
Submitted for publication, manuscript No.
(will be inserted by the editor)

Generalized Inquisitive Semantics and Logic

Ivano Ciardelli · Floris Roelofsen

August 28, 2009

Abstract This paper investigates a generalized version of inquisitive semantics. A

complete axiomatization of the associated logic is established, the connection with in-

tuitionistic logic and several intermediate logics is explored, and the generalized version

of inquisitive semantics is argued to have certain advantages over the system that was

originally proposed by Groenendijk (2008c) and Mascarenhas (2008).
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1 Introduction

Traditionally, logic is concerned with argumentation. As a consequence, formal investi-

gations of the semantics of natural language are usually focussed on the descriptive use

of language, and the meaning of a sentence is identified with its informative content.

Stalnaker (1978) gave this informative notion a dynamic and conversational twist by

taking the meaning of a sentence to be its potential to enhance the common ground,
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where the common ground is viewed as the conversational participants’ shared infor-

mation. Technically, the common ground is taken to be a set of possible worlds, and a

sentence provides information by eliminating some of these possible worlds.

Of course, this picture is limited in several ways. First, it only applies to sentences

that are used exclusively to provide information. Even in a typical informative dialogue,

utterances may serve different purposes as well. Second, the given picture does not take

into account that updating the common ground is a cooperative process. One speech

participant cannot simply change the common ground all by herself. All she can do is

propose a certain change. Other speech participants may react to such a proposal in

several ways. These reactions play a crucial role in the dynamics of conversation.

In order to overcome these limitations, inquisitive semantics starts with a differ-

ent picture. It views propositions as proposals to change the common ground. These

proposals do not always specify just one way of changing the common ground. They

may suggest alternative ways of doing so, among which the responder is then invited to

choose. Formally, a proposition consists of one or more possibilities. Each possibility is

a set of possible worlds and embodies a possible way to enhance the common ground. If

a proposition consists of two or more possibilities, it is inquisitive: it invites the other

participants to respond in a way that will lead to a cooperative choice between the

proposed alternatives. Inquisitive propositions raise an issue. They give direction to a

dialogue. Thus, inquisitive semantics directly reflects that a primary use of language

lies in the exchange of information in a cooperative dynamic process of raising and

resolving issues.

Groenendijk (2008c) and Mascarenhas (2008) first defined an inquisitive semantics

for the language of propositional logic, focussing on the philosophical and linguistic

motivation for the framework, and delineating some of its basic logical properties. The

associated logic was axiomatized by Mascarenhas (2009), while a sound and complete

sequent calculus was established independently by Sano (2008). Several linguistic ap-

plications of the framework are discussed by Balogh (2009).

In this paper, we consider a generalized version of the semantics proposed by Groe-

nendijk (2008c) and Mascarenhas (2008). This generalized semantics was first con-

sidered by Groenendijk (2008a). Initially, it was thought to give essentially the same

results as the original semantics. Upon closer examination, however, Mascarenhas,

Groenendijk, and Ciardelli observed that the two systems are different, and Ciardelli

(2008) first argued that these differences speak in favor of the generalized semantics.

Groenendijk and Roelofsen (2009) adopted the generalized semantics, and developed

a formal pragmatic theory based on it.

The aim of the present paper is threefold. First, we will investigate and present

some of the key features of the generalized semantics in a systematic way. Second, we

will analyse the logic that the semantics gives rise to. In particular, we will explore the

connection with intuitionistic logic and several well-known intermediate logics, which,

among other things, will lead to a sound and complete axiomatization of inquisitive

logic. Finally, we will argue that the generalized semantics is better-behaved than the

original version of inquisitive semantics. In fact, we will define an entire hierarchy

of parameterized versions of inquisitive semantics, and argue that only the generalized

version, which can be seen as the limit case of the hierarchy, really behaves satisfactorily.

The paper is organized as follows. Section 2 introduces the generalized version of

inquisitive semantics and presents some key features of the system. Section 3 investi-

gates the associated logic, leading up to a sound and complete axiomatization. Section 4

shows that the schematic fragment of inquisitive logic (the logic itself is not closed under
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uniform substitution) coincides with the well-known Medvedev logic of finite problems.

This is particularly interesting as it yields a sort of finitary pseudo-axiomatization of

Medvedev logic (which is known not to be finitely axiomatizable). Section 6 presents

a translation of inquisitive logic into intuitionistic logic, showing that the former can

be identified with the disjunctive-negative fragment of the latter. Section 7 defines and

axiomatizes an infinite hierarchy of inquisitive logics, one of which is associated with

the original semantics, and section 8 argues that the generalized semantics has certain

advantages over all the other elements of the hierarchy. Finally, section 9 suggests a

new intuitive interpretation of the notion of support—a notion that will play a key role

in the definition of inquisitive semantics. This intuitive interpretation is intended to

illuminate some of the technical results obtained in earlier sections.

2 Generalized Inquisitive Semantics

We assume a language LP , whose expressions are built up from ⊥ and a (finite or

countably infinite) set of proposition letters P, using binary connectives ∧,∨ and →.

We will also make use of three abbreviations: ¬ϕ for ϕ→ ⊥, !ϕ for ¬¬ϕ , and ?ϕ for

ϕ ∨ ¬ϕ. The first is standard, the second and the third will become clear shortly.

2.1 Indices, States, and Support

The basic ingredients for the semantics are indices and states.

Definition 2.1 (Indices). A P−index is a subset of P. The set of all indices, ℘(P),

will be denoted by IP . We will simply write I and talk of indices in case P is clear

from the context.

Definition 2.2 (States). A P−state is a set of P−indices. The set of all states, ℘℘(P),

will be denoted by SP . Again, reference to P will be dropped whenever possible.

The meaning of a sentence will be defined in terms of the notion of support (just as,

in a classical setting, the meaning of a sentence is usually defined in terms of truth).

Support is a relation between states and formulas. We write s |= ϕ for ‘s supports ϕ’.

Definition 2.3 (Support).

1. s |= p iff ∀w ∈ s : p ∈ w
2. s |= ⊥ iff s = ∅
3. s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

4. s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ

5. s |= ϕ→ ψ iff ∀t ⊆ s : if t |= ϕ then t |= ψ

It follows from the above definition that the empty state supports any formula ϕ. Thus,

we may think of ∅ as the inconsistent state. The following two basic facts about support

can be established by a straightforward induction on the complexity of ϕ:

Proposition 2.4 (Persistence). If s |= ϕ then for every t ⊆ s: t |= ϕ

Proposition 2.5 (Singleton states behave classically). For any index w and formula ϕ:

{w} |= ϕ ⇐⇒ w |= ϕ

where w |= ϕ means: ϕ is classically true under the valuation w. In particular, {w} |= ϕ

or {w} |= ¬ϕ for any formula ϕ.
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It follows from definition 2.3 that the support-conditions for ¬ϕ and !ϕ are as follows.

Proposition 2.6 (Support for negation).

1. s |= ¬ϕ iff ∀w ∈ s : w |= ¬ϕ
2. s |= !ϕ iff ∀w ∈ s : w |= ϕ

Proof. Clearly, since ! abbreviates double negation, item 2 is a particular case of item

1. To prove item 1, first suppose s |= ¬ϕ. Then for any w ∈ s we have {w} |= ¬ϕ by

persistence, and thus w |= ¬ϕ by proposition 2.5.

Conversely, if s 6|= ¬ϕ, then there must be t ⊆ s with t |= ϕ and t 6|= ⊥. Since t 6|= ⊥,

t 6= ∅: thus, taken w ∈ t, by persistence and the classical behaviour of singleton states

we have w |= ϕ. Since w ∈ t ⊆ s, it is not the case that v ` ¬ϕ for all v ∈ s.

The following construction will often be useful when dealing with cases where the set

of propositional letters is infinite.

Definition 2.7. Let P ⊆ P ′ be two sets of propositional letters. Then for any P ′−state

s, the restriction of s to P is defined as s�P := {w ∩ P |w ∈ s}.

The following fact, which can be established by a straightforward induction on the

complexity of ϕ, says that whether or not a state s supports a formula ϕ only depends

on the ‘component’ of s that is concerned with the letters in ϕ.

Proposition 2.8 (Restriction Invariance). Let P ⊆ P ′ be two sets of propositional

letters. Then for any P ′−state s and any formula ϕ whose propositional letters are in P:

s |= ϕ ⇐⇒ s�P |= ϕ

2.2 Possibilities, Propositions, and Truth-Sets

In terms of support, we define the possibilities for a sentence ϕ and the proposition

expressed by ϕ. We think of the proposition expressed by ϕ as the meaning of ϕ in

inquisitive semantics. We also define the truth-set of ϕ, which embodies the classical

meaning of ϕ.

Definition 2.9 (Truth sets, possibilities, propositions). Let ϕ be a formula.

1. A possibility for ϕ is a maximal state supporting ϕ, that is, a state that supports

ϕ and is not properly included in any other state supporting ϕ.

2. The proposition expressed by ϕ, denoted by [ϕ], is the set of possibilities for ϕ.

3. The truth set of ϕ, denoted by |ϕ|, is the set of indices where ϕ is classically true.

Notice that |ϕ| is a state, while [ϕ] is a set of states. The classical meaning of ϕ is the

set of all indices that make ϕ true. In inquisitive semantics, meaning is defined in terms

of support rather than in terms of truth. It may be expected, then, that the proposition

expressed by ϕ would be defined as the set of all states supporting ϕ. Rather, though,

it is defined as the set all maximal states supporting ϕ, that is, the set of all possibilities

for ϕ. This is motivated by the fact that propositions are viewed as proposals, consisting

of one or more alternative possibilities. If one state is included in another, we do not

regard these two states as alternatives. This is why we are particularly interested in

maximal states supporting a formula. Technically, however, the proposition expressed

by ϕ still fully determines which states support ϕ and which states do not: the next

result establishes that a state supports ϕ iff it is included in a possibility for ϕ.



5

11 10

01 00

(a) |p ∨ q|

11 10

01 00

(b) [p ∨ q]

Fig. 1 The truth-set of p ∨ q, and the proposition it expresses.

Proposition 2.10 (Support and Possibilities). For any state s and any formula ϕ:

s |= ϕ ⇐⇒ s is contained in a possibility for ϕ

Proof. If s ⊆ t and t is a possibility for ϕ, then by persistence s |= ϕ. For the converse,

first consider the case in which the set P of propositional letters is finite. Then there

are only finitely many states, and therefore if s supports ϕ, then obviously s must be

contained in a maximal state supporting ϕ, i.e. in a possibility.

If P is infinite, given a P−state s |= ϕ, consider its restriction s�Pϕ
to the (finite!)

set Pϕ of propositional letters occurring in ϕ. By proposition 2.8, s�Pϕ
|= ϕ, and thus

s�Pϕ
⊆ t for some Pϕ−state t which is a possibility for ϕ.

Now, consider t+ := {w ∈ IP |w∩Pϕ ∈ t}. For any w ∈ s we have w∩Pϕ ∈ (s�Pϕ) ⊆ t,
so w ∈ t+ by definition of t+; this proves that s ⊆ t+. Moreover, we claim that t+ is

a possibility for ϕ.

