
 6   Decision Making via Graphical Models 

 6.1   Roles for Causal Knowledge in Decision Making 

 The previous two chapters focused on using graphical models to represent 
our causal and conceptual knowledge. Those cognitive representations 
are, however, essentially impotent on their own; they are only useful if 
they are connected in some way with decision-making processes that can 
(intelligently) use them. The first section of this chapter aims to show that 
causal knowledge — represented as a DAG-based graphical model — plays a 
key role in much of our decision making. In particular, causal knowledge 
can guide us to attend to the proper factors and enable us to better predict 
the outcomes of our own actions. One type of decision making can thus 
be understood as operations on graphical models. Graphical models are 
not restricted, however, to serving as input to standard decision-making 
algorithms. In section 6.2, I describe two novel decision-making algorithms 
that are inspired and shaped partly by the advantageous features of their 
graphical model input. These novel algorithms still show only that graphi-
cal models can be an input to our decision making. I thus turn in section 
6.3 to model the decision-making process itself as operations on decision 
networks (also called influence diagrams), a generalization of the DAG-
based graphical models used in previous chapters. But first we look at the 
 “ easy ”  case: causal knowledge (structured as a DAG-based graphical model) 
provides a basis for intelligent decision making. 

 One important challenge in judgment and decision making is determin-
ing which factors should be the focus of one ’ s attention; that is, my deci-
sion making requires that I pay attention to possibly relevant factors, rather 
than the definitely irrelevant ones. Many accounts of human decision mak-
ing assume that this information search problem has already been solved, 
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as they assume that relevant features of the decision situation are provided 
as input. We can instead determine the relevant factors dynamically using 
causal knowledge, particularly if it is structured as a graphical model. In 
particular, suppose that my decision depends on some factor  T  that I do not 
know and thus need to predict. In that case, I should presumably focus on 
 T  ’ s direct causes and direct effects. This intuition has been explored exten-
sively in the context of the  “ Take the Best ”  (TTB) heuristic for binary forced 
choices ( Gigerenzer, 2000 ;  Gigerenzer  &  Goldstein, 1996 ), and so we need a 
brief digression to explain TTB. It is important to recognize, however, that 
what matters is how causal knowledge can, in general, support information 
search in decision situations; the focus on TTB is a purely contingent mat-
ter. In particular, I will not discuss whether TTB is empirically correct, since 
we are principally interested in a functional role of causal knowledge (in 
information search) for decision contexts. 

 Consider making a choice between two options relative to some crite-
rion, such as which washing machine is better or which city is larger. The 
basic idea of TTB is that people sequentially consider different cues — prop-
erties or features of the options — until they find a cue for which the options 
have different values (e.g., positive versus negative versus unknown), and 
then people choose the one with the  “ better ”  cue value. To take a simple 
example, suppose one is trying to decide which of two American cities is 
larger. One feature of American cities (that is related to size) is whether they 
have a professional (American) football team; TTB says (again, roughly) that 
if one city has a professional football team (positive cue value) but the other 
does not (negative cue value), then one should choose the city with a team 
as larger. Alternately, I might be trying to purchase a washing machine and 
decide between two options based solely on which is cheaper, or which has 
the longer warranty. Many papers provide empirical evidence that people 
behave roughly as predicted by TTB, though the precise empirical scope of 
TTB is a complicated matter ( Broder, 2000 ;  Gigerenzer, 2000 ;  Gigerenzer  &  
Goldstein, 1996 ;  Goldstein  &  Gigerenzer, 1999 ;  Newell  &  Shanks, 2003 ). 

 At the same time, it is somewhat puzzling that people would use TTB, as 
this strategy appears to be highly suboptimal. In TTB, decisions ultimately 
rest on only a single cue; it is, to use the jargon, noncompensatory: no 
amount of information in other cues can compensate for the single, criti-
cal difference. Thus, for example, one might judge Pittsburgh to be larger 
than Los Angeles, since Pittsburgh has a professional American football 
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team and Los Angeles does not, despite the numerous other cue differences 
telling us that Los Angeles is much larger. Perhaps surprisingly, however, 
the suboptimality of TTB is only apparent, not actual. In practice, TTB fre-
quently produces close-to-optimal performance on various tasks ( Chater, 
Oaksford, Nakisa,  &  Redington, 2003 ;  Gigerenzer, Czerlinski,  &  Martignon, 
1999 ;  Hogarth  &  Karelaia, 2006 ;  Martignon  &  Hoffrage, 1999 ), principally 
because cues are  not  considered in a random order. Rather, TTB assumes that 
people consider the different cues in order of their cue  validity : the prob-
ability that a cue provides an accurate decision, given that it discriminates 
between the options at all. TTB works well precisely (and only) because 
the order in which people consider cues tracks their likelihood of giving 
the right answer ( Newell  &  Shanks, 2003 ). This assumption that cues are 
considered in order of their validity is relatively innocuous in experimental 
settings, as participants are often told the cue validities (or are assumed to 
know them from life experience). In the real world, however, it is unclear 
how people identify possibly relevant cues, how they learn the appropriate 
validities, or whether they consider the cues in the proper order even if they 
have somehow learned the validities. 

