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Abstract
In this paper the notion of compliance (Groenendijk [2008a,b]) in inquisitive

semantics (Groenendijk [2008b], Mascarenhas [2008], Ciardelli [2008], Ciardelli
and Roelofsen [2009a], Groenendijk and Roelofsen [2009]) is brought into

practise. An algorithm for compting compliant responses is presented, based
on an earlier draft (Ciardelli and Roelofsen [2009b]). The presented algorithm

is proved to be sound and complete. An implementation can be found at
www.illc.uva.nl/inquisitive-semantics/computing-compliance. Furthermore the

complexity of the presented algorithm is analysed and (the essential part of

the algorithm) is in O(2222
2n

), with n the number of proposition letters in the
input formula. The large computation time may in the future be reduced by

computing not all compliant responses, but only the best candidates.
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1 Introduction

This paper investigates and presents a syntactic characterization of what kind
of responses are desirable given the issues raised in a human conversation. Thus
it is about the moves in a conversation that are related to earlier raised issues.
It are exactly those moves that create coherence in a conversation.
Understanding and modeling human conversation is very important for many
disciplines. Except its philosophical and psychological interest to model and
understand human conversation, there is also a more practical interest which
lies in human-computer interaction and AI. A lot of examples are already avail-
able of communication between human and computer through human language
(most known are the Questioning-Answer systems). However, keeping the con-
versation coherent from the computers side still is a bottleneck (especially when
the domain of discourse is widely oriented). The main purpose of this pa-
per is to bring an already available formalized definition (with a philosophical
prospect) of what kind of responses are good conversation moves called compli-
ance (Groenendijk [2008a,b]), into a more practical setting. Compliance is the
central notion in a new formal system, called inquisitive semantics initiated by
Groenendijk [2008b] and Mascarenhas [2008].
The formalized definition of compliance tells us how we can be compliant to an
earlier raised issue. There are two ways one can be compliant to an issue:

1. provide information that (partially) resolves the issue

2. raise an easier to answer sub-question

A combination of these two possibilities is also allowed. This paper presents an
algorithm that outputs exactly all answers with these properties given a certain
issue.

Motivation Inquisitive semantics Traditionally, the meaning of a sentence
is interpreted with classical logic. However classical logic is originated from the
need to judge the validity of argumentation. As a consequence interpreting the
meaning of a sentence with classical semantics gives us only the informative con-
tent of the sentence. But people are interested in modeling also other purposes
of natural language outside argumentation. In order to fulfill this need (and
the lack of a better system available) we use traditional logics and semantics
to formalize these other purposes of natural language. However, the purpose of
language seems to be not only descriptive and language seems to be used for
more than providing information.
For instance a typical purpose of language is to exchange information between
the participants in a conversation. To exchange information is to raise issues
(inquisitive content of a sentence) and to provide information related to one of
the raised issues (informative content of a sentence). When an issue is raised it
is not only relevant what the informative content is of this issue, but especially
what its inquisitive content is (to find out what a right response to this issue
would be).
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Inquisitive semantics (Groenendijk [2008b], Mascarenhas [2008], Ciardelli [2008],
Ciardelli and Roelofsen [2009a], Groenendijk and Roelofsen [2009]) is a new for-
mal system, developed to handle not only the informative content of a sentence,
but also its inquisitive content. Inquisitive semantics (other then traditional se-
mantics) is originated from the need to model human language in a conversation.
It judges utterances not on their truth value, but it treats them as proposals
to the participants of a conversation to update the common ground. If these
proposals provide information, the participants can choose to either accept or
reject this information. If these proposals provide several options to change the
common ground, they serve the purpose of a question in a conversation. The
participants are then invited to respond to the question by either (partially)
proposing some of the options or by proposing an easier to answer proposal.
The central notion in inquisitive semantics, compliance (Groenendijk [2008a,b]),
tells what kind of responses are related to the initiative. Relatedness is one of
the maxims in inquisitive pragmatics. Together with the other maxims, the
maxim of quality and the maxim of quantity, relatedness is telling us what the
most compliant response is given the raised issue and the responders informa-
tion state.

