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Causal reasoning from known structure



Causal reasoning by sampling

• We sample from memory or probabilistic generative models, base 
inferences or judgments on frequencies in obtained samples

• This sampling is the process of thinking of concrete cases, we 
generate a single chain of concrete cases and base our response on 
that.



The Mutation Sampler: 
MH Sampling of concrete cases
• Metropolis-Hastings MCMC sampling over 

discrete states of causal graph

• MH: construct sequence of samples, 
where sample n depends on sample n-1.

• Transition probability a(q’|q)=min(1,
π(𝑞′)

π(𝑞)
)

Where q is current state, q’ is proposal state, π() 
is joint probability of the state. 

Only relative probability of two states is 
required, not full joint distribution.



The Mutation Sampler: 
Proposal distribution
• Which network/graph state should be proposed 

as next state in chain: Mutation!

• Potential proposals are those network states 
which differ in the value of only one variable. 
Selected with equal probability.

•
π(𝑞′)

π(𝑞)
simplifies to 

Where vi is value mutated variable, ui are variables 
in vi’s Markov blanket



The Mutation Sampler: 
Biased starting points and limited capacity

• Biased starting points: sampling starts at 
prototypical states.

• Limited capacity: fixed capacity, but vary in 
number of samples taken for a judgement.

• Together, MS approximates joint probability of 
causal graph states if n samples grows large





The Mutation Sampler: 
Inference

1. Calculate relative frequency of queried variable in 
samples

2. (if conditional query, calculate relative frequency 
within samples where antecedent is true)

Ex: 𝑝 x = 1 y = 1 =
𝑓𝑟𝑒𝑞(𝑥=1,𝑦=1)

𝑓𝑟𝑒𝑞 𝑥=0,𝑦=1 +𝑓𝑟𝑒𝑞(𝑥=1,𝑦=1)

3. Guess 50% if required states are not sampled (i.e. 
no samples where antecedent is true)

* From Zhu, Sanborn, Chater (2020) used without 
permission



They tested the model: works great

• Fitted it to many causal reasoning studies, it performed better than all 
other models. 

• Moreover, it explained 3 big non-normative patterns in causal 
reasoning data:
• Markov violations

• Failures to explain away

• Conservative inferences

• So I thought: great! I want to play around with this model. 
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Can we solve these issues of the mutation 
sampler?

• The model should predict conservative inferences, but not by peaks 
at 50%.

• The model should not predict extreme responses at 0 and 100%

• Those conservative inferences, maybe they are not a result of an 
fascination with 50% or a rounding habit, maybe it is due to a 
‘rational adjustment for small sample sizes’?



All this points toward using a (generic) prior

• Prior dominates with small sample sizes: no extreme responses

• Prior pushes judgments towards 50%: conservative inferences

• Adapt the Mutation Sampler into a Bayesian Mutation Sampler by 
using symmetric beta priors: incorporate pseudocount β, response is 
expected value



Standard MS (β=0) Bayesian MS (β=1)
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• Experiment using 
joystick to respond

• Fit using Probability 
Density 
Approximation 
(PDA) method (Turner 
& Sederberg, 2014)







Conflict trials, e.g. p(x1|y=1,x2=0)

Standard MS                                        BMS



Ambiguous trials 1, e.g. p(y|x1=0)

Standard MS                                        BMS



Ambiguous trials 2, e.g. p(x1|x2=1)

Standard MS                                        BMS



• BMS predicted distributions promising, except for peak at 50%

• Theoretical advantages
• Information on the amount of samples taken is actually used by agent
• Better matches phenomenology of making probability estimates
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Current and future work

• Modelling:
• Starting a queried state

• Only sample states consistent with conditional

• Amortized inference

• Model guessing as distribution

• When does one stop sampling? When one is certain of your answer? 
Study currently running.

• Inter or intra-subject variability? Larger study on variability in causal 
inference with Zach Davis and Bob Rehder (NYU)









• Ambiguous trials 2

• Inference conditioning on 
1 variable, i.e. the third 
variable is unknown

• E.g. p(y|x2=1)



• Ambiguous trials 1

• Inference conditioning on 
1 variable, i.e. the third 
variable is unknown

• E.g. p(y|x2=1)



• Conflict trials

• Inference conditioning 
on two variable states 
that are ‘inconsistent’

• E.g. p(y|x1=1,x2=0)
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