 Causal knowledge potentially provides a solution to this problem of 
knowing what factors matter for a decision ( Garcia-Retamero  &  Hoffrage, 
2006 ;  Garcia-Retamero, Wallin,  &  Dieckmann, 2007 ). In particular, causes 
and effects of the decision-relevant attribute  T  are more likely to be valid 
cues for  T  ( Garcia-Retamero  &  Hoffrage, 2006 ). For example, having a pro-
fessional American football team is an effect of a city ’ s size, as a large popu-
lation base is one cause of whether sufficient financial and political support 
exists for a team. Conversely, being a state capital is plausibly a cause of a 
city ’ s size, as the presence of the state government causes there to be more 
jobs (all else being equal) and so more people. One might thus expect that 
both being a state capital and having a professional American football team 
would have significant, nonzero cue validities for city population, as they 
in fact do. On the other hand, the length of a city ’ s name is not plausibly a 
cause or effect of the city ’ s size, so we should expect that its validity would 
be essentially zero. 

 We thus seem to have a potential solution to the problem of the source 
of cue validity orderings and values: we use our causal knowledge to iden-
tify direct causes and effects and then compute cue validities for them ( Gar-
cia-Retamero  &  Hoffrage, 2006 ). We previously saw (in chap. 4) that our 
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causal knowledge seems to be structured as DAG-based graphical models. 
The identification problem is easily solved using such a graphical model, 
as the direct causes and effects are simply the factors that are (graphically) 
adjacent to  T . And cue validities can easily be computed from the paramet-
ric information contained in the graphical model,  1   so we can order the cues 
correctly. Moreover, experiments have found that people perform substan-
tially better on these types of binary forced-choice problems when they 
can use their causal knowledge, compared to having to estimate cue validi-
ties from observations ( Garcia-Retamero et al., 2007 ); observed cue validity 
information is sometimes employed but requires some pretraining ( Garcia-
Retamero, Muller, Cantena,  &  Maldonado, 2009 ). It thus seems that TTB in 
real-world situations is plausibly an operation on a DAG-based graphical 
model. More generally, causal knowledge can provide the necessary struc-
ture for successful information search in decision situations. 

 We now turn to examining a role for causal knowledge in the actual 
decision-making process, not just as an attentional focusing mechanism. 
An almost-ubiquitous schema for cognitive models of decision making is 
that people (i) have a set of possible actions; (ii) consider for each action the 
various probabilistic outcomes of that action; and (iii) choose the action 
that has the best (probabilistic) value. There are, of course, many ways of 
instantiating this schema and many processing variants. However, this basic 
schema — evaluate the possible outcomes of different actions and choose 
the  “ best ”  — underlies almost all psychological models of choice (and most 
normative ones). One issue for any model of decision making is explaining 
step (ii): how does the decision maker determine the probabilistic outcomes 
of an action? One cannot simply compute (naive) probabilities conditional 
on the state resulting from the action, since those do not distinguish 
between causes and effects. For example, the probability of being over fifty 
conditional on having gray hair is  not  the same as the probability that I will 
be over fifty if I dye my hair gray. Actions on  T  presumably (though see sec. 
6.3) only lead to probabilistic changes in  T  ’ s effects, not  T  ’ s causes, and so, 
to ensure correct predictions in step (ii), we need to know which associated 
factors are causes and which are effects ( Joyce, 1999 ;  Lewis, 1981 ). 

 The graphical-models-based approach can easily make sense of this criti-
cal distinction if I understand my decisions or actions as interventions that 
override (or  “ break ” ) the normal causal structure. As we have seen several 
times earlier in the book, interventions on  T  break the edges into  T , but not 
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the ones out of  T  ( Pearl, 2000 ;  Spirtes, Glymour,  &  Scheines, 2000 ), and this 
behavior exactly satisfies the requirement from the previous paragraph.  2   
This complication did not arise when discussing TTB, since the decisions in 
that process are based on causal structure but do not change it. Both causes 
and effects can provide valuable cues for TTB, since both carry information. 
In contrast, actually acting in the world requires that we distinguish (cor-
rectly) between causes and effects in both learning and reasoning. 