First, since t+�Pϕ
= t and t |= ϕ, it follows from proposition 2.8 that t+ |= ϕ. Now,

consider a state u ⊇ t with u |= ϕ: then u�Pϕ
⊇ t+�Pϕ

= t and moreover, again by

proposition 2.8, u�Pϕ
|= ϕ; but then, by the maximality of t it must be u�Pϕ

= t. Now,

for any w ∈ u, w ∩ Pϕ ∈ u�Pϕ
= t, so w ∈ t+ by definition of t+: hence, u = t+. This

proves that t+ is indeed a possibility for ϕ.

Example 2.11 (Disjunction). Inquisitive semantics crucially differs from classical se-

mantics in its treatment of disjunction. This is illustrated by figures 1(a) and 1(b).

These figures assume that P = {p, q}; index 11 makes both p and q true, index 10

makes p true and q false, etcetera. Figure 1(a) depicts the truth set—that is, the clas-

sical meaning—of p ∨ q: the set of all indices that make either p or q, or both, true.

Figure 1(b) depicts the proposition associated with p ∨ q in inquisitive semantics. It

consists of two possibilities. One possibility is made up of all indices that make p true,

and the other of all indices that make q true. So in the inquisitive setting, p∨q proposes

two alternative ways of enhancing the common ground, and invites a response that is

directed at choosing between these two alternatives.

As an immediate consequence of proposition 2.6, the possibilities for a (doubly) negated

formula can be characterized as follows.

Proposition 2.12 (Negation).

1. [¬ϕ] = {|¬ϕ|}
2. [!ϕ] = {|ϕ|}
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11 10

01 00

(a) ?p

11 10

01 00

(b) p → ?q

11 10

01 00

(c) ?p∧ ?q

Fig. 2 A polar question, a conditional question, and a conjoined question.

2.3 Inquisitiveness and Informativeness

Recall that propositions are viewed as proposals to change the common ground of a

conversation. If [ϕ] contains more than one possibility, then we say that ϕ is inquisitive.

If the proposal expressed by ϕ is not rejected, then the indices that are not included

in any of the possibilities for ϕ will be eliminated. If there are such indices—that is, if

the possibilities for ϕ do not cover the entire space—then we say that ϕ is informative.

Definition 2.13 (Inquisitiveness and informativeness).

– ϕ is inquisitive iff [ϕ] contains at least two possibilities;

– ϕ is informative iff [ϕ] proposes to eliminate certain indices:
⋃

[ϕ] 6= I

Definition 2.14 (Questions and assertions).

– ϕ is a question iff it is not informative;

– ϕ is an assertion iff it is not inquisitive.

Definition 2.15 (Contradictions and tautologies).

– ϕ is a contradiction iff it is only supported by the inconsistent state, i.e. iff [ϕ] = {∅}
– ϕ is a tautology iff it is supported by all states, i.e. iff [ϕ] = {I}

It is easy to see that a formula is a contradiction iff it is a classical contradiction. This

does not hold for tautologies. Classically, a formula is tautological iff it is not infor-

mative. In the present framework, a formula is tautological iff it is neither informative

nor inquisitive. Classical tautologies may well be inquisitive.

Example 2.16 (Questions). Figure 2 depicts the propositions expressed by the polar

question ?p, the conditional question p → ?q, and the conjoined question ?p ∧ ?q.

Recall that ?p abbreviates p ∨ ¬p. So ?p is an example of a classical tautology that is

inquisitive: it invites a choice between two alternatives, p and ¬p. As such, it reflects

the essential function of polar questions in natural language.

Example 2.17 (Disjunction, continued). It is clear from figure 1(b) that p∨ q is both

inquisitive and informative: [p∨ q] consists of two possibilities, which, together, do not

cover the set of all indices. This means that p∨q is neither a question nor an assertion.

The following proposition gives some sufficient syntactic conditions for being an asser-

tion. The straightforward proof has been omitted.

Proposition 2.18. For any propositional letter p and formulas ϕ,ψ:

1. p is an assertion;
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2. ⊥ is an assertion;

3. if ϕ,ψ are assertions, then ϕ ∧ ψ is an assertion;

4. if ψ is an assertion, then ϕ→ ψ is an assertion.

Note that items 2 and 4 imply that any negation is an assertion, which we already

knew from remark 2.12. Of course, a declarative !ϕ is also always an assertion.

Using proposition 2.18 inductively we obtain the following corollary showing that

disjunction is the only source of inquisitiveness in our propositional language.1

Corollary 2.19. Any disjunction-free formula is an assertion.

In inquisitive semantics, the informative content of a formula ϕ is captured by the

union
⋃

[ϕ] of all the possibilities for ϕ. For ϕ proposes to eliminate all indices that

are not in
⋃

[ϕ]. In a classical setting, the informative content of ϕ is captured by |ϕ|.
Hence, the following result can be read as stating that inquisitive semantics agrees with

classical semantics as far as informative content is concerned.

Proposition 2.20. For any formula ϕ:
⋃

[ϕ] = |ϕ|.

Proof. According to proposition 2.5, if w ∈ |ϕ|, then {w} |= ϕ. But then, by propo-

sition 2.10, {w} must be included in some t ∈ [ϕ], whence w ∈
⋃

[ϕ]. Conversely, any

w ∈
⋃

[ϕ] belongs to a possibility for ϕ, so by persistence and the classical behaviour

of singletons we must have that w ∈ |ϕ|.

We end this subsection with a definition of equivalence between two formulas, several

characterizations of questions and assertions, and a remark about the behaviour of the

operators ? and !.

Definition 2.21 (Equivalence).

Two formulas ϕ and ψ are equivalent, ϕ ≡ ψ, iff [ϕ] = [ψ].

It follows immediately from proposition 2.10 that ϕ ≡ ψ just in case ϕ and ψ are

supported by the same states.

Proposition 2.22 (Characterization of questions).

For any formula ϕ, the following are equivalent:

1. ϕ is a question

2. ϕ is a classical tautology

3. ¬ϕ is a contradiction

4. ϕ ≡ ?ϕ

Proof. Equivalence (1 ⇔ 2) follows from the definition of questions and proposition

2.20. (2⇔ 3) and (4⇒ 3) are immediate from the fact that a formula is a contradiction

in the inquisitive setting just in case it is a classical contradiction. For (3 ⇒ 4), note

that for any state s, s |= ?ϕ iff s |= ϕ or s |= ¬ϕ. This means that, if ¬ϕ is a

contradiction, s |= ?ϕ iff s |= ϕ. In other words, ϕ ≡ ?ϕ.

Note that an interrogative ?ϕ = ϕ ∨ ¬ϕ is always a classical tautology, and therefore,

by the equivalence (1 ⇔ 2), always a question. Furthermore, the equivalence (1 ⇔ 4)

guarantees that ?ϕ ≡ ??ϕ, which means that ? is idempotent.

1 In the first-order case there will be a close similarity between disjunction and the existential
quantifier, and the latter will be a source of inquisitiveness as well.
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Proposition 2.23 (Characterization of assertions).

For any formula ϕ, the following are equivalent:

1. ϕ is an assertion

2. if sj |= ϕ for all j ∈ J , then
⋃

j∈J sj |= ϕ

3. |ϕ| |= ϕ

4. ϕ ≡ !ϕ

5. [ϕ] = {|ϕ|}

Proof.

(1⇒ 2) Suppose ϕ is an assertion and let t be the unique possibility for ϕ. If sj |= ϕ

for all j ∈ J , then by proposition 2.10 each sj must be a subsets of t, whence also⋃
j∈J sj ⊆ t. Thus, by persistence,

⋃
j∈J sj |= ϕ.

(2⇒ 3) By proposition 2.5, {w} |= ϕ iff w ∈ |ϕ|. Then if ϕ satisfies condition (2),

|ϕ| =
⋃

w∈|ϕ|{w} |= ϕ.

(3⇒ 4) Suppose |ϕ| |= ϕ; by proposition 2.10, |ϕ| must be included in some possibility

s for ϕ; but also, by corollary 2.20, s ⊆ |ϕ|, whence |ϕ| = s ∈ [ϕ]. Moreover, since

any possibility for ϕ must be included in |ϕ| we conclude that |ϕ| must be the

unique possibility for ϕ. Thus, [ϕ] = {|ϕ|}.
(4⇔ 5) Since [!ϕ] = {|ϕ|} (see remark 2.12), obviously ϕ ≡ !ϕ ⇐⇒ [ϕ] = {|ϕ|}.
(5⇒ 1) Immediate. 2

Note that (1 ⇔ 5) states that a formula is an assertion if and only if its meaning

consists of its classical meaning. In this sense, assertions behave classically. Also note

that (1⇔ 4), together with the fact that !ϕ is always an assertion, implies that !ϕ ≡ !!ϕ.

That is, ! is idempotent.

The operators ! and ? work in a sense like projections on the ‘planes’ of asser-

tions and questions, respectively. Moreover, the following proposition shows that the

inquisitive meaning of a formula ϕ is completely determined by its ‘purely informative

component’ !ϕ and its ‘purely inquisitive component’ ?ϕ.

Proposition 2.24 (Division in theme and rheme). For any formula ϕ, ϕ ≡ !ϕ ∧ ?ϕ.

Proof. We must show that for any state s, s |= ϕ iff s |= !ϕ∧ ?ϕ. Suppose s |= !ϕ∧ ?ϕ.

Then, since s |= ?ϕ, s must support one of ϕ and ¬ϕ; but since s |= ¬¬ϕ, s cannot

support ¬ϕ. Thus, we have that s |= ϕ. The converse is immediate by the definitions

of ! and ? and proposition 2.6.

2.4 Support, Inquisitiveness, and Informativeness

The basic notion in the semantics, as we have set it up here, is the notion of support. In

terms of support, we defined possibilities and propositions, and in terms of possibilities

we defined the notions of inquisitiveness and informativeness. We have tried to make

clear how possibilities, propositions, inquisitiveness, and informativeness should be

thought of intuitively, but we have not said much as to how the notion of support

itself should be interpreted. It is important to emphasize that support should not be

thought of as specifying conditions under which an agent with information state s can

truthfully utter a sentence ϕ (this is a common interpretation of the notion of support in
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dynamic semantics, cf. Groenendijk et al., 1996). Rather, in the present setting support

should be thought of as specifying conditions under which a sentence ϕ is insignificant

or redundant in a state s, in the sense that, given the information available in s, ϕ

is neither informative nor inquisitive. This intuition can be made precise by defining

notions of inquisitiveness and informativeness relative to a state.

Definition 2.25 (Relative semantic notions). Let ϕ be a formula, and s a state. Then:

– A possibility for ϕ in s is a maximal substate of s supporting ϕ;

– ϕ is inquisitive in s iff there are at least two possibilities for ϕ in s;

– ϕ is informative in s iff there is at least one index in s that is not included in any

possibility for ϕ in s.

These notions allow us to formally establish the connection between support on the

one hand, and inquisitiveness and informativeness on the other. The straightforward

proof is omitted.

Proposition 2.26 (Support, inquisitiveness, and informativeness).

A state s supports a formula ϕ iff ϕ is neither inquisitive in s nor informative in s.

3 Inquisitive Logic

We are now ready to start investigating the logic that inquisitive semantics gives rise

to. We begin by specifying the pertinent notions of entailment and validity.

