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Preliminaries

This paper preceded the Tbilisi paper Inquisitive Semantics: Two Possibil-
ities for Disjunction. Also last year, I used it as the main source for the
first assignment in the Semantics and Pragmatics course. I left the main
contents basically as they were last year, apart from an occasional footnote,
and deleting and adding some questions for you to choose to answer.

Although a bit differently organized and presented, the main contents
are the same as of the Tbilisi paper. This version is more extended in that
it also contains an inquisitive version of predicate logic in an appendix. The
last two sections in the Tbilisi paper on Inquisitive Logic and Pragmatics
go beyond this version.

1 Mission Statement

In inquisitive semantics, the semantic content of a sentence is not identified
with its informative content. Sentences are interpreted in such a way that
they can both embody data and issues. And even if a sentence is of a purely
informative nature, the semantics will relate it to an issue.

The notion of meaning embodied in inquisitive semantics directly reflects
that the primary use of language is communication in dialogue, the exchange
of information in a cooperative dynamic process of raising and resolving
issues.

The way in which inquisitive semantics enriches the notion of meaning
will change our perspective on logic. In the logic that comes with the se-
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mantics, the central notion is the notion of licensing.1 Licensing is concerned
with what the utterance of a sentence contributes to a conversation, how it
is related to what was said before. Like the standard logical notion of en-
tailment rules the validity of argumentation, the logical notion of licensing
rules the coherence of conversation.

The way in which inquisitive semantics enriches the notion of mean-
ing will also change our perspective on pragmatics. The main objective of
Gricean pragmatics, is to explain aspects of interpretation which are not
directly dictated by semantic content, in terms of general features of ra-
tional human behaviour. Since inquisitive semantics changes the notion of
semantic content, pragmatics will change with it.

At the heart of Gricean pragmatics is the Cooperation Principle, divided
in the Maxims of Quality, Quantity, Relation, and Manner. Conversational
implicatures are conclusions one can draw from the utterance of a sentence
in a conversation, on the basis of the assumption that the principle and its
subsidiary maxims are adhered to.

In inquisitive pragmatics, licensing is the logical twin of the Maxim of
Relation. Quality and Quantity will not just involve informativeness, but
inquisitiveness as well. This applies also to the derivation of conversational
implicatures.

2 The Gricean Picture of Disjunction

In Indicative Conditionals, Grice (1989, page 68), Grice gives the following
picture of the use of disjunction:2,3

A standard (if not the standard) employment of “or” is in the spec-
ification of possibilities (one of which is supposed by the speaker to
be realized, although he does not know which one), each of which is
relevant in the same way to a given topic. ‘A or B’ is characteristically
employed to give a partial answer to some [wh]-question, to which
each disjunct, if assertible, would give a fuller, more specific, more
satisfactory answer.

1I still use here the term ‘licensing’ rather than ‘compliance’. And the notion of ‘ho-
mogeneity’ from the Tbilisi-paper was not invented yet.

2I owe the citation to Simons (2000).
3The strategy I follow here, is to start from the Gricean picture and ‘reason’ towards a

logical language to deal with it. That brings me to a language where, e.g., the ?-operator
should be present, which then later turns out to be definable in terms of disjunction. In
the Tbilisi paper it is introduced by definition from the very start.
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This is a picture of the (or a) use of disjunction in information exchange.
If this is a correct picture, then according to our mission statement, the
semantics of disjunction should reflect directly that (ϕ ∨ ψ) specifies two
possibilities, the possibility that ϕ and the possibility that ψ. We may add
to this – Grice would certainly have agreed – that the semantics of disjunc-
tion should certainly do something else as well: exclude the possibility that
neither ϕ nor ψ. That is the information that (ϕ∨ψ) provides, its standard
truth conditional content.

The Gricean picture also sets a task for a logic that is in accordance with
our mission statement: we should be able to account in our logic for Grice’s
view that ϕ and ψ should each be relevant to a specific topic, which Grice
describes as being a partial answer to some question.

To be able to explicitly do that, we first of all are in need of a logical
language in which questions can be expressed. Furthermore, the logic should
come with a notion of partial answerhood, and with a notion of contextual
licensing with tells us that (ϕ ∨ ψ) is contextually licensed iff the context
gives rise to a question such that both ϕ and ψ count as partial answers to
that contextual question.

So, the minimal thing we seem to need sofar to model Grice’s intuition on
disjunction in a logical semantics, is that we specify a propositional language,
which contains at least disjunctions and questions. The straightforward way
to add questions, is to introduce a sentential operator ‘?’ which turns a
sentence ϕ into a question ?ϕ.

A standard way to think of the semantic content of a question is that it
should specify its possible answers. If we start from an ordinary propositional
language, and ϕ is a sentence in that language, then ?ϕ is a polar question,
which corresponds to the possibilities that ϕ and that ¬ϕ. This picture of
the semantics of questions is not far away from Grice’s picture of disjunc-
tion. Both disjunctions and questions specify possibilities, but whereas an
ordinary disjunction will also exclude possibilities, provides information, a
question does not. By the way, in the meantime we also met negation as an
element of the language.

What also plays a role in the Gricean picture is partial answerhood. If we
were to restrict the occurrence of the question operator as the main operator
on sentences of an indicative language, we only obtain ‘atomic questions’
which characteristically have just two (informative) complete answers. If
a question specifies a set of possibilities, the notion of partial answerhood
that naturally suggests itself, are unions, disjunctions, of complete answers.
But if there are only two possibilities, the only such union we get is a non
informative tautological partial answer.
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An easy way to make room for questions with partial answers is to allow
for conjunctions of questions (?ϕ ∧ ?ψ), where a complete answer is the
conjunction of a complete answer to ?ϕ and a complete answer to ?ψ. A
complete answer to just ?ϕ could now count as a partial answer to (?ϕ∧?ψ),
and so would the disjunction of a complete answer to ?ϕ and a complete
answer to ?ψ.

So, conjunction has entered as an ingredient of the propositional logical
language as well, both between questions, and between answers, i.e., between
assertions. Natural language uses one and the same word ‘and’ to conjoin
questions and assertions, and there is no reason to assume that it has a
different meaning in these two cases. This suggest that we have a single
clause in our logical syntax to deal with all cases, and a single interpretation
for conjunction in the semantics that gives the right result for all cases.

Actually, since in natural language we also find hybrid conjunctions, like
‘John will come to the party, but will Mary come as well?’, it makes sense
to make the syntactic and semantic rule for conjunction insensitive to the
nature of the conjuncts.

Once we have decided to do so for conjunction, even though it may be
less obvious for disjunctions, let’s decide for the sake of uniformity, that
we do the same with disjunction: allow disjunction of sentences freely, give
a uniform interpretation rule for that, and see what comes out. If we get
unacceptable results, we can always still change this policy.

There is one standard logical operation that sofar remained out of the
picture: implication. It makes sense to include it, not only for assertive im-
plication, but also to model conditional questions like ‘If Mary comes to the
party, will John come as well?’, which would naturally translate as a formula
of the form (ϕ → ?ψ). Following Velisseratou (2000), we take it that our ex-
ample conditional question has two complete answers, corresponds with two
possibilities: the possibility that (ϕ → ψ) and the possibility that (ϕ → ¬ψ).

Here too, we will go by the assumption that underlying both types of
implications is a single interpretation for the implication sign, that is to give
correct results in all cases. And although perhaps there are no immediate
examples from natural language that suggest the necessity of that, the logical
syntax is simplest if we also allow for the antecedent to be of arbitrary nature.

Finally, Grice leaves room for a less standard use of disjunction that does
not fit the picture. Let’s assume this less standard use of disjunction has
nothing to do with specifying possibilities, but just excludes the possibility
that neither disjunct holds. Rather than making the logical operation of
disjunction ambiguous, let’s agree on adding a sentential operator ‘!’ to the
language that has to have the effect that !(ϕ ∨ ψ) boils down to just its
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standard truth functional meaning.
So, based on our wish to model what is involved in the Gricean picture

of disjunction, and some general deliberations concerning logical simplicity
and elegance, we decided that our propositional language is to contain the
three sentential operators: ¬, ?, !, and the three connectives ∨,∧,→.

Question 1 Mandy Simons (2000) also uses the citation from Grice to start
her story (chapter 2 of her dissertation, see Blackboard). So, naturally, there
must be a lot in there that is immediately related to inquisitive semantics.
A good project to do is search for correspondences and differences between
the two stories. For the larger part she deals with pragmatic issues, to which
we will only turn after the midsemester break. But a good overview of what
she has been doing might be helpful for steering our own investigations.

3 Inquisitive Propositional Syntax

A standard way to look upon an inquisitive syntax is as a syntax for a
language in which not only assertions, but also questions can be expressed.
Such a language is often called a ‘query language’. What you normally expect
of such a language is that is has two basic syntactic categories: indicatives
and interrogatives.4

A distinctive feature of our inquisitive syntax is going to be that it does
not make such a syntactic distinction. There is a single category of sentences
of the language. The inquisitive semantics for the language will enable us to
distinguish assertions and questions among the sentences of the language.
Moreover, there will turn out to be a third type of sentences: hybrids, which
are neither assertions nor questions, but something in between.