 Thus, to the extent that people actually understand their choices as 
interventions, causal knowledge (represented as a DAG-based graphi-
cal model) can satisfy a critical role in decision making by providing the 
resources to solve step (ii). Substantial empirical evidence now shows that 
people do think about their own actions in this way. For example, if people 
believe that  C  causes  E , then they conclude that an action on  E  will make 
no difference to  C , while actions on  C  will be a good means to bring about 
 E  ( Hagmayer  &  Sloman, 2009 ;  Sloman  &  Hagmayer, 2006 ;  Waldmann  &  
Hagmayer, 2005 ). In addition, quantitative aspects of the causal knowledge 
matter: stronger causes are more likely to be chosen when people are try-
ing to bring about some effect ( Nichols  &  Danks, 2007 ). Of course, one 
might wonder whether the causal  knowledge  is really being used for deci-
sion making, rather than people relying on habits or implicit learning. It 
is surely the case that some  “ decisions ”  actually arise from habit and so 
might not be based on causal knowledge. Just as surely, not all decisions are 
habitual; many decisions are based on conscious deliberation, whether that 
reasoning occurs spontaneously (e.g., in novel situations) or in response 
to a prompt. Moreover, when people deliberate on their decision, then 
they make different, and better, choices than when simply responding 
immediately or automatically ( Mangold  &  Hagmayer, 2011 ). This result 
suggests that many decisions are actually based on reasoning about the 
system. Finally, changes in one ’ s beliefs about the causal structure lead to 
corresponding changes in decisions that cannot be explained simply on 
the basis of observed associations ( Hagmayer  &  Meder, 2013 ). We thus have 
multiple threads of evidence that people ’ s decision making frequently uses 
their distinctively causal knowledge to predict outcomes of interventions or 
actions. More importantly for me, this causal knowledge is best understood 
in terms of DAG-based graphical models; that is, decision making arguably 
depends (often) on exactly the shared representational store that underlies 
cognition about causation and concepts. 
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 6.2   Novel Decision-Making Algorithms 

 The previous section focused on ways in which traditional, empirically 
supported decision-making algorithms can be understood as operations 
on cognitive representations of causal knowledge (structured as DAG-
based graphical models). The graphical models framework can also suggest 
some novel ways to approach decision making, and I explore the compu-
tational aspects of two proposals here. Unfortunately, no empirical tests 
have occurred for either proposal, so we cannot determine whether either 
is descriptively correct. I thus focus more on the ways that novel decision-
making theories can arise if cognitive representations are (approximately) 
graphical models. 

 The first novel approach starts with the observation that standard deci-
sion-making algorithms assume that people calculate, perhaps implicitly, 
the (probabilistic) outcomes of their actions to make a choice. In situa-
tions with complex causal structures, however, these computations can 
be quite complex, so we might hope to avoid them by using a suitable 
heuristic.  Meder, Gerstenberg, Hagmayer, and Waldmann (2010)  propose 
an Intervention-Finder heuristic: in trying to bring about some  E , people 
consider each of the possible causes of  E  (identified by statistical or other 
cues) and simply choose the option  C  that maximizes the observed (not 
causal) conditional probability of  E  given  C ,  P ( E  |  C ). That is, their heuris-
tic uses causal knowledge to narrow the scope of deliberation to just the 
potential causes (rather than effects) but does not use that knowledge for 
the probability calculations. In particular, the Intervention-Finder heuristic 
does not attempt to account for common causes or other reasons why  P ( E  
|  C ) might be large; it simply uses the observed conditional probability as a 
 “ good estimate ”  of what (probabilistically) would happen if one acted on  C . 
Unsurprisingly, this heuristic works best when the different possible causes 
are not highly associated with one another; surprisingly, it performed close 
to optimally in a large-scale simulation study ( Meder et al., 2010 ). Although 
the Intervention-Finder heuristic ignores causally important information, 
it turned out (in that simulation study) that the information being ignored 
did not usually make a difference as to which action was selected: the 
additional causal knowledge typically changed the value estimates of the 
actions, but not the overall rank order of them. This heuristic thus shows 
one way in which causal knowledge (structured as a DAG-based graphical 
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model) can suggest a novel decision-making algorithm that is normatively 
incorrect (since it does not actually try to determine the outcome probabili-
ties) but nonetheless successful. Unfortunately no empirical studies have 
yet explored whether the Intervention-Finder heuristic is actually used by 
people, though the theoretical possibility is intriguing. 

 A somewhat more radical novel decision-making model emerges when 
we reflect on the assumption (of the standard decision-making schema) 
that the decision maker is presented with a set of actions to consider. More 
than fifty years ago, Duncan  Luce (1959 , pp. 3 – 4) wrote: 

 There seems to have been an implicit assumption [in decision models] that no dif-
ficulty is encountered in deciding among what it is that an organism makes its 
choices. Actually, in practice, it is extremely difficult to know.  …  All of our choice 
theories — including this one — begin with the assumption that we have a mathe-
matically well-defined set, the elements of which can be identified with the choice 
alternatives. How these sets come to be defined for organisms, how they may or may 
not change with experience, how to detect such changes, etc., are questions that 
have received but little illumination so far. 

 The situation arguably has not improved substantially since the publication 
of Luce ’ s book. In response, one could flip the definition of a decision prob-
lem from being  “ action based ”  to  “ goal based ” : that is, a decision problem 
can potentially be characterized by a desired outcome state, rather than a 
set of possible actions. Goal-defined decision problems are surely not the 
only type that we face, but they seem to constitute a large set of everyday 
choices. 

