, these accounts unify by having a few 

model schemata, often just one, that are instantiated all throughout the 

mind. For example, there are many different connectionist models of parts 

of cognition (e.g.,  Hummel  &  Holyoak, 2003 ;  Rogers  &  McClelland, 2004 ), 

each of which tries to develop a neurally plausible model of some part of 

cognition.  2   At the same time, essentially no  single  connectionist model ever 

attempts to explain a wide range of cognitive processes and objects (though 

see  Eliasmith et al., 2012 ). Cognition is instead supposed to be unified by 

virtue of these models all being instances of a single underlying type; that 

is, the mind consists of many distinct instantiations of the same type of 

object. Schema-centered unifications are typically not explicitly described 

in this way (though see  Griffiths, Chater, Kemp, Perfors,  &  Tenenbaum, 

2010 ;  McClelland et al., 2010 ), but much of the scientific motivation for 

using the same schema for multiple cognitive models presumably comes 

from such a source. There are too many different schema-centered unifica-

tions to survey all of them; I focus in section 8.2 on two that have been 

deeply influential over the past thirty years: connectionism (sec. 8.2.1) and 

Bayesianism (sec. 8.2.2). 
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 Process-centered unifications pursue the quite different strategy of trying 

to show how coherent cognition arises from shared processes, where those 

processes are typically small building blocks that combine to yield complex 

cognition. The  “ processes ”  that are shared in these unifications are much 

more restricted than the cognitive processes that I have previously dis-

cussed (e.g., causal reasoning). Nonetheless, by combining these elements 

in appropriate ways, a process-centered unification produces the appropri-

ate range of cognitive activities. For example, the Soar cognitive architec-

ture is based on production rules — roughly, complex if-then rules — that can 

be retrieved from memory and flexibly combined in working memory to 

determine a set of cognitive and motor actions ( Laird, 2012 ;  Laird, New-

ell,  &  Rosenbloom, 1987 ;  Newell, 1990 ). That is, it unifies different aspects 

of cognition by basing the architecture on a small(er) set of operations 

that are shared across multiple cognitive activities. Process-centered uni-

fications arguably do not directly compete with my architecture, since the 

mind could (in theory) be unified in both representations  and  processes.  3   In 

practice, however, process-centered unifications typically use much simpler 

representations than graphical models, though whether that is the correct 

choice remains an open question. As with schema-centered unifications, 

many different process-centered unifications have been proposed, and in 

section 8.3 I consider three salient ones: ACT-R (sec. 8.3.1); Soar (sec. 8.3.2); 

and Sigma (sec. 8.3.3), a recently developed cognitive architecture that also 

uses graphical models, though differently than in this book. 

 Throughout these discussions, a theme will consistently emerge: the 

ideas that I have proposed in this book are, in important ways, fully com-

patible with multiple different cognitive architectures that have been 

proposed. My system rarely directly competes with other proposals; it is 

instead complementary to many of them, precisely because I focus on rep-

resentations, while they focus on schemata or processes. At the same time, 

many open questions and challenges must be resolved before my proposed 

cognitive architecture can be integrated substantively with any of these 

other proposed cognitive unifications. My cognitive architecture and these 

alternative unifications place constraints on one another (in the sense of 

chap. 2) without one being reducible to the other. Part of each section thus 

focuses on barriers that would need to be overcome to carry out this type 

of integration. 
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 8.2   Schema-Centered Unifications 

 8.2.1   Connectionism 

 In general, schema-centered unifications aim to understand the mind 

through the use of a common cognitive  “ schema ”  or pattern across differ-

ent cognitive activities. Such an approach rarely attempts to build a single 

model or architecture that can, by itself, predict and explain multiple cog-

nitions (though see  Eliasmith et al., 2012 ). Rather, the motivating idea is 

to show that the same general class of model can explain various cognitive 

activities, coupled with the argument (or sometimes just the assertion) that 

instances of this class could potentially be found throughout the mind or 

brain.  

 Connectionism encompasses perhaps the best-known schema-centered 

unification and provides an excellent example of this type. The connec-

tionist starts with the observation that human cognition and behavior can 

be exceptionally complicated, but individual neurons are quite limited and 

simple. An individual neuron, for example, does not have cognitive rep-

resentations but rather seems to be much more limited computationally. 

Nonetheless complex human behavior and cognition are generated (at least 

in the physicalist view) just through the processing of, and interactions 

between, these neurons. Moreover, we have essentially no evidence that 

individual neurons play causally critical roles; there does not seem be a 

proverbial  “ grandmother neuron ”  that encodes the one and only represen-

tation of your grandmother. Rather, cognition (somehow) emerges through 

the interactions of many neurons in structured networks. The core connec-

tionist intuition is that we can significantly advance our understanding of 

cognition by trying to model those networks. Cognitive science has a long 

history of formal models of networks composed of neuronlike elements 

( Minsky  &  Papert, 1969 ;  Rumelhart, McClelland,  &  PDP Research Group, 

1986 ); those explicitly called  “ neural networks ”  make up only a subset of 

the many different efforts. I am not concerned here with any single method 

but rather focus on connectionism more generally. 

 Connectionism is an incredibly broad area of research, and so I make 

no claims to comprehensiveness. Rather, my discussion will explain just 

enough about connectionism to justify my claim that it is a schema-

centered unification, and to see the similarities and differences with 

the architecture that I have advocated.  4   Much more information about 
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connectionist networks can be found in many standard texts (e.g., many of 

the references in  McClelland et al., 2010 ;  Rogers  &  McClelland, 2004 ). Typi-

cal connectionist networks are composed of simple units, often called  “ neu-

rons, ”  since they are supposed to be computationally somewhat similar, 

but there is no necessary commitment to any sort of biological realism (for 

reasons I explain later in this subsection). In a basic connectionist network, 

these units are grouped into  “ layers ”  (analogous to neural layers), where 

most or all units in one layer are causes of units in the next layer. One 

layer is designated as the  “ input ”  layer, and the activation levels of those 

units are set from outside the connectionist network; the analogy here is 

with phenomena like visual perception, where the activation of cells in my 

retina is driven by factors outside my brain. The activation in the input 

layer then propagates forward in the network by causing the activation lev-

els of units in the next layer, which then cause the activation levels of units 

in the layer after that, and so on. Eventually there is activation of units in 

the so-called output layer that encodes the product of the network, which 

can range from classification of some input into a particular category, to a 

sequence of motor actions, to a linguistic utterance. 

 Given a particular activation of the input units, it is simple to use a 

specific connectionist network to generate a particular output, as it is just 

a matter of propagating the input activations forward in the network until 

the output activations stabilize. In many cases, however, we want to have 

the network learn from data; we do not want to have to specify all the con-

nections and their strengths in a purely a priori manner. A huge range of 

different learning methods have been proposed for connectionist networks, 

but it will suffice here to consider just the one that is arguably most com-

mon, back-propagation ( Rumelhart et al., 1986 ). For this learning method, 

we first construct a connectionist network using between-layer connections 

with random strengths. This network will obviously do a terrible job of pro-

ducing the proper output given some input; its output will be essentially 

random for each input. Now suppose that we also have some way of  “ teach-

ing ”  the network; that is, when the network produces this random result, 

we can provide the correct answer (at least sometimes). Back-propagation 

uses the network ’ s error — the difference between its actual output and the 

output it was supposed to produce — to make small, directed changes in the 

connection strengths so that the network ’ s output for that input moves 

closer to the correct output. If the network is  “ taught ”  many times in this 
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way, then its structure and connections will converge to reliably produce 

the correct output for inputs; in many cases, connectionist networks can 

actually learn to produce (approximately) any arbitrary function from the 

inputs to the outputs ( Hornik, Stinchcombe,  &  White, 1989 ). 

 We can add many complications to connectionist networks, such as 

allowing later layers to cause earlier ones — so-called recurrent networks 

( Elman, 1991 ) — to encode information about timing or sequence. Other 

changes lead to more computationally sophisticated connectionist net-

works that can learn faster, represent more complex functions, and encode 

functions in a more compact manner. We can also alter the connectionist 

networks to make them more biologically plausible in different ways, such 

as using units that more closely model actual neurons, or incorporating 

additional pathways by which activation can spread. These various compli-

cations, however, do not change the basic structure of connectionist net-

works: units are activated as input; that activation propagates throughout 

the network; the resulting activation encodes the network ’ s output; and 

errors in the network ’ s output can be used to help the network  “ learn ”  to 

perform better in the future. 

 One of the most interesting features of connectionist networks is the 

structure of their representations. One might have thought that particular 

units would, through learning, come to correspond to particular aspects 

of the world; a connectionist network for classification might, for exam-

ple, have a unit that is active just when the input image is a dog. In prac-

tice, however, connectionist networks essentially never develop this way. 

Instead they almost always end up using some manner of distributed rep-

resentation. For example, the category  DOG  will be represented in a typical 

connectionist network by a pattern of activations across multiple units in 

an intermediate layer (or possibly multiple layers). More concretely, sup-

pose we have a simple connectionist network with three layers — input, 

output, and a  “ hidden ”  layer in between — where the hidden layer has five 

units. The activation levels of those five hidden units determine a five-

dimensional  “ activation space, ”  where any particular point in that space 

corresponds to particular activation levels for each of the five units. We can 

then understand the representation of  DOG  as a region inside that space: 

any set of activations (for the five units) that falls inside that region corre-

sponds to the network  “ thinking ”   DOG . No symbol or object corresponds to 

the network ’ s representation of  DOG ; rather, the distributed representation 
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means that representation of any particular concept is an emergent matter 

that occurs only because of the whole network (or at least a significant part 

of it). 

 Distributed or emergent representation is often taken to be one of the 

hallmarks of a connectionist network and seems to present a very differ-

ent model of cognitive representation from the one that I have used. One 

standard nonconnectionist picture is that cognitive representations are the 

discrete physical entities or symbols that are the objects of cognitive pro-

cessing. Something like this view has arguably been in the background of 

this whole book (though I suggest later in this subsection and in section 

9.3 that it might be dispensable). The phenomenon of distributed repre-

sentation, however, suggests that cognition involves nothing of the sort. 

Connectionist networks contain no persistent mental objects that could 

play the role of representations; cognition instead involves the distributed 

transformation of distributed information without any explicit or symbolic 

representation of entities and properties in the mind and the world. Of 

course, there is a sense in which the hidden unit activation levels at some 

particular moment do  “ represent ”  a particular dog in that moment, but this 

form of  “ representation ”  is radically different from that assumed by cogni-

tive architectures based on discrete, persistent symbols. 

 At the same time, it certainly seems as though we do have persistent 

cognitive representations, and so something also seems to be wrong with 

the connectionist picture. The standard connectionist reply is to suggest 

that this apparent structure actually resides  in the world , rather than in our 

minds. We do not, in the standard connectionist picture, actually have con-

cepts, words, and so forth in our minds, but only distributed and emergent 

activation patterns. However, those activation patterns approximate the 

function of such objects because the patterns arise from learning about the 

external world, and the world (that our brains aim to track) is filled with 

things like natural kinds, words, and so forth ( McClelland et al., 2010 ). 

For connectionists, the apparent structure of our cognition arises because 

of structure in the world, rather than (necessary, foundational, represen-

tational) structure in our cognition, cognitive architecture, or cognitive 

representations. 

 Connectionist models have been developed to explain many different 

cognitive phenomena, including learning and reasoning with concepts 

( Rogers  &  McClelland, 2004 ), relations and relational concepts ( Doumas, 
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Hummel,  &  Sandhofer, 2008 ;  Hummel  &  Holyoak, 2003 ), language acquisi-

tion ( Mayor  &  Plunkett, 2010 ), language difficulties ( Plaut  &  Shallice, 1993 ), 

memory systems ( McClelland, McNaughton,  &  O ’ Reilly, 1995 ), and motor 

control ( Wolpert  &  Kawato, 1998 ). Many connectionist models explicitly 

aim to capture developmental phenomena (e.g.,  Mayor  &  Plunkett, 2010 ), 

where the idea is that the development and learning of the connectionist 

network can provide interesting insights into the way that a child might 

develop. In addition, connectionist networks have been used to investigate 

the cognitive effects of brain lesions ( Hinton  &  Shallice, 1991 ;  McClelland 

et al., 1995 ;  Plaut  &  Shallice, 1993 ). More specifically, the research idea here 

is to train a connectionist network, induce  “ lesions ”  in it by destroying 

some of the units, and then examine whether the resulting network exhib-

its behavior similar to humans who have sustained similar (in some sense) 

brain lesions. An exhaustive survey of all connectionist models would 

require its own book but thankfully is not required here. The important 

observation is that researchers generally do not build single connection-

ist networks that capture many different types of cognition. Connectionist 

models unify the mind not through positing a single underlying system but 

rather through a coherent modeling perspective in which all aspects of cog-

nition are (hopefully) understood through a common lens. In contrast with 

the process-centered unifications discussed in the next section, there need 

not be a single  “ engine ”  driving all cognition; many different processes, 

networks, modules, or whatever could underlie cognition. It is nonetheless 

a unification, however, precisely because the goal is to understand all those 

elements in terms of connectionist networks. 

 Connectionist networks are sometimes thought (particularly by those 

who do not use them) to be intended as biologically realistic models of the 

human brain. In practice, however, they rarely are; there are many differ-

ences between actual human brains and most connectionist networks, and 

only a few connectionist models aim to provide detailed, systematic models 

of biological processing (e.g.,  Eliasmith et al., 2012 ). The lack of biological 

grounding is not a problem for the connectionist unification, however, as 

that unification does not require the building of a single, massive, con-

nectionist  “ brain. ”  The explanations offered by connectionist models differ 

from those that result from direct maps of the underlying neural system. 

First, connectionist networks can provide  “ how possibly ”  explanations for 

human cognition, as they can reveal how various behaviors could or could 
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not be generated by a network of computationally simple units. In particu-

lar, connectionist networks can provide constraints on the plausible neural 

underpinnings for some cognitive activity. For example, if networks of a 

particular structure are unable to predict or explain some actually observed 

(in humans) empirical phenomena or behavior, then we can conclude that 

our brains do not have that structure ( McClelland et al., 1995 ). Second, 

connectionist networks can arguably play a deflationary role: they appear 

to demonstrate that there is no particular need for the types of complex 

symbolic models sometimes offered in cognitive science ( McClelland et al., 

2010 ). These deflationary claims are quite contentious, however, since it is 

unclear whether connectionist models are really nonsymbolic in the rel-

evant ways (e.g.,  Fodor  &  Pylyshyn, 1988;  though there are many responses 

to their arguments). 

 The deflationary implications of connectionist models seem to speak 

directly against the cognitive architecture that I have presented in this 

book. If the brain functions anything like a connectionist network, then it 

seems that there just cannot be persistent cognitive representations involv-

ing objects such as graphs, nodes, or edges. Hence there cannot be anything 

like graphical models underlying our cognition. This argument moves too 

quickly on at least two related fronts, however. First, recall that I argued that 

representation realism is best understood as a set of commitments about 

future behavior in different tasks that engage the same putative represen-

tation. I deliberately did not include any commitment that we have the 

ability to point toward particular objects in our brains, since we know too 

little about how the brain both represents and processes information about 

the world (see also sec. 9.3). As a result, my representation realism requires 

only that people behave in systematic (and systematically interpretable) 

ways that are best explained as operations on graphical models. That is, I 

commit myself to a realism about representations that is entirely consistent 

with them being neurally distributed or emergent, as long as the distributed 

representations are appropriately  stable  across tasks and environments. The 

second, related point is that the deflationary view privileges a particular 

type of model when trying to understand the mind. In contrast, my view is 

that a model ’ s value comes from what it can help us to understand, predict, 

and explain. In some contexts, connectionist networks might be best; in 

others, symbolic models may prove most fruitful; and in yet a third type 

of setting, we might gain the most value by considering multiple types of 
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models. The value of the cognitive architecture that I have proposed should 

be assessed not through a priori condemnation of its use of graphical mod-

els (i.e., symbolic representations) but by whether it can help us to better 

understand cognition. 

 If we adopt that stance, then we can see that graphical models can pro-

vide significant value in understanding some of the ways in which cog-

nition is unified; this book has attempted to do exactly that. Moreover, 

this approach can help us to understand the source of some challenges 

faced by connectionist networks themselves. One notable lacuna in the 

empirical phenomena explained by connectionist models is causal learn-

ing from observations. There are connectionist models of causal learning 

for situations in which the individual can intervene on the system ( Rogers 

 &  McClelland, 2004 ), and of aspects of causal reasoning ( Van Overwalle  &  

Van Rooy, 2001 ). No connectionist models, however, exhibit the human 

behavior of observing some system and then accurately predicting the 

results of interventions that have never been observed ( Waldmann  &  Hag-

mayer, 2005 ). When we think about this problem using graphical models, 

it is easy to see why this is hard for connectionist models. If I learn  C   →   E  

and need to predict the outcome of a hard intervention on  E , then I should 

break the  C   →   E  edge and use the graphical model in which there is no 

edge. (See chaps. 3 and 4 for more details and explanation.) That is, human 

behavior requires exactly that we  not  simply track or mirror the world; we 

instead need to be able to reason about possibilities that are inconsistent 

with every observation that we have ever had. This behavior does not fit 

the standard connectionist deflationary picture in which the structure of 

our cognition is due to the world ’ s structure, not anything in our minds. Of 

course, this does not imply that a connectionist model is impossible, only 

that this causal learning and reasoning behavior presents a significant open 

challenge and research question for connectionist modeling (for an initial 

attempt to address this question, see, e.g.,  Beukema, 2011 ). More impor-

tantly, it highlights the value of using multiple approaches to understand 

the nature of cognition, rather than taking deflationary suggestions to an 

unjustified extreme. 

 8.2.2   Bayesianism 

 A very different type of schema-centered unification can be found in Bayes-

ian models of human cognition that argue that much of human cognition 
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can be understood as Bayesian updating, at least at a computational or 

rational analysis level ( Chater  &  Oaksford, 2008 ;  Chater, Tenenbaum,  &  

Yuille, 2006 ;  Griffiths et al., 2010 ;  Griffiths, Kemp,  &  Tenenbaum, 2008 ; 

 Oaksford  &  Chater, 2007 ). Recall that  P ( A  |  B ) denotes the conditional prob-

ability of  A  given  B ; that is, it is the probability that  A  obtains once we know 

 B . Importantly,  P ( A  |  B ) can be quite different from  P ( B  |  A ), both in value 

and in difficulty of computation. I do not know the value of  P ( Is pregnant  

|  Is female ) — that is, the probability that someone is pregnant, given that 

she is female — for the worldwide population, since I do not know (and it 

would be quite costly to determine) what proportion of women worldwide 

are currently pregnant; all I know is that the number is much less than 1, 

as there are many women who are not pregnant. In contrast, I know that 

 P ( Is female  |  Is pregnant ) is 1, simply as a matter of (human) biological fact; 

every pregnant individual is a female. These two conditional probabilities 

are different, but we can readily transform one into the other using a simple 

fact about probabilities: 

  P A B
P B A P A

P B
( | )

( | ) ( )
( )

=   

 Bayesian updating is the process of transforming conditional probabili-

ties in this way, but with a particular interpretation for  A  and  B  originally 

provided by Thomas Bayes and posthumously extended by his literary 

executor, Richard Price, in 1763. Suppose we have some theory of interest 

 T , whether large-scale and grandiose (e.g., quantum mechanics) or small-

scale and local (e.g., the center switch controls the lights in this room). If 

we get some evidence  E  that is relevant to  T , then we may want to know 

how likely  T  is in light of that evidence. That is, we arguably want to know 

 P ( T  |  E ). This conditional probability is frequently quite hard to determine 

directly, but it might be much easier to compute  P ( E  |  T ), as this quantity 

is just the likelihood of seeing  E  if the theory  T  were actually true. We 

can now see how to use the equation displayed earlier: let  A  be the theory 

of interest and  B  be our evidence. We can then compute the quantity of 

interest —  P ( T  |  E ) — in terms of other quantities that are often much easier 

to determine:  P ( E  |  T ), and the prior probabilities (before seeing  E ) of  T  and 

 E ,  P ( T ) and  P ( E ). 