Definition 1 (Inquisitive Propositional Syntax) Let ℘ be a finite set
of propositional variables. The set of sentences of L℘ is the smallest set such
that:

1. If p ∈ ℘, then p ∈ L℘

2. ⊥ ∈ L℘

3. & ∈ L℘

4The first order query language defined in Groenendijk [1999] exemplifies such a syntax.
The same holds for Velissaratou (2000).
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4. If ϕ ∈ L℘, then ¬ϕ ∈ L℘

5. If ϕ ∈ L℘, then !ϕ ∈ L℘

6. If ϕ ∈ L℘, then ?ϕ ∈ L℘

7. If ϕ ∈ L℘ and ψ ∈ L℘, then (ϕ → ψ) ∈ L℘

8. If ϕ ∈ L℘ and ψ ∈ L℘, then (ϕ ∧ ψ) ∈ L℘

9. If ϕ ∈ L℘ and ψ ∈ L℘, then (ϕ ∨ ψ) ∈ L℘

The syntax allows us, e.g., to form sentences like (p∨q), !(p∨q), and ?(p ∨ q).
The syntax as such makes no syntactic distinction between assertions and
questions, but we will be able to distinguish the two in semantic terms. As
all sentences preceded by an exclamation mark, !(p ∨ q) will count as an
assertion; as all sentences preceded by a question mark, ?(p ∨ q) will count
as a question; and (p ∨ q), which corresponds with a Gricean disjunction,
will count as neither an assertion nor a question, but as a hybrid.

Being preceded by ! is sufficient, but not necessary for a sentence to be
an assertion. E.g., atomic sentences are assertions, and so are all negations,
sentences of the form ¬ϕ. This means that ¬?ϕ is an assertion, but not an
informative assertion, but a contradiction, i.e., a sentence equivalent with
⊥.

Neither is it necessary for a sentence to be preceded by ? to count as
a question. The question mark may also occur embedded, as in (p → ?q),
a conditional question, and in (?p ∧ ?q), a conjunction of questions, and in
(?p∨?q), a disjunction of questions which leaves you the choice of answering
either ?p or ?q. The disjunction of conjunctions of questions ((?p∧?q)∨(?p∧
?r) ∨ (?q ∧ ?r)) is a question which leaves you the choice of answering two
of the three questions ?p, ?q and ?r.

The occurrence of a question mark somewhere in the sentence is not
sufficient to turn the whole sentence into a question. E.g., (p∧ ?q) will be a
hybrid sentence; (?p → q) will be an assertion which might be paraphrased
as: whether p is the case or not, q is the case. And (?p → ?q) will be a
question, which might be paraphrased as: Does whether q depend on whether
p? Given any answer to whether p, what is in that case the answer to whether
q?

As compared to standard propositional logic, only clause 5 and 6, in-
troducing the exclamation mark and the question mark, are non-standard.
Remarkably enough, the inquisitive semantics we will give for the language
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will make clear that these two clauses are dispensable: !ϕ will turn out to
be equivalent with ¬¬ϕ and ?ϕ with (ϕ ∨ ¬ϕ).5

Question 2 I don’t know whether this is the right point to put this ques-
tion. But of course, a very general and in the end crucial issue is how the
logical syntax and semantics relate to natural language. From the natural
language point of view: how sensible is it that we view questions as basically
being disjunctions? Has the difference between (p ∨ q) and !(p ∨ q) in any
way a counterpart in natural language? On the more positive side: one can
try to find nice natural language examples that do exhibit features that the
logical language shows.

At certain other points the syntax as defined above could be formulated more
sparsely without a loss of expressiveness: as usual, & will be equivalent with
¬⊥, and ¬ϕ with (ϕ → ⊥). Hence, clause 3 and 4 are not essential either.
We can do with the five clauses: 1, 2, 7, 8, 9.

A natural question to ask is whether we can do with even less, can
we economize on the two-place connectives? In classical propositional logic
we can. There (ϕ ∧ ψ) is equivalent with ¬(¬ϕ ∨ ¬ψ), and (ϕ ∨ ψ) with
(¬ϕ → ψ). This means that in classical propositional logic, just having ⊥
and → is sufficient to express all meanings (truth functions). In a similar
vein, ¬ with either ∨ or ∧ suffice in classical logic as well.

In inquisitive logic things are different, none of the standard equivalences
which make it possible to define one connective in terms of negation and
another connective, will hold. At the same time, what does hold is that all
meanings that can be expressed with the full language, can also be expressed
by only using disjunction and negation. A remarkable situation.

Another interesting thing is that we can consider certain sublanguages of
the language as defined above, which do not have the full expressive power
of the whole language, but characterize interesting subclasses of the set of all
meanings expressible by the full language. For example, ?, ¬ and ∧ give rise
to what might be called classical inquisitive propositional logic, where ques-
tions correspond to partitions of logical space. Adding → to that, a richer

5I don’t take these equivalences to be essential features. I can imagine an interpretation
of the language where the operators ! and ? are basic, and would not fully correspond in
meaning to double negation and ‘tautological disjunction’. Such a different interpretation
might then help to account for the fact why certain constructions the present set-up allows
for, such as the negation of questions, do not occur in natural language. I don’t consider
the fact that ¬?ϕ is a contradiction to be a suitable explanation for that.
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set of meanings can be expressed, including the meanings of conditional
questions.

To be able to really look into such issues, we now turn to the inquisitive
semantics.

4 Inquisitive Semantics

We formulate the semantics for an inquisitive language L℘ by a recursive
definition of the notion 〈i, j〉 |= ϕ, where i and j are valuation functions for
the atomic sentences in ℘, which we call indices.6 We pronounce 〈i, j〉 |= ϕ
as: 〈i, j〉 supports ϕ.

Definition 2 (Indices) Let L℘ be an inquisitive propositional language.

1. An index for L℘ is a function i such that for all p ∈ ℘: i(p) ∈ {0, 1}.

2. The indices for ℘, I℘ is the the set of all indices for ℘.

Question 3 In G&S handbook article on questions (section 4.4) there is
an explicit argument to the effect that the semantics of questions must
be intensional. This view has been challenged in a paper by Nelken and
Francez (see references, but I’ll also put it on Blackboard) by presenting
a many-valued extensional (according to them) semantics. It bears some
resemblances to what happens in inquisitive semantics. It might be good to
have a look at that and spot correspondences and differences. There is also a
paper by Nelken and Shan (see references, but I’ll also put it on Blackboard)
who deal with questions by means of a modal logic. If I remember correctly,
they need only two possible worlds to state the semantics. Well, that is
very close to what is happening in inquisitive semantics. We also state the
semantics relative to two indices, which are much the same sort of thing as
possible worlds. Our semantics is also minimally intensional. By the way,
there is also a cryptic remark in the Ten Cate and Shan paper (p. 69) that
“to test a LoI entailment, it suffices to consider structures with only two
possible worlds”. So, there is a lot that one could relate to.

6Indices are just possible worlds, as in the Tbilisi paper. The reason for not calling
them worlds here has to do with the extension to predicate logic that I present at the
end. There worlds do no longer suffice, I have to pair them with assignments of values to
variables, then ‘index’ is a more suitable term for such pairs. Using hat term already in
the propositional case avoids that I have to restate many definitions. Most definitions of
logical notions for the propositional case can remain the same.
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Definition 3 (Inquisitive Semantics) Let ϕ ∈ L℘, 〈i, j〉 ∈ I℘.

1. 〈i, j〉 |= p iff i(p) = 1 and j(p) = 1

2. 〈i, j〉 |= &

3. 〈i, j〉 )|= ⊥

4. 〈i, j〉 |= ¬ϕ iff 〈i, i〉 )|= ϕ and 〈j, j〉 )|= ϕ

5. 〈i, j〉 |= !ϕ iff 〈i, i〉 |= ϕ and 〈j, j〉 |= ϕ

6. 〈i, j〉 |= ?ϕ iff 〈i, j〉 |= ϕ or 〈i, i〉 )|= ϕ and 〈j, j〉 )|= ϕ

7. 〈i, j〉 |= (ϕ ∨ ψ) iff 〈i, j〉 |= ϕ, or 〈i, j〉 |= ψ

8. 〈i, j〉 |= (ϕ ∧ ψ) iff 〈i, j〉 |= ϕ and 〈i, j〉 |= ψ

9. 〈i, j〉 |= (ϕ → ψ) iff for all ι ∈ {i, j}2: if ι |= ϕ, then ι |= ψ

We will not systematically run down the clauses of the definition to explain
and illustrate them. We will do so in the course of a longer story in which
we introduce some new semantical and logical notions, and note some facts
related to them.

4.1 Equivalence and the Dispensability of ? and !

First we introduce the notion of logical equivalence:

Definition 4 (Equivalence)
ϕ and ψ are equivalent, ϕ ⇔ ψ iff for all ι ∈ I2: ι |= ϕ iff ι |= ψ

And, as announced, we note the following fact:

Fact 1 (Dispensability of ? and !)

1. ?ϕ ⇔ (ϕ ∨ ¬ϕ)

2. !ϕ ⇔ ¬¬ϕ
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Both the dispensability of ? and of ! follow immediately from the definition
of the semantics.

Concerning the dispensability of ?, the definition tells us that 〈i, j〉 |= ?ϕ
iff 〈i, j〉 |= ϕ, or 〈i, i〉 )|= ϕ and 〈j, j〉 )|= ϕ. Concerning the second disjunct,
the clause for negation tells us that 〈i, i〉 )|= ϕ and 〈j, j〉 )|= ϕ iff 〈i, j〉 |= ¬ϕ.
So, 〈i, j〉 |= ?ϕ iff 〈i, j〉 |= ϕ or 〈i, j〉 |= ¬ϕ. The clause for disjunction tells
us that 〈i, j〉 |= ϕ or 〈i, j〉 |= ¬ϕ iff 〈i, j〉 |= (ϕ ∨ ¬ϕ). And we are done.