 Given that we have only a desired outcome state and not a set of actions, 
we can use our causal knowledge — structured as a DAG-based graphical 
model — to dynamically construct possible choices. At a high level, the deci-
sion maker starts with the target variable  T  and considers actions on its 
direct causes (according to her causal knowledge), given observations of the 
factors adjacent to  T . That is, the decision maker first considers only those 
factors that her causal knowledge deems to be immediately relevant to  T . 
If one of those actions is acceptable,  3   then the decision maker performs 
that action. If no actions are acceptable, then the decision maker moves 
her scope  “ out ”  one step on the basis of her causal knowledge: rather than 
considering actions that affect the direct causes (i.e., parents) of  T , she con-
siders actions that change the causes of the causes (i.e., grandparents) of  T . 
And if none of  those  is acceptable, then she iterates back yet another step. 
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The process continues until the decision maker either finds an acceptable 
action or decides to stop for other reasons, whether boredom, frustration, 
or other demands on her cognitive resources. This method thus naturally 
constructs an appropriate set of possible actions, and so we seem to have 
the beginnings of a response to Luce ’ s challenge. 

 Moreover, this algorithm can be extended in intriguing ways. Dynamic 
information gathering can be incorporated immediately, since, for any 
action  A , the most relevant other factors that need to be considered are 
alternative causes of  A  ’ s descendants. That is, if I am considering an action 
on node  A , I can easily use my causal graph to determine the other variables 
that might interact with my action to produce good or bad effects. A small 
adjustment to the algorithm thus yields a dynamic attentional focusing 
mechanism. Alternately, a challenge for decision making is recognizing and 
accounting for side effects of our choices. Such side effects can readily be 
determined for each action because the algorithm does not use a fixed vari-
able set, though this additional computation does have some cost. Finally, 
planning behavior can be modeled by evaluating multiple actions rather 
than simply single ones, though that extension is still only hypothetical. 

 At any particular moment in the decision process, this method looks 
quite similar to the standard decision-making schema: the decision maker 
is considering the (probabilistic) impacts of a potential action to decide 
whether it is worth doing. Overall, however, there are several crucial dif-
ferences. Perhaps most importantly, this decision method is fundamentally 
dynamic in scope, and so one ’ s information-gathering and  “ action possibil-
ity ”  space are constantly changing. The decision maker never evaluates all 
possible actions but instead evaluates, and either accepts or rejects, each 
choice individually. The set of possible actions changes throughout the 
course of deliberation, as do the variables that are relevant for value judg-
ments. Decision making thus shifts from the standard model of a process 
in which the decision maker is selecting from a menu of options to one in 
which the decision maker can dynamically explore and construct the very 
possibility set being evaluated. As a result,  “ choose the optimal action ”  can-
not possibly be a decision criterion, since the decision maker will not nec-
essarily ever know what constitutes  “ optimal. ”  In many cases, the decision 
maker will be in a state of uncertainty about whether a better option poten-
tially lurks over the horizon if she would consider just one more action. 
Roughly speaking, the agent can safely stop looking for better options only 
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if there is a  “ dominant ”  cause that is more efficacious than combinations 
of other changes and cannot reliably be brought about through indirect 
means.  4   There must inevitably be a satisficing aspect to many of the deci-
sions made by this process: the eventual decision is selected because it is 
judged to be  “ good enough, ”  not because it is known to be optimal (though 
it might be). 

 Despite these limitations, simulation tests that I conducted with Ste-
phen Fancsali revealed that (a fully precise version of) this algorithm per-
forms close to optimally using significantly fewer computations. For these 
simulations, we used a version of this algorithm that regards an action as 
 “ acceptable ”  if its value — operationalized as expected value — exceeds some 
threshold  τ ; obviously, much more sophisticated versions are possible. We 
used two additional simplifications in these simulations: (i) when actions 
have costs, they depend only on the variable, not the value to which it 
is set; and (ii) the target  T  being in the desired state is worth one unit of 
value, and all other results are worth zero. These assumptions mean that 
the value of an action is always less than or equal to one and can be nega-
tive (if the action is costly but unlikely to produce the desired state). We 
tested the algorithm on a large number of different causal structures under 
a wide range of parameter settings. I group together causal structures with 
the same number of variables (denoted by V), as this is a major driver of 
computational challenges. We otherwise simply average over performance 
for each graph size; the graphs in figures 6.1 through 6.3 provide mean 
performance for roughly 100,000 (V = 4), 300,000 (V = 6, 8, 10), or 10,000 
(V = 15) graphs. Note that these results are for random graphs and param-
eterizations. There are obviously specific graphs on which this algorithm 
does quite poorly; I give an example later in this section when discussing 
empirical tests of this algorithm. One open question is what causal belief 
structures are  “ typical, ”  and whether this algorithm performs particularly 
well on those graphs. 

 A first question is whether this algorithm typically finds the optimal 
action.   Figure 6.1  plots the fraction of times that the algorithm selected the 
optimal action (vertical axis) against  τ , the value threshold for  “ acceptabil-
ity ”  (horizontal axis). Unsurprisingly, the probability of choosing the opti-
mal action increases as  τ  does; if one is choosier about the action, then one 
is more likely to wait until the truly optimal action is found. More interest-
ingly, the mean match rate only exceeds 95 percent for  τ  = 0.8. For small 
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 Figure 6.1 
 Match rate as a function of value threshold. 

value thresholds — that is, if the algorithm is not particularly  “ choosy ”  — the 
algorithm rarely selects the optimal action.    