Definition 3.1 (Entailment and validity). A set of formulas Θ entails a formula ϕ in

inquisitive semantics, Θ |=InqL ϕ, if and only if any state that supports all formulas in

Θ also supports ϕ. A formula ϕ is valid in inquisitive semantics, |=InqL ϕ, if and only

if ϕ is supported by all states.

If no confusion arises, we will simply write |= instead of |= InqL . We will also write

ψ1 , . . . , ψn |= ϕ instead of {ψ1 , . . . , ψn} |= ϕ. Note that, as expected, ϕ ≡ ψ iff ϕ |= ψ

and ψ |= ϕ.

The intuitive interpretation of support in terms of insignificance or redundancy

carries over to entailment: one can think of ϕ |= ψ as saying that, whenever we are in a

state where ϕ is redundant—i.e., neither informative nor inquisitive—ψ is as well. Or,

in more dynamic terms, whenever we are in a state where the information provided

by ϕ has been accommodated and the issue raised by ϕ has been resolved, ψ does not

provide any new information and does not raise any new issue.

The following proposition states that if ψ is an assertion, inquisitive entailment

boils down to classical entailment.

Proposition 3.2. If ψ is an assertion, ϕ |= ψ iff |ϕ| ⊆ |ψ|.

Proof. Follows from proposition 2.23 and the definition of entailment.

We have already seen that the ! operator turns any formula into an assertion. We are

now ready to give a more precise characterization: for any formula ϕ, !ϕ is the most

informative assertion entailed by ϕ.

Proposition 3.3. For any formula ϕ and any assertion χ, ϕ |= χ ⇐⇒ !ϕ |= χ.
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Proof. Fix a formula ϕ and an assertion χ. The right-to-left implication is obvious,

since it is clear from proposition 2.6 that ϕ |= !ϕ. For the converse direction, suppose

ϕ |= χ. Any possibility s ∈ [ϕ] supports ϕ and therefore also χ, whence by proposition

2.10 it must be included in a possibility for χ, which must be |χ| by proposition 2.23

on assertions. But then also |ϕ| =
⋃

[ϕ] ⊆ |χ| whence !ϕ |= χ by proposition 3.2.

Most naturally, since a question does not provide any information, it cannot entail

informative formulas.

Proposition 3.4. If ϕ is a question and ϕ |= ψ, then ψ must be a question as well.

Proof. If ϕ is a question, it must be supported by each singleton state. If moreover ϕ |=
ψ, then ψ must also be supported by each singleton state. But then, since singletons

behave like indices, ψ must be a classical tautology, that is, a question.

Definition 3.5 (Logic). Inquisitive logic, InqL, is the set of formulas that are valid in

inquisitive semantics.

Clearly, a formula is valid in inquisitive semantics if and only if it is both a classical

tautology and an assertion. Thus, InqL coincides with classical logic as far as assertions

are concerned: in particular, it agrees with classical logic on the whole disjunction-free

fragment of the language.

Remark 3.6. Although InqL is closed under the modus ponens rule, it is not closed

under uniform substitution. For instance, ¬¬p → p ∈ InqL for all proposition letters,

but ¬¬(p ∨ q) → (p ∨ q) 6∈ InqL. We will return to this feature of the logic below,

especially in section 4 and section 9.

3.1 Disjunction Property, Deduction Theorem, Compactness, and Decidability

We proceed by establishing a few basic properties of inquisitive logic and entailment.

The first observation is an immediate consequence of the fact that support is persistent.

Proposition 3.7. For any formula ϕ, ϕ ∈ InqL ⇐⇒ I |= ϕ

Corollary 3.8 (Disjunction Property). InqL has the disjunction property. That is,

whenever a disjunction ϕ ∨ ψ is in InqL, at least one of ϕ and ψ is in InqL as well.

Proposition 3.9 (Deduction theorem). For any formulae θ1 , . . . , θn , ϕ:

θ1 , . . . , θn |= ϕ ⇐⇒ |= θ1 ∧ · · · ∧ θn → ϕ

Proof. θ1 , . . . , θn |= ϕ

⇐⇒ for any s ∈ S, if s |= θi for 1 ≤ i ≤ n, then s |= ϕ

⇐⇒ for any s ∈ S, if s |= θ1 ∧ · · · ∧ θn , then s |= ϕ

⇐⇒ I |= θ1 ∧ · · · ∧ θn → ϕ

⇐⇒ θ1 ∧ · · · ∧ θn → ϕ ∈ InqL

Theorem 3.10 (Compactness). For any set Θ and any formula ϕ, if Θ |= ϕ then

there is a finite set Θ0 ⊆ Θ such that Θ0 |= ϕ.
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Proof. Since our set P of propositional letters is countable, so must be Θ, so we can

write Θ = {θk | k ∈ ω}. Now for any k ∈ ω, let γk = θ0 ∧ · · · ∧ θk , and define

Γ = {γk | k ∈ ω}. It is clear that Γ and Θ are equivalent, in the sense that for any

state s, s |= Γ ⇐⇒ s |= Θ, so we have Γ |= ϕ. Moreover, for k ≥ k′ we have γk |= γk ′ .

If we can show that there is a formula γk ∈ Γ such that γk |= ϕ, then this will mean

that {θ0 , . . . , θk} |= ϕ, and since {θ0 , . . . , θk} is a finite subset of Θ we will be done.

For any k ∈ ω let Pk be the set of propositional letters occurring in ϕ or in γk . By the

definition of the formulas γk , it is clear that for k ≤ k′ we have Pk ⊆ Pk ′ .

Now, towards a contradiction, suppose there is no k ∈ ω such that γk |= ϕ. Define

Lk := {t | t is a Pk−state with t |= γk but t 6|= ϕ}: our assumption amounts to saying

that Lk 6= ∅ for all k. Then put L := {∅} ∪
⊎

k∈ωLk . Define a relation R on L by

putting:

– ∅Rt iff t ∈ L0 ;

– sRt iff s ∈ Lk , t ∈ Lk+1 and t�Pk
= s.

Now, consider t ∈ Lk+1 . This means that t |= γk+1 and t 6|= ϕ; as γk+1 |= γk , we also

have t |= γk . But then, since both γk and ϕ only use propositional letters from Pk , by

proposition 2.8 we have t�Pk
|= γk and t�Pk

6|= ϕ, which means that t�Pk
∈ Lk .

From this it follows that (L,R) is a connected graph and thus clearly a tree with root

∅. Since L is a disjoint union of infinitely many non-empty sets, it must be infinite. On

the other hand, by definition of R, all the successors of a state s ∈ Lk are Pk+1 -states,

and there are only finitely many of those as Pk+1 is finite. Therefore, the tree (L,R)

is finitely branching.

By König’s lemma, a tree that is infinite and finitely branching must have an infinite

branch. This means that there must be a sequence 〈tk | k ∈ ω〉 of states in L such that

for any k, tk+1 �Pk
= tk . This naturally defines a P-state that is the “limit” of the

sequence. Precisely, this state is:

t = {w ∈ ℘(P) | there are wk ∈ tk with wk+1�Pk
= wk and w =

⋃
k∈ωwk}

It is easy to check that for any k, t�Pk
= tk . Now, for any natural k, since t�Pk

= tk |=
γk , by proposition 2.8 we have t |= γk ; hence, t |= Γ . On the other hand, for the same

reason, since t�P0
= t0 6|= ϕ, also t 6|= ϕ.

But this contradicts the fact that Γ |= ϕ. So for some k we must have γk |= ϕ.

Remark 3.11 (Decidability). InqL is clearly decidable: to determine whether a formula

ϕ is in InqL, by propositions 2.8 and 3.7 we only have to test whether I{p1 ,...,pn}
supports ϕ, where p1 , . . . , pn are the propositional letters in ϕ. This is a finite procedure

since I{p1 ,...,pn} is finite and has only finitely many substates which have to be checked

to determine support for implications.

3.2 Disjunctive Negative Translation and Expressive Completeness

In this section, we observe that a formula can always be rewritten as a disjunction

of negations, preserving logical equivalence with respect to inquisitive semantics. This

observation will lead to a number of expressive completeness results. It will also play

a crucial role later on in establishing completeness results, and in showing that InqL is

isomorphic to the disjunctive-negative fragment of IPL.

We start by defining the disjunctive negative translation dnt(ϕ) of a formula ϕ.



12

Definition 3.12 (Disjunctive Negative Translation).

1. dnt(p) = ¬¬p
2. dnt(⊥) = ¬¬⊥
3. dnt(ψ ∨ χ) = dnt(ψ) ∨ dnt(χ)

4. dnt(ψ ∧ χ) =
∨
{¬(ψi ∨ χj ) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

where:

– dnt(ψ) = ¬ψ1 ∨ . . . ∨ ¬ψn

– dnt(χ) = ¬χ1 ∨ . . . ∨ ¬χm

5. dnt(ψ → χ) =
∨

k1 ,...,kn
{¬¬

∧
1≤i≤n (χk i

→ ψi ) | 1 ≤ kj ≤ m}

where:

– dnt(ψ) = ¬ψ1 ∨ . . . ∨ ¬ψn

– dnt(χ) = ¬χ1 ∨ . . . ∨ ¬χm

Proposition 3.13. For any ϕ, ϕ ≡InqL dnt(ϕ).

Proof. By induction on ϕ.

We skip over the details of the proof here. However, in section 3.6 we will see that,

given some auxiliary results, a close examination of what is needed exactly to prove

proposition 3.13 instantly yields a range of interesting completeness results.

Note that the map dnt always returns a disjunction of negations, so we immediately

have the following corollary.

Corollary 3.14. Any formula is equivalent to a disjunction of negations.

In particular, any formula is equivalent to a disjunction of assertions. This perfectly

matches our intuitive understanding that meanings in inquisitive semantics are sets

of alternatives, which are incomparable classical meanings. Classical meanings are ex-

pressed by assertions (and thus always expressible by negations) while disjunction is

the source of alternativehood, in the sense that a disjunction applied to two incompara-

ble classical meanings yields the proposition consisting of those two classical meanings

as alternatives.

Additionally, note that since any negation behaves classically in inquisitive seman-

tics, in the scope of a negation we can always safely substitute classically equivalent

subformulas. Since the set of connectives {¬,∨} is complete in classical logic, given a

formula ϕ ≡ ¬χ1 ∨ · · · ∨ ¬χn we can always substitute each χk by a classically equiv-

alent formula χk
′ using only disjunction and negation without altering the meaning of

the formula, thus getting ϕ ≡ ¬χ1
′ ∨ · · · ∨ ¬χn

′. This proves the following corollary.

Corollary 3.15 (Expressive completeness of {¬,∨}). Any formula is equivalent to a

formula containing only disjunctions and negations.

Now consider an assertion χ. Since the set of connectives {¬,∧} is complete in classical

logic, let χ′ be a formula classically equivalent to χ which only contains negations

and conjunctions: the classical equivalence of χ and χ′ amounts to |χ| = |χ′|. Now,

χ′ is an assertion by corollary 2.19, whence using proposition 2.23 we have [χ] =

{|χ|} = {|χ′|} = [χ′], i.e., χ ≡ χ′. Thus, we have the following corollary, stating that

the assertive fragment coincides—up to equivalence—with the {¬,∧}-fragment of the

language.