 A  Bayesian model  is any model in which cognition, usually learning 

and inference, proceeds through application of Bayesian updating of the 



186 Chapter 8

sort just outlined. To see exactly how this could work, consider a simple 

example of causal learning. Suppose one is trying to determine the causal 

structure in some situation based on a sequence of observations, and sup-

pose further that one has background knowledge that only three structures 

are possible: a common cause model  M CC   ( A   ←   B   →   C ), a common effect 

model  M CE   ( A   →   B   ←   C ), or no causal connection at all  M NC   ( A   B   C ). 

Before making any observations, the Bayesian learner has some  prior prob-

ability  that each of these models could be true; that is, we have  P ( M CC  ), 

 P ( M CE  ), and  P ( M NC  ), where these must sum to exactly one (since one, and 

only one, of these three models is correct). As we receive evidence  E , we 

need to update these prior probabilities to the  posterior probabilities :  P ( M CC   

|  E ),  P ( M CE   |  E ), and  P ( M NC   |  E ). Looking back at the earlier equation, we see 

that we can do this by multiplying the prior probability by the so-called 

 likelihood function  for each model:  P ( E  |  M CC  ),  P ( E  |  M CE  ), and  P ( E  |  M NC  ). If our 

causal models are standard DAG-based graphical models, then these likeli-

hoods are easy to calculate; recall that a major reason to use those graphical 

models is precisely that they provide a compact encoding of a probability 

distribution, so it is easy to determine the probability of any particular data 

point.  5   Finally, we also need to divide by  P ( E ), but this term is the same for 

all the models, so it really just acts as a normalization factor that ensures 

that the numbers coming out of the equation are still probabilities. If we 

subsequently receive more evidence, then we can simply use these posterior 

probabilities as our new prior probabilities. That is, Bayesian updating can 

be performed iteratively on each data point as it arrives, or in a batch after 

collecting multiple data points. This posterior probability distribution over 

the causal models can then be used whenever necessary to select, either 

explicitly or implicitly, a particular causal model using some decision pro-

cedure (e.g., probability matching or utility maximization, though see  Eber-

hardt  &  Danks, 2011 ). 

 Bayesian models have been developed for many different types of cogni-

tion, including the focal topics of this book: causal learning and reasoning 

( Bonawitz, Griffiths,  &  Schulz, 2006 ;  Griffiths  &  Tenenbaum, 2005 ;  Lucas  &  

Griffiths, 2010 ;  Sobel, Tenenbaum,  &  Gopnik, 2004 ;  Steyvers, Tenenbaum, 

Wagenmakers,  &  Blum, 2003 ), category learning and inference ( Good-

man, Tenenbaum, Feldman,  &  Griffiths, 2008 ;  Heit, 1998 ;  Kemp, Perfors,  &  

Tenenbaum, 2007 ;  Piantadosi, Tenenbaum,  &  Goodman, 2012 ), and deci-

sion making of many different types ( Jern  &  Kemp, 2011 ;  Jern, Lucas,  &  
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Kemp, 2011 ;  Kording  &  Wolpert, 2006 ;  Lee, 2006 ). Bayesian models have 

also been offered for cognitive activities ranging from lower-level phenom-

ena such as object perception ( Kersten  &  Yuille, 2003 ) and memory effects 

( Schooler, Shiffrin,  &  Raaijmakers, 2001 ;  Shiffrin  &  Steyvers, 1997 ) up to 

higher-level phenomena such as pragmatic inference in language ( Frank  &  

Goodman, 2012 ) and complex social cognition ( Hamlin, Ullman, Tenen-

baum, Goodman,  &  Baker, 2013 ;  Ullman et al., 2009 ). 

 To understand what binds these models together, it is important to note 

that Bayesian models of cognitive phenomena have generally been offered 

at the so-called computational level ( Marr, 1982 ). Recall from section 2.2 

that computational-level accounts specify the problem and environment 

that the cognitive agent confronts, as well as the behavior that would (opti-

mally or rationally) solve that problem in this environment. As such, these 

models remain largely agnostic about the underlying cognitive mechanisms 

that produce the behavior; they offer explanations of  why  some behavior 

occurs (namely, because it is the rational thing to do) rather than  how  some 

behavior is generated ( Danks, 2008 ). Researchers have started working on 

the problem of how (approximately) Bayesian behavior could actually be 

generated ( Denison, Bonawitz, Gopnik,  &  Griffiths, 2013 ;  Griffiths, Vul, 

 &  Sanborn, 2012 ;  Kruschke, 2006 ;  Shi  &  Griffiths, 2009 ;  Vul, Goodman, 

Griffiths,  &  Tenenbaum, 2009a ;  Vul, Hanus,  &  Kanwisher, 2009b ), but there 

is still little agreement about the underlying mechanisms or representa-

tions that generate this behavior. Rather, the tie that binds together mul-

tiple Bayesian models into a single unification of cognition derives from 

the shared schematic structure of the different models. 

 As a result of this focus on the computational level, proponents of most 

Bayesian models are not committed to any particular claims about how the 

(approximately) Bayesian behavior is generated, but agree only that people 

do behave in this way, and that the Bayesian predictions are (approximately) 

rational or optimal. Three distinct arguments commonly support the ratio-

nality of Bayesian models. First, Bayesian methods exhibit long-run proper-

ties that any rational agent should exhibit ( Perfors, Tenenbaum, Griffiths, 

 &  Xu, 2011 ): in many circumstances, they provably, reliably converge to 

the (learnable) truth ( Gaifman  &  Snir, 1982 ), and no learning or inference 

method can systematically arrive at the truth faster ( Schulte, 1999 ). Second, 

if the probabilities all correspond to strengths of belief, then given certain 

assumptions about how belief manifests in action, changing beliefs through 
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Bayesian updating is the only way to avoid incoherent actions over time 

( Teller, 1973 ,  1976 ). That is, if rationality requires that our actions in the 

future be coherent (in a precise, restricted sense) with our actions now, then 

under certain circumstances, Bayesian updating is the only rational way to 

learn. Third, we live in a noisy, probabilistic world, and so we might think 

that our cognition should rationally be based in probabilities (rather than, 

say, formal logic). The equation at the heart of Bayesian updating is a fact 

of probability theory, so we rationally ought (according to this argument) 

to follow it ( Oaksford  &  Chater, 2007 ). If we accept these three different, 

independent arguments that acting in a Bayesian manner is rational, then 

we seemingly have an explanation for  why  people (might) act like Bayes-

ians: they behave this way — engage in this cognition or behavior — precisely 

because it is the right or rational thing to do. 

 All Bayesian models, regardless of cognitive domain, scale, or content, 

are built from the same basic mathematical machinery. Part of the argu-

ment in favor of this particular machine is precisely that the same com-

putational framework seems to be able to provide powerful explanations 

of why people act or think in particular ways across all those different 

domains and scales. In contrast with the process-centered unifications dis-

cussed in the next section, the focus on the computational level means 

that the shared mathematical machinery does not necessarily extend to 

any shared underlying mechanisms or representations. One might thus jus-

tifiably fear that the unification provided by Bayesian models is as spurious 

as the  “ unification ”  (mentioned in sec. 7.1) of a weight ’ s motion when 

on a spring, and the steady-state behavior of an AC electrical circuit. The 

(purported) rationality of Bayesian updating critically provides a response 

to this worry, however, as we can attempt to unify the mind based on the 

why-explanations that Bayesian models aim to provide. That is, the shared 

mathematical structure across many different cognitions and behaviors can 

be understood to reveal a different type of unity to the mind: namely, that 

the mind systematically responds to its environment (approximately) ratio-

nally. The different Bayesian models all have the same underlying schema 

that (putatively) picks out the rational cognition or behavior, and so we 

have a unification of cognition as rationally (i.e., in a Bayesian manner) 

solving the problems that the cognitive agent confronts. 

 This unification and accompanying justification conflate, how-

ever, three terms —  Bayesian ,  probabilistic  or  generative , and  rational  — that 



Alternative Approaches 189

frequently co-occur in cognitive science discussions of Bayesian models but 

are justified by different features of a model: the processes, representations, 

and performance, respectively. First, the term  Bayesian model  refers to any 

model in which cognition is based on the application of Bayesian updat-

ing. Second, a  probabilistic or generative model   6   is one in which the cognitive 

representations in the model are structured representations of probabilities 

that can be used to generate novel cases. The graphical models that I have 

used throughout this book are some of the most prominent types of proba-

bilistic, generative models, though certainly not the only ones. Third, a 

 rational model  is one that characterizes the rational behavior or cognition 

for an agent, where I am deliberately agnostic about exactly what  “ ratio-

nal ”  means (though see chap. 2). That is, the model, whatever its structure, 

has some plausible claim to being rational for the cognitive agent in its 

environment. 

 When these terms are described in this way, it is easy to see that they are 

conceptually independent of one another. A Bayesian model uses a particu-

lar process for learning and inference, but that implies no (obvious) com-

mitments about representation or evaluation. A probabilistic, generative 

model uses cognitive representations of a particular sort but could use seem-

ingly any learning or inference process and so need not meet any particular 

evaluative criterion. For example, the cognitive models that I offered in 

chapters 4 through 7 used generative models, but many of the learning and 

inference algorithms discussed there were decidedly non-Bayesian. Finally, 

there are many different standards of rationality, so there is no necessary 

reason that a rational model must use either Bayesian updating or proba-

bilistic, generative models. In particular, all three of the arguments for the 

rationality of Bayesian updating turn out to show, when we use plausible 

assumptions, only that Bayesian updating is  one  way to be rational, not that 

it is the  only  way to be rational; Bayesianism is only uniquely rational if we 

make implausible assumptions ( Eberhardt  &  Danks, 2011 ). 

 Although these three terms are conceptually distinct, it is unsurprising 

that they are frequently blurred together in the cognitive science literature 

on Bayesian models. Suppose that you want to build a Bayesian model 

(in the sense that I use that term) of some aspect of cognition. If we look 

back at the equation for transforming conditional probabilities, we can 

see that Bayesian updating will be useful just when  P ( E  |  T ) is much easier 

to compute than  P ( T  |  E ). In practice, this usually happens when  T  is a 
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probabilistic, generative model: by definition, those are exactly the models 

that easily generate  “ data ”  about the world and thus lead to straightfor-

ward calculation of  P ( E  |  T ). Given a DAG-based graphical model  G , for 

example, it is easy to calculate the probability of getting any particular 

evidence or data set. Bayesian models thus almost always use probabilis-

tic, generative models or representations, though such representations can 

also be used in non-Bayesian models. Now suppose that one has a Bayes-

ian model in hand and wants to know  why  people behave in this way. As 

noted earlier, there are at least three independent arguments that Bayes-

ian models are rational, and so proponents of Bayesian cognitive models 

should emphasize the rationality of Bayesian models, at least if they think 

that some behavior being rational provides an explanation for why that 

behavior occurs (though see  Danks, 2008 ). Just as with probabilistic, gen-

erative models, however, Bayesian models do not have an exclusive claim 

to rationality. 

 I went on this digression about these three terms —  Bayesian ,  probabilistic/

generative , and  rational  — precisely because disentangling them enables us to 

see the principal difference between the Bayesian unification of cognition 

and the one that I have proposed in this book. Bayesian unifications argue 

that much of human cognition and behavior is the (approximately) rational 

response to the problems and challenges that we face. In contrast, I focus 

on the cognitive representations that actually (in the sense of realism intro-

duced in chap. 2) underlie our behavior. Of course, the account that I have 

offered is based on graphical model representations and so is sympathetic 

to Bayesian models (since graphical models are generative models). In that 

sense, proponents of a Bayesian unification would presumably be amenable 

to the mathematical work done in this book (in fact, some of them gener-

ated or contributed to it) while disavowing the particular representation 

realism that I have espoused.  7   At the same time, Bayesians are committed 

to the use of a particular mathematical model (at least at the computational 

level) that I do not necessarily adopt; some of the algorithms or processes 

discussed earlier in the book used Bayesian updating — notably the cate-

gorization algorithm in chapter 5 — but that was driven by the method ’ s 

fit-to-data, rather than any particular commitment to building a Bayes-

ian model. Finally, I have not attempted to give a rational explanation of 

human behavior, though the graphical model basis for our cognitive repre-

sentations is, I suggest, quite sensible given the challenges that we face. The 
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problem is that actually providing a why-explanation requires much more 

than simply demonstrating optimality ( Danks, 2008 ), and Bayesian models 

almost never have a unique claim to rationality in any case ( Eberhardt  &  

Danks, 2011 ). My proposed cognitive architecture and Bayesian unifica-

tions share many mathematical features but fundamentally have different 

commitments and goals. 

 8.3   Process-Centered Unifications 

 8.3.1   ACT-R 

 I now turn to a quite different type of cognitive unification: process-cen-

tered unifications attempt to build models from a small set of relatively 

simple, widely shared processes, where single models should be able to pre-

dict and explain different types of cognition. More colloquially, these uni-

fying cognitive architectures aim to discover the  “ machinery ”  of the mind. 

One of the best-developed cognitive architectures of the past thirty years 

has been ACT-R ( Anderson, 2005 ,  2007 ;  Anderson et al., 2004 ). Models in 

this architecture have been applied to a wide range of laboratory and real-

world tasks (with a notable exception discussed at the end of this subsec-

tion); many examples can be found at the website of the ACT-R Research 

Group at Carnegie Mellon University,  http://act-r.psy.cmu.edu . I focus here 

on how ACT-R provides a measure of unification to cognition. 

 At a high level, the ACT-R architecture comprises eight distinct mod-

ules, with the understanding that more will need to be added over time 

( Anderson, 2007 ). The input and output of the system are handled by 

modules for visual and aural processing, and for manual (hand) action and 

vocalization, respectively. Four modules are more traditionally cognitive, 

specifically for declarative memory, goals, procedures/processing, and the 

 “ imaginal ”  module, which largely handles working memory. Each of these 

eight modules is individually fast and mostly unconscious in terms of its 

internal operation. In many respects, these modules fit many of the criteria 

for a  “ cognitive module ”  articulated in  Fodor (1983) . Moreover, much of 

the recent research on ACT-R has aimed to identify specific brain regions 

for each of the modules, and experiments have yielded some impressive 

results correlating ACT-R (predicted) operations with actual brain activity 

measured using fMRI ( Anderson, 2007 ;  Anderson et al., 2008 ;  Anderson, 

Qin, Jung,  &  Carter, 2007 ). 
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 Each of the eight modules functions in relative isolation from the others, 

but they do need to communicate. The procedural module is the nexus of 

communication for the modules: the other seven modules all communi-

cate with the procedural module, and it is the only one with connections 

to multiple modules. It thus functions as the hub of the cognitive archi-

tecture. The basic functional unit for the procedural module (though not 

for many of the other modules) is a so-called production rule: essentially 

a complex  if - then  statement that is (a) triggered when the antecedent  if  

condition is satisfied, and (b) produces the consequent  then  statement. For 

example, one might have the production rule  “  if  the goal is subtraction 

 and  the numbers are 17 and 4,  then  the output is 13. ”  In practice, produc-

tion rules in ACT-R are much more complicated than this example, though 

their basic structure is the same: antecedents include goals and system state 

information (including beliefs about the external world), and consequents 

provide the operation to perform when the antecedent is satisfied. 

 Production rules can come from many different sources, including delib-

erate reasoning, explicit instruction, learning over time (e.g., associative 

processes), or analogies with prior situations or experiences. Perhaps most 

interestingly, multiple production rules can be  “ compiled ”  together to form 

a new production rule based on their previous co-occurrence. At a high 

level, production compilation takes multiple operations and combines 

them into a single one; the new compiled production might be more com-

plex than the input ones but need not be. As a simple example, suppose I 

repeatedly use the production rules  “  if  goal  G ,  then  retrieve information  I  ”  

and  “  if  goal  G   and  information  I ,  then  perform action  A . ”  Production com-

pilation can yield the new production rule  “  if  goal  G ,  then  perform action 

 A . ”  Obviously, much more complicated production compilation can occur. 

Moreover, production compilation is critical because, in contrast to some 

other cognitive architectures, only a single production rule can be active at 

any point in time in ACT-R.  8   The procedural system must choose, at each 

moment in time, from among the many different production rules that are 

potentially relevant to the current goal. In practice, the procedural system 

selects on the basis of the rules ’  expected utilities; that is, the system selects 

the production rule that it judges (typically based on past experience) will 

be most likely to lead to timely satisfaction of the current goal. 

 The procedural module contains and carries out the production rules 

but is a very different type of module from the other seven, since it has 
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essentially no content itself. Rather, it must get the content for the rules 

(e.g., the exact numbers for a subtraction operation, or that the current 

goal is to subtract two numbers) from the other modules. In general, ACT-R 

assumes that each of the other seven modules communicates with the pro-

cedural module through module-specific  “ buffers ”  (analogous to buffers 

inside one ’ s computer) that each contain only one piece of information 

at a time. These between-module buffers act as information bottlenecks 

that help to explain the sequential nature of much of human cognition. 

Although each individual module can process information in a fast and 

parallel manner, they can only communicate that information back to 

the central procedural module through a slow and serial buffer. The types 

of cognition on which I have focused depend most on communication 

between the declarative memory module and the procedural module, as 

the declarative module has much of the  “ knowledge content ”  that must be 

accessed for the proper functioning of the production rules. (The imaginal 

and goal modules will also sometimes be relevant, since they respectively 

encode the current problem representation and handle means-end reason-

ing, including planning and generation of subgoals.) 

 The declarative module contains what we typically call representations, 

whether of facts, theories, connections, or episodes. In ACT-R, these are 

called  “ chunks ” : the elements that are stored and retrieved together. A sim-

ple example might be something like  “ Abraham Lincoln was the sixteenth 

president of the United States, ”  but chunks can have significant internal 

structure. In the use of concepts, for example, the chunks could be rules for 

categorization, or salient past exemplars of each category, or even a mixture 

of both in a single cognitive model ( Anderson  &  Betz, 2001 ). The buffer 

between the declarative and procedural modules can contain only a single 

chunk at a time, so the chunks determine the  “ unit of information trans-

fer ”  into the procedural module. Internal to the declarative module, chunk 

activation is determined by the basal activation level of that chunk (e.g., 

chunks that have been active in the recent past will tend to be more active 

in general), as well as two dynamic, context-specific processes. First, the 

procedural module can  “ query ”  the declarative module by asking for partic-

ular types of information. In response to such a query, the chunks that are 

most similar to the query (by some metric) will gain activation. Second, the 

previous activations of chunks can  “ spread ”  to less active chunks, where 

the spread is driven by between-chunk similarity; for example, activating 
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the Abraham Lincoln chunk can lead to activation of other chunks about 

him (e.g.,  “ Abraham Lincoln gave the Gettysburg Address ” ), or about other 

U.S. presidents, or perhaps even the number 16. The key observation about 

this process is that it implies that different chunks can implicitly be con-

nected by similarity, whether in particular properties or in overall structure 

(depending on the particular similarity metric that is used). 