Concerning the dispensability of !, the definition tells us that 〈i, j〉 |=
¬¬ϕ iff 〈i, i〉 )|= ¬ϕ and 〈j, j〉 )|= ¬ϕ. Since according to the definition 〈i, i〉 |=
¬ϕ iff 〈i, i〉 )|= ϕ, we know that 〈i, i〉 )|= ¬ϕ iff 〈i, i〉 |= ϕ, and similarly that
〈j, j〉 )|= ¬ϕ iff 〈j, j〉 |= ϕ. Hence, 〈i, j〉 |= ¬¬ϕ iff 〈i, i〉 |= ϕ and 〈j, j〉 |= ϕ.
And this means that !ϕ is equivalent with ¬¬ϕ.!

Basically, this tells us that in discussing the semantics, we need not give
special attention to ?ϕ and !ϕ.

4.2 Inquisitiveness, Informativeness and Disjunction

The basic feature of disjunction, is that it introduces inquisitiveness in the
language. Inquisitiveness and informativeness are defined as follows:7

Definition 5 (Inquisitiveness and Informativeness) Let ϕ ∈ L.

1. ϕ is inquisitive iff for some i ∈ I and j ∈ I: 〈i, i〉 |= ϕ and 〈j, j〉 |= ϕ
and 〈i, j〉 )|= ϕ

2. ϕ is informative iff for some i ∈ I and j ∈ I: 〈i, i〉 |= ϕ and 〈j, j〉 )|= ϕ

We will see later that the meaning of ϕ gives rise to (at least) two possibilities
– in the sense in which Grice uses this notion in his picture of disjunction
– in case there are indices i and j such that 〈i, i〉 |= ϕ and 〈j, j〉 |= ϕ
whereas 〈i, j〉 )|= ϕ, i.e., in case ϕ is inquisitive. This holds, e.g., in case ϕ is
a disjunction like (p ∨ q).

Fact 2 (Inquisitiveness and Informativeness)

1. (p ∨ q) is inquisitive and informative.

2. !(p ∨ q), i.e., ¬¬(p ∨ q), is informative but not inquisitive.
7Note that, unlike in the Tbilisi paper, informativeness is defined in such a way that

it implies consistency.
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3. (p ∨ ¬p), i.e., ?p, is inquisitive but not informative.

4. !(p ∨ ¬p), i.e., !?p, is neither inquisitive, nor informative.

5. ¬(p ∨ ¬p), i.e., ¬?p, is neither inquisitive, nor informative.

6. ϕ is neither inquisitive nor informative iff ϕ ⇔ & or ϕ ⇔ ⊥

Consider (p ∨ q). Let i and j be indices such that i(p) = 1, i(q) = 0; and
j(p) = 0, j(q) = 1. Then whereas 〈i, i〉 |= (p ∨ q), because 〈i, i〉 |= p; and
〈j, j〉 |= (p ∨ q), because 〈j, j〉 |= p, we have that 〈i, j〉 )|= (p ∨ q), because
〈i, j〉 )|= p and 〈i, j〉 )|= q. Hence, (p ∨ q) is inquisitive.

(p ∨ q) is also informative. Let i be as above, and let k be an index
such that k(p) = 0, k(q) = 0. Then, wheras 〈i, i〉 |= (p ∨ q), we have that
〈k, k〉 )|= (p ∨ q), since 〈k, k〉 )|= p and 〈k, k〉 )|= q.

Consider !(p∨q). Let i and k be as above. The clause for ! tells us that 〈i, i〉 |=
!(p ∨ q) iff 〈i, i〉 |= (p ∨ q), which we have seen to be the case. Similarly,
〈k, k〉 |= !(p ∨ q) iff 〈k, k〉 |= (p ∨ q), which we have seen not to be the case.
So, like (p ∨ q), !(p ∨ q) is informative.

However, unlike (p∨q), !(p∨q) is not inquisitive. Suppose 〈i, i〉 |= !(p ∨ q)
and 〈j, j〉 |= !(p ∨ q). As we just saw, this means that 〈i, i〉 |= (p ∨ q) and
〈j, j〉 |= (p ∨ q). By the definition of !, this also means that 〈i, j〉 |= !(p ∨ q).

Consider (p ∨ ¬p). For every index i, either i(p) = 1 or i(p) = 0. Hence,
either 〈i, i〉 |= p, or 〈i, i〉 |= ¬p. Then also for every index i: 〈i, i〉 |= (p∨¬p).
So (p ∨ ¬p) is not informative. There are indices i and j such that i(p) = 1
and j(p) = 0. For two such indices 〈i, j〉 )|= (p ∨ ¬p), because 〈i, j〉 )|= p and
〈i, j〉 )|= ¬p, which means that (p ∨ ¬p) is inquisitive.

Consider !(p∨¬p) and ¬(p∨¬p). As we saw above, for every i: 〈i, i〉 |= (p∨¬p).
This means that for every i and j: 〈i, i〉 |= (p ∨ ¬p) and 〈j, j〉 |= (p ∨ ¬p).
By the definition of ! and ¬ that also means that for every i and j: 〈i, i〉 |=
!(p ∨ ¬p), and for no i and j: 〈i, i〉 |= ¬(p ∨ ¬p). Hence, !(p∨¬p) is equivalent
with &, and ¬(p∨¬p) is equivalent with ⊥, and both are neither informative
nor inquisitive.!

Apart from telling us that disjunction behaves in a special way, the fact that
(p∨ q) and ¬¬(p∨ q) have different semantic properties, also indicates that
the law of double negation does not generally hold in inquisitive semantics;
and the fact that (p ∨ ¬p) is not a tautology indicates that the law of the
excluded middle does not generally hold in inquisitive semantics.
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4.3 Questions, Assertions, and Hybrids

The following definition tells us that (p ∨ q) is a hybrid, that !(p ∨ q) is
an informative assertion, and that (p ∨ ¬p), and hence ?p is an inquisitive
question.

Definition 6 (Questions, Assertions and Hybrids) Let ϕ ∈ L.

1. ϕ is an (inquisitive) question iff ϕ is (inquisitive and) not informative.

2. ϕ is an (informative) assertion iff ϕ is (informative and) not inquisitive.

3. ϕ is a hybrid iff ϕ is inquisitive and informative.

The tautological and contradictory cases, such as !?p and ¬?p are questions
as well as assertions according to the definition (and not hybrids), but they
are neither informative assertions nor inquisitive questions.

Given the way in which questions and assertions are defined, we can note
the following handy fact:

Fact 3 (Questions and Assertions) For all ϕ ∈ L:

1. !ϕ is an assertion;

2. ?ϕ is a question.

!ϕ can never be inquisitive. By definition 〈i, j〉 |= !ϕ iff 〈i, i〉 |= ϕ and
〈j, j〉 |= ϕ. Also by definition, 〈i, i〉 |= ϕ iff 〈i, i〉 |= !ϕ, and similarly for
〈j, j〉 |= ϕ. Hence, for all i and j: 〈i, j〉 |= !ϕ iff 〈i, i〉 |= !ϕ and 〈j, j〉 |= !ϕ,
which implies that !ϕ is not inquisitive, and hence is an assertion.

?ϕ can never be informative: for all i: 〈i, i〉 |= ?ϕ. By definition, 〈i, i〉 |=
?ϕ iff 〈i, i〉 |= ϕ or 〈i, i〉 )|= ϕ. Given the way in which the semantics is
formulated, for every pair 〈i, j〉 it is always decided whether 〈i, j〉 |= ϕ or
not.!

Question 4 Prove the following facts:

Fact 4 (Iteration of ? and !) For all ϕ ∈ L:

1. ??ϕ ⇔ ?ϕ

2. !!ϕ ⇔ !ϕ

12



Fact 5 (Division in Theme and Rheme) For all ϕ ∈ L:

ϕ ⇔ (?ϕ ∧ !ϕ)

[Question ends here]

What division says is that for any sentence ϕ we can factor out a question
?ϕ and an assertion !ϕ. The assertion that is factored out, wich we call
the rheme of the sentence, corresponds to the information content of the
sentence, the data it provides. The question that is factored out, which we
call the theme of the sentence, does not just correspond to the issues the
sentence raises, but is rather a presupposed background question to which
the assertive part is an answer.

We are not going to dwell upon this now, but division is obviously related
to many hotly debated issues, like topic and focus, information structure,
and presupposition.8

4.4 Picturing Meanings

We have seen some interesting features of certain sentences, such as that
(p∨ q) and !(p∨ q), are not equivalent, that they differ in meaning, but that
does probably not yet give us a clear picture of what meanings are assigned
to these sentences by the semantics. So, let’s first define what the meaning
of a sentence is.

Definition 7 (Meanings) Let ϕ ∈ L℘ and I the set of indices for ℘.

The meaning of ϕ, 〈ϕ〉I = {ι ∈ I2 | ι |= ϕ}.

So, following a standard pattern of defining meanings, we identify the mean-
ing of a sentence with the set of pairs of indices which support it.

Meanings being sets of pairs of indices, we can look upon a meaning as
a relation on the set of indices. The way to look upon the relation is to view

8Division tells us that ϕ → ψ is equivalent with ?(ϕ → ψ) ∧ !(ϕ → ψ). I show in the
Tbilisi paper that it also holds for ϕ → ψ and (ϕ → ?ψ) ∧ (ϕ → !ψ). So, there is no
unique way to divide a sentence in a theme and a rheme. (The two conjunctions are not
necessarily equivalent.) Also, sentences which have different focus elements, should be
assigned different themes, should presuppose different issues. Compare the illustrations in
The Logic of Interrogation.
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it as a relation of indifference. If two indices are related in the meaning of
a sentence, it means that the sentence does not express an interest in the
difference between the two. Conversely, if two indices are not related, then
the sentence embodies an issue concerning the difference between them.

