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Abstract

How do we make causal judgments? Many studies have demonstrated that people are capable
causal reasoners, achieving success on tasks from reasoning to categorization to interventions.
However, less is known about the mental processes used to achieve such sophisticated judgments.
We propose a new process model—the mutarion sampler—that models causal judgments as based
on a sample of possible states of the causal system generated using the Metropolis—Hastings sam-
pling algorithm. Across a diverse array of tasks and conditions encompassing over 1,70 partici-
pants, we found that our model provided a consistently closer fit to participant judgments than
standard causal graphical models. In particular, we found that the biases introduced by mutation
sampling accounted for people’s consistent, predictable errors that the normative model by defini-
tion could not. Moreover, using a novel experimental methodology, we found that those biases
appeared in the samples that participants explicitly judged to be representative of a causal system.
We conclude by advocating sampling methods as plausible process-level accounts of the computa-
tions specified by the causal graphical model framework and highlight opportunities for future
research to identify not just whar reasoners compute when drawing causal inferences, but also
how they compute it.
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Human Probability Judgments

Jian-Qiao Zhu, Adam N. Sanborn, and Nick Chater

University of Warwick

Human probability judgments are systematically biased, in apparent tension with Bayesian models of
cognition. But perhaps the brain does not represent probabilities explicitly, but approximates probabilistic
calculations through a process of sampling, as used in computational probabilistic models in statistics.
MNaive probability estimates can be obtained by calculating the relative frequency of an event within a
sample. but these estimates tend to be extreme when the sample size is small. We propose instead that
people use a generic prior to improve the accuracy of their probability estimates based on samples, and
we call this model the Bayesian sampler. The Bayesian sampler trades off the coherence of probabilistic
Judgments for improved accuracy, and provides a single framework for explaining phenomena associated
with diverse biases and heuristics such as conservatism and the conjunction fallacy. The approach turms
out to provide a rational reinterpretation of “noise™ in an important recent model of probability judgment,
the probability theory plus noise model (Costello & Watts, 2014, 2016a, 2017; Costello & Watts, 2019;
Costello, Watts, & Fisher, 2018), making equivalent average predictions for simple events, conjunctions,
and disjunctions. The Bayesian sampler does, however, make distinct predictions for conditional
probabilities and distributions of probability estimates. We show in 2 new experiments that this model
better captures these mean judgments both qualitatively and quantitatively: which model best fits
individual distributions of responses depends on the assumed size of the cognitive sample.

Keywords: sampling, approximation, biases, Bayes, noise



3 variable causal networks

Common Cause Chain Common Effect
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3 variable causal networks

Common Cause Chain Common Effect
Hot weather Exercise

Rot weather Hot weather Electricity bill q p

Airconditioning

Eating ice-cream Swimming Sweating



Causal reasoning from known structure

'X1|Y==0 & X2==0",
'X1|Y==0 & X2==1",

'X1|Y==1",
Forward Forward 'X1|Y==1 & X2==0",
_ow P === ‘X1|Y==1 & X2==1",
- - »” Y. = { 2::0'1
A A 'zliz—zr,l
Y| XA==0",
Y| X1==0 & X2==0",
Y| XA==0 & X2==1",
'Y|xXd==1",
'Y|X1l==1 & X2==0",
H o 'Y X1==1 & X2==1",
Question: V0t
. 'X2|Y==1",
Knowing that M1 happened, xepa=ol,
X2 | Y== Xl== -
what is the probability of M3?  SIEtias
'X2|Y==0 & X1l==1
'X2 | Y==1 & Xl==1
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Causal reasoning by sampling

* We sample from memory or probabilistic generative models, base
inferences or judgments on frequencies in obtained samples

* This sampling is the process of thinking of concrete cases, we
generate a single chain of concrete cases and base our response on
that.




The Mutation Sampler:
MH Sampling of concrete cases

* Metropolis-Hastings MCMC sampling over
discrete states of causal graph

* MH: construct sequence of samples,
where sample n depends on sample n-1.

* Transition probability a(q’|g)=min(1, TT((ZI)))
Where q is current state, q’ is proposal state, ()
is joint probability of the state.

Only relative probability of two states is
required, not full joint distribution.




The Mutation Sampler:
Proposal distribution

* Which network/graph state should be proposed
as next state in chain: Mutation!