Corollary 3.16 (Expressive completeness of {¬,∧} for assertions.). A formula is an

assertion iff it is equivalent to a formula containing only conjunctions and negations.
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3.3 Inquisitive semantics and intuitionistic Kripke semantics

We now turn to the connection between inquisitive logic and intuitionistic logic.2 This

connection is suggested by the existence of a striking analogy between inquisitive and

intuitionistic semantics. Both can be conceived of in terms of information and infor-

mation growth. In inquisitive semantics, a formula is evaluated with respect to a state.

Such a state can be thought of as an information state. Whether a certain state s

supports a formula ϕ may depend not only on the information available in s, but also

on the information that may become available. Formally, support is partly defined in

terms of subsets of s. These subsets can be seen as possible future information states.

Similarly, in intuitionistic semantics, a formula is evaluated with respect to a point

in a Kripke model, which can also be thought of as an information state. Each point

comes equipped with a set of future points, called successors. Whether a point u in a

model M satisfies a formula ϕ may depend not only on the information available at u,

but also on the information that may become available. Formally, satisfaction at u is

partly defined in terms of points in M that are accessible from u.

This informal analogy can be made precise: in fact, inquisitive semantics amounts

to intuitionistic semantics on a suitable Kripke model.

Definition 3.17 (Kripke model for inquisitive semantics). The Kripke model for in-

quisitive semantics is the model MI = 〈WI ,⊇, VI 〉 where WI := S − {∅} is the set

of all non-empty states and the valuation VI is defined as follows: for any letter p,

VI (p) = {s ∈WI | s |= p}.

Observe that MI is a Kripke model for intuitionistic logic. For, the relation ⊇ is clearly

a partial order. Moreover, suppose s ⊇ t and s ∈ VI (p): this means that s |= p, and

so by persistence t |= p, which amounts to t ∈ VI (p). So the valuation VI is persistent.

The next lemma shows that the two semantics coincide on every non-empty state.

Proposition 3.18 (Inquisitive support coincides with Kripke satisfaction on MI ).

For every formula ϕ and every non-empty state s:

s |= ϕ ⇐⇒ MI , s 
 ϕ

Proof. Straightforward, by induction on ϕ. The inductive step for implication uses the

fact that an implication cannot be falsified by the empty state, as the latter supports

all formulas, so that restricting the semantics to non-empty states does not make a

difference.

This simple observation already shows that the logic InqL contains intuitionistic propo-

sitional logic IPL. For suppose that ϕ /∈ InqL. Then there must be a non-empty state s

such that s 6|= ϕ. But then we also have that MI , s 6
 ϕ, which means that ϕ /∈ IPL.

On the other hand, InqL is contained in classical propositional logic CPL, because

any formula that is not a classical tautology is falsified by a singleton state in inquisitive

semantics. So we have:

IPL ⊆ InqL ⊆ CPL

Moreover, both inclusions are strict: for instance, p ∨ ¬p is in CPL but not in InqL,

while ¬¬p→ p is in InqL but not in IPL.

2 Our investigation of this connection was inspired by Groenendijk (2008a) and van Benthem
(2009).
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Our next task is to investigate exactly where InqL sits between IPL and CPL. Ul-

timately, our result will be that there is a whole range of intermediate logics whose

‘negative variant’ coincides with InqL. In order to get to this result, let us first recall

some basic features of intermediate logics, and define precisely what we mean by the

negative variant of a logic.

3.4 Intermediate Logics and Negative Variants

Recall that an intermediate logic is defined as a consistent set of formulae that contains

IPL and is closed under the rules of modus ponens and uniform substitution, where

consistent simply means ‘not containing ⊥’.

Intermediate logics ordered by inclusion form a complete lattice whose meet oper-

ation amounts to intersection and whose join operation, also called sum, is defined as

follows: if Λi , i ∈ I is a family of intermediate logics, then Σi∈IΛi is the logic axiom-

atized by
⋃

i∈IΛi , that is, the closure of
⋃

i∈IΛi under modus ponens and uniform

substitution. The sum of two intermediate logic Λ and Λ′ is denoted by Λ+ Λ′.
In our investigation, we will meet several logics, beginning with InqL itself, that are

not closed under uniform substitution. We shall refer to such logics as weak intermediate

logics.

Definition 3.19. A weak intermediate logic is a set L of formulae closed under modus

ponens and such that IPL ⊆ L ⊆ CPL.

Weak intermediate logics ordered by inclusion form a complete lattice as well, where

again meet is intersection and the join (or sum) of a family is the weak logic axiomatized

by the union, i.e. the closure of the union under modus ponens.

If L is a weak intermediate logic, we write ϕ ≡L ψ just in case ϕ↔ ψ ∈ L.

Definition 3.20. Let K be a class of Kripke models (resp., frames). If Θ is a set of

formulae and ϕ is a formula, we write Θ |=K ϕ just in case any point in any model in

K (resp., any point in any model based on any frame in K), that satisfies all formulas

in Θ, also satisfies ϕ. We denote by Log(K) the set of formulae that are valid on each

model (frame) in K, that is: Log(K) = {ϕ | |=K ϕ}.

It is straightforward to check that for any class K of Kripke frames, Log(K) is an

intermediate logic.

Notation. For any formula ϕ, we denote by ϕn the formula obtained from ϕ by replac-

ing any occurrence of a propositional letter with its negation.

Definition 3.21 (Negative variant of a logic). If Λ is an intermediate logic, we define

its negative variant Λn as:

Λn = {ϕ |ϕn ∈ Λ}

In general, Λn will not be an intermediate logic: in fact, for any intermediate logic Λ

we have ¬¬p → p ∈ Λn for any proposition letter p. So Λn will not be closed under

uniform substitution unless Λn = CPL, where CPL denotes classical logic.

It is, however, the case that Λn is always a weak intermediate logic containing Λ;

this is the content of the following remark.

Remark 3.22. For any intermediate logic Λ, its negative variant Λn is a weak inter-

mediate logic including Λ.
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Proof. Fix an intermediate logic Λ. Since Λ is closed under uniform substitution, ϕ ∈ Λ
implies ϕn ∈ Λ and so ϕ ∈ Λn . This shows Λ ⊆ Λn .

Moreover, if both ϕ and ϕ→ ψ belong to Λn , then both ϕn and (ϕ→ ψ)n = ϕn →
ψn are in Λ which is closed under modus ponens; therefore, ψn ∈ Λ, which means that

ψ ∈ Λn . This shows that Λn is closed under modus ponens.

Finally, if ϕ ∈ Λn then ϕn ∈ Λ ⊆ CPL; but then, since CPL is substitution-closed,

ϕnn ∈ CPL and therefore also ϕ ∈ CPL because the double negation law holds in

CPL. This shows that Λn ⊆ CPL and therefore that Λn is indeed a weak intermediate

logic.

The following observation will turn out useful below.

Remark 3.23. If a logic Λ has the disjunction property, then so does Λn .

Proof. If ϕ ∨ ψ ∈ Λn , then ϕn ∨ ψn ∈ Λ; thus, by the disjunction property, at least

one of ϕn and ψn is in Λ, which means that at least one of ϕ and ψ is in Λn .

Definition 3.24 (Negative valuations). Let F be an intuitionistic frame. A valuation

V is called negative in case for any point w in F and for any proposition letter p:

(F, V ), w 
 p ⇐⇒ (F, V ), w 
 ¬¬p

We will call a model negative in case its valuation is negative. Observe that if M is a

negative model, for any point w and formula ϕ we have M,w 
 ϕ ⇐⇒ M,w 
 ϕnn .

Definition 3.25 (Negative variant of a model). If M = (W,R, V ) is a Kripke model,

we define the negative variant Mn of M to be model Mn = (M,R, V n ) where

V n (p) := {w ∈W |M,w 
 ¬p}

that is, V n makes a propositional letter true precisely where its negation was true in

the original model.

A straightforward inductive proof yields the following result.

Proposition 3.26. For any model M , any point w and formula ϕ:

M,w 
 ϕn ⇐⇒ Mn , w 
 ϕ

Remark 3.27. For any model M , its negative variant Mn is a negative model.

Proof. Take any point w of M and formula ϕ. According to the previous proposition

and recalling that in intuitionistic logic triple negation is equivalent to single negation,

we have Mn , w 
 p ⇐⇒ M,w 
 ¬p ⇐⇒ M,w 
 ¬¬¬p ⇐⇒ Mn , w 
 ¬¬p.

Definition 3.28. Let K be a class of intuitionistic Kripke frames. Then we denote by

nK the class of negative K-models, i.e., negative Kripke models whose frame is in K.

Proposition 3.29. For any class K of Kripke frames, Log(nK) = Log(K)n .
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Proof. If ϕ 6∈ Log(K)n , i.e. if ϕn 6∈ Log(K), then there must be a K-model M (i.e.,

a model based on a K-frame) and a point w such that M,w 6
 ϕn . But then, by

proposition 3.26 we have Mn , w 6
 ϕ, and thus ϕ 6∈ Log(nK) since Mn is a negative

K-model.

Conversely, if ϕ 6∈ Log(nK), let M be a negative K-model and w a point in M

with M,w 6
 ϕ. Then since M is negative, M,w 6
 ϕnn . Therefore, by proposition

3.26, Mn , w 6
 ϕn . But Mn shares the same frame of M , which is a K-frame: so

ϕn 6∈ Log(K), that is, ϕ 6∈ Log(K)n .

The following result states that for any intermediate logic Λ, Λn is axiomatized by a

system having Λ and all the atomic double negation formulas ¬¬p→ p as axioms, and

modus ponens as unique inference rule.

Proposition 3.30. If Λ is an intermediate logic, Λn is the smallest weak interme-

diate logic containing Λ and the atomic double negation axiom ¬¬p → p for each

propositional letter p.

Proof. We have already observed (see remark 3.4) that Λn is a weak intermediate logic

containing Λ; moreover, for any letter p we have ¬¬¬p → ¬p ∈ IPL ⊆ Λ, so each

atomic double negation formula is in Λn .

To see that Λn is the smallest such logic, let Λ′ be another weak logic containing

Λ and the atomic double negation axioms. Consider ϕ ∈ Λn : this means that ϕn ∈ Λ.

But clearly, ϕ is derivable by modus ponens from ϕn and the atomic double negation

axioms for letters in ϕ: hence, as Λ′ contains Λ and the atomic double negation formulas

and it is closed under modus ponens, ϕ ∈ Λ′. Thus, Λn ⊆ Λ′.

With slight abuse of notation, we will henceforth identify Λn not only with a set of

formulas, but also with the following derivation system:

Axioms:

– all formulas in Λ

– ¬¬p→ p for all proposition letters p ∈ P
Rules:

– modus ponens

If Θ is a set of formulae and ϕ is a formula, we will write Θ `Λn ϕ in case ϕ is derivable

from the set of assumptions Θ in the system Λn .

3.5 Disjunction Property + Disjunctive Negative Translation = InqL

We are now ready to connect some of the notions introduced in previous subsections.

The following theorem characterizes InqL as the unique weak intermediate logic that has

the disjunction property and preserves logical equivalence under disjunctive negation

translation (as defined in section 3.2).