We will see later that such relations which count as meanings have certain
properties, and that these properties differ for the three types of sentences
we distinguished: assertions, questions and hybrids. But before we turn to
that, let us inspect the meanings of (p ∨ q) and !(p ∨ q).

We saw above that both kinds of disjunction are informative, which
implies that for some index i ∈ I: 〈i, i〉 )∈ 〈(p∨ q)〉I and 〈i, i〉 )∈ 〈!(p ∨ q)〉I . In
general, 〈ϕ〉I will be a relation on a subset of I, a non-empty proper subset
in case ϕ is informative. Which subset it is, which indices are included and
excluded, determines the informative content of ϕ, the data it provides. For
both (p ∨ q) and !(p ∨ q) only indices i where i(p) = i(q) = 0 are excluded.

Where (p ∨ q) and !(p ∨ q) differ is which of the included indices are
related to each other. In showing that !(p∨ q) is not inquisitive, we saw that
〈i, j〉 |= !(p ∨ q) iff 〈i, i〉 |= !(p ∨ q) and 〈j, j〉 |= !(p ∨ q). This means that in
〈!(p ∨ q)〉I all indices which are not excluded are related to each other. This
holds in general for non-inquisitive sentences. If ϕ is not inquisitive, if ϕ is
an assertion, then 〈ϕ〉I is a total relation on a subset of I. And if ϕ is an
informative assertion, then 〈ϕ〉I is a total relation on a non-empty proper
subset of I.

In contrast, in showing that (p∨ q) is inquisitive, we found that we may
have that 〈i, i〉 |= (p ∨ q) and 〈j, j〉 |= (p ∨ q), whereas at the same time
〈i, j〉 )|= (p ∨ q). This is the case precisely when i(p) )= j(p) and i(q) )= j(q).
I.e, as long as i(p) = j(p) = 1 or i(q) = j(q) = 1, i and j are related to each
other, i.e., then 〈i, j〉 ∈ 〈(p ∨ q)〉I .

So, we can distinguish two sets of indices P and Q in the meaning of
(p ∨ q), such that in P all indices are collected where i(p) = 1, and in Q all
indices are collected where i(q) = 1. P and Q overlap: in case i(p) = i(q) = 1,
then i ∈ P and i ∈ Q. Being sets of indices, we can look upon P and
Q as propositions, the proposition expressing that p and the proposition
expressing that q, respectively.

Hence, we have modeled Gricean disjunction: we can look upon P and
Q as the two possibilities specified by the disjunction (p ∨ q).

It may be worthwhile to note that we have in general that 〈(ϕ∨ψ)〉I = 〈ϕ〉I∪
〈ψ〉I . We arrive at the meaning of a disjunction, by taking the union of the
meanings of its disjuncts. Similarly: 〈(ϕ ∧ ψ)〉I = 〈ϕ〉I ∩ 〈ψ〉I . The meaning
of a conjunction is obtained by taking the intersection of the meanings of the
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conjuncts. In this, the interpretation of disjunction and conjunction follows
a standard pattern. In the following definition, we explicitly define what
possibilities are, and the kind of pictures that we have sketched above for
disjunctive sentences.

Definition 8 (Possibilities, Pictures) Let 〈ϕ〉I be the meaning of ϕ.

1. P is a possibility for ϕ iff

(a) P ⊆ I and for all i, j ∈ P : 〈i, j〉 ∈ 〈ϕ〉I

(b) There is no P ′ ⊆ I:P ⊂ P ′ and P ′ satisfies (

2. π[ϕ] is a picture of ϕ iff π[ϕ] is the set of possibilities for ϕ

So, a possibility for a sentence is a largest set of indices such that all of them
are related to each other in the meaning of the sentence. In the picture of a
sentence, all possibilities for the sentence are collected.

Question 5 Do we always get the picture that we want or expect? This
is one of the not too many questions asked here to which I know a partial
answer: No. Sometimes you get poorer pictures than you would expect, i.e.,
a smaller class of possibilities than you would have hoped for. Try to find
examples yourself! (Of course, I want to explain them away.)

In Figure 1 we have drawn an actual picture of the meaning of (p ∨ q),
relative to indices which are suitable for the sentence, i.e., indices which just
assign a value to p and q. The dots in the picture correspond to such indices,
and tell you which value the index gives to p and q, in that order. An arrow
between two indices corresponds to the pair of indices being in the meaning
of the sentence. The two ovals correspond to the two possibilities for (p∨ q).
The index shown in white, is excluded by the meaning of the sentence. .

If we were to draw a picture of the meaning of !(p∨q) as well, the indices
10 and 11 would be connected to each other as well, and we would end up
with a single possibility, including the indices 11, 10, and 01.

Figure 2 shows a picture of ?p, i.e., of (p∨¬p). In this case there are two
possibilities as well, but they do not overlap, and no indices are excluded.
If we were to draw a picture of !?p, all indices would be connected to each
other, which means that we end up with a single possibility covering all
four indices. This would also be the picture of &. A picture of ¬?p would
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Figure 1: Picture of meaning (p ∨ q)
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Figure 2: Picture of meaning ?p

only show the four indices, all in white, and no arrows linking any index to
another one, nor to itself. According to the definition π[!?p] = {∅} = π[⊥].

Given the way possibilities are defined, every picture contains at least
one possibility. Pictures of inquisitive sentences contain more than one pos-
sibility, pictures of informative sentences are such that the union of the
possibilities it contains is neither the empty set, nor the set of all indices.

Fact 6 (Informative and Inquisitive Pictures)

1. For all ϕ: |π[ϕ]| ≥ 1

2. ϕ is inquisitive iff |π[ϕ]| > 1.

3. ϕ is informative iff ∅ )=
⋃

π[ϕ] )= I.
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Being defined as non-inquisitive sentences, pictures of assertions always con-
tain a single possibility, which in case of an informative assertion is neither
the empty set nor the set of all indices.

Being defined as non-informative sentences, pictures of questions either
contain only the empty set, or the union of the possibilities in the picture
equals the set of all indices. A picture of an inquisitive question contains at
least two possibilities, and the union of all possibilities in the picture of a
question equals the set of all indices.

A picture of a hybrid sentence contains at least two possibilities, and the
union of all possibilities in the picture does not equal the set of all indices.

Question 6 What would be the consequences for all definitions and facts
if we were to change the definition of possibilities in such a way that we
require them to be non-empty?

4.5 Dispensability of Negation

We are on our way to discuss conditional questions, but before we turn to
that we have a first look at implication via the issue of the dispensability of
negation. We want to show the following:

Fact 7 (Dispensability of Negation) ¬ϕ ⇔ (ϕ → ⊥)

This is a less easy affair than the dispensability of ? and !. The definition of
the semantics tells us that 〈i, j〉 |= (ϕ → ⊥) iff for all ι ∈ {i, j}2: if ι |= ϕ,
then ι |= ⊥. Since no ι |= ⊥, this means that 〈i, j〉 |= (ϕ → ⊥) iff 〈i, j〉 )|= ϕ
and 〈j, i〉 )|= ϕ and 〈i, i〉 )|= ϕ and 〈j, j〉 )|= ϕ. The definition of 〈i, j〉 |= ¬ϕ
only mentions the last two conjuncts.

Now, if we would know in general that if 〈i, i〉 )|= ϕ and 〈j, j〉 )|= ϕ,
then 〈i, j〉 )|= ϕ, then we would be done. We will prove something slightly
stronger:

Fact 8 (Symmetry and Reflexive Closure)

1. For all i and j: if 〈i, j〉 |= ϕ, then 〈j, i〉 |= ϕ

2. For all i and j: if 〈i, j〉 |= ϕ, then 〈i, i〉 |= ϕ and 〈j, j〉 |= ϕ
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Question 7 I am very fond of this fact. In previous (dynamic) versions of
this paper, I always started out stipulating that my ‘models’ (information
states) were relations having this property. Now, I show that it follows from
the way the semantics is stated. This is not (yet) a question, but a remark.
And here follows another one. The meanings bear resemblances with Kripke
models. You can say that the semantics is stated relative to very tiny Kripke
models, and the meanings are constructed from them. Now, finally, the ques-
tion: Can we find out something about the relation between modal logic and
what we have here? (The paper by Nelken and Shan mentioned in an earlier
question, might be a good starting point to look into this.)

We prove Fact 8 by induction, where we only need to take into consideration
the semantic clauses for atomic sentences, ⊥, →, ∧, and ∨ since the other
clauses are dispensable. Well, for negation we hope to show that. But if we
can prove this fact, we have done so.

First symmetry. For the atomic clause this is trivial, we even have that
〈i, j〉 |= p iff 〈j, i〉 |= p. And since no 〈i, j〉 |= ⊥, symmetry is trivial in this
case as well. Also for implication things are rather easy. Since 〈i, j〉 |= (ϕ →
ψ) iff for all ι ∈ {i, j}2: if ι |= ϕ, then ι |= ψ, and {i, j}2 is the same whether
we consider 〈i, j〉 |= (ϕ → ψ) or 〈j, i〉 |= (ϕ → ψ), symmetrie cannot fail
to hold. For ∧ and ∨, we need the induction step. If we may assume that
〈i, j〉 |= ϕ iff 〈j, i〉 |= ϕ, and the same for ψ, then given the way conjunction
and disjunction are defined, we can also be sure that 〈i, j〉 |= (ϕ ∧ ψ) iff
〈j, i〉 |= (ϕ ∧ ψ). And similarly for disjunction.

