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Abstract. This paper discusses the extension of propositional inquisi-
tive semantics (Ciardelli and Roelofsen, 2009b; Groenendijk and Roelof-
sen, 2009) to the first order setting. We show that such an extension
requires essential changes in some of the core notions of inquisitive se-
mantics, and we propose and motivate a semantics which retains the
essential features of the propositional system.

1 Introduction

The starting point of this paper is the propositional system of inquisitive seman-
tics (Ciardelli, 2009; Ciardelli and Roelofsen, 2009a,b; Groenendijk and Roelof-
sen, 2009). Whereas traditionally the meaning of a sentence is identified with
its informative content, in inquisitive semantics –originally conceived by Groe-
nendijk (2009b) and Mascarenhas (2009)– meaning is taken to encompass in-
quisitive content, consisting in the potential to raise issues.

More specifically, the main feature of this system is that a disjunction p ∨ q
is not only informative, but also inquisitive: it proposes two possibilities, as
depicted in figure 1(b), and invites other participants to provide information in
order to establish at least one of them.

In inquisitive semantics, questions may also be represented: for instance, the
polar question ‘whether p’ may be expressed by the classical tautology p ∨ ¬p,
whose meaning is depicted in figure 1(c).

The main feature of a first-order extension can be expected to be that exis-
tential quantification also has inquisitive effects. A simplified version, assuming
finite domains, was used in Balogh (2009) in an analysis of focus phenomena
in natural language. However, as was shown in Ciardelli (2009), defining a first
order system that can deal with infinite domains is not a trivial affair. While
there I proposed to enrich the propositional system in order to make the pred-
icate extension possible, what I outline here is a conservative extension of the
original framework, which retains most of its essential features, in particular the
decomposition of meanings into a purely informative and a purely inquisitive
component.

2 Propositional inquisitive semantics

We start by recalling briefly the propositional implementation of inquisitive se-
mantics. We assume a set P of propositional letters. Our language will consist
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Fig. 1. Examples of propositional inquisitive meanings.

of propositional formulas built up from letters in P and ⊥ using the connectives
∧,∨ and →. We write ¬ϕ as an abbreviation for ϕ→ ⊥.

Our semantics is based on information states, modeled as sets of valuations.
Intuitively, a valuation describes a possible state of affairs, and a state s is
interpreted as the information that the actual state of affairs is described by one
of the valuations in s. In inquisitive semantics, information states are always
used to represent the state of the common ground of a conversation, not the
information state of any individual participant.

Definition 1 (States). A state is a set of valuations for P. We denote by ω
the state of ignorance, i.e. the state containing all valuations. We use s, t, . . . as
meta-variables ranging over states.

We get to inquisitive meanings passing through the definition of a relation called
support between states and propositional formulas.

Definition 2 (Support).
s |= p ⇐⇒ ∀w ∈ s : w(p) = 1
s |= ⊥ ⇐⇒ s = ∅
s |= ϕ ∧ ψ ⇐⇒ s |= ϕ and s |= ψ
s |= ϕ ∨ ψ ⇐⇒ s |= ϕ or s |= ψ
s |= ϕ→ ψ ⇐⇒ ∀t ⊆ s : if t |= ϕ then t |= ψ

Support is used to define inquisitive meanings as follows.

Definition 3 (Truth-sets, possibilities, meanings).

1. The truth-set |ϕ| of ϕ is the set of valuations which make ϕ true.
2. A possibility for ϕ is a maximal state supporting ϕ.
3. The inquisitive meaning [ϕ] of ϕ is the set of possibilities for ϕ.

Informativeness The meaning [ϕ] represents the proposal expressed by ϕ. One
effect of the utterance of ϕ is to inform that the actual world lies in one of
the specified possibilities, i.e. to propose to eliminate all indices which are not
included in any element of [ϕ]: thus, the union

⋃
[ϕ] expresses the informative

content of ϕ. A formula which proposes to eliminate indices is called informative.
It is easy to see that the equality

⋃
[ϕ] = |ϕ| holds, insuring that inquisitive

semantics preserves the classical treatment of information.



Inquisitiveness What distinguishes inquisitive semantics from classical update
semantics is that now the truth-set |ϕ| of a formula comes subdivided in a
certain way, which specifies the possible resolutions of the issue raised by the
formula. If resolving a formula ϕ requires more information than provided by ϕ
itself, which happens iff |ϕ| 6∈ [ϕ], then ϕ requests information from the other
participants, and thus we say it is inquisitive. In the present system (but not in
the unrestricted system mentioned below) a formula is inquisitive precisely in
case it proposes more than one possibility.