Theorem 3.31. Let L be a weak intermediate logic. If ϕ ≡L dnt(ϕ) for all formulas

ϕ, then InqL ⊆ L. If, additionally, L has the disjunction property, then L = InqL.
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Proof. Let L be a weak intermediate logic for which any formula ϕ is equivalent to

dnt(ϕ). Suppose ϕ ∈ InqL. Then dnt(ϕ) ∈ InqL. Write dnt(ϕ) = ¬ν1 ∨ · · · ∨ ¬νk :

since InqL has the disjunction property, we must have ¬νi ∈ InqL ⊆ CPL for some

1 ≤ i ≤ k. But IPL coincides with CPL as far as negations are concerned (cf. Chagrov

and Zakharyaschev, 1997), so ¬νi ∈ IPL ⊆ L. Hence, obviously, dnt(ϕ) ∈ L, and since

ϕ ≡L dnt(ϕ), also ϕ ∈ L. This shows that InqL ⊆ L.

Moreover, suppose L also has the disjunction property. Consider a formula ϕ ∈ L:

since ϕ ≡ L dnt(ϕ) we have dnt(ϕ) ∈ L. But L has the disjunction property and

therefore again, using the same notation as above, ¬νi ∈ Λn for some i. Then again

because all weak intermediate logics agree on negations, ¬νi ∈ InqL, whence dnt(ϕ) ∈
InqL and also ϕ ∈ InqL. This proves that L ⊆ InqL.

3.6 Axiomatizing Inquisitive Logic

Given that InqL is the only weak intermediate logic with the disjunction property

that preserves logical equivalence under dnt, it is natural to ask next what exactly

is required, in terms of axioms, in order to preserve logical equivalence under dnt.

Answering this question will directly lead to an axiomatization of InqL.

In order to identify the relevant axioms, let us go back to the proof of proposition

3.13, which stated that ϕ ≡ InqL dnt(ϕ) for any ϕ. The proof is by induction on ϕ.

The atomic case amounts to the validity of the atomic double negation axioms. The

inductive step for disjunction is trivial, while the one for conjunction follows from the

fact that IPL ⊆ InqL, which means that intuitionistic equivalences (like instances of the

distributive laws) hold in the inquisitive setting.

Finally, for the inductive step for implication we need—in addition to some intu-

itionistically valid equivalences—the following equivalence:(
¬χ→

∨
1≤i≤k ¬ψi

)
≡InqL

∨
1≤i≤k (¬χ→ ¬ψi )

for all formulas χ, ψ1 , . . . , ψk . Since the right-to-left entailment already holds intuition-

istically, what is needed more specifically is that any substitution instance of each of

the following formulas be valid in InqL:

NDk

(
¬p→

∨
1≤i≤k ¬qi

)
−→

∨
1≤i≤k (¬p→ ¬qi )

Thus—besides intuitionistic validities—we need all instances of NDk , k ∈ ω, and all the

atomic double negation axioms ¬¬p→ p in order to preserve logical equivalence under

dnt. Any system containing those axioms and equipped with the modus ponens rule

will be able to prove the equivalence between a formula ϕ and its translation dnt(ϕ).

This suffices to prove proposition 3.32, where ND is the intermediate logic axiomatized

by the axioms NDk , k ∈ ω.

Proposition 3.32. For any logic Λ ⊇ ND and any formula ϕ, ϕ ≡Λn dnt(ϕ).

This proposition immediately yields a whole range of intermediate logics whose negative

variant coincides with inquisitive logic.

Theorem 3.33 (Completeness theorem). Λn = InqL for any logic Λ ⊇ ND with the

disjunction property.
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Proof. Let Λ be an extension of ND with the disjunction property. Then according to

proposition 3.32 we have ϕ ≡Λn dnt(ϕ) for all ϕ; moreover, Λn has the disjunction

property (see remark 3.23). Hence by theorem 3.31 we have Λn = InqL.

The logic ND has been studied by (Maksimova, 1986). Among other things, she shows

(1) that ND has the disjunction property, and (2) that the maximal intermediate logic

with the disjunction property containing ND is ML, an intermediate logic introduced by

Medvedev (1962), also known as ‘the logic of finite problems’. Maximova also remarks

that KP, a well-known intermediate logic introduced by Kreisel and Putnam (1957),

is one of the logics in between ND and ML which has the disjunction property. This

immediately gives us three concrete axiomatizations of InqL.

Corollary 3.34. NDn = KPn = MLn = InqL.

Medvedev’s logic will be discussed in more detail in the next section, which investigates

the schematic fragment of InqL. The completeness theorem established above will be

further strengthened in section 5. There we will see that the negative variant of an

intermediate logic Λ coincides with InqL if and only if ND ⊆ Λ ⊆ ML.

4 The Schematic Fragment of Inquisitive Logic

We have already remarked that inquisitive logic is not closed under uniform substitu-

tion; it is natural to ask, then, what the schematic fragment of InqL is. In this section

we will address this issue and we will find that this fragment in fact coincides with

Medvedev’s logic of finite problems.

Definition 4.1 (Schematic fragment of InqL). We denote by Sch(InqL) the set of

formulae that are schematically valid in InqL, i.e., those formulae ϕ such that ϕ∗ ∈ InqL

for any substitution instance ϕ∗ of ϕ.

Notice that Sch(InqL) is the greatest intermediate logic included in InqL.

Definition 4.2 (Medvedev frames). A Medvedev frame consists of all the non-empty

subsets of some finite set X, ordered by the superset relation. In other words, a

Medvedev frame is a frame of the shape (℘(X) − {∅},⊇), where X is some finite

set. The class of Medvedev frames will be denoted by Med.

Notice that the frame FI underlying the Kripke model for inquisitive semantics is

(℘℘(P) − {∅},⊇). So FI is a Medvedev frame whenever the set of proposition letters

P is finite.

Definition 4.3 (Medvedev Logic). Medvedev logic is the logic of the class Med of

Medvedev frames: ML := Log(Med). Notice that ML is an intermediate logic.

The following theorem establishes the main result of this section, namely that the

schematic fragment of InqL coincides with Medvedev logic. There is, however, one

subtlety that should be remarked: whereas we assumed so far that the set of atomic

proposition letters P may be finite or countably infinite, it is at this stage important

to assume that P is in fact countably infinite.

Theorem 4.4. Sch(InqL)=ML.

In order to proof this theorem, we need the following lemma.

Lemma 4.5. For any negative Medvedev model M , there is a p-morphism η from M

to the Kripke model for inquisitive logic MI .
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Proof. Let M = (W,R, V ) be a negative Medvedev model. For any endpoint e of M ,

denote by ie the valuation ie = {p ∈ P | e ∈ V (p)} consisting of those letters true at

e. For any point w in M , let Ew denote the set of endpoints accessible from w in M .

Define the candidate p-morphism η as follows:

For any w ∈W , η(w) = {ie | e ∈ Ew}.

First, note that any point in M can see at least one endpoint. This means that for any

w ∈ W , we have Ew 6= ∅, and therefore η(w) 6= ∅. This insures that η(w) ∈ WI , so

that the map η : W →WI is well-defined. It remains to check that η is a p-morphism.

Fix any w ∈W :

– Proposition Letters. Take any proposition letter p. If M,w 
 p, then by per-

sistence we have M, e 
 p for any e ∈ Ew ; this implies that p ∈ i for any index

i ∈ η(w) and so η(w) |= p, whence M I , η(w) 
 p.

Conversely, suppose M,w 6
 p. Then since the valuation V is negative, M,w 6
 ¬¬p,
so there must be a successor v of w with M, v 
 ¬p. M is finite, so Ev is non-empty.

Take a point e ∈ Ev . Then, by persistence, M, e 
 ¬p, whence p 6∈ ie . But, by

transitivity of R, we have that e ∈ Ew , so ie ∈ η(w). Thus η(w) 6|= p, whence

MI , η(w) 6
 p.

– Forth Condition. Suppose wRv: then since our accessibility relation is transitive,

Ew ⊇ Ev and thus also η(w) ⊇ η(v).

– Back Condition. Suppose η(w) ⊇ t: we must show that there is some successor v

of w such that η(v) = t.

Since t is a non-empty subset of η(w) = {ie | e ∈ Ew}, there must be some non-

empty subset E∗ ⊆ Ew such that t = {ie | e ∈ E∗}. We must show, then, that

there is a successor v of w in M whose terminal successors are exactly those in E∗.
Recall that M is based on a frame that consists of all the non-empty subsets of

some finite set X, ordered by the superset relation. In particular, all the endpoints

in M are singleton subsets of X, and for any set of endpoints E, there is a point,

namely
⋃
E, whose terminal successors are exactly the ones in E.

Thus, for v we can take
⋃
E∗. Then, Ev = E∗, and η(v) = t. 2

Proof of theorem 4.4. Suppose ϕ 6∈ Sch(InqL): then there is a substitution instance

ϕ∗ of ϕ such that ϕ∗ 6∈ InqL. But then it follows from proposition 2.8 that ϕ∗ can

be falsified in a point of the model MI for inquisitive semantics relative to the finite

set of propositional letters Pϕ∗ ; and since this model is a Medvedev model, ϕ∗ 6∈ ML.

But then, as ML is closed under uniform substitution, also ϕ 6∈ ML. This shows that

ML ⊆ Sch(InqL).

For the converse inclusion, suppose ϕ(p1 , . . . , pn ) 6∈ ML. This means that there is a

model M = (F, V ), where F is a Medvedev frame, and a point w in this model, such

that M,w 6
 ϕ. Now, the idea is to use lemma 4.5 to transfer this counterexample to

the Kripke model MI for inquisitive semantics. In order to do so, however, we need

our starting model to be a negative Medvedev model. Our model is indeed a Medvedev

model, but there is no reason why the valuation V should be negative. Therefore, what

we want to do is replace V by a negative valuation V̂ , and then simulate the behaviour

of the propositional letters p1 , . . . , pn with complex formulae ψ1 , . . . , ψn .

In order to do this, associate any point u in M with a propositional letter qu and

define a new valuation V̂ as follows: for any point v and any proposition letter qu , take

v ∈ V̂ (qu ) if and only if v ⊆ u. For proposition letters q which are not of the shape qu

for some u, take V̂ (q) = ∅. Then define M̂ = (F, V̂ ).
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Notice that the valuation V̂ is indeed negative. For, take any letter qu and suppose

that a certain point v is not in V̂ (qu ): then v 6⊆ u, so we can take an element x ∈ v−u.

Since {x} 6⊆ u, {x} 6∈ V̂ (qu ), and therefore, since singletons are endpoints and thus

behave classically, we have M̂, {x} 
 ¬qu . Finally, since {x} ⊆ v, {x} is a successor of

v, and therefore M̂, v 6
 ¬¬qu . So indeed M̂ is a negative Medvedev model, and lemma

4.5 applies, yielding a p-morphism η : M̂ →MI .

We now turn to the second task, namely, find a complex formula ψi that simulates in

M̂ the behaviour of the atom pi in M . For 1 ≤ i ≤ n, define ψi :=
∨

v∈V (pi ) qv . We

are going to show that for any point u:

M,u 
 pi ⇐⇒ M̂, u 
 ψi

If M,u 
 pi , i.e. if u ∈ V (pi ), then since M̂, u 
 qu we immediately have that

M̂, u 

∨

v∈V (pi ) qv . That is, M̂, u 
 ψi .

