Logic and Conversation Assignment 2

Please return the assignment in pdf by email to: floris.roelofsen@gmail.com Due date: Monday 12/11

1 DPL

- 1. Show that conjunction is not idempotent in DPL, as defined in def. 41 of the paper. That is, show that it is not the case that for every formula ϕ , $[\![\phi]; \phi]\!] = [\![\phi]\!].$
- 2. Consider the following sentence:
 - (1) Every player who had a card, put it on the table. $\forall x.((Px; [y]; Cy; Hxy) \rightarrow Txy)$

Consider a model M with:

- $D = \{p_1, p_2, p_3, c_1, c_2, c_3, c_4\}$
- $I_M(P) = \{p_1, p_2, p_3\}$
- $I_M(C) = \{c_1, c_2, c_3, c_4\}$
- $I_M(H) = \{ \langle p_1, c_1 \rangle, \langle p_3, c_2 \rangle, \langle p_3, c_3 \rangle, \langle p_3, c_4 \rangle \}$
- $I_M(T) = \{ \langle p_1, c_1 \rangle, \langle p_3, c_2 \rangle \}$

Let g be an assignment that maps x to p_1 and y to c_1 , and suppose that there are no variables in the language other than x and y.

- (a) Compute, step-by-step, whether $\langle g, g \rangle$ is in $\llbracket (1) \rrbracket$.
- (b) Does DPL derive a strong or a weak reading for (1)? Explain.

2 Generalized quantifiers

- 1. [Selective quantification] Consider the following sentence:
 - (2) Most players who had a card, put it on the table. $\mathbf{most}_{x}^{wk}((Px; [y]; Cy; Hxy), Txy)$

Assume a selective treatment of $\mathbf{most}_x^{wk}(\phi, \psi)$, as defined on page 25 of the paper. Let M and g be as above. Show how to compute, step-by-step, whether $\langle g, g \rangle$ is in $[\![(2)]\!]$.

- 2. [Decomposed quantification] Consider the following discourse:
 - (3) Most movies are about a man and a woman. He usually seduces her.
 - (a) Specify a model M and two contexts (i.e., sets of assignments) G and H such that $G[[(3)]]^M H$ in PCDRT. You do not have to give a detailed proof, but do give an explanation showing that you understand how the system works.
 - (b) Specify a model M and a context G such that $[(3)]^M$ does not map G to any output context in PCDRT. Again, you do not have to give a detailed proof, but do give an explanation showing that you understand how the system works.