 An immediate follow-up question to this first analysis is: How good 
are the actions that  are  selected? Although the algorithm rarely selects the 
optimal action, is it choosing ones that are nonetheless reasonably good? 
  Figure 6.2  shows the expected loss as a function of  τ ; recall that the values 
of all choices are between zero and one (since their values must be less than 
or equal to one, and the algorithm can always choose to do nothing and 
receive at least zero units of value). Unsurprisingly, the mean loss decreases 
as  τ  increases: if one is more stringent about what one will accept, then one 
should ultimately make a better choice. More surprisingly, the algorithm 
performs quite well with only small losses in (absolute) expected value for 
small values of  τ . Even in the extreme case of  τ  = 0 (i.e., accept the first 
considered action with a positive expected value), the algorithm performed 
reasonably well. At the upper end, the mean expected value loss for  τ  = 0.6 
was less than 0.01. This latter result is particularly notable given that the 
algorithm only chooses the optimal action 80 percent of the time when  τ  
= 0.6.    
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 Part of the cognitive plausibility of this algorithm is that it appears to 
be computationally much simpler. To confirm this idea, we compared the 
number of actions checked by the algorithm (including the  “ null ”  action 
of doing nothing) and the number of actions that were checked in find-
ing the optimal choice.   Figure 6.3  shows the former divided by the latter 
as a function of  τ , so smaller numbers indicate that the present algorithm 
considered fewer possible actions. Note that this measure ignores memory 
and other costs involved in information search when trying to find the 
optimal choice. A value of 1.0 indicates that optimal search and this algo-
rithm evaluated the same number of actions; in these simulations, that 
point generally occurred around  τ  = 0.6. One might be surprised to see 
numbers greater than 1.0. These are possible because the present algorithm 
collects information only gradually and thus rechecks the null action ( “ do 
nothing ” ) after each new observation, while the optimal search algorithm 
checks it only once.    

 The key to these simulations is to consider   figures 6.1 through 6.3  
together, as they show the following two points: for small values of  τ , this 
algorithm is computationally much simpler (10 – 30 percent of the compu-
tational cost) and achieves close-to-optimal performance; for large values 
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 Expected loss as a function of value threshold. 
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of  τ , the algorithm is only slightly more complicated and successfully finds 
the optimal choice. Perhaps most importantly, as V gets larger, the compu-
tational advantage increases, and the expected value loss decreases. Given 
that people ’ s causal knowledge presumably ranges over thousands of vari-
ables (or more), it is important that the performance trends of this algo-
rithm are headed in the correct direction. Moreover, these changes as V 
increases are unsurprising, as this algorithm is explicitly designed to first 
check the options that are most likely to be best, while the optimal algo-
rithm must check every conceivable option. By exploiting the relevance 
relations encoded in the causal knowledge graphical model, this algorithm 
exhibits a performance profile that fits the decision maker ’ s needs and can 
usefully and sensibly be tuned as appropriate. 

 Of course, these simulations do not tell us that people ’ s decision mak-
ing actually uses something like this algorithm. I thus close this section by 
considering three ways to empirically test the algorithm. The real keys here, 
though, are not the particular experiments but (a) the way that the graphi-
cal models framework inspires a novel decision-making algorithm, and (b) 
that these experiments would arguably not be conducted without thinking 
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about decision making through a graphical model lens. The first experi-
ment looks at people ’ s information acquisition patterns when confronted 
with a novel choice problem. Specifically, this proposed algorithm predicts 
that people will seek out information about direct causes before indirect 
causes. This prediction can be tested straightforwardly by teaching people a 
novel causal structure and then introducing a cost to information retrieval 
(e.g., forcing people to move a mouse over an on-screen box to learn a vari-
able value). We can then investigate the patterns of information search that 
people exhibit.    

 A second experiment focuses on the dynamic  “ satisficing ”  aspect of the 
algorithm. More specifically, suppose that people learn, either from experi-
ence or from description, the causal structure in   figure 6.4 . This graphical 
model can have natural causal strength parameters that imply that  A  is a 
more efficacious action than either  X  or  Y  alone. For example, suppose  X  
and  Y  are both relatively weak causes of  T , but  A  is a strong cause of both 
of them. In this case, acting on  A  makes  T  more likely than an action on 
 X  or  Y  alone, precisely because there are two causal pathways from  A  to  T . 
The present algorithm predicts, however, that people should sometimes act 
suboptimally in cases such as these. That is, there should be conditions in 
which people will choose to do either  X  or  Y  rather than  A , such as when 
there is time pressure or when the stakes are very low (and so people might 
be willing to perform actions even when they are not obviously close to 
optimal).    