Conversely, if M̂, u 
 ψi , then there is a point v ∈ V (pi ) such that u ∈ V̂ (qv ), which in

turn, by definition of V̂ , means that u ⊆ v. But then, by persistence, u ∈ V (pi ), that

is, M,u 
 pi . This proves the above equivalence. Now, it follows immediately that for

any point u:

M,u 
 ϕ(p1 , . . . , pn ) ⇐⇒ M̂, u 
 ϕ(ψ1 , . . . , ψn )

In particular, M̂, w 6
 ϕ(ψ1 , . . . , ψn ). Thus, using the p-morphism η : M̂ → MI

provided by lemma 4.5 we finally get that MI , η(w) 6
 ϕ(ψ1 , . . . , ψn ). Therefore,

ϕ(ψ1 , . . . , ψn ) 6∈ InqL and thus ϕ(p1 , . . . , pn ) 6∈ Sch(InqL). 2

Observe that the given proof in fact establishes something stronger than the equality

Sch(InqL) = ML. It shows that in order to falsify a formula ϕ 6∈ Sch(InqL) we do not

have to look at arbitrary substitution instances of ϕ; it suffices to take into consideration

substitutions of atomic proposition letters with arbitrarily large disjunctions of atoms.

This yields the following corollary.

Corollary 4.6. For any formula ϕ(p1 , . . . , pn ), the following are equivalent:

1. ϕ(p1 , . . . , pn ) ∈ ML;

2. ϕ(
∨

1≤i≤k pi
1 , . . . ,

∨
1≤i≤k pi

n ) ∈ InqL for all k ∈ ω;

3. ϕ(
∨

1≤i≤k ¬pi
1 , . . . ,

∨
1≤i≤k ¬pi

n ) ∈ Λ for all k ∈ ω, where Λ is any intermediate

logic with Λn = InqL.

4.1 Some Notes on Medvedev’s Logic

Medvedev’s logic arises from interpreting propositional formulas as finite problems.

This finite problem semantics was introduced in (Medvedev, 1962). In (Medvedev,

1966), it was shown that the associated logic can be characterized in terms of Kripke

models as the logic of the class Med. The quest for an axiomatization of ML did not

produce significant results until Maksimova et al. (1979) proved that ML is not finitely

axiomatizable and indeed not axiomatizable with a finite number of propositional let-

ters. The question of whether ML admits a recursive axiomatization (equivalently, of

whether ML is decidable) is a long-standing open problem.

This makes the results we just established particularly interesting. For, in the first

place we have seen that ML = Sch(InqL) = Sch(KPn ) = Sch(NDn ), which means that

the systems KPn and NDn give pseudo-axiomatizations of ML: they derive ‘slightly’



21

more formulas than those in ML, but if we restrict our attention to the schematic

validities, then we have precisely Medvedev’s logic.

In the second place, corollary 4.6 provides a connection between Medvedev’s logic

and other intermediate logics, among which the well-understood Kreisel-Putnam logic,

that might pave the way for new attempts to solve the decidability problem for ML.

For instance—since both InqL and KP are decidable—if it were possible to find a

finite bound b for the maximum number k of disjuncts that we need to use in order to

falsify a non-schematically valid formula ϕ (possibly depending on the number of propo-

sitional letters in ϕ) then ML would be decidable. For, to determine whether ϕ ∈ ML

it would then suffice to check whether the formula ϕ(
∨

1≤i≤k ¬pi
1 , . . . ,

∨
1≤i≤k ¬pi

n )

is in KP for all k ≤ b, and this procedure can be performed in a finite amount of time.

It is possible to show (see Ciardelli, 2009) that for formulas containing a single

proposition letter p, such a bound exists and equals 2. As a consequence, the one-letter

fragment of ML is decidable (and in fact coincides with the well-known Scott logic).

This was already known, but the argument is new and could perhaps be generalized.

5 The Range of Intermediate Logics whose Negative Variant is InqL

Using the result that the schematic fragment of InqL coincides with ML it is possible

to strengthen the completeness result obtained in section 3.6: we can give a complete

characterization of the range of intermediate logics whose negative variant coincides

with InqL.

Theorem 5.1 (Range of intermediate logics whose negative variant is InqL). For any

intermediate logic Λ:

Λn = InqL ⇐⇒ ND ⊆ Λ ⊆ ML

We articulate the proof of this theorem in two lemmata.

Lemma 5.2. For any intermediate logic Λ, if Λn = InqL, then ND ⊆ Λ.

Proof. By contraposition, suppose ND 6⊆ Λ. Then there is a number k for which the

formula NDk :=
(
¬p→

∨
1≤i≤k ¬qi

)
−→

∨
1≤i≤k (¬p → ¬qi ) is not in Λ. Note

that this formula is nothing but ϕn where ϕ denotes the formula(
p→

∨
1≤i≤k qi

)
−→

∨
1≤i≤k (p→ qi )

But then ϕnn cannot be in Λ. For if it were—Λ being closed under uniform substitution—

ϕnnn should also be in Λ, and so should the equivalent formula ϕn . But ϕn is not in

Λ. Thus, ϕnn 6∈ Λ, whence ϕn 6∈ Λn . On the other hand, ϕn = NDk ∈ InqL. So,

Λn 6= InqL.

Lemma 5.3. For any intermediate logic Λ, if Λn = InqL, then Λ ⊆ ML.

Proof. We know that Λ is always included in Λn , so if Λn = InqL we have Λ = Sch(Λ) ⊆
Sch(Λn ) = Sch(InqL) = ML, where the first equality uses the fact that Λ is closed under

uniform substitution.
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Proof of theorem 5.1. Let Λ be an intermediate logic. The operation of negative variant

is obviously monotone, so if ND ⊆ Λ ⊆ ML we have InqL = NDn ⊆ Λn ⊆ MLn = InqL,

where the first and the last equality come from corollary 3.34.

On the other hand, the previous two lemmata together show that Λn = InqL implies

ND ⊆ Λ ⊆ ML. This completes the proof of the theorem.

Note that as a corollary of this theorem we can easily derive a well-known result due

to Maksimova (1986), which was already mentioned at the end of section 3.6.

Corollary 5.4. If Λ ⊇ ND is a logic with the disjunction property, then Λ ⊆ ML. In

particular, ML is a maximal logic with the disjunction property.

Proof. According to theorem 3.33, if Λ ⊇ ND is a logic with the disjunction property,

then Λn = InqL and thus, by theorem 5.1, Λ ⊆ ML.

Finally, theorem 5.1 can easily be extended to a strong completeness result.

Theorem 5.5 (Strong Completeness). For any intermediate logic Λ, the following two

conditions are equivalent:

1. ND ⊆ Λ ⊆ ML

2. For any set of formulas Θ and any formula ϕ: Θ |=InqL ϕ ⇐⇒ Θ `Λn ϕ

Proof. First let Λ be an intermediate logic that satisfies condition 2. Then, in particular,

InqL = Λn , and therefore, by theorem 5.1, ND ⊆ Λ ⊆ ML.

Now let us assume that Λ is an intermediate logic that satisfies condition 1, and

show that `Λn is sound and complete with respect to |=InqL . The soundness direction is

straightforward since Λ ⊆ InqL (for, Λ ⊆ Λn and Λn = InqL), ¬¬p→ p ∈ InqL, and the

set of formulas supported by a state is closed under modus ponens. For the completeness

direction, suppose that Θ |= InqL ϕ. Then, by compactness (theorem 3.10), there are

formulas θ1 , . . . , θk ∈ Θ such that θ1 , . . . , θk |=InqL ϕ, which by the deduction theorem

amounts to θ1 ∧ · · · ∧ θk → ϕ ∈ InqL. Then by theorem 5.1, θ1 ∧ · · · ∧ θk → ϕ ∈ Λn ,

whence clearly Θ `Λn ϕ.

6 InqL as the disjunctive-negative fragment of IPL

As we already observed, the meanings of inquisitive semantics are sets of alternatives,

where each alternative is a classical meaning. This essential feature of the semantics is

mirrored on the syntactic, logical level by the fact that any formula ϕ is equivalent to

a disjunction of negations dnt(ϕ).

The completeness result in section 3 was based on the insight that preservation of

logical equivalence under dnt is an essential feature of the logic InqL. But there is even

more to say about dnt: in this section we will show that it constitutes a translation of

InqL into IPL, in the following sense (cf. Epstein et al., 1995, chapter 10):

Definition 6.1 (Translations between logics). Let L,L′ be two logics arising from two

entailment relations |=L and |=L′ . We say that a mapping t from formulas in the

language of L to formulas in the language of L′ is a translation from L to L′ in case

for any set of formulas Θ and any formula ϕ we have:

Θ |=L ϕ ⇐⇒ t[Θ] |=L′ t(ϕ)

where t[Θ] = {t(θ) | θ ∈ Θ}.
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Moreover, we will show that the disjunctive-negative fragment of InqL coincides with

the one of IPL, and that InqL is in fact isomorphic to the disjunctive-negative fragment

of IPL through the translation dnt (just as CPL is isomorphic to the negative fragment

of IPLthrough the translation mapping ϕ to ¬¬ϕ).

Let us call a formula disjunctive-negative in case it is a disjunction of negations.

The following proposition says that inquisitive entailment and intuitionistic entailment

agree as far as disjunctive-negative formulas are concerned.

Proposition 6.2. If ϕ is a disjunctive-negative formula and Θ a set of disjunctive-

negative formulas, then: Θ |=InqL ϕ ⇐⇒ Θ |=IPL ϕ.

Proof. Consider an arbitrary set Θ of disjunctive-negative formulas and a disjunctive-

negative formula ϕ = ¬ξ1 ∨ · · · ∨ ¬ξk . If Θ |= InqL ϕ, then by compactness and the

deduction theorem there must be θ1 , . . . , θn ∈ Θ such that θ1 ∧ · · · ∧ θn → ϕ ∈ InqL.

Now since each θk is a disjunction of negations and since the distributive laws hold

in intuitionistic logic, in IPL we can turn θ1∧· · ·∧θn into a disjunction of conjunctions of

negations. In turn, a conjunction of negations is equivalent to a negation in intuitionistic

logic. So we can find formulas χ1 , . . . , χm such that θ1 ∧· · ·∧θn ≡IPL ¬χ1 ∨· · ·∨¬χm .

But then (θ1 ∧ · · · ∧ θn → ϕ) ≡IPL (¬χ1 ∨ · · · ∨ ¬χm → ϕ) ≡IPL
∧

1≤i≤m (¬χi → ϕ).

Equivalence in IPL implies equivalence in InqL, so θ1 ∧ · · · ∧ θn → ϕ ∈ InqL implies

that
∧

1≤i≤m (¬χi → ϕ) ∈ InqL, which in turn means that for each 1 ≤ i ≤ n we have

¬χi → ϕ ∈ InqL.

Writing out ϕ, this amounts to ¬χi → ¬ξ1 ∨ · · · ∨ ¬ξk ∈ InqL. But since InqL contains

the Kreisel-Putnam axiom, it follows that
∨

1≤j≤k (¬χi → ¬ξj ) ∈ InqL, and therefore,

as InqL has the disjunction property, for some 1 ≤ j ≤ k we must have that ¬χi →
¬ξj ∈ InqL ⊆ CPL.