Inquisitiveness

Informativeness

ϕ ≡ !ϕ ∧ ?ϕ
?ϕ

!ϕ

Assertions and questions Notice that
formulas which are neither informa-
tive nor inquisitive make the trivial
proposal {ω} (namely, they propose
to stay in the given state). Thus, in-
quisitive meanings can be seen as con-
sisting of an informative dimension
and an inquisitive dimension. Purely
informative (i.e., non-inquisitive) for-
mulas are called assertions; purely
inquisitive (i.e., non-informative) for-
mulas are called questions. In other
words, assertions are formulas which
propose only one possibility (namely
their truth-set), while questions are
formulas whose possibilities cover the
whole logical space ω.

It is easy to see that disjunction is the only source of inquisitiveness in the
language, in the sense that any disjunction-free formula is an assertion. Moreover,
a negation is always an assertion: in particular, for any formula ϕ, its double
negation ¬¬ϕ, abbreviated by !ϕ, is an assertion expressing the informative
content of ϕ.

An example of a question is the formula p ∨ ¬p depicted in 1(c), which
expresses the polar question ‘whether p’. In general, the disjunction ϕ ∨ ¬ϕ is a
question which we abbreviate by ?ϕ.

We say that two formulas ϕ and ψ are equivalent, in symbols ϕ ≡ ψ, in case
they have the same meaning. The following proposition, stating that any formula
is equivalent with the conjunction of an assertion with a question, simply reflects
the fact that inquisitive meanings consist of an informative and an inquisitive
component.

Proposition 1 (Pure components decomposition). ϕ ≡ !ϕ ∧ ?ϕ

Obviously, the notions and the results discussed in this section may be relativized
to arbitrary common grounds. For more details on the propositional system
and its logic, the reader is referred to Groenendijk (2009a) and Ciardelli and
Roelofsen (2009b).



3 The maximality problem

In this section I will discuss the main difficulty one encounters when trying to
reproduce the above framework in a predicate setting; our analysis will lead to
considerations which motivate the solution proposed in the next section.

Fix a first-order language L. A state will now consist of a set of first-order
models for the language L: not to complicate things beyond necessity, we shall
make the simplifying assumption that all models share the same domain and the
same interpretation of constants and function symbols. Thus, let D be a fixed
structure consisting of a domain D and an interpretation of all (constants and)
function symbols in L; a first-order model for L based on the structure D is
called a D-model.

Definition 4 (States). A state is a set of D-models.

If g is an assignment into D, we denote by |ϕ|g the state consisting of those
models M such that M, g |= ϕ in the classical sense. The extension of the
definition of support is unproblematic. Just like disjunction, an existential will
only be supported in those states where a specific witness for the existential is
known.

Definition 5 (First-order support). Let s be a state and let g be an assign-
ment into D.
s, g |= ϕ ⇐⇒ ∀M ∈ s : M, g |= ϕ for ϕ atomic
Boolean connectives ⇐⇒ as in the propositional case
s, g |= ∃xϕ ⇐⇒ s, g[x 7→ d] |= ϕ for some d ∈ D
s, g |= ∀xϕ ⇐⇒ s, g[x 7→ d] |= ϕ for all d ∈ D

Based on support, we may define the informative content of a formula and prove
that the treatment of information is classical. We may also define when a formula
is inquisitive. However, there is a crucial thing that we cannot do: we cannot get a
satisfactory notion of meaning by taking maximal supporting states, and indeed
in any way which involves support alone. This is what the following examples
show.

Example 1. Let our language consist of a binary function symbol + and a unary
predicate symbol P ; let our domain be the set N of natural numbers and let +
be interpreted as addition. Moreover, let x ≤ y abbreviate ∃z(x+ z = y).

Let B(x) denote the formula ∀y(P (y) → y ≤ x). It is easy to check that a
state s supports B(n) for a certain number n if and only if B(n) is true in all
models in s, that is, if and only if n is an upper bound for PM for any model
M ∈ s, where PM denotes the extension of the predicate P in M .

We claim that the formula ∃xB(x) –which expresses the existence of an
upper bound for P– does not have any maximal supporting state. For, consider
an arbitrary state s supporting ∃xB(x): this means that there is a number n
which is an upper bound for PM for any M ∈ s.