 A third experiment is similar but instead uses the causal structure in 
  figure 6.5 , where we additionally assume that  X  is a deterministic effect 
of  A  —  X  occurs if and only if  A  does — and that  Y  is relatively ineffective. 
Because  X  is a deterministic effect of  A , actions on  A  and  X  result in exactly 
the same probability of  T . If actions on  A  and  X  have the same cost, then 
almost all models of decision making predict that people should choose 
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 Structure to test decision-making algorithm. 
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either randomly between  A  and  X  or on the basis of value-irrelevant factors 
(e.g., perceptual salience). If actions on  A  and  X  have identical impacts, 
then we seem to have no basis for picking one rather than the other. At 
the least, it is straightforward to develop experimental stimuli for which 
 “ always act on  X  ”  is not the predicted action. In contrast, the present algo-
rithm predicts that people will always choose to intervene on  X . Of course, 
for all these experiments, it is important that people learn the causal struc-
ture without reflecting deeply on it; if they have ample time to think about 
all the possibilities, then even the present algorithm predicts that people 
should make optimal choices. Nonetheless we have straightforward empiri-
cal tests for a novel decision-making algorithm prompted by modeling our 
causal knowledge as a DAG-based graphical model. 

 6.3   Graphical-Model-Based Decision Making 

 The previous two sections showed ways in which decision making can 
use graphical-model-based cognitive representations, both in the context 
of traditional models of decision making and to suggest novel algorithms 
(that remain to be empirically tested). Those demonstrations do fall short, 
however, of what was shown in chapters 4 and 5, where graphical models 
played an integral role in understanding the very cognitive processes; those 
representations were not simply (optional) inputs to the process. This sec-
tion aims to show that graphical models can similarly play a central role in 
decision making. The DAG-based graphical models in the previous sections 
treated every node identically: they all represented variables that could take 
different values. The factors that are relevant to a decision-making situa-
tion are not, however, all of the same type. Rather, it seems natural to dis-
tinguish four different types of things that we would like to represent in 
our model: actions, values, factors in the world, and the decision-making 
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method itself. The variables that we have seen all along in our graphical 
models correspond to the factors in the world; to incorporate the other 
three, we need to expand the representational language of our graphical 
models. 

 Decision networks, also called influence diagrams, are DAG-based 
graphical models containing four distinct node types corresponding to the 
four types listed earlier ( Howard  &  Matheson, 1981 ;  Shachter, 1986 ). I will 
follow standard notational conventions and represent the different node 
types using different shapes. Nodes corresponding to events or factors in 
the world (i.e., outside the decision agent herself) are drawn in ovals, and 
all edges into them correspond to causal connections. Nodes representing 
the actions taken by the decision maker are drawn in rectangles; edges into 
such nodes capture informational or cognitive connections. Value nodes 
are denoted by diamond shapes, and edges into them indicate the factors 
that determine the value that the decision maker receives at a moment in 
time. Finally, the decision-making process itself is drawn in a triangle and 
is typically required not to have edges into it. This is all quite complex in 
the abstract, so it is perhaps easiest to understand by working through an 
example. Consider the simple problem of deciding whether to turn on the 
lights in a room with windows, where we assume that the decision maker 
wants to be able to see but does not want to waste electricity. A plausible 
decision network for this situation is shown in   figure 6.6 .    

  Time of day  encodes whether it is daytime or nighttime, which is obvi-
ously outside the control of the decision maker.  Max utility  indicates that 
the decision maker is using a decision process in which she attempts to 
maximize her utility; for probabilistic decisions, one could instead use a 
strategy such as  “ choose the action that has the maximal probability of 
yielding a utility of at least  U . ”  The  Flip switch  node represents the action 

Flip switch

Time of day

UtilityMax
utility

 Figure 6.6 
 Example decision network. 
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that the decision maker actually takes, either  “ yes ”  or  “ no. ”  That action is 
determined by the decision-making process ( Max utility ) given information 
from  Time of day . Finally,  Utility  is a function of the time of day and the 
action, where her value presumably depends on (a) being able to see, but 
with (b) a cost for using electricity. 

 If we have a fully specified decision network, then we can use informa-
tion about the world to derive a probability distribution for the possible 
actions (perhaps concentrated entirely on one choice, if we use a decision 
rule such as  “ maximize expected utility ” ). More generally, a decision net-
work provides a representation of the decision situation that is faced by 
the decision maker, and so it encodes (in a graphical model) exactly the 
information required to make a decision in accordance with the specified 
decision rule (see also Solway  &  Botvinick, 2012). By providing additional 
information, a decision network goes beyond the types of graphical models 
that we have seen in previous chapters. For example, consider trying to 
represent the decision problem of  “ should I turn on the lights? ”  in an  “ ordi-
nary ”  DAG-based graphical model. The causal structure is clear:  Light switch  
 →   Ability to see   ←   Time of day . But that causal graph tells us nothing about 
what I value, my abilities or capacities for action, or how I make decisions. 
These additional node types are required to make sense of decisions using 
just a graphical model. 