 We are now in a position to see how ACT-R aims to unify cognition. 

Although there is great diversity between the modules, and even between 

elements within a module, the cognitive architecture as a whole provides 

a single  “ machine ”  that can perform many different cognitive tasks. The 

same ACT-R system can be deployed to drive a (simulated) car ( Salvucci, 

2006 ), solve algebra problems ( Anderson, 2005 ), or categorize new objects 

( Anderson  &  Betz, 2001 ). The different tasks depend to varying degrees on 

different modules; driving requires heavier use of the visual module than 

object categorization does, for example. Nonetheless the same integrated 

system — the same processes and representations (perhaps even the same 

brain areas; see  Anderson et al., 2008 ), not just the same mathematics —

 underlies a wide range of cognition and behavior. Moreover, the central 

role of the procedural module and its exclusive use of production rules 

implies a further degree of unification, as ACT-R regards all cognition as 

fundamentally process driven. The core challenge in the development of 

an ACT-R model is often to determine the production rules that, when acti-

vated in an appropriate sequence, implement the underlying cognitive pro-

cess. Although there is diversity between different modules, all cognition 

is ultimately (in ACT-R) unified by the underlying production rules. There 

are many different particular production rules, but all cognition (in ACT-R 

models) has the use of production rules at its core. 

 This unification focus stands in contrast with the representation unifica-

tion that I have pursued in this book, but not necessarily in opposition. At 

least in theory, the unification that I have proposed here is consistent with 

the ACT-R cognitive architecture. In practice, however, there are substantial 

challenges. First, there do not seem to be any ACT-R models that use graphi-

cal models as their core representations. Even in the area of causal learn-

ing and reasoning where DAG-like cognitive representations seem almost 

obligatory, ACT-R models have not used graphical models. Instead causal 

knowledge has been represented either as declarative facts ( Drewitz  &  Bran-

denburg, 2012 ) or as production rules that enable the cognitive agent to 
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generate simulated system states ( Schoppek, 2001 ). Moreover, this absence 

does not seem to be an accident of history but rather seems grounded in the 

nature of declarative memory and chunks in ACT-R. The standard assump-

tion in ACT-R models is that declarative memory simply stores previously 

observed chunks (as well as their basal activation rates), and the spread-

ing activation between declarative memory items is based simply on the 

between-chunk similarity. In this picture, we can think of chunks as essen-

tially discrete units that move through the buffer. 

 The problem is that this picture does not fit cleanly with representa-

tions as graphical models. People seem to be capable of reasoning with 

large graphical models, such as when they engage in complex causal rea-

soning. Since chunks are supposed to be discrete units, this suggests that 

we should identify chunks with these large graphical models. At the same 

time, however, the between-module buffers can each hold only one chunk 

at a time, so it seems that a large graphical model is much too big to be a 

single chunk, particularly since a context or task change can lead people to 

use only a small part of that graphical model. The underlying issue is that 

ACT-R chunks standardly are understood to have rich within-chunk con-

tent, but only weak (perhaps only implicit) between-chunk connections. In 

contrast, graphical models are typically built on nodes that have very little 

internal content but have rich connections with many other nodes. Hence 

it is unsurprising that we cannot identify graphical models with chunks in 

the declarative module. 

 An integration of my cognitive architecture and ACT-R would presum-

ably require a different strategy, perhaps one that gives up the ACT-R 

assumption that chunks are stored similarly to how they are passed through 

the buffer. More specifically, suppose that (part of) the declarative module 

contains representations structured as graphical models. If a chunk comes 

into the declarative module ’ s buffer, then that action could trigger process-

ing in the declarative module: either some graphical models in the declara-

tive module could be updated in response to the new information in the 

chunk, or else one or more subgraphs could be activated in response to 

a query. Given sufficient activation, some subgraph could then be placed 

into the declarative module ’ s buffer so that it could be used by the proce-

dural module. The overall picture is one in which the chunks that appear 

in the declarative-procedural buffer are generated dynamically from the  un -

chunked content stored in declarative memory. That is, chunks would still 
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be passed back and forth but would no longer be persistent objects that are 

simply activated in toto. Of course, some aspects of the procedural module 

would undoubtedly need to be changed to take advantage of chunks with 

graphical model content, rather than the current structured variable/prop-

erty lists. In addition, we would also have to specify methods or strategies 

for partial chunk activation, as it needs to be possible for only a subgraph 

to be activated. Both of these adjustments face their own sets of challenges. 

While it thus seems possible that graphical model cognitive representations 

could be integrated into ACT-R, it would require substantial research efforts 

on both sides. As we will see in the next two sections, this reflects a gen-

eral observation: combining process-centered and representation-centered 

unifications often seems possible in theory but faces significant practical 

obstacles. 

 8.3.2   Soar 

 The Soar cognitive architecture explicitly aims to provide a general model 

for intelligent agents, whether human or machine ( Laird, 2012 ;  Newell, 

1990 ). Models built in the Soar architecture have been developed not only 

for standard cognitive science or laboratory tasks ( Laird, 2012 ;  Newell, 

1990 ;  Rosenbloom, Laird,  &  Newell, 1993 ) but also for natural language 

processing ( Lewis, 1993 ;  Rubinoff  &  Lehman, 1994 ) and many different 

real-world situations and applications including video game intelligence 

and multiple military-industrial problems ( Gunetti  &  Thompson, 2008 ; 

 Gunetti, Dodd,  &  Thompson, 2013 ;  Laird, Derbinsky,  &  Tinkerhess, 2011 ; 

 Wray, Laird, Nuxoll, Stokes,  &  Kerfoot, 2005 ). In fact, this focus on real-

world domains has been a major driving force behind the development of 

Soar since its beginnings as a way to model and understand general prob-

lem solving ( Newell, 1990 ). Soar shares with ACT-R the overall idea that 

cognition is unified through shared (micro)processes, but there are impor-

tant differences in the details. In particular, where ACT-R has many differ-

ent processes because each module has its own set of operations, Soar aims 

to unify cognition through a very small number of underlying cognitive 

processes, and perhaps only one. 

 A Soar model represents the world in terms of states: the current or start 

state, and a set (possibly just one) of desired goal or end states. The agent ’ s 

behavior — both cognitive and motor — emerges from the agent ’ s attempt to 

move from the current state to one or more of the goal states. Changes from 
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one state to the next occur because of cognitive operations that transform 

the current state. This overall cycle of  “ state, operation, and result ”  is the 

original source of Soar ’ s name, though it is now understood as a proper 

name, rather than an acronym. More precisely, a  state  is a representation of 

all relevant objects and variables in some situation; it is a complete descrip-

tion of the relevant aspects of a situation. An  operator  acts on a state and 

transforms it into a new one; Soar constrains operators to be production 

rules, as in ACT-R. The Soar architecture incorporates perceptual and motor 

systems, so all operators have the form  “  if  the current state, perceptual 

input, and/or other operators meet some conditions,  then  do some combi-

nation of state change, operator change, or motor action. ”  As this schema 

suggests, these operators can be incredibly complex and detailed, depend-

ing on the situation. 

 Cognition in Soar is  “ just ”  choosing a sequence of operators starting 

from the current state and perceptual input and (hopefully) ending at a 

goal state, so a key challenge is how to consider and choose particular oper-

ators. In Soar, three memory systems provide potential operators. Proce-

dural memory encodes the agent ’ s skills and abilities, and so its contents are 

already structured as operators. Semantic memory encodes facts about the 

world, which are better understood as  “ data chunks ”  ( Rosenbloom, 2006 ) 

that can shape the state. Episodic memory encodes particular events in the 

agent ’ s history, which Soar represents as essentially a list of prior (remem-

bered) states ( Nuxoll  &  Laird, 2012 ). When we are in a particular state, all 

the memory elements that are considered relevant, either through auto-

matic retrieval or deliberate consideration, are placed in working memory 

as possible choices. The Soar agent decides between the possible operators 

using various preferences (perhaps from past learning; see discussion later 

in this subsection) or by treating the operator choice as  itself  a problem to 

be solved. In this latter case, Soar has a new, more immediate goal state —

 namely, picking a good operator — and attempts to reach that goal state 

successfully. This subgoal might, for example, be reached by finding an 

instance in episodic memory when the state was similar and one of the 

operators was used either successfully or unsuccessfully. 

 The set of operators that an agent has in memory is obviously not fixed; 

Soar agents can learn. For many years, the only learning mechanism in 

Soar was chunking ( Laird, Rosenbloom,  &  Newell, 1986 ): essentially, one 

creates new operators by putting together a sequence of operators that was 
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previously successful or even just repeatedly used. This process is similar 

to, but not identical with, production compilation in ACT-R. As a simple 

example, suppose  O  1  is  “ if  A , then  B  ”  and  O  2  is  “ if  B , then  C . ”  The chunk-

ing mechanism can generate the new operator  O  3  —  “ if  A , then  C  ”  — that 

can be used as a single operator in the future and yield both new and more 

reliable behavior. In practice, chunking can be significantly more complex, 

since the operators rarely line up perfectly and one must be careful about 

the inputs and outputs of the newly chunked operator. Chunking alone is 

insufficient for all learning, though, so Soar now incorporates additional 

learning mechanisms. Reinforcement learning enables the Soar agent to 

attach values to the operators based on their past successes and failures, 

thereby enabling improved operator choices ( Nason  &  Laird, 2005 ). Addi-

tional mechanisms allow for learning that changes semantic memory 

( Rosenbloom, 2006 ) and episodic memory ( Nuxoll  &  Laird, 2012 ), and 

these different learning mechanisms can interact in interesting ways ( Gor-

ski  &  Laird, 2011 ). 

 In contrast with ACT-R, relatively little research has explored possible 

neural implementations of Soar-like models or attempted to correlate Soar 

operations with activity in particular brain regions. A relatively early ver-

sion of Soar was implemented in a set of neural network models ( Cho, 

Rosenbloom,  &  Dolan, 1991 ), which suggests that Soar is potentially neu-

rally plausible (though neural networks are not necessarily biologically real-

istic). A different approach is to focus on working memory, which plays a 

central role in the Soar architecture and whose neural bases have also been 

extensively studied.  Young and Lewis (1999)  argue that the properties of the 

working memory module in Soar are consistent with what we know about 

the neural and cognitive features of actual working memory, though this 

is again not a particularly strong connection to neural implementations. 

This gap is, however, not necessarily a black mark against Soar; as I argue 

in section 9.3, there are many good reasons to articulate and investigate a 

model that is not (yet) grounded in any particular neural implementations. 

 The Soar architecture can lead to complex cognition because between-

rule dependencies can develop that lead to extended chains of operator 

choices. Nonetheless the basic picture of cognition is still the repeated 

application of a single type of (complex) operator. According to Soar, the 

mind is unified and coherent because there is a shared set of processes 

that are dynamically invoked in different contexts. The different cognitive 
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models cited in this subsection all have the same basic structure; they sim-

ply differ in the particular content of the operators residing in procedural 

memory and preferences for selecting among them (and occasionally the 

items in semantic or episodic memory). Because Soar is a process-centered 

unification, it could theoretically be consistent with the shared representa-

tional store account articulated in chapter 7, as the shared graphical model 

cognitive representations would presumably reside in semantic memory. 

The problem is that the current understanding of semantic memory in Soar 

does not allow for this type of rich, structured representations. As such, 

while the two architectures are compatible in theory, substantial barriers 

would have to be overcome for them to be compatible in practice. 

 8.3.3   Sigma 

 The final cognitive unification that I consider here begins to explore how to 

integrate graphical models with Soar, though in a quite different way from 

the one just suggested. Sigma is a recent cognitive architecture that starts 

with the same basic structure as Soar ( Rosenbloom, 2009a ,  2009b ,  2011 ). 

Recall that, in Soar, operators that  “ match ”  the current (working memory) 

state are applied to update the cognitive system to a new state. These sets 

of operators — both active and stored in long-term memory — can naturally 

be understood as functions, albeit ones that are potentially incredibly com-

plex. Soar thus models cognition as the repeated application of different 

functions to some initial state, where the functions are the items contained 

in long-term memory. The Sigma cognitive architecture is (roughly) the 

Soar cognitive architecture, but where all the operators are encoded as fac-

tor graphs ( Kschischang, Frey,  &  Loeliger, 2001 ) rather than complex and 

diverse  if - then  production rules. To fully understand the difference between 

Sigma and Soar, we need to digress briefly into factor graphs. 

 In this book, I have focused on graphical models as representations of 

structure or situations in the world: they capture causal structures, or social 

networks, or relevance relations between features in a concept, or some-

thing similar. Factor graphs are graphical models that focus instead on rep-

resenting  functions  ( Kschischang et al., 2001 ). More precisely, a factor graph 

as a whole is a representation of a complex function  f  over some set of 

variables, where we assume that the complex function  f  can be decomposed 

into the product of simpler functions. As a concrete example, suppose we 

have  f ( x ,  y ,  z ) = ( x  2  + 3 x   –  4 y )(5 y   –   z  + 17). This function is clearly quite 
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complicated, but it also has some definite internal structure. In particular, 

it is the product of two other functions, one that depends only on  x ,  y  and 

another that depends only on  y ,  z . We can gain a number of computa-

tional advantages by explicitly representing this internal structure, such as 

increased speed in initial computation. Equally important,  re computing  f  

when one of the inputs changes can potentially be much faster: if  z  changes 

its value, for example, we need only to recompute the second subfunction 

to find the new value of  f . 

 Technically, factor graphs are graphical models with two types of nodes 

in the graph, corresponding to variables and subfunctions. They explic-

itly represent the  f -function decomposition with undirected edges between 

variable and function nodes, where there is an  X   —   f i   edge if and only if 

 X  is an argument of the subfunction  f i  . There are no other edges in a fac-

tor graph; in particular, there are no variable-variable or function-function 

edges. Given a particular setting of some or all of the variable nodes, it is 

straightforward to compute  f  (or its possible values, if some variable val-

ues are unknown): simply set the variable nodes to the appropriate values 

(when known), compute the subfunctions (or their possible values) based 

on their adjacent variables, and then take the product of the function 

nodes. If one (or more) of the variables change values, then the new value 

of  f  can rapidly be computed through message passing: the changed vari-

able node tells its (function node) neighbors about its new value, the func-

tion nodes update their values and pass update messages to their (variable 

node) neighbors, who update their values when appropriate, pass further 

messages, and so forth, until the factor graph as a whole settles into its new, 

stable state ( Kschischang et al., 2001 ). 

 The Sigma cognitive architecture represents the complex, separable 

operators in Soar using a factor graph, and so the operation of the cogni-

tive architecture is  “ just ”  updates within the factor graph ( Rosenbloom, 

2009a ,  2009b ). More specifically, long-term memory in Soar is (roughly) a 

set of production rules that can be accessed by working memory. In con-

trast, working memory in Sigma is (roughly) an exceedingly complex fac-

tor graph with edges into the nodes in working memory. These working 

memory nodes include perception nodes that are determined by influ-

ences outside the factor graph, and action nodes that change the exter-

nal world. When values of working memory nodes change, messages are 

passed through the factor graph, leading (in some cases) to changes in other 
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working memory nodes. In this way, Sigma efficiently computes extremely 

complex functions like Soar ’ s conjunctions of operators, but in a modular, 

stable manner that is potentially quite fast ( Rosenbloom, 2012 ). Sigma has 

further been extended to include various types of learning ( Rosenbloom, 

Demski, Han,  &  Ustun, 2013 ), though it is currently only able to mod-

ify the subfunctions, not change their inputs. Put in graphical terms, the 

learning is restricted to parameter learning; there is no way to learn the 

factor graph structure itself. It is straightforward to see how factor graphs 

can encode procedural knowledge, since those operators are clearly func-

tions. Sigma additionally includes episodic and semantic memory, though 

doing so requires using directed edges in the factor graph so that messages 

are passed only in certain directions ( Rosenbloom, 2010 ). There are many 

important technical details about Sigma (e.g., how operators of various 

types  “ compile ”  into a factor graph), but those details can mostly be set 

aside. For our purposes here, the important point about Sigma is that it 

starts with the basic Soar architecture but replaces the operators — that is, 

the cognitive agent ’ s  “ content ”  — with a graphical model. 

 Given this description, one might naturally wonder what differences 

really exist between my cognitive architecture and Sigma. We are both 

based on graphical models; we both aspire to explain many different types 

of cognition; we both have a fundamentally computational view of the 

mind; and so forth. More generally, there are close connections between 

factor graphs and some of the graphical models that I have discussed in this 

book. Many DAG- and UG-based graphical models are used to represent 

joint probability distributions, where the graph encodes direct probabilistic 

(or statistical or informational) relevance. A joint probability distribution 

can be understood as a function: given values for some of the variables, it 

outputs the probability of that particular state. Moreover, the joint prob-

ability distribution factors in exactly the way that a factor graph requires. 

The joint probability for a DAG, for example, can be written as the product 

of the probability of each variable, conditional on its graphical parents. In 

fact, the message-passing algorithm of  Pearl (1988)  for DAG-based graphi-

cal models turns out to be identical with the message-passing algorithm for 

factor graphs of that same distribution ( Frey  &  Kschischang, 1996 ). Since 

graphical models of joint probability distributions can immediately be con-

verted into factor graphs of that same distribution, we can at least entertain 

the possibility of, for example, using the results of chapter 5 within Sigma. 
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Those theorems enable us to convert (many) concepts into graphical mod-

els of probability distributions, which could then be translated into factor 

graphs and (one might hope) plugged straight into the semantic memory of 

a Sigma cognitive agent. Unfortunately it is not quite so easy. 

 While Sigma and my cognitive architecture share many thematic simi-

larities, they also have some important differences.  9   First, for important but 

technical reasons the nodes in the Sigma factor graphs often correspond 

not to variables but to  sets  of variables. For example, instead of nodes for 

 V  1 ,  V  2 ,  V  3 , we might have nodes  V 12   and  V 13   whose values depend on two 

of the single variables ( Rosenbloom, 2009b ). We thus cannot simply sub-

stitute the graphical models from my cognitive architecture directly into 

the Sigma factor graphs, as they are defined on different types of nodes. 

Moreover, Sigma factor graphs typically have many more nodes than the 

 “ natural ”  graphical models in my architecture. On the one hand, these are 

purely formal differences, since there are algorithms to transform the  “ sin-

gle-variable ”  nodes into  “ variable-set ”  nodes and vice versa. On the other 

hand, the use of variable-set nodes does have the effect of making the (sub)

function nodes  “ primary ”  and the variable nodes  “ secondary ”  in impor-

tance. That is, the factor graph is constructed by first determining the sub-

functions and then adding variable nodes as necessary. 