Now let M∗ be the model defined by PM∗
= {n + 1}. M∗ does not belong

to s, since we just said that the extension of P in any model in s is bounded
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Fig. 2. The intended possibilities |B(n)| for the boundedness formula and its
truth set |∃xB(x)|, which is not itself a possibility.

by n; hence s∪ {M∗} is a proper superset of s. It is obvious that for any model
M ∈ s ∪ {M∗} we have PM ⊆ {0, . . . , n + 1} and thus M |= B(n + 1). Hence,
s ∪ {M∗} |= B(n + 1) and therefore s ∪ {M∗} |= ∃xB(x). So, s ∪ {M∗} is a
proper extension of s which still supports ∃xB(x).

This shows that any state that supports ∃xB(x) can be extended to a larger
state which still supports the same formula, and therefore no state supporting
∃xB(x) can be maximal.

Let us meditate briefly on this example. What possibilities did we expect to come
out of the boundedness example? Now, B(x) is simply supported whenever it is
known to be true, so it has a classical behaviour. The existential quantifier in
front of it, on the other hand, is designed to be satisfied only by the knowledge of
a concrete bound, just like in the propositional case a disjunction (of assertions)
is designed to be satisfied only by the knowledge of a disjunct.

Therefore, what we would expect from the boundedness formula is a hybrid
behaviour: of course, it should inform that there is an upper bound to P ; but it
should also raise the issue of what number is an upper bound of P . The possible
resolutions1 of this issue are B(0), B(1), B(2), etc., so the possibilities for the
formula should be |B(0)|, |B(1)|, |B(2)|, etc.

Now, the definition of possibilities through maximalization has the effect of
selecting alternative ways to resolve the issue raised by a formula, i.e. ways which
are incomparable relative to entailment. The problem is that obviously, if 0 is
a bound for P , then so are 1, 2, etc.; if 1 is a bound, then so are 2, 3, etc. So,
the ways in which the issue raised by the boundedness formula may be resolved
cannot be regarded as alternatives. Still, B(0), B(1), etc. are genuine solutions
to the meaningful issue raised by the existential, and our semantics should be
able to capture this.

This indicates that we need to come up with another way of associating a
proposal to a formula; and if we are to be able to deal with the boundedness
example, we need our notion to encompass proposals containing non-alternative
possibilities. Notice that we cannot hope for a definition of such possibilities in
terms of support: this is witnessed by the following example.

1 For the precise definition of resolutions of a formula, the reader is referred to Ciardelli
(2009)



Example 2. Consider the following variant of the boundedness formula: ∃x(x 6=
0 ∧ B(x)). Possibilities for this formula should correspond to the possible wit-
nesses for the existential, and since 0 is not a witness, we expect |B(0)| not to
be a possibility.

Thus, a system that represents the inquisitive behaviour of the existential
quantifier in a satisfactory way should associate different possibilities to the
formulas ∃xB(x) and ∃x(x 6= 0 ∧ B(x)). Capturing this distinction is quite
important; for, intuitively, “Yes, zero!” would be a compliant response to “There
exists an upper bound for P”, but not to “There exists a positive upper bound to
P”, and being able to analyze compliance in dialogue is one of the principal aims
of inquisitive semantics. However, the formulas ∃xB(x) and ∃x(x 6= 0 ∧ B(x))
are equivalent in terms of support.

The point here is that, as argued in Ciardelli (2009), support describes the
knowledge conditions in which the issue raised by a formula is resolved, but is
not sufficiently fine-grained to determine what the resolutions of a formula are.

4 A first-order inquisitive semantics

The discussion in the previous section indicates that we need to devise a non
support-based notion of meaning which allows for non-alternative possibilities,
i.e. possibilities which may be included in one another. In order to do so, we
start from the observation that propositional inquisitive meanings may also be
defined recursively, by means of an operator Max which, given a set Π of states,
returns the set Max(Π) of maximal elements of Π.

Definition 6.

1. [p] = {|p|} if p ∈ P
2. [⊥] = {∅}
3. [ϕ ∨ ψ] = Max([ϕ] ∪ [ψ])
4. [ϕ ∧ ψ] = Max{s ∩ t | s ∈ [ϕ] and t ∈ [ψ]}
5. [ϕ→ ψ] = Max{Πf | f : [ϕ]→ [ψ]},

where Πf = {w ∈ ω | for all s ∈ [ϕ], if w ∈ s then w ∈ f(s)}

Restricting the clauses of this definition to indices belonging to a certain state
s we obtain the proposal [ϕ]s made by ϕ relative to the common ground s.