 These observations might seem to be in tension with sections 6.1 and 
6.2, since I argued there that decision making could be understood using 
 “ ordinary ”  DAG-based graphical models. In those sections, however, the 
graphical model was actually  not  sufficient to explain the full decision-mak-
ing process; it only captured one informational component or cognitive 
representation, rather than all elements of the process. The other relevant 
pieces (e.g., value function, decision-making process, etc.) were contained 
in processes or algorithms that sat outside the DAG-based graphical model, 
though they obviously used that graphical model. In contrast, the decision 
network framework enables us to put all those pieces into a single graphical 
model, thereby providing a much stronger graphical-model-based unifica-
tion of the relevant decision-making representations. For example, the iter-
ative decision search algorithm discussed in section 6.2 operated on causal 
knowledge but also used values, costs, thresholds, and other elements 
that were not in the causal graphical model. Using decision networks, we 
can represent almost all the pieces of that algorithm in a single graphical 
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model: (a) add a single value node that is the child of only the target vari-
able; (b) for every variable on which I can act, include an action node that 
is its parent; and (c) add a single decision rule node that is the parent of 
every action node and has the iterative procedure as its value. The resulting 
decision network makes the same predictions as the algorithm from section 
6.2, though at the cost of including more graphical nodes. These additions 
are worthwhile, however, precisely because they force us to be clear about 
the relevant elements, and also reveal assumptions (e.g., only single actions 
are allowed) that could naturally be relaxed. Similar characterizations can 
be provided for all of sections 6.1 and 6.2, not just the iterative decision 
algorithm. 

 All these observations about decision networks leave unaddressed the 
key descriptive question: do people ’ s actual decisions suggest that they rep-
resent particular decision situations using decision networks? This ques-
tion turns out to be trickier to answer than we might have expected, as 
most standard decision-making experiments do not test predictions that 
are relevant to this question. Instead those experiments typically focus on 
how people determine the value of a choice with multiple attributes, or 
how those values are used in choice, or both. Put into the language of deci-
sion networks, those experiments aim to determine the settings of the deci-
sion process and value nodes, rather than understanding and exploring the 
broader causal/informational structure in which they reside. At the same 
time, experiments that estimate those values are easily captured using deci-
sion networks precisely because they do not specify the settings of those 
nodes a priori. Standard decision-making experiments thus help to estimate 
some  “ free parameters ”  in the decision network graphical model, rather 
than testing the overall viability of the framework. To see whether people ’ s 
choices can be understood as if they represent situations using decision net-
works, we need to find choice problems with more complex causal/infor-
mational structure. 

 Because the decision networks framework is still quite new in cogni-
tive science, relatively few experiments have directly investigated it. Some 
such experiments do exist that explore distinctive predictions of decision 
networks, however, and they suggest that decision networks provide good 
(graphical) models of our cognitive representations of some decision situ-
ations. One set of experiments explores the ways in which decision net-
works can support inferences about the preferences of  other  people, given 
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observations of their choices. That is, if people understand their own choice 
situations using decision networks, then they plausibly represent others ’  
choice situations in the same way. And just as decision networks can be 
used to generate my own choices, they can also provide the foundation 
for  “ backward ”  inference about others, from their choices to their prefer-
ences. For example,  Jern and Kemp (2011)  looked at inferences about the 
complex, structured preferences of others from pairwise choices over sets 
of objects. They found that participants ’  inferences about others ’  prefer-
ences (based on the choices that the others made) corresponded closely to 
the inferences that result from trying to estimate parameters in a decision 
network. That is, the conclusions we draw about what someone else likes or 
dislikes can naturally be understood as inferences about a decision network 
that models the other person ’ s choices. 

 A second, and more interesting, set of experiments examines how we 
use observations of someone ’ s choices to learn more about what they know 
and can do ( Jern, Lucas,  &  Kemp, 2011 ). For example, suppose someone is 
playing a game in which the computer displays five letters on a screen, and 
the player has to write down a sixth letter that is different from the others. 
Additionally, suppose that a cover over part of the screen can obscure one or 
more of the letters. If I observe only the six letters (five from the computer, 
one from the contestant), can I learn the shape of the cover? Intuitively, 
the answer is clearly yes: the contestant would never knowingly choose a 
letter that matches one of the computer ’ s letters (assuming she understands 
the game, responds sensibly, and so forth), and so if there is such a match, 
then that letter must be covered on the screen. Standard models of deci-
sion making cannot easily handle this type of situation, since they do not 
have a transparent representation of these types of informational links. In 
contrast, the player ’ s choice problem can readily be modeled as a decision 
network, where the structure of the cover implies missing informational 
links. In fact, we can represent all the different decision networks that cor-
respond to all the different covers that could be placed over the screen. 
Learning the structure is then just a matter of learning which decision net-
work is the actual one; that is, learning is determining which decision net-
work best predicts the player ’ s actual choices.  Jern et al. (2011)  performed 
experiments structurally similar to this one and found that people gave 
responses that closely tracked the decision network predictions. Although 
experiments about decision networks in cognition have only just begun, 
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these results — coupled with the ability of decision networks to capture 
many standard results — give reason to suspect that many of our decisions 
are made using cognitive representations much like decision networks. 