 This difference in emphasis points toward a crucial conceptual differ-

ence between factor graphs and the types of graphical models that I have 

used. Factor graphs are designed to factor a function, rather than encode 

relevance relations between variables or objects. That is, factor graphs put 

the function first; the graphical models that I have used put the variables 

(or objects, or individuals, and so on) first. Sometimes these two distinct 

perspectives will coincide. As discussed earlier, if I want to compute mar-

ginal or conditional probabilities for a joint distribution over some vari-

ables, then I can use either a factor graph or a more traditional DAG-based 

graphical model. The two models are essentially the same, though the 

notation is different. In other cases, however, the two ways of thinking 

about graphical models — function first or variables first — can come apart. 

For example, suppose that we have the causal structure  X   →   Y   →   Z , and we 

want to determine the impact of a hard intervention on  Y . This inference 

is easy in the causal graph framework as shown in chapters 3 and 4: one 

simply breaks the  X   →   Y  edge and then does observational inference on 

the resulting graph. In contrast, we cannot use a standard factor graph to 
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perform this inference given an intervention, since the observational infer-

ence function is, in a sense, built into the graphical model. More precisely, 

three different causal graphs — the true one,  X   →   Y   →   Z , but also  X   ←   Y   →   Z  

and  X   ←   Y   ←   Z  — all have the same factor graph representation because they 

all can encode the same probability distributions (and so the same observa-

tional inference functions). That creates a problem for making inferences 

given an intervention on  Y , however, since these three causal graphs make 

qualitatively different predictions about the impact of such an interven-

tion, and so no transformation algorithm of the single (observational infer-

ence) factor graph can work for all three cases. 

 The more general issue is that I have used graphical models that pro-

vide stable representations on which many different processes can operate, 

rather than building those functions or processes into the graphical model 

itself. Thus factor graphs will be insufficient whenever one wants to apply 

multiple distinct processes to the same representation.  10   At the same time, 

there are at least two reasons that one might prefer factor graphs to the 

graphical models used elsewhere in this book. First, we are sometimes in a 

situation in which the function really is the important piece. For example, 

consider the ideal gas law:  PV  =  kT  (where  P  = pressure,  V  = volume,  T  

= temperature, and  k  is a gas-specific constant). One could have a graph 

with  P ,  V , and  T  nodes with edges between all of them, but it is unclear 

how to interpret these edges. They should not be directed, since changes 

can  “ flow ”  between the variables in any direction (e.g., for fixed volume, 

increasing the pressure leads to an increase in temperature, but an increase 

in temperature also leads to an increase in pressure). At the same time, 

undirected edges obscure the single underlying function that binds them 

together. What we really want is exactly a factor graph, since its central 

node will be the ideal gas law function, which is the focus.  

 A second reason to perhaps prefer factor graphs is that I have used graph-

ical models that are arguably  “ inert, ”  in that their use requires the addi-

tional specification of an algorithm or process. A causal graphical model, 

for example, does not actually do any inferences at all; inference procedures 

must be provided. In contrast, factor graphs are fully specified in both con-

tent and operation, since there is only one inference algorithm for all fac-

tor graphs: the message-passing algorithm of  Kschischang et al. (2001) . In 

some cases, the representation/process separation might be useful; in this 

book, for example, it has been critical, since one of the claims throughout 
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has been that the  same  representation can be used or modified by multiple 

cognitive processes. In other cases, however, there might be no clear dis-

tinction between the representation and the process, in which case factor 

graphs would be a more natural representation. 

 More generally, there are multiple cognitive elements — attention, work-

ing memory, some parts of perception — for which people have claimed that 

the representation/process distinction appears to be tenuous, if not absent. 

This is part of the reason why I have been careful to claim only that my cog-

nitive architecture potentially unifies  some  parts of cognition, though they 

are important ones. A natural possibility is that factor graphs might be the 

appropriate way to unify other aspects of cognition, perhaps through a cog-

nitive architecture like Sigma.  Rosenbloom (2009b)  noted that  “ graphical 

models provide untapped potential for cognitive architectures. ”  He focused 

on the potential for factor graphs to compactly represent complex (Soar-

style) operators. I have focused on the potential for other types of graphi-

cal models to compactly represent our transferrable or reusable knowledge 

of relevance relations. An intriguing open question is whether these two 

distinct cognitive architectures could be integrated into a single one that 

uses graphical models to capture  both  cognitive processes  and  cognitive 

representations. 



 9   Broader Implications 

 9.1   Rethinking the Notion of Modularity 

 At this point in the book, I want to step back from the details of partic-

ular cognitive models and architectures to consider some of the broader, 

more philosophical implications of the cognitive architecture that I have 

advanced and defended in previous chapters. That is, how (if at all) does it 

matter if our cognition really is partly unified by virtue of a shared store of 

cognitive representations that are structured (approximately) as graphical 

models? Many connections could be drawn, but I focus here on three topics 

for which there are both significant implications and also interesting open 

research questions. Section 9.2 examines the interplay between multiple 

types of relevance, and section 9.3 considers the relationship between cog-

nitive/psychological and neural/biological models or architectures. First, 

however, I turn to one of the longest-standing debates about the nature of 

mind: namely, the extent and type of modularity in the mind/brain. 

 Essentially everyone agrees that there must be  some  differentiation within 

the mind and brain, but there is almost no agreement about what that dif-

ferentiation might be, either in general structure or in specific content. At 

the least, there is clearly some degree of separation between the so-called 

peripheral and central systems, where the peripheral systems include ele-

ments such as primary perceptual systems, and the central system includes 

explicit causal learning, means-ends reasoning, and so forth. We arguably 

cannot draw a bright-line distinction between central and peripheral sys-

tems, but it is nonetheless a gradient that is useful when thinking about 

the organization of the mind. In particular, many of the more peripheral 

systems seem to function without substantive dependence on the more 
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central systems. For example, many aspects of visual processing appear to 

proceed independently of our explicit beliefs. As just one instance, whether 

spatiotemporal contact is perceived as one object causing another to move 

does not depend on our causal knowledge about the underlying system 

( Schlottmann  &  Shanks, 1992 ), though other aspects of visual percep-

tion (e.g., temporal order) do seem to be sometimes influenced by causal 

beliefs (Bechlivanidis  &  Lagnado, 2013). There additionally seems to be at 

least some degree of independence between multiple peripheral systems 

(e.g., visual and auditory processing), though the separation is often less 

than we might think. One striking example of the apparent interaction 

between peripheral systems is the McGurk effect ( McGurk  &  MacDonald, 

1976 ), where people who hear the sound of one phoneme while watching 

someone utter a different phoneme report hearing yet a third phoneme. 

For example, if the sound [ba] is played while watching someone say [ga], 

people typically report hearing [da]. That is, visual perception influences (in 

some way) our auditory perception. 

 Despite these influences, ample evidence suggests that the mind/brain 

has some degree of differentiation. This observation leads naturally to the 

thought that perhaps the mind/brain is modular in some way, such as we 

saw in ACT-R (sec. 8.3.1). This idea is particularly compelling if one thinks 

that there is some degree of analogy between the mind/brain and other 

information processors such as computers. Just as my computer is organized 

into distinct units with distinct functions and information (hard drive, 

RAM, keyboard, etc.), so one might think that the mind/brain is formed 

from distinct, separable elements that each focus on only part of cogni-

tion. Of course, this proposal is relatively contentless in this vague, nebu-

lous phrasing. Instead we need to provide much more specificity about just 

what a module is, how the mind/brain might be divided up into distinct 

modules, and the ways in which different modules can interact.  

 The most famous conception of modularity in the past thirty years is 

undoubtedly Jerry Fodor ’ s notion ( Fodor, 1983 ,  2001 ). Fodorian modules 

must have multiple properties to varying degrees, including rapid, rela-

tively unconscious processing and functional dissociability (i.e., the ability 

to be selectively impaired or damaged). Probably the most important prop-

erty for a Fodorian module is information encapsulation: the module can 

only use information that was either provided as input or already stored 

in the module. The irrelevance of causal mechanism knowledge to causal 
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perception is a classic example of information encapsulation. The causal 

perception module — or more likely the visual perception module — oper-

ates using only visual input plus whatever content is stored in the module, 

rather than being able to access and exploit causal knowledge or representa-

tions stored elsewhere in the mind/brain. If the strong notion of Fodorian 

modularity applies anywhere, then it is almost surely only in the peripheral 

systems (though for a challenge of even that claim, see, e.g.,  McCauley  &  

Henrich, 2006 ). Fodor himself argued that the  “ central processing system ”  

is surely not modular in his sense ( Fodor, 1983 ). 

 Nonetheless some degree of modularity does seem to arise in our more 

central or  “ higher ”  cognition. For example, language production and use 

appear to be distinct in important ways from the mental rotation of images 

of objects. This observation has led to the development of a different 

notion of modularity that is more commonly applied to  “ higher ”  aspects of 

cognition. This type of modularity emerges largely in the writings of those 

who take a more evolutionary approach to understanding the mind/brain, 

and often appears under the heading of the so-called massive modularity 

hypothesis ( Barrett  &  Kurzban, 2006 ;  Carruthers, 2006 ;  Pinker, 1997 ;  Tooby 

 &  Cosmides, 1992 ). The core idea here is that modules are characterized 

functionally as the bits of mind or brain that perform some particular func-

tion. For example, we might think that there is a distinct piece of mind/

brain that handles explicitly logical reasoning such as  modus ponens  and 

 modus tollens . This cognitive element would (if it exists) constitute a mod-

ule precisely because it has a specific, well-defined function. Of course, this 

conception is relatively uninteresting without further constraints, as simply 

dividing up the mind/brain functionally does not lead to any particular 

predictions or explanations. 

 We thus typically find the further restriction that modules (and the 

processing that they perform) are relatively domain specific. In particu-

lar, the standard argument is that the mind, including the more central 

parts of it, must be composed of processing modules that enable us to solve 

domain- and context-specific challenges. For example, rather than having 

a domain-general logical or social reasoning mechanism, we might have a 

 “ cheater detection ”  module that reasons solely about possible cheating in 

social exchange situations ( Cosmides  &  Tooby, 1992 ). This module — more 

precisely, the cognitive process it contains — is simply not triggered by other 

situations, and the relevant cognition is highly tuned and specialized to 
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this particular situation. Evolutionary considerations are often invoked at 

this point, where the argument is that we humans could only evolve cog-

nitive modules that solve problems that impact our fitness, and those fit-

ness-relevant challenges fall into particular domains (e.g., social exchange). 

Hence (the argument continues) all cognitive modules of this functionally 

identified sort must be domain specific, and so we must have many distinct 

ones, resulting in a  “ massively modular ”  mind/brain ( Barrett  &  Kurzban, 

2006 ;  Pinker, 1997 ;  Tooby  &  Cosmides, 1992 ). Alternately, one can argue for 

massive modularity and domain specificity of modules on computational 

grounds. More precisely, one can argue that domain-general modules are 

simply computationally intractable for the difficult problems humans face, 

and so we must solve our challenges using more domain-specific methods 

( Carruthers, 2006 ). 

 Unsurprisingly, there have been long-running and contentious argu-

ments about Fodorian modules, domain-specific modules, the massive 

modularity hypothesis, and the various cognitive, neural, evolutionary, and 

computational claims that have been advanced. I have no particular inter-

est in wading into those murky waters. Instead I want to explore a common 

assumption underlying all these different notions of modularity: namely, 

modules should be individuated principally based on process, rather than 

representation. Almost all the properties that  Fodor (1983)  identified with 

modules are properties of processes. One might have thought that informa-

tion encapsulation would be determined by the representations (if repre-

sentation = information), but even that property is really about delimiting 

the content to which the modular process has access. Proponents of massive 

modularity have a similar background assumption:  “ The thesis of massive 

modularity is generally understood to apply only to  processing systems , how-

ever, not to the representations that might be produced by such systems ”  

( Carruthers, 2006 , p. 3; italics in original). That is, modules are process-

ing systems, so the cognitive process determines the module individuation. 

Similarly, domain-specific modules are defined in terms of domain-specific 

computational mechanisms or operations ( Tooby  &  Cosmides, 1992 ):  “ The 

concept of modularity should be grounded in the notion of  functional  [i.e., 

process]  specialization  ”  ( Barrett  &  Kurzban, 2006 , p. 629; italics in original). 

Moreover, this focus on process extends beyond philosophical debates 

about what counts as a module. Cognitive architectures that explicitly 
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self-describe as modular (e.g., ACT-R) also define their modules in terms of 

shared or single processing. 

 This almost-universal focus on the ways that cognitive  processes  can be 

modular is entirely understandable. A common intuition about the mind/

brain is that it can be understood roughly as a giant box-and-arrow diagram 

or flowchart. In this picture, the boxes are individuated by their functions; 

each box does something distinct in the overall operation of the mind. 

Moreover, the notion of module is typically mapped onto these boxes, and 

so we get the natural assumption that modules should be individuated by 

cognitive processes. The cognitive architecture proposed in this book, how-

ever, forces us to recognize that the notion of modularity must also apply 

to representations, not just processes. More precisely, we must distinguish 

between  “ process modularity ”  and  “ representation modularity, ”  where the 

latter is the idea that some information or representations are stored sepa-

rately from others, rather than being integrated into a single representa-

tional store. In some ways, the notion of representation modularity is not 

a new one. In particular, theories of multiple memory systems — typically 

semantic, procedural, and declarative — are arguably representation modu-

lar in exactly this sense: content or representations stored in one memory 

are not integrated with those stored in another memory ( Poldrack  &  Pack-

ard, 2003 ). Of course, interactions can occur between distinct memory sys-

tems or representation modules if content from each is accessed by some 

third module, but they are nonetheless distinct as long as there is no com-

mon store for the different contents. 

 Process and representation modularity are, in principle, relatively inde-

pendent of each other. A standard reading of the massive modularity view is 

that it is both process and representation modular: we have many different 

processing modules, each of which has its own, domain-specific content. 

Of course, there may be a large representational store (a single semantic 

memory, perhaps) in addition to those domain-specific modules, but the 

overall architecture is one of modularity along both dimensions. Alter-

nately, one could have a mind with a single massive (nonmodular) repre-

sentational store but many process modules that access and manipulate it. 

For example, one might agree with the massive modularity hypothesis but 

think that all those processes access different parts of the same underlying 

representational knowledge;  Samuels (1998)  suggests something like this 
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model in his library model of cognition. A third possibility is that one could 

have a single process module (at least for conscious cognition) but different 

modular representational stores. One example of such a position would be 

multiple memory systems conjoined with a single global workspace within 

which multiple processes operate. Finally, old ideas about the nature of 

the (conscious, higher) mind tended to involve no process or representa-

tion modularity: there was simply one integrated knowledge base and one 

 “ location ”  in which cognition occurred. We no longer think that this idea 

is empirically correct, but it completes the possibility space for different 

types of modularity. 

 The more general point is that we need to broaden our understanding and 

characterization of the notion of modularity. The almost-exclusive focus on 

processes as the individuating element for cognitive modules has led to 

either overlooking or conflating distinct possible cognitive architectures. 

We need to have a more nuanced view that recognizes that modularity in 

the mind/brain can vary along both process-focused and representation-

focused dimensions. Previous accounts of modularity have been multidi-

mensional;  Fodor (1983) , for example, argued that the degree of modularity 

depended on the degree to which the cognitive element displayed nine dif-

ferent properties (thus modularity was a nine-dimensional notion). How-

ever, those accounts have all failed to include an entirely different set of 

dimensions associated with representation modularity. We need a better 

understanding of both those dimensions and, even more importantly, the 

interactions between process and representation modularity. 

 These interactions are particularly important in understanding the 

 “ modularity ”  of my cognitive architecture. If we think solely about the 

three different cognitive areas on which I have focused, my view appears 

to have substantial process modularity. The different cognitive operations 

are, for me, certainly distinct in both their operation and the effects that 

they have on the common representational store. At the same time, I have 

argued that there is no representation modularity (at least in these areas of 

cognition), and so this position is quite different from the massive mod-

ularity hypothesis. The different processes do not have domain-specific 

knowledge; rather, they access different elements in a shared representa-

tional store. What appear to be domain-specific learning or representa-

tions are, in the cognitive architecture proposed here, simply the sorts of 

task-specific effects discussed in chapter 7. Of course, many open questions 
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remain about exactly how to distinguish representation modularity from 

process modularity.  Samuels ’ s (1998)  argument against the massive modu-

larity hypothesis trades exactly on the difficulty of disentangling the two. 

Previous debates about the nature and extent of modularity in the mind/

brain, however, have not even asked these kinds of questions. The cognitive 

architecture based on shared cognitive representations forces us to confront 

them. 

 9.2   The Challenge of Multiple Relevance Types 

 Much of this book has focused on arguing that graphical models provide 

a powerful framework for representing many of the cognitive representa-

tions that are accessible by multiple cognitive processes. One key advantage 

of this particular computational framework is that graphical models com-

pactly represent relevance relations:  A  and  B  are connected by a graphical 

edge just when one is directly relevant to the other, whether causally, infor-

mationally, socially, or through some other type of relevance relation. As 

a result, many of the accounts of learning discussed in this book actually 

provide partial answers to the question of how people come to (mostly) 

attend only to relevant factors.  1   That is, one of the puzzles that prompted 

this book was how people — whether engaged in inference, learning, deci-

sion making, or some other cognitive activity — are capable of generally 

considering only elements of the world that might make a difference. The 

answer offered so far in this book is: they often can do so because graphical 

models directly capture those relevance relations, and so any cognitive pro-

cesses that encode and exploit the  “ edge ”  information will automatically, 

and in some sense implicitly, focus on only the relevant items. A simple 

 “ message-passing ”  model of causal reasoning, for example, uses the graphi-

cal model structure to constrain the  “ direction ”  of spread, and so irrelevant 

(by the graph) nodes will simply never be updated. Both substantive and 

operational definitions of  “ relevance ”  mesh perfectly with the graphical 

models framework, and so we gain a partial solution to an old cognitive 

science challenge. 

 The story is not, however, quite as simple as I portrayed it in the preced-

ing paragraph. For almost all standard types of graphical models — causal 

models, social networks, models of spatiotemporal diffusion using undi-

rected graphs, and so forth — the edges in a particular graph all represent 
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just one type of relevance relation; there is a single semantic interpretation 

of the edges in each graphical model. The relevance type for the edges can 

differ  between  graphical models, but it is essentially always the same  within  a 

graphical model. For example, every edge in a causal model captures a direct 

causal relation, while every edge in a social network represents a direct social 

exchange or connection. This restriction — one relevance type for the edges 

in a graphical model — was noted in chapter 3, but I did not emphasize it, 

since it did not matter for most of what followed. We have focused on cog-

nitive representations that clearly only try to capture one relevance type 

at a time, so the appropriate graphical model (and semantic interpretation 

of the edge) has always been clear from context. My focus and challenge 

have instead been to show that graphical models with natural edge seman-

tics could capture the learning, reasoning, inference, and decision-making 

behavior that people exhibit in a wide range of circumstances. 