Throughout the paper we use a definition of compliance (Groenendijk and
Roelofsen [2009]) which is based on a generalized version (Groenendijk [2008a],
Ciardelli [2008]) of inquisitive semantics. The generalized version was first dis-
cussed by Groenendijk [2008a] and Ciardelli [2008] and the associated logic was
axiomatized by Ciardelli and Roelofsen [2009a]. The notion of compliance pre-
sented by Groenendijk [2008b] is presented differently than the notion presented
by Groenendijk and Roelofsen [2009] because of their use of generalized seman-
tics. The two notions are proven to be equivalent by Groenendijk and Roelofsen
[2009].

The aim of this paper is to create a better practical insight in the notion of
compliance and work out a sound and complete syntactic characterization of
compliance. A first draft of an algorithm for compliance is already available
(Ciardelli and Roelofsen [2009b]), but it is not jet proved to be sound and com-
plete. In this paper some adjustments to the algorithm are made in order to
reduce space- and time complexity, which makes it possible to run the algorithm
for short formulas.

2 Inquisitive Semantics

In this section we introduce some definitions and facts of generalized inquisitive
semantics, which we will need to understand the definition of compliance and
proof soundness and completeness later on in the paper. All the facts and defi-
nitions stated here can be found in earlier work (Groenendijk [2008b], Ciardelli
[2008], Ciardelli and Roelofsen [2009a]).
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Definition 1 (Language) P will denote a finite set of proposition letters. LP

will denote the formulas built up from letters in P and ⊥ combined with the
binary connectives ∧, ∨ and →.

Definition 2 (Abbreviations) For all ϕ ∈ LP ,

1. ¬ϕ is an abbreviation for ϕ→⊥

2. ?ϕ is an abbreviation for ϕ ∨ ¬ϕ

3. !ϕ is an abbreviation for ¬¬ϕ

Note that these abbreviations suggest that the law of double negation and the
law of the excluded middle do not hold as laws in inquisitive semantics.

Definition 3 (Indices) An index is a function from P to {0,1}. We will de-
note the set of all indices with Ω.

Definition 4 (States) A state is a set of indices. We will denote the set of
all states with S.

One could explain an index as a possible world and a state as a set of possible
worlds. This set of possible worlds can stand for the information state of an
agent.

Next we define when a state supports a formula.

Definition 5 (Support) For all ϕ,ψ ∈ LP and s ∈ S,

1. s |= p iff ∀w ∈ s : w(p) = 1

2. s |=⊥ iff s = ∅

3. s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

4. s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ

5. s |= ϕ→ ψ iff ∀t ⊆ s : if t |= ϕ then t |= ψ

Note that the support rule for disjunction (although it looks quite familiar)
creates a world of difference between traditional semantics and inquisitive se-
mantics. Traditionally some formula p ∨ q is true if and only if p is true or q
is true. In inquisitive semantics however, an information state supports some
formula p ∨ q if and only if every possible world in that information state sup-
ports p or every possible world in that information state supports q (which is of
course not the same as every possible world in that information state supports
p or supports q).

Next we proof a base fact, persistence, which is an immediate result of the
definition of support.
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Fact 1 (Persistence) For all ϕ ∈ LP and s ∈ S,
If s |= ϕ then for every t ⊆ s: t |= ϕ.

Proof By induction on the length of ϕ
Take an arbitrary s ∈ S, and suppose s |= ϕ,

1. if ϕ = p
Then we have for all indices w ∈ s, that w(p) = 1. Take an arbitrary
t ⊆ s, then for all indices w′ ∈ t, we have w′ ∈ s and therefore we have
w′(p) = 1.

2. if ϕ =⊥
Then we have that s = ∅ and thus there are none substates of s.