Next reflexive closure. The atomic case is trivial. We have that 〈i, j〉 |= p iff
i(p) = 1 and j(p) = 1; and i(p) = 1 iff 〈i, i〉 |= p, and j(p) = 1 iff 〈j, j〉 |= p.
It cannot fail to be the case that 〈i, j〉 |= p iff 〈i, i〉 |= p and 〈j, j〉 |= p. The
case of ⊥ is equally trivial.

The semantic clause for implication tells us that 〈i, j〉 |= (ϕ → ψ) iff for
all ι ∈ {i, j}2: if ι |= ϕ, then ι |= ψ. Both 〈i, i〉 ∈ {i, j}2 and 〈i, i〉 ∈ {i, j}2.
Hence, 〈i, j〉 |= (ϕ → ψ) implies that if 〈i, i〉 |= ϕ, then 〈i, i〉 |= ψ, and the
same for 〈j, j〉. By definition: if 〈i, i〉 |= ϕ, then 〈i, i〉 |= ψ iff 〈i, i〉 |= (ϕ → ψ),
and the same for 〈j, j〉. We are done with implication. If 〈i, j〉 |= (ϕ → ψ),
then 〈i, i〉 |= (ϕ → ψ) and 〈j, j〉 |= (ϕ → ψ).

Next conjunction, where we have to use induction. We have to prove that:
if 〈i, j〉 |= (ϕ ∧ ψ), then 〈i, i〉 |= (ϕ ∧ ψ) and 〈j, j〉 |= (ϕ ∧ ψ). Suppose this
was not the case, i.e., 〈i, j〉 |= (ϕ∧ψ); and 〈i, i〉 )|= (ϕ∧ψ) or 〈j, j〉 )|= (ϕ∧ψ).
By definition, 〈i, i〉 )|= (ϕ ∧ ψ) iff 〈i, i〉 )|= ϕ or 〈i, i〉 )|= ψ, and similarly for
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〈j, j〉. Hence, we have that: 〈i, i〉 )|= (ϕ ∧ ψ) or 〈j, j〉 )|= (ϕ ∧ ψ) iff 〈i, i〉 )|= ϕ
or 〈i, i〉 )|= ψ or 〈j, j〉 )|= ϕ or 〈j, j〉 )|= ψ. By rearranging the disjuncts:
〈i, i〉 )|= (ϕ ∧ ψ) or 〈j, j〉 )|= (ϕ ∧ ψ) iff 〈i, i〉 )|= ϕ or 〈j, j〉 )|= ϕ or 〈i, i〉 )|= ψ or
or 〈j, j〉 )|= ψ. Here we have to use the induction step, which tells us that: if
〈i, i〉 )|= ϕ or 〈j, j〉 )|= ϕ, then 〈i, j〉 )|= ϕ; and similarly for ψ. So, where we
are now is that: if 〈i, i〉 )|= (ϕ ∧ ψ) or 〈j, j〉 )|= (ϕ ∧ ψ), then 〈i, j〉 )|= ϕ or
〈i, j〉 )|= ψ. By the definition of conjunction this means that 〈i, j〉 )|= (ϕ∧ψ).
But this contradicts the assumption, part of which was that: 〈i, j〉 |= (ϕ∧ψ).
Hence, we have shown that: if 〈i, j〉 |= (ϕ ∧ ψ), then 〈i, i〉 |= (ϕ ∧ ψ) and
〈j, j〉 |= (ϕ ∧ ψ).

Finally disjunction, where we have to use induction as well. We have to
prove that If 〈i, j〉 |= (ϕ ∨ ψ), then 〈i, i〉 |= (ϕ ∨ ψ) and 〈j, j〉 |= (ϕ ∨ ψ).
Suppose this was not the case, i.e., 〈i, j〉 |= (ϕ ∨ ψ); and 〈i, i〉 )|= (ϕ ∨ ψ) or
〈j, j〉 )|= (ϕ∨ψ). By definition, 〈i, i〉 )|= (ϕ∨ψ) iff 〈i, i〉 )|= ϕ and 〈i, i〉 )|= ψ, and
similarly for 〈j, j〉. So, we would have that 〈i, j〉 |= (ϕ∨ψ) and: 〈i, i〉 )|= ϕ and
〈i, i〉 )|= ψ, or 〈j, j〉 )|= ϕ and 〈j, j〉 )|= ψ. This would imply that: 〈i, i〉 )|= ϕ or
〈j, j〉 )|= ϕ; and 〈i, i〉 )|= ψ or 〈j, j〉 )|= ψ. Here we need the induction step, i.e.,
that we may assume that: if 〈i, j〉 |= ϕ then 〈i, i〉 |= ϕ and 〈j, j〉 |= ϕ, and the
same for ψ. This means that 〈i, i〉 )|= ϕ or 〈j, j〉 )|= ϕ implies that 〈i, j〉 )|= ϕ,
and similarly, that 〈i, i〉 )|= ψ or 〈j, j〉 )|= ψ implies that 〈i, j〉 )|= ψ. But by the
definition of disjunction, if 〈i, j〉 )|= ϕ and 〈i, j〉 )|= ψ, then 〈i, j〉 )|= (ϕ ∨ ψ).
But this contradicts our assumption, part of which was that 〈i, j〉 |= (ϕ∨ψ).
Hence, we have shown that: if 〈i, j〉 |= (ϕ ∨ ψ), then 〈i, i〉 |= (ϕ ∨ ψ) and
〈j, j〉 |= (ϕ ∨ ψ).!

Question 8 This is a proof by brute force. Is there a more elegant way to
show this?

Fact 8 shows a couple of things. We have proved that: for all i and j: if
〈i, j〉 |= ϕ, then 〈i, i〉 |= ϕ and 〈j, j〉 |= ϕ. This entails that: for all i and j: if
〈i, j〉 |= ϕ, then 〈i, i〉 |= ϕ or 〈j, j〉 |= ϕ. The latter was seen to be necessary
to prove the dispensability of negation.

But we have also shown a quite general property of the meanings of
sentences ϕ ∈ L. We have proved that for all ϕ: 〈ϕ〉I is a symmetric relation
on I, closed under reflexivity. I..e., that 〈i, j〉 ∈ 〈ϕ〉I iff 〈j, i〉 ∈ 〈ϕ〉I , and if
〈i, j〉 ∈ 〈ϕ〉I , then 〈i, i〉 ∈ 〈ϕ〉I and 〈j, j〉 ∈ 〈ϕ〉I . And this boils down to the
following:
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Fact 9 (Symmetry and Reflexivity) For all ϕ ∈ L:

The meaning of ϕ, 〈ϕ〉I is a symmetric and reflexive relation on a
subset if I.

Question 9 What precisely does this tell us about the properties of pic-
tures?

4.6 Conditional Questions, and More

Let us consider the simplest example of a conditional question: (p → ?q).
The semantics is as follows:

〈i, j〉 |= (p → ?q) iff for all ι ∈ {i, j}2: if ι |= p, then ι |= ?q

We have that ?q is a question, and since questions are not informative, it
holds for all ?ϕ that for all i: 〈i, i〉 |= ?ϕ. That means that among ι ∈ {i, j}2

we only need to consider 〈i, j〉. (We can also forget about 〈j, i〉 because of
symmetry.) Hence we have:

〈i, j〉 |= (p → ?q) iff if 〈i, j〉 |= p, then 〈i, j〉 |= ?q

Note that this simplification holds in all cases where the consequent of a
conditional is a question. This boils down to:

〈i, j〉 |= (p → ?q) iff if i(p) = j(p) = 1, then i(q) = j(q)

We only have that 〈i, j〉 )|= (p → ?q), if i(p) = j(p) = 1 and i(q) )= j(q). The
meaning of this conditional question is depicted in Figure 3.
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Figure 3: Picture of meaning (p → ?q)

The picture shows that (p → ?q) is an inquisitive question, it gives rise
to two possibilities: the possibility that (p → q) and the possibility that
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(p → ¬q). Actually, as the picture shows, the conditional question (p → ?q)
is equivalent with the disjunction ((p → q) ∨ (p → ¬q)). This is an instance
of the more general fact: (which I owe to Salvador Mascarenhas, I think)

Fact 10 (!ϕ → (ψ ∨ χ)) ⇔ ((!ϕ → ψ) ∨ (!ϕ → χ))

Let us have a quick look at the interpretation of assertive conditionals as
well. Consider the simplest example (p → q). The semantics tells us:

〈i, j〉 |= (p → q) iff for all ι ∈ {i, j}2: if ι |= p, then ι |= q.

Atomic formulas are assertions, they are not inquisitive. That means that
among ι ∈ {i, j}2, we only have to consider 〈i, i〉 and 〈j, j〉. Because not
being inquisitive implies that if 〈i, i〉 |= ϕ and 〈j, j〉 |= ϕ, then 〈i, j〉 |= ϕ.

〈i, j〉 |= (p → q) iff if 〈i, i〉 |= p, then 〈i, i〉 |= q and if 〈j, j〉 |= p, then
〈j, j〉 |= q.