 Our knowledge structures are not, however, neatly segregated into dis-

tinct cognitive representations defined by relevance type. Our cognitive 

representations instead often appear to include multiple relevance types 

in a single representation. For example, I know that the concept  CAT  bears 

a particular taxonomic relationship to the concept of  ANIMAL , and so a rela-

tion of exclusion holds between  CAT  and  MOUSE . At the same time, I know 

that instances of  CAT  sometimes stand in a predator – prey relationship with 

instances of  MOUSE . More precisely, part of my knowledge of food webs 

includes a  CAT   →   MOUSE  edge, indicating that cats sometimes eat mice. In 

general, our knowledge appears to be even more integrated than I have 

previously considered; single cognitive representations seem to contain 

multiple edge types with different relevance semantics. As a result, it seems 

that there is something deeply flawed about my use of the graphical models 

framework, since it appears to rule out a priori some kinds of knowledge 

structures that we appear to have. 

 One response to this concern is to argue that it is based on a false descrip-

tion of the ways in which our knowledge structures are integrated. In par-

ticular, one could argue that our knowledge structures are connected only 

through  “ maps ”  that connect entities in one graphical model with those 

in another, rather than through direct integration of multiple graphical 

models. If we return to the previous example, this response would contend 

that we have (i) a taxonomic knowledge structure involving  CAT  and  MOUSE  

(and other concepts); (ii) a food web knowledge structure encoding the 
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predator – prey relationship  CAT   →   MOUSE ; and (iii) a map that tells us that the 

 CAT  and  MOUSE  nodes in the two graphs refer to the same things. If we have 

these three pieces, then there are no knowledge structures with multiple 

relevance types and thus no concerns about the graphical models frame-

work being too limited. This response is one way to try to say the graphical 

model account, but it imposes significant, potentially empirically incorrect 

constraints on the representations. For example, expert bird-watchers use 

both taxonomic and ecological information in grouping birds ( Bailenson, 

Shum, Atran, Medin,  &  Coley, 2002 ), suggesting that these two knowledge 

types are not independent in the way required by this response. Of course, 

this response might still be saved with further elaboration, but much more 

would need to be said about how the separate knowledge structures are 

integrated in reasoning. 

 Even if that were done, however, this response is unavailable to me for 

a deeper, more theoretical reason. In section 5.4, I argued that graphical 

models can capture  “ webs ”  of concepts through the introduction of new 

nodes corresponding to superordinate concepts. For example, we can unify 

 DOG ,  CAT ,  MOUSE , and so forth into a single graphical model by introducing 

a node for  MAMMAL . At a high level, suppose we want to integrate graphical 

models  G  1 ,  G  2 , etc., that correspond to different concepts. (Recall that much 

of the point of chapter 5 was arguing that concepts correspond to graphi-

cal models in this way.) For convenience, we can further suppose that the 

concepts are mutually exclusive: any individual falls under only one of 

those concepts.  2   We then construct a graphical model over all nodes (i.e., 

anything found in one of the  G s) plus a node indicating which concept is 

 “ active ”  for an individual. There are important details about exactly which 

edges to include and how to ensure that the quantitative component of the 

graphical model is coherent, but I provided those details in section 5.5.2. 

The key point is that this integration method assumes only that concepts 

correspond to graphical models; it does  not  assume that the graphical mod-

els are all of the same type. Thus the  “ combined ”  graph can involve both 

causal edges from a concept based on shared causal structure, and informa-

tional edges from an exemplar- or prototype-based concept. And even if we 

restricted the integration method by requiring all the  G s to have the same 

edge types (and thus the same relevance types), we would still have prob-

lems owing to the edges from the new,  “ higher-level ”  node. Those particu-

lar edges are essentially taxonomic in nature, so they are certainly different 
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from the edges for causal-model-based concepts, and perhaps also edges 

for exemplar- and prototype-based concepts. The integration method that 

I proposed to explain between-concept relations and inference (e.g., induc-

tive reasoning) is thus almost guaranteed to produce graphical models that 

encode multiple relevance types in a single graph. 

 Given this inevitability (at least for me), I could instead argue (or hope) 

that the possibility of multiple relevance types in a single knowledge struc-

ture will not pose a long-term problem for the graphical models framework. 

That is, perhaps the restriction to a single relevance type per graphical 

model is just a historical accident, and so the assumption can be elimi-

nated without problems. Unfortunately this hope is merely wishful think-

ing: significant problems of inference can arise when trying to reason with 

multiple edge types in a single graph. These issues can be illustrated with 

an example from  Spirtes and Scheines (2004) . They consider the causal rela-

tions between  Total Cholesterol  ( TC ) and  Heart Disease  ( HD ). The standard 

wisdom (at least several years ago) was that cholesterol causes heart disease, 

and the natural causal model would thus be  TC   →   HD . The problem is 

that  TC  is not actually the  “ right ”  causal variable,  3   as  TC  is the mathemati-

cal sum of three different variables —  LDL  ( “ bad ”  cholesterol),  HDL  ( “ good ”  

cholesterol), and  Triglycerides  — where each factor has a different causal 

impact on  HD . For convenience, we ignore  Triglycerides  and focus just on 

 LDL  and  HDL . The full causal structure is shown in   figure 9.1 , where the 

dotted arrows indicate that  TC  is a mathematical function of  LDL  and  HDL ; 

specifically,  TC  =  LDL  +  HDL .    

   Figure 9.1  is an example of a graphical model with multiple edge types: 

two of the edges correspond to causal connections, and two represent inputs 

to a mathematical function. For some kinds of inferences, this graphical 

model is perfectly acceptable. For example, given an observation of  TC , we 

HDL 

HD 

LDL TC 

+ – 

 Figure 9.1 
 Partial causal structure for heart disease. 
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can determine the likelihoods of  HD  and various  LDL  or  HDL  levels. For 

other kinds of inferences, however, we run into some significant problems. 

In standard causal models, we assume that every variable could potentially 

be the target of an intervention, though we obviously need not have the 

technology or ability to perform those interventions ourselves ( Woodward, 

2003 ). Suppose that we intervene on  TC ; what does the graphical model in 

  figure 9.1  predict for  HD ? The problem, as  Spirtes and Scheines (2004)  show 

in detail, is that the graphical model makes no determinate prediction at 

all.  “ Intervention on  TC  ”  is fundamentally ambiguous with respect to  HD  

prediction, since the postintervention probabilities for  HD  depend on how 

the  TC -intervention is realized. We get very different predictions if we set 

 TC  = 100 by intervening to produce  <  LDL  = 90,  HDL  = 10 >  or by interven-

ing to produce  <  LDL  = 10,  HDL  = 90 > . The variable  TC  is a mathematical 

aggregate of two different variables that are causally heterogeneous with 

respect to  HD , and so interventions on  TC  are fundamentally ambiguous in 

terms of their impact on  HD . We simply cannot use this graphical model to 

make predictions about  HD  given an intervention on  TC . 

 This failure in predictive ability for   figure 9.1  arises precisely because we 

have two different edge types in the graphical model. If the mathematical 

edges were instead causal (i.e., if the dashed edges were solid), then the 

graphical model would make determinate predictions given an interven-

tion on  TC . Our difficulties arise because we do not know how to derive, or 

even properly think about, interventions on mathematically defined vari-

ables. More generally, we do not know how to handle many types of infer-

ences that involve multiple edge types and thus multiple relevance types. 

What is, for example, the probability that an animal eats mice given that 

we intervene to make it a mammal? Any assessment of that probability will 

require that we use multiple edge types, and the resulting prediction is sim-

ply undefined given our current understanding of graphical models.  4   One 

response would be to try to develop purely probabilistic readings for differ-

ent relevance relations and thereby place all of them on a common footing. 

That is, if every relevance relation is a constraint on allowable (conditional) 

probabilities, then there would actually only be one foundational relevance 

relation, after all. Unfortunately this strategy will not work: although many, 

perhaps all, relevance relations imply such constraints, they are not defined 

by such constraints. As a result, we lose important information (e.g., about 

whether the relevance persists given an intervention) if we construe the 
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relevance relations as only probabilities, and so can no longer do all the 

inference and reasoning that we require. 

 To extend the graphical models framework beyond the cognitive and 

knowledge domains I have discussed in this book, we require reasoning, 

inference, and learning methods that apply to graphical models with mul-

tiple edge types. This observation does not imply that there is any particu-

lar problem with the results in this book, particularly since I have never 

claimed (and, in fact, explicitly disavowed) universality for the graphical 

models framework. The cognitive architecture presented here does not 

depend on  all  cognitive representations being graphical models, so we 

could be relatively localist, if necessary. Having said that, I suggest that 

a more interesting option would be to develop graphical models that can 

capture multiple relevance types in a single graph. 

 Moreover, we already have a  “ proof of concept ”  of a graphical model type 

with multiple edge types. Decision networks ( Howard  &  Matheson, 1981 ; 

 Shachter, 1986 ) model decision-making situations (see sec. 6.3) and have 

four different node types, corresponding to (i) world factors, (ii) the decision 

maker ’ s action, (iii) the decision-making process itself, and (iv) the value 

function for states of the world. More importantly, different edges in a deci-

sion network have different meanings, where the edge semantics are deter-

mined by the node type at the arrowhead end of the edge. Edges into world 

factors capture causal connections; edges into action nodes denote infor-

mational or cognitive connections; and edges into value nodes indicate the 

factors that jointly determine a state ’ s value. (There are no edges into deci-

sion-making process nodes.) In other words, decision networks represent at 

least three different relevance types in a single graphical model. Moreover, 

there are standard, well-defined methods for all the standard learning and 

inference tasks in decision networks; none of the problems outlined earlier 

arise for them. Inferential or learning failures do not automatically arise for 

graphical models merely because they have multiple edge types, as some 

graphical models such as decision networks function just fine. 

 Decision networks avoid these issues in part by imposing some con-

straints on the graphical structure and semantics: decision process nodes 

never have edges into them; world-world edges are always understood caus-

ally rather than informationally; and so forth. That is, decision networks do 

not attempt to encode arbitrary groups of connections with multiple rele-

vance types, but only particular combinations. Many of the cases discussed 
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in this section are similarly nonarbitrary; for example, the new variables 

introduced to construct conceptual webs always have outgoing edges cor-

responding to taxonomic or informational relevance relations, regardless of 

the nodes to which they connect. As such, many of the worries expressed 

here might not arise, though that is an open question. Moreover, the proper 

response in some cases might simply be to say  “ not enough information is 

provided. ”  For example, the problem of ambiguous manipulations seems 

to be a problem not with graphical models but with the proper specifi-

cation of an intervention. If we are sufficiently clear about the nature of 

an intervention, then the problematic ambiguity does not arise (see also 

Eberhardt, 2014). The possibility of multiple relevance types still lurks as a 

potential problem, but we have many reasons to think that it is one that 

can be overcome. 

 9.3   Neurons, Processes, Rationality, and Representations 

 One notable absence throughout this book has been any serious engage-

ment with, or even discussion of, neuroscientific data. If one thinks (as I 

and many others do) that the mind is fundamentally just the brain, then 

it might seem odd to have an entire book about the mind without ever 

discussing how it is, or could be, implemented neurally. Of course, this is 

not to say that cognitive science should simply be replaced by neurosci-

ence, or that human cognition and behavior depend exclusively on the 

brain. Multiple perspectives on the mind/brain are surely valuable, and the 

body and environment clearly matter for our cognition. Even recognizing 

those complications, however, our knowledge of the brain has advanced 

considerably in recent decades, and so one might naturally expect that 

any serious cognitive science must engage (somehow) with neuroscience. 

Moreover, advocates of other cognitive architectures (e.g.,  Anderson, 2007 ) 

have pursued the goal of finding possible neural implementations. If the 

reader is convinced (as I am) that an important part of the explanation for 

our cognition is a shared representational store of graphical models, then a 

natural complementary question is how those representations are neurally 

implemented and accessed. Although I agree that the question is a natural 

and important one, neuroscience has gone relatively unmentioned in this 

book for two principal reasons. Discussion of each can help to illuminate 

and clarify aspects of my project. 
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 The first reason is simply that relatively little extant neuroscientific 

research is directly relevant to the cognitive architecture proposed here. 

The different cognitive domains have unsurprisingly been studied using 

neuroscientific techniques. For example, both neuroimaging and surgical 

studies provide evidence that causal inference and causal perception occur 

in different parts of the brain ( Blakemore et al., 2001 ;  Roser, Fugelsang, 

Dunbar, Corballis,  &  Gazzaniga, 2005 ;  Satpute et al., 2005 ). However, data 

of this sort do not enable us to learn about the representations underlying 

these cognitive capacities, as the data are too coarse-grained and focus on 

underlying processes rather than cognitive representations. Similarly, neu-

roscientific research on category learning and use has principally employed 

neuroimaging and neuropsychological methods ( Ashby  &  Waldron, 2000 ; 

 Ashby, Alfonso-Reese, Turken,  &  Waldron, 1998 ;  Grossman et al., 2002 ; 

 Humphreys  &  Forde, 2001 ;  Patalano, Smith, Jonides,  &  Koeppe, 2001 ).  5   

These methods can be valuable in trying to understand the coarse-grained 

structure of cognitive processes but are relatively uninformative about 

structural details of the underlying representations. For example, growing 

neural evidence suggests that category learning occurs through multiple 

cognitive processes ( Ashby et al., 1998 ;  Ashby  &  Waldron, 2000 ;  Patalano 

et al., 2001 ), but that tells us relatively little about whether the learned 

representations of categories are structured (approximately) like a graphical 

model. 

 In contrast, there has been substantially more, and more fine-grained, 

investigation of the neural bases of decision making, in terms of both 

the diversity of neural phenomena and plausible neural models ( Corrado 

 &  Doya, 2007 ;  Daw, Niv,  &  Dayan, 2005 ;  Frank  &  Claus, 2006 ;  Gold  &  

Shadlen, 2007 ;  Holroyd  &  Coles, 2002 ;  Knutson, Taylor, Kaufman, Peter-

son,  &  Glover, 2005 ;  Rolls, McCabe,  &  Redoute, 2008 ;  Schultz, 2006 ;  Wick-

ens, Horvitz, Costa,  &  Killcross, 2007 ). For example, one prominent strand 

of research has focused on learning to make decisions from repeated expe-

riences, such as learning which bush tends to yield sweet berries rather 

than sour ones. That work has revealed critical roles, both biologically and 

computationally, for the dopamine system ( Frank  &  Claus, 2006 ;  Holroyd 

 &  Coles, 2002 ;  Montague, Dayan,  &  Sejnowski, 1996 ;  Wickens et al., 2007 ). 

At the same time, the resulting models focus on relatively  “ local ”  connec-

tions and thus do not tell us much about the nature of complex, structured 

representations. This research is surely valuable in trying to understand 
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phenomena such as associative processes in causal learning, but it does not 

tell us about possible neural implementations of representations structured 

as graphical models (though it does suggest that we need associative models 

of causal structure learning like those in  Wellen  &  Danks, 2012 ). 

 A related branch of research has looked explicitly at neural representa-

tions of probability and value ( Glimcher  &  Rustichini, 2004 ;  Knutson et al., 

2005 ;  Rolls et al., 2008 ;  Schultz, 2006 ). In particular, this body of work has 

principally examined whether neural regions or even individual neurons 

seem to be doing something like expected utility calculations, and there do 

seem to be such neurons (perhaps in orbitofrontal cortex). Of course, such 

calculations are a far cry from complex, structured cognitive representa-

tions. Finally, there is widespread agreement that  “ sophisticated ”  decision 

making likely occurs in the prefrontal cortex, but little is known about repre-

sentation in that brain region. Instead research on the prefrontal cortex has 

tended to focus on deficiencies found in lesion patients ( Bechara, Damasio, 

Damasio,  &  Anderson, 1994 ;  Bechara, Tranel,  &  Damasio, 2000 ;  Shallice  &  

Burgess, 1991 ), which provides relatively little insight into the fine-grained 

neural implementations underlying the cognitive representations. 

 The moral of this quick survey of neuroscientific research is that we do 

not yet have the data or models that we require to develop a neurally plau-

sible implementation of a cognitive architecture with shared cognitive rep-

resentations, such as the one that I have developed throughout this book. 

In fact, our ignorance is even worse than this, since we do not even have 

a clear understanding of how to encode a graphical model in something 

like neurons. Some recent research has argued that neural firings can some-

times be understood as the brain doing (in some sense) Bayesian inference 

( Deneve, Latham,  &  Pouget, 2001 ;  Doya, Ishii, Pouget,  &  Rao, 2007 ;  Knill 

 &  Pouget, 2004 ;  Kording  &  Wolpert, 2006 ;  Lee  &  Mumford, 2003 ;  Pau-

lin, 2005 ;  Pouget, Beck, Ma,  &  Latham, 2013 ;  Rao, 2005 ). More precisely, 

this work argues that parts of the brain seem to be computing conditional 

probabilities, and specifically the probabilities of various possibilities given 

sensory input or evidence. Some of this work has even argued that the par-

ticular inferences mirror the computations that one would do in a graphical 

model ( Lee  &  Mumford, 2003 ;  Rao, 2005 ), and so we might think that we 

have the beginnings of a suitable analysis. 

 The problem, however, is that these models only perform one particular 

type of Bayesian inference or updating, so they cannot capture or explain 
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the full range of human inferences and reasoning. For example, suppose 

that we want to do inference on the graphical model  C   →   M   →   E . In this 

case, we have neurally plausible systems that can compute the probability 

of  C  given an observation of  E  and even some evidence that inferences 

of this type occur in the visual cortex ( Rao, 2005 ). The neural systems, 

however, are constrained to compute only one or a few conditional prob-

abilities. In contrast, at the behavioral level, people are capable of mak-

ing relatively arbitrary inferences using that graphical model: they could 

instead determine the probability of  E  given  M , or the probability of  M  

given observations of both  C  and  E . The neural implementations fall short 

precisely because they are for particular  inferences , rather than for the graph-

ical model itself. Moreover, the gap is even wider when we consider people ’ s 

ability to dynamically adjust their cognitive representations — their DAG-

based graphical models — when reasoning from interventions or actions 

( Glymour  &  Danks, 2007 ). 

 We simply do not know at this point what kinds of neural structures 

might even  possibly  implement graphical model representations, much less 

where those structures might be found or what neural data could provide 

evidence for their existence. All of this obviously does not imply that no 

such models are possible,  6   but our current ignorance means that substantial 

theoretical and empirical work must be done to establish these connections. 