 A general concern, however, lingers about  any  approach (including deci-
sion networks) that attempts to model choices as occurring within the 
causal structure of the world. From the decision maker ’ s perspective, choice 
is almost always understood as exogenous and lying outside the relevant 
causal structure; if I think that my decisions are interventions (which has 
been repeatedly demonstrated), then I cannot think that they are caused by 
factors in the decision situation. Moreover, most models of decision mak-
ing mirror this stance: standard decision theory, for example, represents 
the decision maker ’ s choice as  “ free ”  and unconstrained by the other rep-
resented factors. From an outside observer ’ s perspective, however, one can 
frequently understand a choice as being caused by other factors in the envi-
ronment. For example, the outside temperature is clearly a (partial) cause 
of whether I decide to wear a sweater to work. In fact, whole research pro-
grams center on understanding the ways in which external factors (rather 
than rational deliberation) can cause our choices (e.g., the work described 
in  Ariely, 2008 ). Whether anything causes choice thus depends on one ’ s 
perspective ( Sloman  &  Hagmayer, 2006 ), and uncertainty about the proper 
perspective might underlie self-deception phenomena (Fernbach, Hag-
mayer,  &  Sloman, 2014; Sloman, Fernbach,  &  Hagmayer, 2010). Moreover, 
this ambiguity and uncertainty raise concerns about the coherence between 
deliberation/choice and self-prediction ( Levi, 1997 ,  2000 ,  2007 ;  Rabinow-
icz, 2002 ), and even of standard decision theory itself ( Kusser  &  Spohn, 
1992 ), though decision theorists have resources with which to respond 
( Joyce, 2002 ). More generally, the worry is that graphical models, and deci-
sion networks in particular, cannot possibly provide a model of our cogni-
tive representations about choice if we have no coherent understanding of 
choice in the first place. 

 The fundamental incompatibility between these two perspectives on 
the causal status of choice — outside versus inside the causal structure of 
the decision situation — arguably underlies the difficulties posed by New-
comb-type problems ( Glymour  &  Meek, 1994 ;  Hagmayer  &  Sloman, 2006 ). 
Newcomb ’ s problem ( Nozick, 1970 ) supposes that a decision maker is con-
fronted with a seemingly simple choice between receiving the contents of 
(i) one covered box or (ii) that same covered box plus a transparent box 
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that has $1,000 in it. The tricky part of the problem comes in the way that 
the contents of the covered box are determined: an incredibly accurate (in 
the past) predictor places $1,000,000 in that box if she predicts that the 
decision maker will make choice (i), but nothing at all if the prediction is 
choice (ii). If we think about choice as exogenous, then it seems clear that 
the decision maker should choose both boxes. The prediction has already 
been made at the time of choice, and so the money is either in the covered 
box or not. Since the choice is outside the causal structure of the world, 
the  actual  decision cannot change whether the money is there. One should 
thus take both boxes, thereby receiving $1,000 more than whatever is in 
the covered box. If we instead adopt the perspective of choice as part of the 
causal structure of the world, then we understand our choices as presum-
ably caused by our earlier selves. Those earlier selves can be known by the 
predictor, and so one ’ s actual decision is  not  independent of whether the 
money is there; rather, both are effects of a common cause — namely, one ’ s 
earlier self. Thus, given that the predictor has been accurate in the past, 
the decision maker should make choice (i) to maximize the chance that 
$1,000,000 is in the covered box. 

 Our responses to Newcomb ’ s problem depend on whether we understand 
choice as exogenous or endogenous — outside or inside the causal struc-
ture of the world, respectively. These perspectives are incompatible with 
each other, however: we cannot simultaneously understand our choices as 
 both  exogenous  and  endogenous but rather must choose a perspective at a 
moment in time. As a result, Newcomb ’ s problem has been thought to pose 
a challenge to all precise models of decision, whether based on graphical 
models or not. I suggest, however, that graphical models are particularly 
well situated to respond to Newcomb ’ s problem, precisely because the per-
spective that one takes in a moment is transparently represented in the 
corresponding graphical model. In a decision network, actions are always 
understood to be  “ regular ”  causal nodes that can be influenced or shaped 
by other factors (e.g., the temperature outside). If choice is understood as 
endogenous, then there is nothing more to be done; the representation 
already captures the idea that my actions are caused by the world around 
me. If, however, choice has an exogenous component, then we simply add 
a decision process node with an edge into the action node; the addition of 
such a node exactly encodes the idea that some part of choice lies outside 
the rest of the causal structure (since decision process nodes never have 
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edges into them). These two perspectives on choices are truly irreconcil-
able, so no single framework can represent both simultaneously. The best 
that we can ask is that the framework clearly represent each possibility, as 
well as the different inferences that can be drawn in each. The graphical 
models framework does exactly that (see also Fernbach et al., 2014). 

 Over the course of the past three chapters, we have seen how the graphi-
cal models framework can represent the knowledge structures that under-
lie three major areas of cognition: causal learning and reasoning, concept 
acquisition and application, and decision making of different types. The 
next chapter turns to the challenge of putting these pieces together into a 
single cognitive architecture. 
 

 

 

 

 
 