And this is the same as:
〈i, j〉 |= (p → q) iff 〈i, i〉 |= (p → q) and 〈j, j〉 |= (p → q)
This tells us also that (p → q) is not inquisitive, it is a plain assertion. If

we would draw the picture, we would just get the triangle on the left from
Figure 3, the index 10 would turn white and would have no arrows to or
from any of the four indices in the picture.

Note that the story we have told for (p → q), holds quite generally for
(ϕ → ψ), as long as the consequent ψ is an assertion, and no matter what the
nature of the antecedent ϕ is. As long as the consequent is an assertion, only
〈i, i〉 and 〈j, j〉 have to be taken into consideration. That means in particular
that if the antecedent ϕ is a question, in which case for all i: 〈i, i〉 |= ϕ, the
antecedent plays no role: (?ϕ → !ψ) is equivalent with !ψ. This follows from
the more general fact:

Fact 11 (ϕ → !ψ) ⇔ (!ϕ → !ψ)

In case the consequent of an implication is an assertion, only the informative
content of the antecedent plays a role.

In case the consequent is inquisitive, the story is different of course.
We saw that already for conditional questions, but it also holds for hybrid
conditionals, such as (p → (q ∨ r)). According to Fact 10 this is equivalent
with ((p → q) ∨ (p → r)), which is a hybrid which gives rise to the two
posasibilities corresponding with the two disjuncts. So it does not mean the
same as (p → !(q ∨ r)), which is an assertion giving rise to a single possibility.
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Question 10 Good thing to do here: compare with Velissaratou’s analysis,
which was the starting point for my project, and with a forthcoming paper
by Isaacs and Rawlins with stimulated me to to return to this stuff.

If the antecedent is inquisitive as well, as in ((p ∨ q) → ?r), we get yet
another effect. This is equivalent with ((p → ?r) ∧ (q → ?r), a conjunction
of two conditional questions. This an instance of the following more general
fact:

Fact 12 ((ϕ ∨ ψ) → χ) ⇔ ((ϕ → χ) ∧ (ψ → χ))

We didn’t discuss conjunction yet, apart from noting that the meaning of
a conjunction is the intersection of the meanings of the conjuncts. In case
both conjuncts are assertions, we get completely standard results of course.
In Figure 4 we depict the meaning of a simple conjunction of two questions.
For the conjunction of questions (?p ∧ ?q) we get four possibilities, where
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Figure 4: Picture of meaning (?p ∧ ?q)

each possibility corresponds with a conjunction of one of the two possibilities
for ?p and one of the two possibilities for ?q.

If we now return to ((p ∨ q) → ?r), which we saw to be equivalent with
((p → ?r) ∧ (q → ?r), which is also a conjunction of two polar conditional
questions, we also end up with four possibilities corresponding to:

1. ((p → r) ∧ (q → r)) ⇔ ((p ∨ q) → r)

2. ((p → ¬r) ∧ (q → ¬r)) ⇔ ((p ∨ q) → ¬r)
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3. ((p → ¬r) ∧ (q → r))

4. ((p → r) ∧ (q → ¬r))

In contrast, (!(p∨q) → ?r) only gives rise to the first two of these possibilities.
From this example it is a small step to funny questions like: (?p → ?q).

This is equivalent with ((p → ?q) ∧ (¬p → ?q)). Again a conjunction of two
conditional questions, leading to the following four possibilities:

1. ((p → q) ∧ (¬p → q)) ⇔ q

2. ((p → ¬q) ∧ (¬p → ¬q)) ⇔ ¬q

3. ((p → q) ∧ (¬p → ¬q))

4. ((p → ¬q) ∧ (¬p → q))

And this corresponds more or less with: Given an answer to ?p, what is
the answer to ?q ? A picture of its meaning, not explicitly showing the four
alternatives, is given in Figure 5.
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Figure 5: Meaning ?p → ?q

The picture of ?p → ?q has the peculiar property that there is a lot of
overlap between the possibilities: no possibility contains indices which are
unique for that possibility. Every index in a possibility is shared with some
other possibility.

This peculiar feature also occurs with disjunctions of question. See Fig-
ure 6. As the picture shows, (?p ∨ ?q) gives rise to four possibilities, each
overlapping with two others, which correspond to p,¬p, q,¬q. The question
can be called a choice question. An answer to any of the two questions,
positive or negative, suffices. An example that better illustrates the choice
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Figure 6: Picture of meaning (?p ∨ ?q)

nature of disjunctions of questions is ((?p∧ ?q)∨ (?p∧ ?r)∨ (?q∧ ?r)). It is a
question which leaves you the choice of answering two of the three questions
?p, ?q and ?r. Something I often use in making exams.

One final example, and of a more natural kind of question, is ?(p ∨ q),
which might be called an alternative question. Its meaning is depicted in
Figure 7. As the picture shows, there are three possibilities, corresponding
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Figure 7: Picture of meaning ?(p ∨ q)

to p, q,¬(p ∨ q). Such alternative questions in the logical language may be
taken to correspond to a natural language question like “Do you want coffee,
or tea?”, where besides for the answers “Coffee, please”, and “Tea please”,
it leaves room for “No, thank you.”

Remember the story about the theme and rheme of a sentence. The
alternative question ?(p∨q) is the theme of the disjunction (p∨q). Of course,
?(p ∨ q) is the same as ((p ∨ q) ∨ ¬(p ∨ q)). As compared to (p ∨ q) a third
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possibility is added in which the indices are collected which are excluded by
(p∨ q). This is the general pattern underlying arriving from a sentence ϕ at
its theme ?ϕ.

5 Inquisitive Logic

5.1 Inquisitive Entailment

As any decent logical semantics, inquisitive semantics comes with a corre-
sponding notion of entailment. It is defined quite standardly:

Definition 9 (Inquisitive Entailment)
ϕ1, . . . ,ϕn |= ψ iff for all ι ∈ I2: if ι |= ϕ1 and . . . and ι |= ϕn, then ι |= ψ

And as is to be expected entailment corresponds to meaning inclusion, and
we can also characterize entailment in terms of pictures of meaning. I only
state the single premisse case.

Fact 13 (Inquisitive Entailment, Meanings and Pictures)

1. ϕ |= ψ iff 〈ϕ〉I ⊆ 〈ψ〉I

2. ϕ |= ψ iff every possibility in the picture of ϕ is included in some
possibility in the picture of ψ

I list a rather arbitrary list of entailment facts.

Fact 14 (Some Inquisitive Entailments and Validities)

1. ϕ |= !ϕ

2. ϕ |= ?ϕ, ¬ϕ |= ?ϕ

3. If ϕ |= ψ and ψ |= χ, then ϕ |= χ

4. ϕ |= ψ iff |= (ϕ → ψ)

5. (ϕ ∧ ψ) |= ϕ

6. ϕ |= (ϕ ∨ ψ)

7. )|= (p ∨ ¬p),
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8. |= !(ϕ ∨ ¬ϕ)

9. ϕ |= (ψ → ϕ)

10. (ϕ ∨ ψ) |= ¬(¬ϕ ∧ ¬ψ)

11. (ϕ ∨ ψ) |= (¬ϕ → ψ)

12. (ϕ → ψ) |= ¬(ϕ ∧ ¬ψ)

Question 11 Can you add some characteristic cases to this small list?

5.2 Licensing

The notion of licensing is intended to characterize a logical notion of relat-
edness of one sentence to another. Of course, entailment also characterizes
a notion of relatedness, but not one that deals with relatedness in terms of
dialogue coherence. And it is the latter that we are interested in here.

For the moment, we look at just a single move in a dialogue. A sen-
tence has been uttered, wich we call the stimulus, and the participant in
the dialogue who uttered it we call the stimulator, and then we consider the
response to that by another participant in the dialogue, the responder. The
notion of licensing is to judge whether the response is strictly related to the
stimulus.

A typical example of a dialogue coherence relation is of course when
the stimulus is a question, and the response a partial answer to that ques-
tion. Partial answerhood to a question is a relation between sentences that
licensing should certainly cover.

It is also generally acknowledged that to replace a question by a sub-
question is a significant move in a dialogue. So licensing should cover that
as well. Further, we shall also allow for critical responses, such as denying
the stimulus, or expressing doubt about it.9

The following definition is intended to cover these cases. Licensing is
defined in terms of pictures of meaning (and, actually, I know no other way
of doing it).

9The notion of compliance in the Tbilisi paper as such does not take critical responses
into account, but as I remark there, it could easily be adapted to do so.
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Definition 10 (Licensing) Let ϕ and ψ be sentences of L.

A stimulus ψ licenses a response ϕ, ψ ∝ ϕ iff every possibility in the
picture of ϕ is the union of a subset of the set of possibilities in the
picture of ?ψ.

Question 12 In Christopher Potts’ calculator for Inquisitive Semantics (see
Link in Blackboard) you are asked not to enter more than 4 atomic formulas,
otherwise the machinery won’t run. A similar device programmed by our
PhD student Tikitu de Jager meets the same problem. What is calculated
in both cases are the possiblities that a formula gives rise to, according to
definition ??. That definition does not give rise to an efficient algorithm.

This what Tikitu wrote about it to Chris in an e-mail: “I had a bit of a
look around when I was writing my system, and it seems that finding the
maximal clique in a graph (that is, finding the largest alternative [possibil-
ity]) is NP-complete. So unless there’s something clever we can do based
on what we know about the updates (transform old alternatives into new
alternatives; I couldn’t think of anything), there doesn’t seem much chance
of an efficient solution.”