That is, there is a huge research project here that is only just beginning 

(as in, e.g.,  Shi  &  Griffiths, 2009 ). More generally, this lack of knowledge 

partly explains my choice in chapter 2 to focus on a quasi-operationalized 

notion of  “ representation, ”  particularly in the context of representation 

realism. One common alternative view about representation realism is that 

it is a commitment to the existence of something  “ real ”  that is located 

 “ down in the neurons. ”  The problem is that we have essentially no under-

standing of how graphical models could exist  “ in the neurons, ”  so we have 

little idea about what this type of representation realism about graphical 

models would imply or involve (except some vague promises about the 

future). In contrast, the understanding of representation realism for which 

I argued provides clear constraints and predictions about future behavior 

precisely by not tying the realism to any particular neural structures. In 

such cases, it is more appropriate to remain with cognitive or behavioral 

characterizations. 
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 At the same time, different theories inevitably place constraints on one 

another, so it is eminently sensible to try to establish some of the constraints 

that any such model must satisfy. For example, one might have wondered 

whether people are actually capable of arbitrary inference with cognitive 

representations structured as graphical models. If they are not, then our 

neural implementations can be restricted suitably. This observation leads to 

the second reason that I have not been concerned about my lack of atten-

tion to neuroscience. The cognitive architecture outlined in chapter 7, and 

the graphical models view more generally, places many constraints on any 

purported account of (many of) our cognitive representations. These con-

straints can play a crucial role in the development of future theories, such as 

neural implementations (at  “ lower ”  levels) or models of social interaction 

(at  “ higher ”  levels). For example, our investigations of neurally plausible 

models can proceed with an understanding of some of the phenomena that 

they must capture to accurately model (something like) the complexity of 

human behavior. This book helps to provide us with a clearer picture of the 

constraints that a successful neural model must satisfy, and so can help to 

guide our questions. As we gain a clearer picture of how the mind functions 

(including what it computes), we can ask more focused and precise ques-

tions about how the brain implements those functions. These constraints 

obviously do not determine the other theories but can significantly help to 

speed and advance our scientific understanding. More generally, part of the 

value of the present cognitive architecture is exactly that it can help us — in 

fact, already has helped us — ask better and more targeted questions about 

the underlying neural structures and phenomena. 
 





 10   Conclusions, Open Questions, and Next Steps 

 10.1   Where Do We Go from Here? 

 This book has covered a lot of ground to characterize and evaluate the 

integrated cognitive architecture, but much remains to be done. On the 

empirical front, many different experiments should be run (and some are 

in progress) to better specify aspects of the architecture. In earlier chap-

ters, I described multiple experiments that should be informative about the 

exact cognitive representations and processes within each type of cogni-

tion. Perhaps more importantly, many experiments remain to be done to 

better understand exactly what types of learning and goal effects arise from 

multiple processes acting on the same, shared representation. For example, 

suppose that I have a goal that requires that I use only some of the infor-

mation that is presented in learning. The single-store, single-process view 

predicts that people will learn relatively little about the unnecessary infor-

mation, which is what we seem to find empirically. How does this happen? 

One possibility is that I use a cognitive representation that could (in some 

sense) represent the full learning input but I only attend to a subset of the 

information. A different possibility is that I actually use a more restricted 

cognitive representation, perhaps re-encoding the input information along 

the way. That is, people could be doing limited learning about a rich rep-

resentation or rich learning about a limited representation (or something 

else altogether). We can experimentally separate the roles of attention and 

encoding in learning effects, though it is quite difficult in practice. The 

result of such experiments would be a more detailed and nuanced view of 

the internal structure of a single-store, single-process account. 

 I have also focused on limited subsets of cognitive domains and types 

of graphical models, and it is an open empirical question whether other 
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areas of cognition might also be based on (other types of) graphical mod-

els. For example, people have significant knowledge about the structure of 

their social relationships ( Watts, Dodds,  &  Newman, 2002 ); are our cogni-

tive representations of social systems structured as graphical models? This 

seems quite plausible, not least because social network graphical models 

are widely used and easily understood in computer science as visual rep-

resentations of social group structure. At the same time, this empirical 

question — whether people ’ s representations are actually structured in this 

way, not just whether people can easily interpret such graphs — seems not 

to have been extensively explored. Similarly, I used decision networks in 

chapter 6, but we still have only a limited empirical basis for the claim that 

our cognitive representations of (many) decision situations are structured 

along those lines. More generally, I stated explicitly in chapter 1 that I claim 

no universality for my architecture: I certainly do not claim that all our 

cognitive representations are structured (approximately) like some type of 

graphical model. At the same time, however, I suspect that more cognitive 

representations than just those I have explored in this book are structured 

as graphical models. How widely the graphical models framework applies 

to cognitive representations is an important open question. 

 A similar diversity of open questions persists about the underlying theory 

and formalism. For example, I observed in section 9.2 that we do not yet 

know how to use graphical models with certain mixtures of relevance types. 

We need both formal, computational extensions for models with such mix-

tures and also methods for incorporating those extensions into the cogni-

tive architecture proposed here. Other open theoretical questions abound 

in this area. Most notably, spatiotemporal relations are clearly important 

for much of our cognition, but graphical models are currently limited in 

their ability to represent spatiotemporally continuous relations and pro-

cesses. Time is usually represented as discrete timesteps, but many interest-

ing phenomena occur smoothly over time. Similarly, various formal tricks 

can capture spatial information, but space is not naturally represented in a 

graphical model. The core issue for both space and time is that the graph 

component carries only topological information about adjacency — that is, 

direct relevance — between factors. Current graphical models are thus fun-

damentally ill-suited to express spatial or temporal  distance , which is criti-

cal for representing spatiotemporal relations. At the same time, there does 

not seem to be any principled barrier to developing graphical models that 



Conclusions, Open Questions, and Next Steps 225

use richer graphs, as shown by various preliminary attempts ( Nodelman, 

Shelton,  &  Koller, 2002 ,  2003 ;  Wang, Blei,  &  Heckerman, 2008 ). The hard 

part is performing the formal, mathematical, and computational work to 

get all the representational pieces to line up in the correct way. Such an 

advance would, however, be incredibly valuable, as it would open the door 

to potentially using graphical models to capture the cognitive representa-

tions produced and used by many other parts of cognition, such as causal 

perception. 

 There are also multiple theoretical questions that are more distinctively 

cognitive in nature. On several occasions, I raised the challenge of devel-

oping neurally plausible implementations of graphical models that can 

support the different cognitive processes that people appear to use. This 

problem is currently a theoretical one: is there  any  way to do it, and if so, 

what are the properties, capacities, and shortcomings of the implementa-

tion? Of course, numerous empirical questions will naturally arise once we 

understand how graphical models could be represented in more realistic 

neural architectures, but the first challenge is computational. I also argued 

in chapter 8 that my cognitive architecture is complementary to existing 

process-centered unifications, such as ACT-R and Sigma, but researchers 

must overcome significant theoretical barriers before any such integration 

can occur. We thus face a large set of open questions about how, for exam-

ple, graphical models can be understood in terms of ACT-R chunks, or fac-

tor graphs can be integrated with other types of graphical models. 

 Finally, in addition to these more focused open questions and next steps, 

several notable lacunae exist in the current cognitive architecture. Most 

obviously, I have largely set aside the role of language in human cognition, 

despite its ubiquitous presence in almost all our conscious thoughts and 

actions. Of course, language has played an indirect role in this cognitive 

architecture, both because there are presumably close connections (though 

not necessarily identity) between our concepts and the words that we use, 

and because many of the experiments discussed earlier depend on people ’ s 

linguistic competence. I have not, however, seriously engaged with any lin-

guistic or psycholinguistic research in this book. There are reasons to think 

that at least some of the cognitive representations underlying language 

phenomena might fit well with the graphical models framework. For exam-

ple, reading time and fluency depend in part on our expectations about 

word location and order ( Smith  &  Levy, 2013 ). That is, reading arguably 
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involves the (implicit) computation of probabilities, and graphical mod-

els excel at the rapid computation of conditional probabilities. Alternately, 

 Sloman (2005)  has argued that many phenomena in pragmatics depend 

on our causal knowledge and could thus be translated into operations on 

graphical models. These observations are obviously speculative, but they 

do suggest that it would not be foolhardy to investigate the possible roles 

of graphical model cognitive representations in language production, com-

prehension, and processing. 

 Similarly, I have had relatively little discussion of social cognition, with 

the exception of a brief mention of social reasoning — specifically, inference 

about others ’  preferences from their choices — in chapter 6. Humans are 

deeply social creatures, and we spend substantial cognitive resources think-

ing and reasoning about others. In modern society, it is arguably an open 

question whether physical or social factors place more constraints on our 

everyday lives and decisions. Certainly, we frequently notice the social fac-

tors more readily. We might thus naturally hope that a cognitive architec-

ture that aims to unify multiple types of cognition would extend to learning 

and inference about other individuals and our relationships with them. 

The cognitive architecture presented here would be even more persuasive 

if much of social cognition could be understood as operations on a shared 

store of cognitive representations structured as graphical models. This turns 

out to be an extremely challenging task, as we often do not have precise 

theories of social cognition and so are not even sure exactly what needs to 

be modeled and explained. Of course, that gap in our understanding raises 

the possibility of using the graphical models framework not just to explain 

existing theories but to significantly advance the field. For example, recent 

research has shown that our inferences about others ’  goals and intentions 

can fruitfully be understood as inferences in a graphical model ( Baker, Saxe, 

 &  Tenenbaum, 2009 ;  Hamlin, Ullman, Tenenbaum, Goodman,  &  Baker, 

2013 ;  Jern, Lucas,  &  Kemp, 2011 ). This work has actually revealed new 

empirical phenomena, in part by approaching a social cognition problem 

from the graphical models perspective. At the same time, social cognition 

involves an enormous variety of cognitive representations and processes, 

and so incorporating it into the present graphical-models-based cognitive 

architecture will require substantial theoretical and empirical research. 

 One might think that these open questions and challenges somehow 

reveal a defect in the view that I have developed throughout this book, 
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as it has failed to answer all questions. I view them instead as evidence of 

the fruitfulness of adopting the graphical models perspective in trying to 

understand the nature of human cognition and cognitive representations. 

We do not arrive at the end of this book with nothing left to investigate but 

rather have a brand new set of problems and puzzles to address. No model, 

architecture, or theory is ever complete, just as no map is ever perfect, and 

so there will always be further questions. Graphical models are not the only 

objects in our mind, and this framework is not the only tool that we should 

(or will) use to better understand our thought and behavior. However, good 

accounts of our cognition can help us to understand the processes and rep-

resentations that underlie it, as well as how our cognition enables us to 

navigate successfully through an exceedingly complex world. This book 

has proposed that important parts of our cognition can be understood as 

different operations on a shared store of cognitive representations that are 

structured as graphical models. This integrated cognitive architecture can 

explain the seamless, free-ranging nature of much of our cognition, as well 

as our ability to (mostly) focus on the information that is relevant to solv-

ing a particular problem. It enables us to better understand the seeming 

unity of our cognitive lives, as well as the errors that we sometimes make. 

In sum, we can better understand and explain our minds if we understand 

the roles played by our minds ’  graphs. 





 Appendix: Graphical Models and Concepts* 

 This appendix contains proofs for all the theorems stated and used in sec-

tion 5.5. To my knowledge, these theorems have not appeared elsewhere, 

and so the proofs are provided for completeness, but without any com-

ments or discussions. 

  Theorem 5.1 : For all  S E  ( X ), there exists a  P E   such that  S E  ( X )  ∝   P E  ( X   ∪   U ), where 

 U  has  e  many values (and measure zero of the  P E   ’ s violate Faithfulness). 

  Proof of theorem 5.1 : Without loss of generality, assume the exemplar weights 

of  S E   are normalized:  ∑  W k   = 1. Define a probability distribution in terms of 

the Markov decomposition of the figure 5.1 graph:  P ( U  =  j ) =  W j  ; and  P ( X i   | 

 U  =  j ) =  s i  ( | X i    –   E i  
j  | ) /  Z i  , where  Z s di i=

∞

∫ ( )ε ε
0

 . Because  Sim  is a proper simi-

larity function,  Z i   is always well-defined and finite. If every exemplar has 

the same value for some  F i  , then  P ( X i   |  U  =  j ) =  P ( X i   |  U  =  k ) =  P ( X i  ) for all  j , 

 k . Reorder the features so that the first  c  features are those for which this is 

true, where possibly  c  = 0. Let  G  be the edge-deletion transform of the figure 

5.1 graph that removes the  U   →   F i   edge for  i   ≤   c ;  P ( X ) clearly satisfies the 

Markov assumption for  G .  P ( X ) is positive (since every  s i   is positive), and 

condition (b) for  P E   is satisfied, since the relevant conditional probabilities 

are defined directly in terms of the (normalized)  s i   ’ s. For condition (c), if  Q ik   

=  E i  
k    –   E i   

1 , then 

  P ( X i   +  Q ik   |  U  =  k ) =  
s X E E E

Z
i i i

k
i
k

i

i

( ( ) )− + − 1

  =  
s X E

Z
i i i

i

( )− 1

  =  P ( X i   |  U  = 1) 

 All that remains is to prove that  P ( X ) satisfies Faithfulness for  G , which 

requires proving that all appropriate associations hold. We do this with two 

lemmas, one for the adjacent variables  U  and  F i   ( i   >   c ), and the other for 

connected-but-not-adjacent variables  F i   and  F j   ( i ,  j   >   c ). 
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  Lemma 5.1.1 : For all  i   >   c ,  F i   and  U  are associated conditional on any  S   ⊆   V  

\ { F i  ,  U }. 

  Proof of lemma 5.1.1 : Proof by contradiction: suppose there is some S such 

that  F i   and  U  are independent conditional on S. Therefore, for all  X i  ,  u , s, 

 P ( X i    &   U  =  u  | S = s) =  P ( X i   | S = s) P ( U  =  u  | S = s). Also, by Markov decomposi-

tion, for all  X i  ,  u , s,  P ( X i    &   U  =  u  | S = s) =  P ( X i   |  U  =  u ) P ( U  =  u  | S = s).  P  is a 

positive probability distribution, so for all  X i  ,  u , s,  P ( X i   |  U  =  u ) =  P ( X i   | S = s) .  

Therefore, for some fixed s, we have  P ( X i   |  U  =  u  1 ) =  P ( X i   |  U  =  u  2 ) for all  X i  , 

 u  1 ,  u  2 . Since  P ( X i   |  U  =  u ) is maximal at  E i  
u  , this equality implies that  E i  

u   1  =  E i  
u   2  

for all  u  1 ,  u  2 . But  i   >   c  implies  E i  
j    ≠   E i  

k   for some  j ,  k . Contradiction.  �  

  Lemma 5.1.2 : For all  i   ≠   j   >   c  and measure one of the  P ( X ),  F i   and  F j   are associ-

ated conditional on any  S   ⊆   V  \ { F i  ,  F j  ,  U }. 

  Proof of lemma 1.1.2 : Proof by contradiction: suppose there is some S such 

that  F i   and  F j   are independent conditional on S. Therefore, for all  X i  ,  X j  , s, 

 P ( X i    &   X j   | S = s) =  P ( X i   | S = s) P ( X j   | S = s). Also, for all  X i  ,  X j  , s,  P (S = s) P ( X i    &   X j   

 &  S = s) =  P ( X i    &  S = s) P ( X j    &  S = s). The Markov decomposition of  P  implies 

these probabilities can all be expressed as weighted sums over values of  U . 

Many of the terms do not depend on  X i   or  X j  :  f (s,  u  1 ,  u  2 ) =  P ( U  =  u  1 ) P ( U  = 

 u  2 ) P (S = s |  U  =  u  1 ) P (S = s |  U  =  u  2 ). Algebra yields: for all  X i  ,  X j  , s, 

  

f u u P X U u P X U u

P X U u P X

i i
u uu

j j
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( ( | ) (
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 We must now show that this double summation is not trivially true. 

  Claim : There exists  u  1   ≠   u  2  such that  P ( X i   |  U  =  u  1 )  ≠   P ( X i   |  U  =  u  2 ) and  P ( X j   |  U  

=  u  1 )  ≠   P ( X j   |  U  =  u  2 ) for more than measure zero of the  X i  ,  X j  . 

  Proof of the claim : Let  I  1 ,  …  ,  I k   be a partition of the values of  U  such that 

each partition element contains all  u  that share a maximal point for  P ( X i   | 

 U  =  u ). Note that  k   >  1, since  i   >   c . If  F i   is binary, then for each  u ,  P ( X i   |  U  = 

 u ) equals either   α  i   or (1  –    α  i  ) for some fixed   α  i  , since  s i   is the same function 

for all exemplars. Therefore the distributions corresponding to  U -values in 

two different partition elements can only be equal if   α  i   = 0.5, which implies 

that  P ( X i   |  U  =  u ) does not depend on  u , which contradicts  i   >   c . If  F i   is con-

tinuous, then the distributions corresponding to  U -values in two different 

partition elements can only be equal for measure one of the space if  s (  ε  ) is 

constant for measure one of the space, which implies that the integral of 
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 s (  ε  ) cannot be finite, which is a contradiction. Distributions whose  u  falls in 

different partition elements thus must differ for more than measure zero of 

the  X i  . We can similarly define  J  1 ,  …  ,  J l  , which will have all the same prop-

erties as the  I -partition. Thus the proof of the claim reduces to proving that 

there is some  u  1 ,  u  2  such that both (i)  u  1   ∈   I a   and  u  2   ∈   I b  , where  a   ≠   b ; and (ii) 

 u  1   ∈   J r   and  u  2   ∈   J t  , where  r   ≠   t . 

 Consider some arbitrary  u  1   ∈   I a   and  ∈   J r   for some  a ,  r , and all  u  2  such that 

 u  2   ∈   I b   where  a   ≠   b . Note that there must be at least one such  u  2 , since  k   >  1. 

If there exists  u  2   ∈   J t   with  r   ≠   t , then the claim is proved. Thus suppose that 

 r  =  t  for all such  u  2 . If  I a   contains only one element ( u  1 ), then every  u  is in 

the same  J -partition element, and so  l  = 1, which is impossible. Therefore 

consider all  u  1 * such that  u  1 *  ∈   I a   and  u  1 *  ≠   u  1 . If all  u  1 *  ∈   J r  , then we again 

have  l  = 1, which is impossible. Therefore there exists  u  1 *  ∈   I a   such that  u  1 * 

 ∈   J t   where  r   ≠   t . Therefore, since all  u  2   ∈   J r  , we have a suitable pair in  u  1 * and 

any  u  2   ∈   I b   for  a   ≠   b .  �  
     

 The solutions for a nontrivial polynomial are Lebesgue measure zero over 

the space of parameters of the polynomial (Meek, 1995; Okamoto, 1973). 

Since the double summation is nontrivial,  F i   and  F j   are independent given  S  

for only measure zero of the possible parameter settings. Thus measure one 

of these probability distributions are Faithful to  G .  �  
     

 Since  P ( X ) satisfies all the relevant conditions, it is a member of  P E  . By con-

struction,  S E    ∝   P ( X ), and so the theorem is proved.  �  

  Theorem 5.2 : For all  P E  ( X   ∪   U ), there exists an  S E   such that  S E  ( X )  ∝   P E  ( X   ∪   U ), 

where  S E   has  u  exemplars. 

  Proof of theorem 5.2 : It suffices to provide  E   i  ,  W i  , and  s i  (  ϵ  ) for each  i   ≤   u . Let 

 E   j   =  R   j  , the point of maximal probability given  U  =  j , and set  W j   =  P E  ( U  =  j ). 

Define  s i  ( | X i    –   E i  
j  | ) =  P E  ( X i   |  U  =  j ). Because the  U -conditional probability 

distributions are identical up to translation,  s i  (  ϵ  ) is identical regardless of 

choice of  j . Set  Sim ( X ,  Y ) to be the product of  s i   ’ s. Condition (b) clearly 

holds, as the  s i   ’ s inherit all the characteristics of the  U -conditional distribu-

tions. Finally, 

  
s d P X U j dXi E i i( ) ( | )ε ε

0
1

∞

−∞

∞

∫ ∫= = = < ∞
  

 Thus condition (c) is satisfied, and so  S ( X ) is a member of  S E  . And by the 

Markov decomposition of  P E  ,  S ( X ) =  P E  ( X   ∪   U ).  �  
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  Theorem 5.3 : For all  S P1  ( X ), there exists a  P P1   such that  S P1  ( X )  ∝   P P1  ( X ). 