3. if ϕ = ψ ∧ χ
Take an arbitrary t ⊆ s, we know s |= ψ and therefore by ih we have that
t |= ψ. We also know that s |= χ and therefore by ih t |= χ. Then also
t |= ψ ∧ χ.

4. if ϕ = ψ ∨ χ
We know s |= ψ or s |= χ. Take an arbitrary t ⊆ s. If it is the case that
s |= ψ then by ih t |= ψ and therefore t |= ψ ∨ χ. Otherwise it has to be
the case that s |= χ and then by ih t |= χ and therefore t |= ψ ∨ χ.

5. if ϕ = ψ → χ
We know for all s′ ⊆ s, if s′ |= ψ, then s′ |= χ. Take an arbitrary t ⊆ s.
Then we have that for all t′ ⊆ t also t′ ⊆ s. Therefore we know that if
t′ |= ψ, then t′ |= χ. Thus t |= ψ → χ.

Definition 6 (Possibilities, propositions, truth-sets) For all ϕ ∈ LP ,

1. A possibility for ϕ is a maximal state supporting ϕ, that is a state that
supports ϕ and is not properly included in any other state supporting ϕ.

2. The proposition expressed by ϕ is the set of possibilities for ϕ, and is
denoted by [ϕ].

3. The truth set of ϕ is the set of indices where ϕ is classically true, and is
denoted by |ϕ|.

That the set of possibilities is not always a singleton is strongly related to the
support rule for disjunction. Furthermore we can intuitively note that the max-
imal set of all worlds in which a formula is classically true, is the set of all worlds
in which that formula is classically true.

Next we proof a base fact which is an immediate result of the definition of
possibilities, states and support.

Fact 2 For all ϕ ∈ Lp and s ∈ S,
If s |= ϕ then there is some possibility π for ϕ, such that s ⊆ π.
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Proof Take arbitrary ϕ ∈ Lp and s ∈ S, and suppose s |= ϕ. Then either s
is a maximal state that supports ϕ and therefore a possibility for ϕ, and thus
s ⊆ π with π = s and π a possibility for ϕ. Or s is not a maximal state that
supports ϕ, but then there is an index i 6∈ s, such that s∪{i} |= ϕ. Then s∪{i}
is again either a maximal state that supports ϕ, or there is some extension of
s ∪ {i} with some index i′ 6∈ s ∪ {i} that support ϕ. Given that P is finite, we
know that the possible sets of functions from P to {0, 1} (states) are finite and
therefore we know there is some point at which there is no index not already in
the state that supports ϕ, and that state is a maximal state π that supports ϕ.
Therefore there is some possibility π for ϕ, such that s ⊆ π.

If a formula is inquisitive it means it is a proposal which offer you certain
possibilities to choose from. The speaker ask you to resolve (partially) his issue.
If the proposal offers only one possibility, then the speaker leaves you nothing
to resolve. Which means that your only opportunity then is to accept or reject
his proposal.

Definition 7 (Inquisitiveness, Questions and assertions) For all ϕ ∈ Lp,

1. ϕ is inquisitive if and only if [ϕ] contains at least two possibilities.

2. ϕ is a question if and only if it is inquisitive1.

3. ϕ is an assertion if and only if it is not inquisitive.

Fact 3 (Assertion) The following are equivalent:

1. ϕ is an assertion

2. if s |= ϕ and t |= ϕ then also s ∪ t |= ϕ.

3. [ϕ] = {|ϕ|}

Proof

1⇒ 2 Take an arbitrary ϕ ∈ Lp, and suppose ϕ is an assertion. Take arbitrary
s, t ∈ S, and suppose s |= ϕ and t |= ϕ. Since ϕ has only one possibility π
and all states that support ϕ has to be contained in a possibility for ϕ, we
have t ∪ s ⊆ π. We know π |= ϕ and therefore (by persistence) t ∪ s |= ϕ.