Now, apart from giving rise to nice pictures of meanings, the logical pur-
pose of defining the notion of possibilities is to define the notion of licensing
(relatedness) in terms of them. One could ask: Is there an alternative way
to define licensing that does not use the notion of possibilities?

The alternative I am thinking of is the following. Take the set of indif-
ference classes instead of the set of possibilities. An indifference class for an
index i ∈ I in the meaning 〈ϕ〉I is the set {j ∈ I | 〈i, j〉 ∈ 〈ϕ〉I}. Collect
those for all i ∈ I, and call that the set of indifference classes in the meaning
of ϕ. Then restate the definition of licensing relative to sets of indifference
classes instead of sets of possibilities: every indifference class in the meaning
of ϕ is the union of a subset of the set of indifference classes for ψ (or ?ψ).

The question is then: do the old and the new definition have the same ef-
fect? Another question is: I am assuming that calculating indifference classes
does not have the same complexity as calculating possibilities, is that cor-
rect? Finally, assuming positive answers to the two earlier questions, one
could also ask whether in terms of indifference classes one could define pos-
sibilities in an easier way.

A first thing to note is that licensing does not look at the relation between
the response ϕ and the stimulus ψ as such, but takes the theme ?ψ of ψ, the
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question behind the stimulus, to be what the response should be related to.
This immediately delivers that critical responses are covered. An asser-

tion licenses its negation, and also the corresponding yes/no question, next
to ‘repeating’ the assertion, or remaining ‘silent’.

Fact 15 (Licensing by Assertions) Let !ψ be an informative assertion.

!ψ ∝ ϕ iff ϕ ⇔ !ψ or ϕ ⇔ ?!ψ or ϕ ⇔ ¬ψ or ϕ ⇔ &

Question 13 What happens in case !ϕ is not informative?

The theme of an informative assertion !ψ is the polar question ?!ψ, in the
picture of which we find two mutually exclusive possibilities. The four re-
sponses mentioned in the fact exhaust all possibilities, up to equivalence,
for ϕ to be licensed. I will not go into that here and now, but there is a
pragmatic story about how precisely to look upon these four responses.

Let us look now at the case where the stimulus is an inquisitive question,
and the response an assertion. Since in the picture of an assertions we find
only a single possibility, and since ??ψ ⇔ ?ψ, Licensing boils down to the
following:

Fact 16 (Assertions Licensed by Questions) Let ?ψ be an inquisitive
question.

?ψ ∝ !ϕ iff the possibility in the picture of ϕ is a possibility, or the
union of some possibilities, in the picture of ?ψ.

Of course, if the possibility expressed by !ϕ coincides with a single possibility
in the picture of ?ψ, we have a case of complete answerhood. But note that
licensing requires that !ϕ should not be overinformative with respect to ?ψ.
E.g., (p ∧ q) is not licensed by ?p. Another case in point, ¬p is not licensed
by (p → ?q). The only informative answers (p → ?q) licences are (p → q)
and (p → ¬q). Argumentation for overinformative answers not to be licensed
comes from the pragmatics.

If !ϕ is an informative assertion that corresponds to the union of some
possibilities for ?ψ, then it is a partial answer. E.g., p is licensed by (?p∧?q),
and so are !(p ∨ q), and (p → ¬q). They exclude some possibility (?p ∧ ?q)
gives rise to.
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Now we are looking at assertive responses to questions but inquisitive
ones can do as well. Such as the alternative question ?(p∨ q) and the hybrid
disjunction (there it is) (p ∨ q) in response to the conjunction of questions
(?p ∧ ?q).

Since that’s what we started the story with, the Gricean picture of dis-
junction, let’s consider that case in a bit more detail. The hybrid disjunction
(p ∨ q) can only be licensed by other inquisitive sentences, not necessarily
only questions. That is because (p∨ q) gives rise to two overlapping alterna-
tives. If the stimulus is an assertion, the corresponding theme ?!ψ gives rise
to two non-overlapping alternatives that (p ∨ q) cannot meet.

So, with respect to hybrid disjunctions the inquisitive semantics together
with the notion of licensing meets Grice’s picture precisely. It needs another
inquisitive sentences to be contextually related, and each of the possibilities
in the disjunction should be a partial answer to that contextual question.

One thing to note is that whenever (p ∨ q) is licensed, !(p ∨ q) cannot
fail to be licensed as well. So, the story is not finished here. We need some
pragmatic deliberations to tell us when to choose what, and whether perhaps
choosing one over the other gives rise to certain implicatures. (Which I think
it does.)

Question 14 Make a list of some (non-)licensing facts, discuss whether you
intuitively agree or not with what the definition outputs.

5.3 Classical Licensing

When you do something ‘new’ it is always important to relate it as well as
you can to what went before, to get a precise picture of where the differences
are. In our case what went before is partition semantics (and perhaps also
the ‘conditional semantics’ of Velissaratou).

That is one thing. The other thing is that I very much like to argue that
the notion of licensing is really ‘new’ and that it is a basic logical notion, in
the sense that it is not reducable to entailment, that inquisitive semantics
really comes with a new view of logic.

For partition semantics, classical inquisitiveness, we do have that licens-
ing can be reduced to entailment. So, the idea is that the move to inquisitive
semantics, in essence inquisitive disjunction, causes the need for going be-
yond entailment. (Although, for a logic with just conditional questions, this
already holds as well.)

On the semantic side it is easy to characterize the classical case.
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Definition 11 (Classical Sentences) Let ϕ be a sentence of L.

ϕ is it classical iff no two possibilities in the picture of ϕ overlap.

And, of course, we then have the following:

Fact 17 (Classical Pictures are Partitions)

1. ϕ is classical iff the picture of ϕ is a partition of a subset of I.

2. ϕ is classical iff the meaning of ϕ is an equivalence relation on a subset
of I.

Note that I am talking here about partitions on a subset of I. That means
that the notion not only covers certain questions, but also covers all asser-
tions, and certain hybrids, such as (p ∧ ?q).

I did not really get into that in these notes, but I did mention somewhere
that one can show that our inquisitive propositional language is complete
with respect to the semantics, i.e., that all possible meanings, all relations
on subsets of I which are symmetric and closed under reflexivity, can be
expressed by a sentence of the language. (Savador Mascarenhas has proved
this.) We don’t need the full language, ⊥,∧,→,∨ suffices for that, and even
only ¬ and ∨ can manage it.

Now we can ask:

Question 15 Can we characterize a fragment of the full language that is
complete with respect to classical meanings? My conjecture is that we get
such a fragment, by having ¬, ∧ and ? as the only basic operators. (Disjunc-
tion, implication defined in terms of that in the classical way, which makes
them all assertions.) And if we move to predicate logic, which we should for
a good comparison with LoI, we add the universal quantifier. (Existential
quantification defined in the classical way turns it into an assertion.) I have
no proof of this yet.

We do get alll sorts of things we don’t find in LoI, such as negation of a
question, but that doesn’t really matter, since it is just a contradiction. Also,
you don’t really find conjunction between questions, and between questions
and assertions explicitly in the language of LoI, but since sequences of such
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sentences are dealt with, I think that in terms of expressiveness it amounts
to the same thing. (In terms of the update semantics of LoI, completeness
would amount to: every possible information state can be reached by a
sequence of updates of the initial state with sentences of the language.)

Then licensing. I think the following holds:

Fact 18 (Classical Licensing) For classical ϕ and ψ:

ψ ∝ ϕ iff ?ψ |= ?ϕ (Licensing reducible to entailment)

Note that this is not the same as licensing defined in LoI. It is richer. It
not only characterizes partial answerhood for LoI, but also the subquestion
relation, and it allows for critical moves.

Question 16 This notion of licensing would not fit the game of interroga-
tion anymore. What sort of game would be characterized by it? Another,
and I think much easier, issue is of course to prove (or disprove) the above
conjectured fact.

Then the next thing is to show that as soon as we leave the area of classical
meanings, this neat characterization of licensing breaks down. (That doesn’t
yet prove that no reduction of licensing to entailment is possible, only that
this one doesn’t work anymore, but still.)

The crucial examples are the following:

Fact 19 (Non-Classical Licensing)

1. (p → ?q) ∝ (p → q) and (p → ?q) ∝ (p → ¬q)

(p → ?q) )|= ?(p → q) (The other way around!)

2. ?p )∝ (q → ?p)

?p |= (q → ?p)

3. ?p )∝ (?p ∨ ?p) (The other way around!)

?p |= (?p ∨ ?p)

The first counterexample concerns answerhood. Classical licensing does not
deliver the right notion of answerhood for conditional questions. (Note that
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classical licensing wants ?(p → ?q), but since (p → ?q) is already a question
by itself, putting a question mark in front of it is redundant.)

The second and third counterexample concern the subquestion relation:
?p should count as an atomic question, which has no proper subquestions.
But since it classically licenses the conditional question (q → ?p) and the
disjunction of questions (?p ∨ ?p), classical licensing predicts that ?p has
these as a kind of subquestions.

Note that especially the second and third case need not really convince
you that classical licensing is on the wrong track. One could argue that it
is not so bad to predict that (q → ?p) is licensed by ?p. You may find that
the weaker (entailment is right about that) conditional question is a natural
continuation of a dialogue if you are unable to directly answer ?p.

Well, I agree with that intuition. But licensing is not designed to account
for all natural continuations of a dialogue. Changing the topic of conversation
is also a natural dialogue move, but not one that licensing wants to cover. We
want a notion of strict logical relatedness, not the type of weak relatedness
that classical licensing predicts in the second example.