  Proof of theorem 5.3 : For the empty graph, the joint probability is simply the 

product of the variable-specific probabilities, and so it suffices to set  P ( X i  ) = 

 s i  ( | X i    –   R i  | ) /  Z i  , where  Z s di i=
∞

∫ ( )ε ε
0

  . The resulting distribution is Markov to 

the empty graph, and Faithfulness imposes no constraints given the empty 

graph. Moreover, the  P ( X i  )  “ inherit ”  all the necessary properties from the 

 s i   ’ s, and so all the conditions are satisfied for  P ( X ) to be part of  P P1  . Finally, 

by construction,  S P1  ( X )  ∝   P P1  ( X ).  �  

  Theorem 5.4:  For all  P P1  ( X ), there exists an  S P1   such that  S P1  ( X )  ∝   P P1  ( X ). 

  Proof of theorem 5.4 : The construction in this proof is exactly the reverse 

of the one used for theorem 5.3, as we simply set  R  to be the point of 

maximum probability for  P ( X ) and then set  s i  ( | X i    –   R i  | ) =  P ( X i  ). All the rel-

evant properties for  s i   are immediately satisfied, and by construction,  S P1  ( X ) 

=  P P1  ( X ).  �  

  Theorem 5.5 : For all  S P2  ( X ), there exists a  P P2   such that  S P2  ( X )  ∝   P P2  ( X ), where 

there is an edge in the  P P2   UG for each second-order feature in  S P2   (and mea-

sure zero of the  P P2   ’ s violate Faithfulness). 

  Proof of theorem 5.5 : Let  M  be a UG over the  m  first-order features with  F i    —  

 F j   if and only if there exists a second-order feature defined on  F i   and  F j   (i.e., 

a nontrivial  h k  (  ε  i  ,   ε  j  )). To fully specify  M , it suffices to specify each clique 

potential. Let  N i   be the number of cliques containing  F i  ,  N ij   be the number 

of cliques containing both  F i   and  F j  , and  d  be the size of clique D. 

 If   ε  i   = | X i    –   R i  | and  t ij  (  ε  i  ,   ε  j  ) =  s k  ( | h k  (  ε  i  ,   ε  j  )  –   h k  (0, 0)| ), then for each maximal 

clique  D , set  f   D   ,   ij  (  ε  i  ,   ε  j  ) =  s s ti i
N d

j j
N d

ij i j
Ni j ij( ) ( ) ( , )( ) ( )ε ε ε ε

1
1

1
1

1

− −  , using the positive 

roots for even  N i   and  N ij  ; and  g D  ( X ) =  f ij
i j

i jD
D

,
,

( , )ε ε
∈

∏   =  s ti
i

i
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ij i j
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i j
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,
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DD

 . 

Note that  t ij   is included only when  F i   and  F j   are both in clique  D , and so  t ij   

is necessarily nontrivial. Clearly, all  g D   are functions only of variables in  D , 

and by construction,  P ( X ) =  ∏  g D  ( X ) /  Z   ∝   S P2  ( X ) whenever the normalization 

constant  Z  is finite. Because  S P2   is a proper similarity function, it immedi-

ately follows that  Z g d S dD P= < ∞∏∫ ∫( ) ( )X X X X= 2  . By construction,  P ( X ) 

satisfies the Markov assumption for  M  and the appropriate clique poten-

tial decomposition constraint.  P ( X ) also has all the appropriate symmetry 

properties by virtue of the definition in terms of  s i   functions. The only 
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thing that remains is to show that (measure one of the)  P ( X ) satisfy the 

Faithfulness assumption for  M ; we do this through two lemmas, one for 

adjacent variables and one for nonadjacent variables. For both lemmas, we 

use the same proof strategy as lemma 5.1.1 of finding nontrivial polynomi-

als, which implies that the set of parameters for that equality are Lebesgue 

measure zero. 

  Lemma 5.5.1 : For all adjacent  F i  ,  F j  , and for measure one of the above-

defined  P (X),  F i   and  F j   are associated conditional on any set  S   ⊆   V  \ { F i  ,  F j  }. 

  Proof of lemma 5.5.1 : Assume there is some suitable S such that  F i   is indepen-

dent of  F j   conditional on S. Since  P ( X ) is positive, this implies that, for all 

 X i  ,  X j  , s,  P ( X i    &  S = s) P ( X j    &  S = s) =  P ( X i    &   X j    &  S = s) P (S = s). Let  A  be the set 

of all possible combinations of values for  V  \ S  ∪  { F i  ,  F j  } (i.e., everything not 

mentioned in the independence statement), and let  a  and  b  be particular 

combinations. For each  a   ∈   A , denote the value of the neighbors of either  F i   

or  F j   (excluding  F i   and  F j  , since they are each other ’ s neighbors) by  N a  , and 

the values for the other variables as  D a  . The values in  N a   and  D a   for variables 

in  S  will be constant for all  a , as those were fixed by specification of  s . Each 

of the probabilities mentioned to this point in the proof can be expressed as 

the sum of probabilities for the fixed values and  a . (This proof is expressed 

in terms of summations, but everything transfers straightforwardly to inte-

grals, since we know that the probability density is well behaved in the 

relevant senses.) 

 The equality at the beginning of the proof can be rewritten as follows: for 

all  X i  ,  X j  ,  s ,
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 where  a  and  b  

range over all possible values of  A . Since  P ( D  |  N ) is always nonzero, this 

complex polynomial will be nontrivial (i.e., not identically zero) just when 

the following claim holds: 

  Claim : There is a set of  X i  ,  X j  ,  F i  ,  F j  ,  a ,  b  with nonzero measure such that 

[ P ( X i    &   F j    &   N a  ) P ( F i    &   X j    &   N b  )  –   P ( X i    &   X j    &   N a  ) P ( F i    &   F j    &   N b  )] is not identi-

cally zero. 
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  Proof of claim : Substitute in the clique potentials and take the sum over 

possible settings of  D . Since clique potentials depend only on the variables 

in the clique, we can factor out the sum over  D , where the factored-out 

potentials are irrelevant for whether the term in brackets is identically zero. 

For simplicity, we harmlessly abuse notation by using the variable names 

to actually denote the corresponding   ϵ  . Let  D i   ( D j  ) denote the cliques with 

 F i   but not  F j   (or vice versa), and  D ij   denotes the cliques with both. Since the 

two products in the subtraction term both involve  X i  ,  X j  ,  F i  ,  F j  ,  N a  , and  N b  , 

we can factor out all the  s  and  t  functions involving only variables other 

than  F i   and  F j  . We also factor out any terms involving just  i , as those are 

shared in both terms. (We could alternately factor out terms involving just 

 j , which would produce an analogous equation below.) The resulting equa-

tion for the purposes of determining nontriviality is:  
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 Suppose the variables are binary. If  N a   =  N b  ,  F i   = (1  –   X i  ), and  F j   = (1  –   X j  ), 

then the two terms in the equation reduce to  t ij  (0, 0) t ij  (1, 1) and  t ij  (1, 0) t ij  (0, 

1). Nontriviality of the second-order feature implies that these terms are not 

equal, and so the original equation is not trivially zero. 
     

 Suppose instead that the variables are continuous, and assume that the 

equation holds for measure one of  X i  ,  X j  ,  F i  ,  F j  ,  a , and  b . If  F i   and  F j   have no 

neighbors, then this equation reduces to  t ij  ( X i  ,  F j  ) t ij  ( F i  ,  X j  ) =  t ij  ( X i  ,  X j  ) t ij  ( F i  ,  F j  ) 

for measure one of  X i  ,  X j  ,  F i  ,  F j  . But for any arbitrary  F i  ,  F j   in this space, there 

exist  f () and  g () such that  t ij  ( X i  ,  X j  ) is expressible as  f ( X i  ) g ( X j  ) for measure one 

of  X i  ,  X j  , which contradicts the nontriviality of the second-order feature. 

Suppose instead that either  F i   or  F j   has at least one neighbor, and assume 

without loss of generality that  F j   has a neighbor. For any arbitrary setting 

 q  (in the measure one set in which the equation is satisfied) of everything 

except  X j   and  N a  ( k ), we can rewrite the above equation as follows: for 

measure one of  X j  ,  N a  ( k ), we have  t X k
t F X
t X X

t F kjk j q
ij i j

ij i j
jk j( , ( ))

( , )
( , )

( , ( ))N Na a= α   

for some  q -dependent constant   α  q  . But this implies that  t jk  ( X j  ,  N a  ( k )) can 

be expressed as the product of  f ( X j  ) and  g ( N a  ( k )), contra the assumption of 

nontriviality for second-order features. Thus the equation cannot hold for 

measure one of  X i  ,  X j  ,  F i  ,  F j  ,  a , and  b , and so the claim is established.  �  
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 Since the claim holds, we know that the original complex polynomial is not 

identically zero for measure one  X i  ,  X j  ,  s , and so  X i   and  X j   are independent 

conditional on  S  for only measure zero of the probability distributions. 

Thus lemma 5.5.1 holds.  �  

  Lemma 5.5.2 : For all nonadjacent  F i  ,  F j   and for measure one of the above-

defined  P ( X ), if there is a path between  F i   and  F j  , then they are associated 

conditional on any set  S   ⊆   V  \ { F i  ,  F j  } such that  S  does not separate  F i   and  F j  . 

  Proof of lemma 5.5.2 : The initial section of the proof for lemma 5.5.1 did 

not use the adjacency of  F i   and  F j  , and so we only must prove that there is 

a set of  X i  ,  X j  ,  F i  ,  F j  ,  a ,  b  with nonzero measure such that [ P ( X i    &   F j    &   N a  ) P ( F i   

 &   X j    &   N b  )  –   P ( X i    &   X j    &   N a  ) P ( F i    &   F j    &   N b  )] is not identically zero. Since  S  

does not separate  F i   and  F j  ,  S  cannot contain either every variable adjacent 

to  F i  , or every variable adjacent to  F j  . Without loss of generality, assume 

that there is at least one neighbor of  F j  , call it  F k  , that is not contained in S. 

 We again express this difference in terms of (sums of products of) clique 

potentials and factor out terms that appear in both sides of the difference. 

If  Ne ( j ) is the set of features adjacent to  F j  , then it suffices to prove: There 

is a set of  X i  ,  X j  ,  F i  ,  F j  ,  a ,  b  with nonzero measure such that the following 

equation is nontrivial: 

  t F l t X l t X l t F ljl j jl j jl j jl j
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 If the variables are binary, then let  F j   = (1  –   X j  ),  N a   =  N b   except for  F k  , and 

 N a  ( k ) = (1  –   N b  ( k )). The difference in products then becomes the difference 

between  t jk  (0, 0) t jk  (1, 1) and  t jk  (0, 1) t jk  (1, 0). The nontriviality of second-order 

features implies that this difference cannot be zero. 
     

 Suppose instead that the variables are continuous and the difference is 

identically zero for measure one of the variables. Then for any arbitrary 

setting  q  of variables other than  X j   and  N a  ( k ), we have: for measure one of 

 X j  ,  N a  ( k ),  t X k
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where   β  q   is a  q -dependent constant. Thus  t jk   can be expressed as the product 

of  f ( X j  ) and  g ( N a  ( k )), contradicting the nondecomposability of  t jk  , and so 

there must be a set of nonzero measure such that the product difference is 

not identically zero.  F i   and  F j   therefore must be associated conditional on 

 S .  �  
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 Given those two lemmas, we can conclude that  P ( X ) is a member of  P P2  .  �  

  Theorem 5.6 : For all  P P2  ( X ), there exists an  S P2   such that  S P2  ( X )  ∝   P P2  ( X ), where 

 S P2   has a second-order feature for each edge in the  P P2   UG. 

  Proof of theorem 5.6 : Clique potentials are only defined up to a multiplica-

tive constant, and so assume without loss of generality that  g D  ( R ) = 1 for all 

 D . For convenience, let  X [ Y i  ] denote the point  X , but with the value  Y i   for 

 F i  ; that is, we substitute a value on one dimension. There is a general under-

determination problem for second-order features: we care about  s k  ( | h k  (  ε  i  ,   ε  j  ) 

 –   h k  (0, 0)| ), but there will always be infinitely many  s k   and  h k   function-pairs 

that yield the same similarity judgments. Hence we focus on the composite 

 t ij  (  ε  i  ,   ε  j  ) =  s k  ( | h k  (  ε  i  ,   ε  j  )  –   h k  (0, 0)| ). If  d  denotes the size of clique  D , then we 

define the  s i   and  t ij   functions to be: 
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 Clearly, all the  s i   and  t ij   functions are uniquely defined, and all the 

necessary symmetry properties are inherited from those of  P P2  ( X ). If 

 g X XD i j
i j

( [ , ])
:

R
D D or ∈

∏   could be decomposed into  f ( X i  ) g ( X j  ), then  X i   and  X j  

 would be unconditionally independent, which would contradict Faithful-

ness. Thus the second-order features cannot be decomposed in this way, 

and so they are nontrivial. All that remains is to show that  S ( X )  ∝   P P2  ( X ). 

Since we have  m  first-order features and  q  second-order features, we have: 
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 After removing terms that equal one, the first double prod-

uct is  g XD i
d

i X Ri i

( [ ])
:

R
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1

≠
∏∏  ; and the second double product is 
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 . The terms in the second double 

product can be separated into two groups based on whether (a) both or (b) 

only one of  X i  ,  X j   differ from their  R -values. Since  g D  ( R [ X i  ,  X j  ]) = 1 if both 

 F i  ,  F j    ∉   D , the numerator for group (a) is  g X XD i j
i j X R

X R
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denote the number of features in clique  D  whose values differ from their 

 R -values. For any  i  such that  X i    ≠   R i  , there are  b D    –  1 other features in  D  that 

also differ in their  R -values. The denominator for group (a) can thus be

rewritten as  g XD i

d
d

i X R
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 . In group (b), for each  i  such that

 X i    ≠   R i  , there are  d   –   b D   features in clique  D  that  do  have their  R -values, 

and  g D  ( R [ X i  ,  X j  ]) =  g D  ( R [ X i  ]) for those features. Thus group (b) can be 

rewritten as  g XD i
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 The first double product, group (b), and the denominator of group (a) are all 

identical except for exponents. Combining them with the group (a) numer-

ator yields:  S
g X

g X X
D i

b D i j
i X R i j X R

X R

D
i i i i

j j

( )
( [ ])

( [ , ])
: :

&

X
R

R
D

= −
≠ ≠ ≠

≠

∏∏ ∏1
2

 . The pairwise 

decomposability of the clique function implies  g X fD i ik
k i

i( [ ]) ( , ),R D=
≠

∏ ε 0   

and  g X X f f fD i j ij i j ik i
k i j

jk j( [ , ]) ( , ) ( , ) ( , ), ,
,

,R D D D=
≠
∏ε ε ε ε0 0  . If we substitute these 

into the previous expression for  S ( X ) and cancel terms appropriately, we 
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 Notes 

   1    “ Free-Range ”  Cognition 

 1.   The ability to account for such data would be unilluminating if the graphical 

models framework were universal, in the sense of being able to express any possible 

theory. As I show in chapter 3, however, this is not the case: there are many possible 

cognitive theories that cannot be captured using graphical models. 

 2   Computational Realism, Levels, and Constraints 

 1.   In this book, I do not engage with the long history of arguments that conclude 

that the mind cannot be fully understood as a computational device ( Harnad, 1994 ; 

 Searle, 1980 ). First, I simply lack space to address all potentially relevant issues. 

Second, these arguments all focus on cognition as a whole, but I make no claims of 

completeness for the account offered in subsequent chapters. I am obviously not 

trying to capture all aspects of cognition, so these arguments have relatively little 

bite. Third, I adopt a relatively pragmatic attitude toward scientific theories: they are 

valuable just in case they help us to understand, predict, explain, and control our 

world. I contend that computational approaches to the mind have proven helpful 

along all these dimensions and so are useful to consider. Subsequent chapters will 

hopefully establish this for the particular case of the graphical-models-based 

account. 

 2.   The terminology that I introduce in this section is not completely settled in the 

broader cognitive science community. However, the definitions that I propose are 

relatively standard, with the possible exception of  “ theory. ”  

 3.   As a personal example, I would advocate using a neural framework to understand 

low-level visual perception, rather than the more symbolic framework advocated 

here. 

 4.   In practice, Marr ’ s levels are almost always applied to cognitive models, rather 

than frameworks or architectures. To maintain generality, however, I will talk about 
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theories, though these issues are obviously most directly relevant to cognitive 

models of the same phenomena. 

 5.   For example, many of the early debates about neural network models of cogni-

tion were exactly about what reality to attribute to the various parts of the model; 

were the networks, for example, supposed to map onto actual neural structures? 

These debates were exacerbated by the fact that publications with neural network 

models were rarely sufficiently specific about their realist commitments (or lack 

thereof). 

 6.   Note that, in this characterization, we can also have stable, persistent representa-

tions of processes (e.g., if some cognitive algorithm is  “ stored ”  in some way in the 

brain). 

 7.   To be clear: I do not claim that prediction is the only epistemically important 

function of a theory, but simply that it is a major one. It is thus a useful way to think 

about the epistemological commitments of a particular set of realist commitments 

for a theory. 

 8.   As a concrete example, there was an exchange of papers in the 1990s between 

Shanks and Melz et al. ( Melz et al., 1993 ;  Shanks, 1991 ,  1993 ) in which a significant 

part of the debate was exactly about the intended scope of one model of causal 

learning: specifically, was the  Δ  P  model supposed to capture all causal judgments 

(Shanks ’ s reading) or only those made at asymptote (Melz et al. ’ s position)? 

 9.   A full explication of this intertheoretic relation would require an explicit measure 

of approximation, as well as some account of how inputs and outputs in one theory 

map to inputs and outputs in another theory. These details will be highly dependent 

on the particular domain and theory, so there is no particular reason to expect any 

unified notion of input — output approximation that applies in all, or even many, 

situations. 

 10.   My focus is on reductions between theories at different levels of description, 

called reduction 1  by  Nickles (1973) . A different notion of reduction — Nickles ’ s 

reduction 2  — focuses on theories at the same level, as when relativistic mechanics is 

said to reduce to Newtonian mechanics in the limit of ( v  /  c ) 2   →  0. 

 11.   As reduction is always a relation between a higher-level and lower-level theory, I 

use  H  and  L  throughout to refer to these two relata. 

 12.   The story is obviously more complicated than this, but the details have been 

worked out ( Moulines  &  Polanski, 1996 ). 

 13.   Or rather, the phenomena covered by  H  are a rough subset of the phenomena 

covered by  L . 

 14.   The issue is complicated by the fact that  T  will typically reduce to  S  only given 

certain initial or background conditions. If the actual initial or background condi-
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tions are not those required for  T , then it is unclear whether to say that  T  is false or 

simply inapplicable. In either case, the truth-values of  S  and  T  can arguably be 

pulled slightly apart. 