Now, ¬χi → ¬ξj ≡ IPL ¬¬(¬χi → ¬ξj ), and since CPL and IPL agree about

negations (Chagrov and Zakharyaschev, 1997, corollary 2.49), also ¬χi → ¬ξj ∈ IPL,

whence a fortiori ¬χi → ϕ ∈ IPL.

But since this can be concluded for each i, we have
∧

1≤i≤m (¬χi → ϕ) ∈ IPL, and

therefore also the equivalent formula θ1 ∧ · · · ∧ θn → ϕ must be in IPL. But then

obviously Θ |=IPL ϕ.

The converse implication is trivial, as InqL extends IPL.

As a particular case of this proposition, let us remark that for any disjunctive-negative

formula ϕ we have ϕ ∈ InqL ⇐⇒ ϕ ∈ IPL.

Corollary 6.3. dnt is a translation of InqL into IPL.

Proof. We have to show that for any Θ and any ϕ:

Θ |=InqL ϕ ⇐⇒ dnt[Θ] |=IPL dnt(ϕ)

where dnt[Θ] = {dnt(θ) | θ ∈ Θ}. It follows from proposition 3.13 that Θ |=InqL ϕ ⇐⇒
dnt[Θ] |= InqL dnt(ϕ). But dnt(ψ) is always a disjunctive-negative formula. So, by

proposition 6.2, dnt[Θ] |=InqL dnt(ϕ) ⇐⇒ dnt[Θ] |=IPL dnt(ϕ) and we are done.

Observe that if the map t is a translation from a logic L to another logic L′, then t

naturally lifts to an embedding t : L/≡L → L/≡L
′ of the Lindenbaum-Tarski algebra

of L into the Lindenbaum-Tarski algebra of L′, given by t([ψ]≡L) := [t(ψ)]≡L′ .
3

3 For more details on the issues of translations between logics, see (Epstein et al., 1995).
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[⊥]

[p] = [¬¬p]

[¬p]

[p ∨ ¬p] = [¬p ∨ ¬¬p]

[>]

[⊥]

[p][¬p]

[p ∨ ¬p] [¬¬p]

[¬p ∨ ¬¬p][¬¬p→ p]

...
...

[>]

Fig. 3 Embedding of the Lindenbaum-Tarski algebra of InqL (on the left), into the
Lindenbaum-Tarski algebra of IPL (the Rieger-Nishimura lattice, on the right), for the sin-
gleton set of proposition letters P = {p}.

Since we have seen that dnt is a translation from InqL to IPL, the map dnt defined

by dnt([ψ]≡InqL) = [dnt(ψ)]≡IPL is an embedding of the Lindenbaum-Tarski algebra of

InqL into the one of IPL. For the singleton set of propositional letters, this embedding

is depicted in figure 6.

Now, for any ψ, dnt(ψ) is a disjunctive-negative formula. Conversely, consider a

disjunctive-negative formula ψ. Since ψ ≡ InqL dnt(ψ) but both ψ and dnt(ψ) are

disjunctive-negative, it follows from proposition 6.2 that ψ ≡ IPL dnt(ψ); in other

words, we have [ψ]≡IPL = [dnt(ψ)]≡IPL = dnt([ψ]≡IPL), so [ψ]≡IPL is in the image of the

embedding dnt.

This shows that the image of the embedding dnt is precisely the set of equivalence

classes of disjunctive-negative formulas. In other words, just like CPL is isomorphic to

the negative fragment of IPL, for InqL we have the following result.

Proposition 6.4. InqL is isomorphic to the disjunctive-negative fragment of IPL.

As a corollary of the well-known fact that CPL is isomorphic to the negative fragment

of IPL we know that, for any n, there are exactly 2n+1 intuitionistically non-equivalent

negative formulas in L{p1 ,...,pn}, just as many as there are classically non-equivalent

formulas in L{p1 ,...,pn}.
Analogously, our result that InqL is isomorphic to the disjunctive-negative fragment

of IPL comes with the corollary that there are exactly as many intuitionistically non-

equivalent disjunctive-negative formulas in L{p1 ,...,pn} as there are inquisitively non-

equivalent formulas in L{p1 ,...,pn}.
The number of inquisitively non-equivalent formulas in L{p1 ,...,pn} is given by the

number of distinct inquisitive meanings built up from indices in I{p1 ,...,pn}. Such

inquisitive meanings are nothing but antichains of the powerset algebra ℘(I{p1 ,...,pn}).



25

This algebra is isomorphic to ℘(2n ), since I{p1 ,...,pn} = ℘({p1 , . . . , pn}) contains 2n

elements. Therefore, letting D(n) denote the number of antichains of the powerset

algebra ℘(n), we have the following fact.

Corollary 6.5. For any n, there are exactly D(2n ) intuitionistically non-equivalent

disjunctive-negative formulas in L{p1 ,...,pn}.

The numbers D(n) are known as Dedekind numbers, and although no simple formula

is known for their calculation, their values for small n have been computed and are

available online, see for instance: www.research.att.com/~njas/sequences/A014466.

The number of inquisitive meanings in one propositional letter is 5, as displayed by

the above picture; with two letters we have 167 meanings, and with three the number

leaps to 56130437228687557907787.

7 The Inquisitive Hierarchy

Inquisitive semantics was first developed by Groenendijk (2008c) and Mascarenhas

(2008). The original formulation of the semantics was different from the one consid-

ered here: formulas were evaluated w.r.t. ordered pairs of indices rather than w.r.t.

arbitrary sets of indices. The intuition underlying that semantics came from the tra-

dition of Groenendijk’s logic of interrogation (Groenendijk, 1999; ten Cate and Shan,

2007), where a formula disconnects two indices in the common ground in case it ex-

presses an interest in the difference between them. We will refer to that system as the

pair semantics, and to the system considered in the present paper as the generalized

semantics.

Going through the clauses that define the pair semantics it is immediately clear that

for any indices v, w and any formula ϕ, 〈v, w〉 |= ϕ amounts precisely to our {v, w} |= ϕ

(that is, the order of the pair 〈v, w〉 is irrelevant). In this sense the pair semantics can

be seen as a fragment of the generalized semantics, namely the fragment dealing only

with states of size at most two. This restriction on the cardinality of states gives rise

to a logic InqL2, much stronger than InqL, which has been studied and axiomatized by

Mascarenhas (2009).

In general, we may consider the operation of restricting our semantics by allowing

only states of cardinality at most n. As we shall see, doing so gives rise to a hierarchy

of strictly shrinking logics whose limit is InqL.

Remark 7.1. Throughout this section we assume a countably infinite set of proposi-

tional letters P = {pi | i ∈ ω}.

Definition 7.2 (The Inquisitive Hierarchy).

For k ∈ ω, define InqLk = {ϕ | s |= ϕ for any state s with |s| ≤ k}.

The only state of cardinality zero is ∅, which supports any formula, so InqL0 is the

inconsistent logic. Moreover, since singleton states behave like indices, InqL1 is classical

logic. And, clearly, InqL2 is the logic arising from the pair semantics. The following fact

is a trivial consequence of the definition of the hierarchy.

Remark 7.3. InqL =
⋂

k∈ωInqLk

We will now define, for each k ∈ ω, a formula δk that characterizes the class of intu-

itionistic Kripke frames of depth at most k. That is, for each k ∈ ω, δk is valid on an

intuitionistic Kripke frame F if and only if the depth of F is at most k.

www.research.att.com/~njas/sequences/A014466
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We will then show, first, that for any k ∈ ω, δk is in InqLk but not in InqLk+1 (which

means that the inquisitive hierarchy is a sequence of strictly shrinking logics), and

second, that for any k ∈ ω, adding all substitution instances of δk to an axiomatization

of InqL yields an axiomatization of InqLk .

Definition 7.4. The formulas δk , k ∈ ω are defined inductively as follows.

– δ0 := ⊥
– δk+1 := pk+1 ∨ (pk+1 → δk )

Proposition 7.5. For any natural k, δk ∈ InqLk but δk /∈ InqLk+1 .

Proof. First let us remark that for any finite non-empty state s, the depth of the

subframe (FI )s generated by the point s in the frame FI of the Kripke model for

inquisitive logic is equal to |s|. This can be checked by an easy induction.

Now, first consider any state s with |s| ≤ k: we have to check that s |= δk . We may

assume s 6= ∅, as our claim is trivial for the empty state. Now as the depth of the frame

(FI )s is |s| ≤ k, the formula δk is valid on (FI )s , whence in particular ((FI )s , VI ), s 

δk , where VI is the valuation of MI . But then, since Kripke satisfaction is invariant

under taking generated submodels we have MI , s 
 δk , which by proposition 3.18

amounts to s |= δk . This shows that δk is supported by any state of size at most k.

Hence, δk ∈ InqLk .

Second, we have to show that s 6|= δk for some state s with |s| = k + 1. We shall

proceed by induction on k. For k = 0, simply take s0 = {w} where w is the index

making all proposition letters true.

Now, inductively, we can assume that we have a state sk such that |sk | = k + 1,

|sk | 6|= δk , and moreover all indices in sk make pj true for all j ≥ k + 1. Now simply

let sk+1 := sk ∪ {w} where w is the index making a letter pj true iff j ≥ k + 2. It

is immediate to check that sk+1 6|= δk+1 , and since |sk+1 | = k + 2 and all indices in

sk+1 make pj true for all j ≥ k + 2, the inductive step is complete.

This proves that the inquisitive hierarchy is indeed a hierarchy of strictly shrinking

logics: for any k ∈ ω, InqLk ) InqLk+1 . We now turn to the axiomatization of the

logics in the hierarchy.

Definition 7.6 (∆k ). For any natural k we denote by ∆k the intermediate logic

axiomatized by the formula δk .

Theorem 7.7 (Axiomatization of the inquisitive hierarchy). Let Λ be an intermediate

logic with ND ⊆ Λ ⊆ ML. Then InqLk = (Λ+∆k )n .

In other words, the theorem states that InqLk is soundly and completely axiomatized by

a derivation system having modus ponens as derivation rule, and the following axioms:

1. Λ, or axioms for Λ in schematic form;

2. ∆k , or δk as an axiom scheme;

3. ¬¬p→ p for all p ∈ P.

For instance, if we choose Λ = KP, then the theorem says that we can take our deriva-

tion system to have, as axioms, all substitution instances of the formulas KP and δk ,

plus atomic double negation axioms.
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Proof. For the soundness direction, since the set InqLk is closed under modus ponens

and contains Λ and the atomic double negation axioms, it suffices to check that any

substitution instance δk
∗ of δk is in InqLk . Consider a state s with 0 < |s| ≤ k (the case

|s| = 0 is trivial): then the generated subframe (FI )s of s in the frame FI has depth at

most k, so δk is valid on (FI )s , and since the logic of a frame is closed under uniform

substitution, δk
∗ is valid on (FI )s as well. In particular we have ((FI )s , VI ), s 
 δk

∗,
which by invariance of Kripke-satisfaction under generated submodels yields MI , s 

δk
∗ and thus s |= δk

∗.
For completeness, suppose ϕ 6∈ (Λ+∆k )n , that is, assume that ∆k 6`Λnϕ. By the

strong completeness of Λn (theorem 5.5) there must be a state s such that s |= ∆k

but s 6|= ϕ. Now in order to conclude that ϕ 6∈ InqLk it suffices to show that s |= ∆k

implies |s| ≤ k. This is the content of the following lemma.