Question 17 Try to find a natural situation in which you would say that
(q → ?p) is fine after ?p. Wouldn’t just asking ?q be equally fine in the same
situation? If so, the logic should not say that (q → ?p) is licensed by ?p,
because then anything goes.

Also concerning the third example one may have qualms. In particular one
might argue that the prediction of non-classical licensing that (?p∨?p) ∝ ?p
is also not particularly convincing.

I have been trying for a long time to change the notion of licensing
precisely to get rid of this prediction. The non-success of my many attempts,
have convinced me that things should be like this. And that if there is
anything wrong with it, it should get a pragmatic explanation, and should
not be put in the logic as such.10

What makes things not so easy, is that it is not so clear what a disjunction
of questions really is. But if you take the choice-question idea seriously, it
is rather natural to allow after having been offered a choice between two
questions, to just choose one. That’s the way licensing looks upon it.

10This has changed in the meantime. By adding the notion of homogeneity, these coun-
terexamples are accounted for.
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Question 18 There are rather drastic difference between the notion of
meaning that inquisitive semantics gives rise to and classical meanings. One
such difference is that in a classical semantics, where questions are partitions,
the traditional Fregean distinction between sense and reference, intension
and extension, remains fully in force, also for questions. The extension of a
question in a particular world is the proposition that expresses the true and
complete answer to the question in that world, the block in the partition to
which that world belongs. Following standard patterns, the intension is the
function that tells you for every world what the extension in that world is.

This feature of the classical partition semantics comes handy, e.g., in
accounting for the semantics of questions embedded under a verb like ‘to
know’. You can analyze ‘x knows Q’ as to be true in a world w iff x knows
the proposition that is the extension of Q in w, i.e., x knows the true answer
to the question Q.

This picture breaks down when meanings are sets of possibilities that
may overlap. If a world is in the overlap of several possibilities, then there
is (or at least there seems to be) no unique proposition that corresponds to
a true and complete answer in that. Intension as a function from worlds to
propositions no longer works.

One thing to do here, is to write a critique of inquisitive semantics from
the perspective of Fregean semantics, pointing out what gets lost.

Another thing one might do is to try and see whether one way or the other
we can salvage the sense-reference distinction within inquisitive semantics.
One may consider this in the semantic format chosen in this paper, or the
update/dynamic format I used on the sheets of the last two meetings.

I am primarily thinking of these questions as philosophical questions,
but they can also be linked, if only globally, to more empirical issues, like
the analysis of sentences with questions that are not partitions (conditional
questions, alternative questions) embedded under a verb like ’to know’.

No doubt, there are also other philosophical issues to address with re-
spect to the global inquisitive picture of meaning as related to cooperative
information exchange. For example, does it have any impact on Lewis’ con-
vention of truthfulness and trust. Such a notion is basically information-
oriented, can we give it an inquisitive twist? Perhaps simlar questions could
be asked in relation to Davidsonian radical interpretation, where trust in
the correspondance of belief also plays a crucial role.
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A Inquisitive Predicate Logic

I clipped this part from an earlier update version of the story, and made
minimal changes to make it fit the new simple static semantics. But I’m not
fully sure that everything comes out correct.

We present the basics of an extension of our inquisitive semantics to the
predicate logical case. We begin with the syntax.

Definition 12 (Inquisitive First Order Syntax) The non-logical vo-
cabulary of L consists of a set of individual constants Con, and for 0 ≤ n, a
set of n-place predicates Predn; Var is a denumerable set of variables. By
Term we mean Con ∪ Var.

1. If Pn ∈ Predn, and t1, . . . , tn ∈ Term, then Pt1 . . . tn ∈ L.

The clauses 2–9 read the same as in Definition 1.

10. If x ∈ Var, and ϕ ∈ L, then ∃xϕ ∈ L.

11. If x ∈ Var, and ϕ ∈ L, then ∀xϕ ∈ L.

As was the case with the connectives, the quantifiers are not interdefinable
in the usual way. So, we need both clauses in the syntax.

We assume a standard notion of free and bound variables. By a sentence
of L, we mean a formula ϕ ∈ L which has no free occurrences of variables.
For easy comparison with The Logic of Interrogation, we might add:

?'xϕ = '∀x?!ϕ

By 'x we mean a sequence of variables, and by '∀x the corresponding sequence
of quantifiers.

Next we extend the notion of an index to be able to deal with the ex-
tended language.

Definition 13 (Indices and Suitable Pairs)
Let D, the domain, be a non-empty set.

1. An index is a function i such that:
∀Pn ∈ Predn: i(Pn) ⊆ Dn; and ∀t ∈ Term: i(t) ∈ D.

2. A pair of indices 〈i, j〉 is suitable iff for all t ∈ Term: i(t) = j(t).
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Indices are a combination of an interpretation function for the non-logical
vocabulary, and an assignment of values to the variables. Of course variables
will be variables and hence their values may vary, but not accross the pairs
of indices we take into consideration. You might say that a pair of indices
comes with a single assignment. With respect to individual constants, we
dictate that they are rigid in a suitable pair.

We add the following little train of notions:

Definition 14 (Assignment)
Let i be a possibility, 〈i, j〉 a suitable pair of indices.

1. i[x/d] is the index i′ which is like i, except for the possible difference
that i′(x) = d.

2. 〈i, j〉[x/d] = 〈i[x/d], j[x/d]〉.

The inquisitive interpretation of the new syntactic clauses relative to suitable
pairs of indices reads as follows.

Definition 15 (Inquisitive Quantification)

1. 〈i, j〉 |= Pt1 . . . tn iff 〈i(t1), . . . , i(tn)〉 ∈ i(P ) & 〈j(t1), . . . , j(tn)〉 ∈
j(P )

The clauses 2–9 in read the same as in Definition 3.

10. 〈i, j〉 |= ∃xϕ iff for some d ∈ D: 〈i, j〉[x/d] |= ϕ

11. 〈i, j〉 |= ∀xϕ iff for all d ∈ D: 〈i, j〉[x/d] |= ϕ

Question 19 What changes do we need to make with respect to the defi-
nitions we gave for the propositional case?

Like (p ∨ q), ∃xPx is a hybrid sentence. Indices i where i(P ) = ∅ will be
eliminated, but furthermore there will be as many possibilities in the picture
of ∃xϕ as there are objects d ∈ D such that in some index i: d ∈ i(P ). Such
a possibility will consist of all the indices i where d ∈ i(P ). The possibilities
may overlap. If we take the assertive closure !∃xPx, the difference is that it
will not give rise to these different possibilities.
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Now, what does this mean? Well, it may need some more deliberation
than we have the space for in this Appendix, but I think it means that it
provides an answer to the long standing debate about the specific (referen-
tial) and non-specific (attributive) use of indefinites.11 In particular about
the issue whether this is a semantic or a pragmatic affair.

We can take ∃xϕ to correspond to the specific or referential use, where
the speaker has a certain individual in mind, only the hearer does not know
which, of course, hence she ends up with an issue: which individual is meant?

On the other hand, if !∃xϕ is used, it is simply only asserted that there
is at least some individual with the property P , it corresponds to the non-
specific or attributive use.12 A general interesting feature about inquisitive
semantics is that it shifts the borderline between semantics and pragmatics.

This also holds with respect to questions in combination with existen-
tial quantification. If we consider ?∃xPx, then it obviously corresponds to a
mention-some question, of which it has also been debated whether the dis-
tinction between mention-some and mention-all is a semantic or a pragmatic
affair.13

Apart from the mention-some case, we also get ?!∃xPx, which is a
yes/no-question, and ∃x?Px, which is a choice question (like (?p∨ ?q): pick
any object you like, and tell me whether it has the property P or not.

The sentence ∀xPx is an assertion, i.e., unlike in the existential case it is
equivalent with !∀xPx, and ?∀xPx is the corresponding yes/no-question.

More interestingly, ∀x?Px corresponds to a who-question, there will be as
many possibilities in the picture of ∀x?Px, as there are possible denotations
of P . It leads to a partition, and we have that ∀x?Px means the same as
what ?xPx meant in The Logic of Interrogation.14

Finally, ∀x(Px → ?Qx) corresponds to a which-question. And we are
back at where our investigations once started. The analysis of which-questions
we get is the same as in Velisseratou (2000), and is discussed there in some

11I am holding back a bit, because I am looking ahead at dynamic existential quantifica-
tion, which is not so difficult to implement in the framework as well. If you do that, as has
been observed before, the existential quantifier also raises an issue, but this time about
the value of the variable quantified over. This, probably fits the specific or referential use
even better.

12How can we tell which reading is intended? My hypothesis is, accross the board, that
we can ‘hear’ it, that ! and ? correspond to certain intonation patterns or the like.

13It would be much harder to defend the position that mention-two, mention-between-
5-and-10, etc. is a matter of pragmatics, these of course can be formulated just as easily
here.

14It would be interesting to look at things like ∀x?∃yRxy as well, but then, this is just
an Appendix.
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detail. But now things are embedded in a wider logical context, where we
also can provide a characterization of answerhood and subquestionhood for
these questions — which give rise to non-overlapping alternatives — in terms
of licensing. And this is what I aimed at at the very beginning of the story
that, for the time being, ends here.

Question 20 This appendix on the predicate logical case is can be elab-
orated upon in many ways. You can look at empirical issues that are just
hinted at above. You can try to find some logical facts concerning entailment
and licensing (or compliance, using the definition from the Tbilisi paper).
These things things have hardly been investigated sofar. Also comparisions
with, e.g., The Logic of Interrogation and Velissaratou’s paper could be
made.
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