 15.   Concretely,  D  might be the Rescorla-Wagner model ( Danks, 2003 ;  Rescorla  &  

Wagner, 1972 ) and  A  the conditional  Δ  P  theory ( Cheng  &  Novick, 1992 ). Or  D  could 

be the noisy-OR-based dynamics ( Danks, Griffiths,  &  Tenenbaum, 2003 ) for  A  = the 

causal power theory ( Cheng, 1997 ). See chapter 4 for more on these particular 

theories. 

 16.   This extreme case is unlikely; the more realistic situation is: if  A  is true, then 

only a few  “ cognitively plausible ”   D s could be true. 

 17.   In fact, it is the principal strategy in this book: graphical models provide a 

framework for representations in many different domains and processes, and so the 

unifying theory is more likely than one would expect from each separate success. 

 3   A Primer on Graphical Models 

 1.   Semantic heterogeneity may pose a problem for some inference methods. This 

issue will arise again in sec. 9.2. 

 2.   At least for linear systems. In a nonlinear system, zero correlation is necessary but 

not sufficient for independence. 

 3.   Unfortunately, the exact connection between a statistical test and in/dependence 

judgments is frequently misunderstood or misrepresented in scientific practice 

( Harlow, Muliak,  &  Steiger, 1997 ). 

 4.   The assumptions are sometimes stated in their contrapositive form; for example, 

the Markov assumption is sometimes  “ if two nodes are dependent regardless of con-

ditioning set, then they are graphically adjacent. ”  Also, Faithfulness is sometimes 

not explicitly stated, but it is almost always used in the corresponding learning, esti-

mation, and inference methods. 

 5.   Discrete variables with many possible ordered values (e.g., height, weight) are 

often more easily modeled as continuous variables. 

 6.   If one has a mix of discrete and continuous variables, there are various ways to 

merge the two types of quantitative components. 

 7.   Various alternative formulations exist, but they are all equivalent for the cases we 

consider here. See  Lauritzen (1996)  for technical details. 

 8.   Also, one central debate has been about whether one can learn causal structures 

from data in a reliable or systematic manner. This issue is clearly irrelevant to the 

question of whether cognitive representations are (approximately) graphical models. 
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 9.   There is a theory of cyclic graphical models ( Richardson, 1996 ,  1997 ), but it 

describes feedback systems that have reached an equilibrium state, rather than the 

short-run dynamics leading to such a state. 

 10.   More precisely, the data space is not constrained by the quantitative component 

if we have sufficient flexibility in its specification (e.g., allowing for nonlinear rela-

tionships in a DAG). If the quantitative component is restricted, then there can be 

additional, parameter-based constraints on the data space that can be perfectly 

represented. 

 11.   We can make similar observations about any unshielded collider, though we 

might additionally need to condition on a set of variables. 

 4   Causal Cognition 

 1.   Though we can have temporally extended feedback loops (e.g., supply — demand 

cycles), as discussed in sec. 3.2. 

 2.   Of course, I actually learned about this causal relation because people told me 

about it. The important point here is that causal inference provides a way that I 

could have learned this causal relation if no one had told me. 

 3.   This is not quite right, since these theories often never converge. More precisely, 

the conditional  Δ  P  values are the stable points of Rescorla-Wagner-based dynamical 

theories. 

 4.   In general, these models provide estimates of the expectation of  E . If  E  is 0/1 

binary, then the expectation is the same as the probability of  E  = 1. I focus on that 

case, since the quantitative component of the graphical model is not fully specified 

given a function only for  E  ’ s expectation. Everything said about equation (4.2) 

holds, however, if the probability of  E  is replaced with an expectation over  E . 

 5.   A technical aside: in all the psychological theories, the causal strength of the 

background is given by  P ( E  |  ¬  C  1 ,  ¬  C  2 ,  … ,  ¬  C n  ), regardless of the equation used to 

infer the causal strengths of the  C i   ’ s. That is, the background ’ s causal strength is not 

necessarily computed by using  B  as the  “ cause ”  in the psychological theory ’ s infer-

ence equation. 

 6.   If some of the cause variables are not binary, then one can complicate equation 

(4.3) in various natural ways to allow for partial causing or blocking. 

 7.   In fact, if we explicitly incorporate upper and lower bounds on  E  ’ s value, then we 

can derive a natural functional form that behaves like (i) a weighted sum when  E  

ranges over the real numbers; (ii) the noisy-OR/AND function when  E  is 0/1; and 

(iii) an interesting, but complicated, function when  E  ranges over a bounded inter-

val of reals. That is, there is potentially a single (complex) functional form that sub-



Notes 243

sumes both of these sets of cognitive models in a principled way. No one, however, 

has systematically explored this more general functional form; in particular, no 

experiments have tried to determine what behavior people exhibit in situation (iii). 

 8.   As an aside, the difficulty of knowing exactly where to discuss this issue actually 

lends support for the  “ single representational store ”  thesis of this book. Inference 

about features in a causal-structure-based category seems to simultaneously involve 

causal reasoning and reasoning about concepts, although those two cognitive 

domains are often studied separately. 

 9.   Of course, it would need to be a representation of asymmetric, intransitive rela-

tions, which rules out simple associative strengths. However, one could have a 

model of  “ directed associations ”  that was noncausal but nonetheless sufficed for 

inference from observations. 

 10.   Similar observations can be made about research on the importance of  “ norma-

tive considerations ”  in causal attribution ( Alicke, 1992 ;  Hitchcock  &  Knobe, 2009 ; 

 Knobe  &  Fraser, 2008 ). There are significant disagreements about the exact phenom-

ena, and even more disagreement about what  “ norms ”  are. In light of this, it is 

unclear what the graphical-models-based framework would be expected to capture. 

Having said that, David Rose and I have proposed such a theory, based on the idea 

that people are selecting  “ reliable ”  causes, that fits nicely with (some of) those data 

( Rose  &  Danks, 2012 ). 

 11.   I use the word  “ mechanism ”  to mean something both broader and weaker than 

the mechanisms discussed in some recent philosophy of science ( Craver, 2007 ; 

 Machamer, Darden,  &  Craver, 2000 ). 

 12.   On the other hand, it is surprising that people weight mechanism knowledge so 

heavily given that they often have much less of it than they think ( Rozenblit  &  Keil, 

2002 ). 

 13.   More precisely, these forces are vectors that combine using standard vector 

addition. 

 14.   In general, interventions can be understood as changes (from outside the causal 

system) in one or more of the terms in the Markov factorization. In the case of hard 

interventions, this can involve changing a conditional probability term into an 

unconditional probability term, as in the example of an intervention on  M  in the 

main text. But in general, many other kinds of changes are possible, corresponding 

to  “ softer ”  interventions.  Eberhardt and Scheines (2007)  provide a systematic char-

acterization of interventions, broadly construed. 

 15.   There are also versions of this situation in which the driver ’ s being drunk did 

matter, though he was stopped at a light. For example, perhaps he did not stop in 

the proper location because he was drunk. Those are not the cases that I have in 

mind. 
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 16.   The causal power theory of causal inference ( Cheng, 1997 ) is based on exactly 

this type of metaphysical picture. 

 17.   Remember that the nodes are spatial locations whose values are the objects at 

that location. So  “ not moving ”  just means that the node has the same value for  t , 

 t +1, and  t +2. 

 18.   One might doubt whether such a model could actually be specified, since 

 “ something else ”  is not necessarily well-defined. I share these doubts but grant (for 

the sake of argument) the possibility of such a model. 

 5   Concepts, Categories, and Inference 

 1.   I will also not engage with philosophical analyses of concepts as whatever makes 

possible various propositional attitudes, as I agree with  Machery (2009)  that those 

involve a distinctly different project. 

 2.   Recall that all the mathematical details are provided in section 5.5. 

 3.   Anecdotally, more than one researcher has suggested to me that there is no point 

in looking at second-order features, since they are deterministic functions, so seem-

ingly cannot provide any real increase in expressive power. The divergence between 

 GM PC1   and  GM PC2   clearly shows that this claim is false. 

 4.   There are various technical caveats on the claims in this paragraph; see section 

5.5 for details. 

 5.   Cases when  “ importance ”  depends on what other concepts are possible at a 

moment will be modeled as aspects of categorization behavior. 

 6.   Recall that the  “ | ”  symbol in a probability statement should be read as  “ given ”  or 

 “ conditional on. ”  

 7.   As I noted, this issue concerns distinctively causal reasoning and so could equally 

well have been discussed in section 4.3. I would have made the same observations 

and arguments if we had examined it there. 

 8.   The idea of translating psychological categorization into optimal distribution 

choice has previously been explored ( Ashby  &  Alfonso-Reese, 1995 ;  Ashby  &  

Maddox, 1993 ;  Myung, 1994 ;  Nosofsky, 1990 ;  Rosseel, 2002 ). The novel aspect here 

is the use of graphical models. 

 9.   As an aside, notice that categorization can now be understood as  “ simple ”  infer-

ence of the value of this new variable. That is, categorization looks like a type of 

feature inference, though the relevant feature is special in many ways. 

 10.   This model is similar in many respects to  Heit ’ s (1998)  Bayesian model. 
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 11.   This model also easily captures empirical results about how people incorporate 

novel causal laws into existing concepts ( Hadjichristidis, Sloman, Stevenson,  &  

Over, 2004 ;  Rehder, 2009 ). 

 12.   This extension to second-order features is stronger than is strictly required. If we 

have second-order features, then we can weaken condition (b) of the definition of 

proper similarity function: we only need the prototype point to be a global maxi-

mum, not a maximum along each dimension. In practice, however, the stronger 

condition is always satisfied, and it makes the presentation significantly simpler. 

 13.   This qualification is necessary because it is technically possible for there to be 

 “ parameter balancing ”  resulting in two different features being independent in the 

similarity function, though both depend on the exemplars. For more details, see the 

proof. 

 14.   Recall that a double Laplace (exponential) distribution is  P x e
x

( ) =
− −1

2

2

σ

μ
σ  , 

and the Gaussian (normal) distribution is  P x e
x

( )
( )

=
− −1

2

2

22

σ
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σ  . 

 15.   For GCMs with  d  = 2, the general equation for Gaussian variance is   σ  i   
2  =  m /2 c α  i  . 

 16.   There is a complication here: optimal categorization requires that I compute  P ( C  

|  X ), but then my  decision  should be whichever concept is most probable; I should 

not optimally or rationally  “ probability match ”  by choosing probabilistically based 

on  P ( C  |  X ). Given that people (sometimes) probability match in this way, we need 

to either explain why people are only  “ partially rational ”  or else provide a norma-

tive justification of probability matching ( Eberhardt  &  Danks, 2011 ). As I am not 

particularly focused here on the normativity of human cognition, I will simply note 

this issue, rather than attempt to solve it. 

 17.    F  might also be the child or parent of some other feature(s) in  G . I leave aside 

that complication. 

 6   Decision Making via Graphical Models 

 1.   As a simple example, suppose the graph is  C   →   T , and both are binary variables. 

In that case, the cue validity of  C  is  P ( T  |  C )(1  –   P ( T  |  ¬  C )), and those two probabili-

ties are parameters in the full graphical model. 

 2.   As noted in previous discussions of interventions, I focus in the main text on 

 “ hard ”  interventions, rather than the broader class of  “ soft ”  ones ( Eberhardt  &  

Scheines, 2007 ). Human ability to make decisions about such soft interventions is 

almost completely unexplored. 

 3.    “ Acceptable ”  can be defined in many ways, whether simply exceeding some 

fixed threshold or a more sophisticated stopping rule, such as selecting the first 

 “ anomalously high ”  expected value. Importantly, this algorithm does  not  instantiate 
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the so-called secretary problem, since the sequence of action values is not one of 

samples from a random variable; the sequence is (deliberately) biased to have higher 

values earlier in the sequence. As a result, stopping rules for the secretary problem 

(e.g.,  Bruss, 1984 ) would need to be modified to fit this case. 

 4.   This statement can be made precise and proven correct under natural assump-

tions, but the theorem is significantly more complicated than this sentence and 

requires substantial technical machinery that would distract from the main point. 

 7   Unifying Cognition 

 1.    Machery (2010 , p. 237) provides a clear statement of worry about this possible 

confusion. 

 2.   The notion of  “ silo ”  here is not the same as a  “ module ”  in the style of  Fodor 

(1983)  and others. This chapter focuses solely on the extent to which there are 

shared representations, so no commitments are made (in any direction) with respect 

to properties such as automaticity, informational encapsulation, and so forth. I 

revisit issues of modularity in section 9.1. 

 3.   As this restriction suggests, even the  “ one/no silo ”  view considered here restricts 

the scope of processes in certain ways. For example, I am principally concerned with 

 “ higher-level ”  cognition rather than, say, low-level auditory processing. 

 4.   Some of those experiments are being conducted right now. 

 5.   Waldmann and Hagmayer suggest that there could be a dynamic process in 

which the concept is revised if its use leads to suboptimal (in some sense) causal 

structures. Their data do not really speak to this possibility, though, so we cannot 

draw any conclusions about it from their paper. 

 6.   Unsupervised concept learning involves the construction of concepts from unla-

beled instances, usually based on the statistics of the observed features. Most psy-

chological experiments on concept learning use supervised concept learning in 

which participants are provided with labeled instances (e.g.,  “ this one is a dax! ” ). 

 7.   Experimentally, it is not quite this simple, since we also have to match the diffi-

culty of the two different learning tasks, which can be nontrivial ( Zhu  &  Danks, 

2007 ). 

 8.   As with all cognitive science experiments, alternative interpretations are possible. 

For example, perhaps people engage in explicit recall of instances of  M  1  and  M  2  

during learning and thereby construct the explicit contrasts in a dynamic fashion. 

The goal of this (and other) experiments is not to produce incontrovertible evidence 

that the shared representational store view  must  be correct, since that goal is pre-

sumably impossible. Rather, the intention is simply to constrain the possibility 

space in such a way that the single-store view is the most plausible or natural one. 
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 9.   Presumably, people do learn distinctively causal structures when they are explic-

itly told that the relations that underlie the category are causal. 

 10.   Statistical data alone do not suffice to distinguish between the true causal struc-

ture  A   →   X   →   B  and the two structures  A   ←   X   →   B  and  A   ←   X   ←   B . However, the 

true causal structure is learnable with minimal additional assumptions, such as (i) 

the temporal information that  A  occurs before  X , or (ii) the constraint that the exog-

enous variable is the only one that ever occurs spontaneously. 

 11.   One might object that the minimalist should predict only that medical profes-

sionals will be indifferent between the causal structures. Given that one structure 

was known to be true, people have a good reason to use that one, and so (the objec-

tion concludes) the minimalist should actually predict that people will believe the 

(known-to-be) true causal structure. This objection overstates the minimalist ’ s com-

mitments, however, since there could be multiple reasons to resolve the indifference 

in one direction or the other. In particular,  Feltovich et al. (1989)  argue that the 

 “ backward ”  conception coheres much better with other everyday causal beliefs and 

thus can justifiably be preferred. 

 8   Alternative Approaches 

 1.   As a result, one could argue (as does  Anderson, 2007 ) that schema-centered unifi-

cations are not really cognitive architectures, since they do not specify a shared 

cognitive machinery. Leaving aside that terminological issue, these accounts are 

clearly motivated by a desire to figure out what  “ binds ”  (in some sense) cognition 

together. 

 2.   Neural plausibility can be justified in multiple ways, such as using neuronlike 

elements in the model or exhibiting appropriate behavioral changes when the 

model experiences a simulated  “ lesion. ”  See section 8.2.1. 

 3.   Proponents of Soar sometimes use the slogan  “ Behavior = Architecture + Con-

tent, ”  where  “ Architecture ”  refers to Soar itself ( Lehman, Laird,  &  Rosenbloom, 

2006 ). Their hope is that if we get the process architecture right, then we can gener-

ate behavior just by plugging in the content that happens to obtain in a particular 

case. In the language of this slogan, my view can partly be understood as saying 

 “ Content matters. ”  

 4.   In particular, I make almost no effort to engage with the broader questions — par-

ticularly in philosophy of science, mind, and psychology — raised by connectionism. 

Many excellent books explore these issues, including some that collect a variety of 

viewpoints ( Horgan  &  Tienson, 1996 ,  1991 ;  Ramsey, Stich,  &  Rumelhart, 1991 ). 

 5.   This is a little too quick, since the graph alone determines only a factorization of 

the joint probability distribution, not the actual data likelihoods. In practice, one 
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typically provides a parametric family for the model and a probability distribution 

over those parameters and then integrates them out to determine the likelihood. 

 6.   I will use these two terms relatively interchangeably, though  generative  is arguably 

the more general (and more useful) one. 

 7.   More specifically, those realist commitments would be rejected by proponents of 

Bayesian models who stay at the computational level. As noted earlier, some research 

programs are beginning to focus on understanding the representations and pro-

cesses that actually underlie the (approximately) Bayesian behavior. 

 8.   There is an interesting similarity between this constraint and my theoretical argu-

ments in chapter 7 in favor of a single-process view. 

 9.   One issue that I will  not  discuss is whether they can account for the same empiri-

cal data. Sigma can presumably account for almost all the same data as Soar ( Laird, 

2012 ), though an exact mapping that subsumes Soar under Sigma does not yet seem 

to have been provided. Sigma has also been applied to several more realistic tasks 

( Chen et al., 2011 ;  Rosenbloom et al., 2013 ) and has shown great promise. It has 

not, however, been systematically connected with the cognitive psychology data 

that have been the empirical focus of this book. Thus whether one outperforms the 

other is simply unclear. 

 10.   One needs to be careful here about what is considered a  “ distinct process. ”  Fea-

ture inference and categorization (see chap. 5), for example, are not necessarily dis-

tinct processes, since both can be understood as conditional probability estimation. 

In contrast, inference given observation and inference given intervention are truly 

distinct processes, since the latter has a step that the former does not have. 

 9   Broader Implications 

 1.   The answers are partial because almost all the learning accounts show only how 

to extract relevance relations for a predefined set of variables, events, or other enti-

ties corresponding to the graphical model nodes. The accounts do not say why the 

learner focused on that particular set of entities in the first place, so they do not 

provide a full account of how relevance relations can be learned. A fully developed 

account of relevance learning would likely have to incorporate other cognitive pro-

cesses, such as generalized attentional mechanisms. 

 2.   We can also build webs for concepts that are not mutually exclusive, but it gets a 

bit more complicated. 

 3.   See  Glymour (2007)  or  Woodward (2006)  for more about just what it means to be 

the  “ right ”  causal variable in some situation. 

 4.   A different diagnosis of these problems is that we do not understand what is 

required to properly specify an intervention (Eberhardt, 2014). That might explain 



Notes 249

the issues in these examples, but inference problems arise for multiple edge types 

even when we are not trying to perform an intervention. 

 5.   Neuropsychology primarily involves investigating the behavior of individuals 

who have had brain lesions to try to determine both which cognitive processes are 

separable from one another and where certain types of processing are likely to occur. 

 6.   One natural idea is to have populations of neurons code for variable values, and 

then inference consists in something like spreading activation. There are massive 

interconnections throughout the brain; it is not just a feed-forward machine, and 

that interconnectivity could be the means by which many types of inference are 

carried out. Of course, much more work needs to be done to make this idea fully 

formed, including an explanation of why inference is sometimes blocked, such as 

after an intervention. 
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