. Potentialfproposals are those network states
which differ in the value of only one variable.
Selected with equal probability.

m(q")
(q)

simplifies to
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Where vi is value mutated variable, ui are variables

in vi’'s Markov blanket




The Mutation Sampler:
Biased starting points and limited capacity
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 Biased starting points: sampling starts at / /
prototypical states. e %o
* Limited capacity: fixed capacity, but vary in

number of samples taken for a judgement.

N
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* Together, MS approximates joint probability of . /

N

causal graph states if n samples grows large o™







The Mutation Sampler:

Inference
1. Calculate relative frequency of queried variable in .) b

samples an /

Haldane's Prior
Beta(0,0)
. .y . to © 00

2. (if conditional query, calculate relative frequency 100 | ¢ y

within samples where antecedent is true) - 0.75

% 0.50
freq(x=1,y=1) -

Ex:p(x=1ly=1) = St —

p( |y ) freq(x=0,y=1)+freq(x=1,y=1) 0.00

0.0 0.2 0.4 0.6 0.8 1.0
Underlying Probabilities

3. Guess 50% if required states are not sampled (i.e. o T Sanborn, Chater (2020) used without
no samples where antecedent is true)



)—~D—~®)
They tested the model: works great

* Fitted it to many causal reasoning studies, it performed better than all
other models.

* Moreover, it explained 3 big non-normative patterns in causal
reasoning data:

* Markov violations
* Failures to explain away
* Conservative inferences

* So | thought: great! | want to play around with this model.



They tested the model: works great

* Fitted it to many causal reasoning studies, it performed better than all
other models.

* Moreover, it explained 3 big non-normative patterns in causal
reasoning data:

* Markov violations
* Failures to explain away

 Conservative inferences

* So | thought: great! Let’s play around with this model.
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Can we solve these issues of the mutation
sampler?

* The model should predict conservative inferences, but not by peaks
at 50%.

* The model should not predict extreme responses at 0 and 100%

* Those conservative inferences, maybe they are not a result of an
fascination with 50% or a rounding habit, maybe it is due to a
‘rational adjustment for small sample sizes’?



All this points toward using a (generic) prior

* Prior dominates with small sample sizes: no extreme responses
* Prior pushes judgments towards 50%: conservative inferences

* Adapt the Mutation Sampler into a Bayesian Mutation Sampler by

using symmetric beta priors: incorporate pseudocount B, response is
expected value

prior beta(0.1, 0.1) prior beta(0.5, 0.5) prior beta(1, 1) prior beta(2, 2)
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Frequency / Density

Standard MS ($=0) Bayesian MS (B=1)
o n ‘

Participant data
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Suppose that a climate system is known to be in this state:

* Experiment using
joystick to respond

* Fit using Probability Low
Density
Approximation 77?77
(PDA) method (Turner What's the probability that it has

& Sederberg, 2014) L




10.0

7.5

5.0

beta parameter

2.5

Fitted BMS parameters

10
chain length

15

20



prediction
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Conflict trials, e.g. p(x1]y=1,x2=0) DeaOpe®

Standard MS BMS
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Ambiguous trials 1, e.g. p(y[x1=0) W=~

Standard MS BMS
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Ambiguous trials 2, e.g. p(x1|x2=1) L~

Standard MS BMS
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Conflict trials Ambiguous trials 1 Ambiguous trials 2
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 BMS predicted distributions promising, except for peak at 50%

* Theoretical advantages
* |Information on the amount of samples taken is actually used by agent
* Better matches phenomenology of making probability estimates
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Current and future work

* Modelling:
e Starting a queried state
* Only sample states consistent with conditional
 Amortized inference
* Model guessing as distribution

* When does one stop sampling? When one is certain of your answer?
Study currently running.

* Inter or intra-subject variability? Larger study on variability in causal
inference with Zach Davis and Bob Rehder (NYU)












Ambiguous trials 2
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 Ambiguous trials 1

* Inference conditioning on
1 variable, i.e. the third
variable is unknown

* E.g. p(y[x2=1)
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e Conflict trials

* Inference conditioning
on two variable states
that are ‘inconsistent’

* E.g. p(y|x1=1,x2=0)

Conflict trials
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Conflict trials

e
o

o
o

Frequency / Density
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Participant data

Model predictions
darker = fewer samples
(4, 8, 16, 32, 64)

Black dashed line is
normative answer
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Suppose that a climate system is known to be in this state:

Normal

Low

P77
What's the probability that it has