Now, the most obvious way to allow for non-maximal possibilities is to simply
remove the operator Max from the clauses. This strategy, pursued in my thesis
(Ciardelli, 2009), changes the notion of meaning right from the propositional
case.

In the resulting system, which we refer to as unrestricted inquisitive seman-
tics, informativeness and inquisitiveness no longer exhaust the meaning of a
formula. For, formulas such as p ∨ > are neither informative nor inquisitive,
but they still make a non-trivial proposal. Ciardelli et al. (2009) suggest that



such formulas may be understood in terms of attentive potential and shows how
the enriched notion of inquisitive meaning provides simple tools for an analy-
sis of might. In this respect, the unrestricted system is a simple but powerful
refinement of the standard system.

However, this solution has also drawbacks. For, in some cases the interpreta-
tion of possibilities included in maximal ones in terms of attentive potential does
not seem convincing. For instance, consider a common ground s in which a con-
crete upper bound n for P is known, that is, such that s |= B(n): intuitively, the
boundedness formula should be redundant relative to such a common ground,
that is, we should have [∃xB(x)]s = {s}. However, in the unrestricted system,
the boundedness formula still proposes the range of possibilities B(0), . . . , B(n),
that is, we have [∃xB(x)] = {|B(0)| ∩ s, . . . , |B(n)| ∩ s, ∅}.

The behaviour of the propositional connectives is sometimes also puzzling:
for instance, (p ∨ q) ∧ (p ∨ q) also proposes the possibility that p ∧ q (but p ∨ q
does not), while the implication p→ ?p turns out equivalent with ¬p ∨ >.

My aim in the present paper is to outline a different road, to describe a way to
extend propositional inquisitive semantics as it is to obtain a more “orthodox”
predicate inquisitive semantics in which meaning still consists of informative and
inquisitive potential.

Definition 7. If Π is a set of states, say that an element s ∈ Π is optimally
dominated in case there is a maximal state t ∈ Π with t ) s.

In the unrestricted propositional semantics, due to the finitary character of
propositional meanings, non-maximal possibilities are always properly included
in some maximal one. Therefore, taking the maximal elements or filtering out
optimally dominated ones are operations which yield the same result.

On the other hand, the example of the boundedness formula shows that
the meanings we want to obtain in the first-order case may consist of an infinite
chain of possibilities, none of which is maximal. Here, as we have seen, extracting
maximal states in definition 6 leaves us with nothing at all; filtering out optimally
dominated states, on the other hand, has no effect in this case and yields the
intended meaning of the boundedness formula.

These observations lead to the idea of expanding definition 6 with the natural
clauses for quantifiers (where the behaviour of ∃ and ∀ is analogous to that of ∨
and ∧ respectively), while substituting the operator Max with a more sensitive
filter Nod which, given a set of states Π, returns the set of states in Π which
are not optimally dominated. The result is the following definition.

Definition 8 (First-order inquisitive meanings). The inquisitive meaning
of a formula ϕ relative to an assignment g is defined inductively as follows.

1. [ϕ]g = {|ϕ|g} if ϕ is atomic
2. [⊥]g = {∅}
3. [ϕ ∨ ψ]g = Nod([ϕ]g ∪ [ψ]g)
4. [ϕ ∧ ψ]g = Nod{s ∩ t | s ∈ [ϕ]g and t ∈ [ψ]g}
5. [ϕ→ ψ]g = Nod{Πf | f : [ϕ]g → [ψ]g}



6. [∃xϕ]g = Nod(
⋃

d∈D[ϕ]g[x 7→d])
7. [∀xϕ]g = Nod{

⋂
d∈D sd | sd ∈ [ϕ]g[x 7→d]}

Again, the proposal [ϕ]s,g made by ϕ relative to the common ground s and the
assignment g is obtained by restricting the clauses to indices in s. Obviously, if ϕ
is a sentence, the assignment g is irrelevant and we may therefore omit reference
to it.

There is, however, a subtlety we must take into account. While in the proposi-
tional case a formula may propose the empty state only if it is inconsistent, with
the given definition the empty state would pop up in totally unexpected circum-
stances, with unpleasant consequences in terms of entailment and equivalence;
for instance, we would have [∃x(x = 0∧B(x))] = {|B(0)|, ∅} 6= {|B(0)|} = [B(0)].
To fix this problem, we modify slightly our definitions, stipulating that the empty
state is optimally dominated in a set of states Π as soon as Π contains a non-
empty possibility. For the rest, we can keep the definition of the system un-
changed.