Lemma 7.8. For any k ∈ ω, if |s| > k then there is a substitution instance δk
∗ of the

formula δk such that s 6|= δk
∗.

Proof. We will proceed by induction on k. The case for k = 0 is trivial: δ0 = ⊥ is not

supported by any non-empty state.

Now, assume our claim holds for a number k and consider a state s with |s| > k+1.

We may assume that s is finite: if not, just replace it by a finite substate s′ ⊆ s with

|s′| > k+ 1: then by persistence, once we find an instance of δk which is not supported

by s′, this cannot be supported by s either.

Fix an index w ∈ s: exploiting the fact that w must differ from any other w′ ∈ s on

some letter and that s contains only finitely many indices, we can easily find a formula

γ such that w |= γ but w′ 6|= γ for any w′ 6= w in s.

Now, since |s− {w}| > k, by induction hypothesis there is a substitution instance

δk
∗ of δk such that s− {w} 6|= δk . Since δk contains only the variables p1 , . . . , pk , the

substitution we need in order to get δk
∗ from δk does not concern the variable pk+1 , for

which we are free to choose a substitute: thus, the formula δk+1
∗ := ¬γ ∨ (¬γ → δk

∗)
is indeed a substitution instance of δk+1 = pk+1 ∨ (pk+1 → δk ).

Now s 6|= ¬γ, because w ∈ s and w 6|= ¬γ; on the other hand, s 6|= ¬γ → δk
∗,

because s − {w} 6|= δk while s − {w} |= ¬γ by proposition 2.6. Thus, s 6|= δk+1
∗ and

we are done: we have shown that for any state s with |s| > k+ 1 there is a substitution

instance of δk+1 which is not supported by s.

Note that, proceeding in exactly the same way, we could in fact have shown that, for

any Λ such that ND ⊆ Λ ⊆ ML, (Λ+∆k )n provides a strongly complete axiomatization

of InqLk , in the sense that it captures the notion of entailment |=InqLk
that results from

restricting inquisitive semantics to states of size at most k. That is, for any set Θ and

any formula ϕ,

Θ |=InqLk
ϕ ⇐⇒ Θ `(Λ+∆k )n ϕ

8 A Plea for the Generalized Semantics

We have seen that in the pair semantics, formulas are evaluated with respect to ordered

pairs of indices. The possibilities for a formula ϕ are then defined as maximal states

such that any pair of indices in that state supports ϕ. This notion of possibilities

subtly differs from the one that the generalized semantics gives rise to. Thus, the pair

semantics and the generalized semantics yield a different notion of meaning. In this
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section, we compare these two notions of meaning and argue that the differences speak

in favour of the generalized semantics.

In order to make such a judgment, we must first of all determine a suitable criterion

for comparison. In order to do so, we return to one of the main sources of inspiration

behind inquisitive semantics, the ‘Gricean picture of disjunction’ (Grice, 1989, p. 68):

A standard (if not the standard) employment of ‘or’ is in the specification of

possibilities (one of which is supposed by the speaker to be realized, although

he does not know which one), each of which is relevant in the same way to a

given topic. ‘A or B’ is characteristically employed to give a partial answer to

some [wh]-question, to which each disjunct, if assertible, would give a fuller,

more specific, more satisfactory answer.

This picture has played an important role in the development of inquisitive semantics

(cf. Groenendijk, 2008b), and indeed, a disjunction p∨q is assigned a meaning consisting

of two alternative possibilities, |p| and |q|.
Now, the Gricean picture of disjunction is of course not intended to apply only to

disjunctions with two disjuncts. It applies just as well to disjunctions with three or

more disjuncts. For instance, the idea is that a triple disjunction p ∨ q ∨ r is used to

specify three possibilities, |p|, |q| and |r|. One criterion, then, for comparing different

implementations of inquisitive semantics, is that the Gricean picture of disjunction

should be captured for disjunctions of arbitrary length.

This is indeed what the generalized semantics does, unlike any other element of the

inquisitive hierarchy. Let us consider the pair semantics in particular. This semantics

assigns to p∨q∨r the three possibilities |p|, |q| and |r|, but also an additional possibility

t = {111, 110, 101, 011} (since every pair of indices in t supports p ∨ q ∨ r).
More generally, a disjunction p1 ∨ . . .∨pn+1 will be problematic for any element of

the inquisitive hierarchy that looks only at states of size at most n. The Gricean picture

is only captured in full generality if states of arbitrary size are taken into account.

Now let us consider another criterion, which concerns the intuition that the possibilities

for a sentence ϕ correspond to the alternative ways in which ϕ may be resolved. Again,

upon close examination, it turns out that this intuition is captured by the generalized

semantics, but not by any other element of the inquisitive hierarchy.

In section 2.4 we saw that a state s supports a formula ϕ precisely in case the issue

raised by ϕ is settled in s. Thus, possibilities in the generalized semantics are maximal

states in which the issue raised by a formula is settled in a particular way; in this sense,

the possibilities that we get in the generalized semantics embody the possible ways of

resolving the issue raised by the formula.

It is easy to see that the pair semantics can only disagree with the generalized

semantics about the meaning of a formula ϕ in case one of the possibilities that the

pair semantics assigns to ϕ, call it t, does in fact not support ϕ. In this case, according to

proposition 2.26, ϕ must be informative or inquisitive in t; but it cannot be informative,

since both semantics yield the same, classical treatment of information, so it must be

inquisitive: for instance, p ∨ q ∨ r is inquisitive in the state {111, 110, 101, 011}, which

is a possibility according to the pair semantics.

This means that the issue raised by ϕ is still open in t: t does not correspond to

a possible way of resolving ϕ. Thus, the pair semantics does not yield the intended

notion of possibilities, and the same point can easily be made for any other element of

the inquisitive hierarchy.
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9 Support as ‘Knowing How’

The motivation for inquisitive semantics lies in certain conceptual ideas about infor-

mation exchange through conversation. The link between these ideas and the formal

semantics is usually established at the level of propositions. However, propositions are

defined indirectly, through the notion of support. In this final section we suggest an

intuitive interpretation of this basic notion of support, which allows for a new per-

spective on the semantics and the associated logic, and in particular on some of the

observations made in previous sections.

We have already seen that states in inquisitive semantics can be conceived of as

information states. Traditionally, an information state s is taken to support a formula ϕ

iff it it is known in s that ϕ is true. This is not how support should be thought of in the

present setting. However, there is a closely related interpretation that is appropriate:

‘s |= ϕ’ can be read as stating the conditions under which it is known in s how ϕ is

realized.

Under this perspective, the basic clause in the definition of support states that

atoms can only be realized in one way: the fact that they name must obtain. This

special character of atoms explains the fact that inquisitive logic is not closed under

uniform substitution: atoms are not placeholders denoting arbitrary meanings, but re-

ally represent ‘atomic’ meanings lacking any inquisitive complexity. They are simply

names for facts, states of affairs that may or may not obtain in the world. This guar-

antees that each of the alternatives proposed by a formula is in fact expressible and

can be selected by the dialogue participants through some utterance. This desirable

feature of the system that would be lost if atoms were allowed to be inquisitive.

Returning to the definition of support, the recursive clauses can be read as follows:

one never knows ‘how ⊥’ unless one’s information state is inconsistent; knowing ‘how

ϕ∨ψ’ requires knowing ‘how ϕ’ or ‘how ψ’; and knowing ‘how ϕ∧ψ’ requires knowing

‘how ϕ’ and ‘how ψ’. Finally, the support-clause for implication becomes particularly

perspicuous under this interpretation. A state s supports ϕ → ψ iff every substate

of s that supports ϕ also supports ψ. That is, we know how ϕ → ψ is realized iff in

every future information state where we know how ϕ is realized, we also know how ψ

is realized. Thus, knowing ‘how ϕ → ψ’ requires knowing not only that ψ is realized

whenever ϕ is, but also how the way ψ is realized depends on the way ϕ is realized. In

other words, what is required is a method for turning knowledge as to how ϕ is realized

into knowledge as to how ψ is realized, just like in intuitionistic logic having a proof

for ϕ→ ψ amounts to having a method for turning a proof for ϕ into a proof for ψ.

These observations naturally suggest a formal, inductive definition of the ‘ways in

which a formula can be realized’. There is only one subtlety that we have to take care

of: in order to avoid multiple copies of the same realization, we fix a normal form for

formulas in classical logic such that the normal form of each formula is disjunction-free.

Denote the normal form of a formula ϕ by ϕnf . We may assume that ⊥nf = ⊥ and

that pnf = p for proposition letters. We can then define realizations as follows.

Definition 9.1 (Realizations).

1. R(p) = {p} for p ∈ P
2. R(⊥) = {⊥}
3. R(ϕ ∨ ψ) = R(ϕ) ∪R(ψ)

4. R(ϕ ∧ ψ) = {(ρ ∧ σ)nf | ρ ∈ R(ϕ) and σ ∈ R(ψ)}
5. R(ϕ→ ψ) = {(

∧
ρ∈R(ϕ)(ρ→ f(ρ)))nf | f : R(ϕ)→R(ψ)}
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We shall refer to the elements of R(ϕ) as the realizations of ϕ. It is immediate to check

inductively that realizations are always disjunction-free, and therefore, by corollary

2.19, they are assertions. The following proposition—whose straightforward inductive

proof is omitted—shows that possibilities mirror the alternative ways in which a for-

mula may be realized (where ‘alternative’ means ‘mutually incomparable with respect

to entailment’).

Proposition 9.2. For any formula ϕ, the possibilities for ϕ coincide with the maximal

elements of {|ρ| | ρ ∈ R(ϕ)} .

In terms of realizations, the intuitive interpretation of support suggested above can be

made more precise: a formula ϕ is supported just in case it is known how ϕ is realized,

that is, just in case a realization of ϕ is known.

Proposition 9.3. For any state s and formula ϕ,

s |= ϕ ⇐⇒ s ⊆ |ρ| for some ρ ∈ R(ϕ)

In the light of this interpretation, the conversational effect of an utterance can be

rephrased as follows. An utterance of ϕ provides the information that ϕ is true and

it raises the issue how ϕ is realized. Therefore, realizations may also be viewed as

resolutions of the issue raised by ϕ. Proposition 9.2 then says that the possibilities for

ϕ mirror the alternative ways in which the issue raised by ϕ may be resolved—which

is indeed what was already claimed, informally, at the end of section 8.

10 Conclusions

We investigated a generalized version of inquisitive semantics, and the logic it gives

rise to. In particular, we established that InqL coincides with the negative variant of

any intermediate logic Λ such that ND ⊆ Λ ⊆ ML. We also showed that the schematic

fragment of inquisitive logic coincides with ML, thus achieving a pseudo-axiomatization

of the latter, and proved that inquisitive logic is isomorphic to the disjunctive-negative

fragment of intuitionistic logic. Finally, we compared the generalized version of inquis-

itive semantics with the original ‘pair semantics’, arguing in favour of the generalized

system, and we presented an intuitive interpretation of the inquisitive notion of sup-

port, hopefully illuminating some of the technical results that were obtained in earlier

sections.

Acknowledgements To be added after reviewing process.
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