Notice that by definition of the operator Nod, we can never end up in an absurd
situation like the one discussed in example 1, in which [ϕ] = ∅ (in which, that is, a
formula would propose nothing !) Moreover, it is easy to establish inductively the
following fact, which shows that we have indeed defined a conservative extension
of propositional inquisitive semantics.

Proposition 2. If ϕ is a quantifier-free formula, then the meaning [ϕ] given
by definition 8 coincides with the meaning of ϕ considered as a propositional
formula, as given by definition 3.

The system we defined can cope with the subtleties highlighted by example 2:
formulas which are equivalent in terms of support may be assigned different
meanings, and may even have no common possibility at all, thus differing dra-
matically in terms of the compliant responses they allow.

Example 3. In the context of example 1, let E(x) = ∃y(y + y = x) and O(x) =
¬E(x); clearly, E(x) and O(x) are assertions stating, respectively, that x is even
and that x is odd. We have:

1. [∃xB(x)] = {|B(n)| , n ∈ N}
2. [∃x(x 6= 0 ∧B(x))] = {|B(n)| , n 6= 0}
3. [∃x(E(x) ∧B(x))] = {|B(n)| , n even}
4. [∃x(O(x) ∧B(x))] = {|B(n)| , n odd}

On the one hand, one knows an even upper bound for P iff one knows an odd
upper bound, so the formulas ∃x(E(x)∧B(x)) and ∃x(O(x)∧B(x)) are resolved
in exactly the same information states, which is what support captures. On the
other hand, the sentences “there is an even upper bound to P” and “there is
an odd upper bound to P” invite different responses, and the system rightly
predicts this by assigning them distinct possibilities.



Moreover, unlike the unrestricted system, the proposed semantics correctly
predicts that the boundedness formula is redundant in any information state in
which an upper bound for P is known: if s |= B(x), then [∃xB(x)]s = {s}.

Many features of the propositional system carry over to this first-order imple-
mentation. Crucially, meaning is still articulated in two components, informa-
tiveness and inquisitiveness. For, consider a ϕ which is neither informative nor
inquisitive: since ϕ is not inquisitive, |ϕ| ∈ [ϕ]; and since ϕ is not informative,
|ϕ| = ω; finally, since the presence of the filter Nod explicitly rules out possibil-
ities included in maximal ones, ω must be the unique possibility for ϕ, that is,
ϕ must be an inquisitive tautology.

Assertions and questions may be defined as usual, and it is still the case that
for any formula ϕ, !ϕ is an assertion, ?ϕ is a question, and the decomposition
ϕ ≡ !ϕ ∧ ?ϕ holds, where equivalence amounts to having the same meaning.

Obviously, the classical treatment of information is preserved, i.e. we have⋃
[ϕ] = |ϕ|. Finally, the sources of inquisitiveness in the system are disjunc-

tion and the existential quantifier, in the sense that any formula not containing
disjunction or the existential quantifier is an assertion.

5 Conclusions

In this paper we proposed a conservative extension of propositional inquisitive
semantics to the first order setting, focussing on the essential changes that this
move required. These were (i) to state the semantics in terms of a recursive
specification of the possibilities for a sentence, rather than in terms of support;
and (ii) to switch from the requirement of maximality to that of not being
optimally dominated. These changes have no effect on the propositional case.

The proposed system was motivated here by the attempt to obtain correct
predictions while retaining as much as possible of the propositional system: a
very important thing which remains to be done is to provide a more conceptual
justification for the given definitions.

Moreover, a task for future work is the investigation of both the logical fea-
tures of the proposed semantics and its application to natural language, in par-
ticular to the semantics of interrogative sentences.

With regard to this latter aspect, notice that our logical semantics as such
does not embody a specific theory on the semantic analysis of interrogatives.
Instead, it offers a general logical framework in which also opposing empiri-
cal analyses may be formulated and studied. This is most obviously so for the
Hamblin analysis of questions Hamblin (1973), which is covered by inquisitive
existential quantification (∃xPx), and the partition approach of Groenendijk and
Stokhof (1984), which is covered by universal quantification over polar questions
(∀x?Px). The treatment of which-questions in Velissaratou (2000), which ana-
lyzes such questions in terms of exhaustive answers, but not as partitions, may
also be represented (by ∀x(Px→ ?Qx)).
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