2⇒ 3 Take arbitrary ϕ ∈ Lp and suppose that for every t, s ∈ S, if s |= ϕ
and t |= ϕ, then t ∪ s |= ϕ. Take arbitrary π, π′ ∈ S and suppose π is a
possibility for ϕ and π′ is a possibility for ϕ and π 6= π′ (thus suppose ϕ
has more than one possibility). This is a contradiction because then by
the first assumption π ∪ π′ |= ϕ and hence we have that π and π′ aren’t

1In earlier work questions are defined differently and is what we call here a question defined
as a hybrid formula or a question. In this paper we don’t need to distinguish between hybrids
and questions.
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maximal states supporting ϕ. Therefore ϕ has at most one possibility.
Take an arbitrary s ∈ S, and suppose s is the unique possibility for ϕ.
Then we have that s |= ϕ and also for every t ⊆ s we have that t |= ϕ
(by fact 1). In particular all singleton states (indices) in s support ϕ.
And there is no index i 6∈ s, such that i |= ϕ, because otherwise it would
be contained in some possibility for ϕ (by fact 2). Since ϕ has only one
possibility, this is not possible. Since exactly every index that supports ϕ
is contained in s, we have that [ϕ] = {|ϕ|}.

3⇒ 1 Take an arbitrary ϕ ∈ Lp, and suppose [ϕ] = {|ϕ|}. Then the set of pos-
sibilities for ϕ contains one possibility, which means that ϕ is an assertion.

Fact 4 (Assertions) For all p ∈ P and all ψ, χ ∈ Lp,

1. p is an assertion

2. ⊥ is an assertion

3. ¬ψ is an assertion

4. if ψ, χ are assertions, then ψ ∧ χ is an assertion

5. if χ is an assertion, then ψ → χ is an assertion

Proof ⊥ is an assertion because there is only one maximal state supporting ⊥:
s = ∅. For the other items see [Ciardelli, 2008].

Note that from the fact that a negation is an assertion it follows that any
formula with an exclamation mark as main-connective is also an assertion.

Later on to prove soundness and completeness of the algorithm presented in
this paper, we will need to know when two formulas are equivalent.

Definition 8 (Equivalence) Two formulas ϕ,ψ ∈ Lp are equivalent, ϕ ≡ ψ,
iff [ϕ] = [ψ]

The following fact about equivalence immediately follows from the definition of
equivalence.

Fact 5 (Equivalence) Two formulas ϕ,ψ ∈ Lp are equivalent iff for all s ∈ S,
we have s |= ϕ iff s |= ψ.

Proof

⇒ Take arbitrary ϕ,ψ ∈ LP , and suppose ϕ ≡ ψ. By the definition of equiva-
lence we have that [ϕ] = [ψ]. Take an arbitrary t ∈ S, and suppose t |= ϕ.
We have that t ⊆ s for some maximal state s that supports ϕ (by fact
2). Then t is a subset for some maximal state that supports ψ, namely s
(because [ϕ] = [ψ]). And by persistence we have that t |= ψ. In the same
way we have that ∀t ∈ S, if t |= ψ then t |= ϕ. Thus for all s ∈ S, we have
s |= ϕ iff s |= ψ.
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⇐ Take arbitrary ϕ,ψ ∈ LP , and suppose ∀s ∈ S s |= ϕ iff s |= ψ. Take an
arbitrary π ∈ S, and suppose π is a possibility for ϕ. We want to show
that π is also a possibility for ψ. We have that π is a state that supports ϕ
and by the original assumption we have that π also supports ψ. Suppose
that π is not a maximal state that supports ψ (i.e. not a possibility for
ψ), then there would be some index w ∈ Ω, such that π ∪ {w} |= ψ. But
then by the original assumption π ∪ {w} |= ϕ, which would mean that π
is not a maximal state that supports ϕ. This leads to a contradiction so
π is also a maximal state that supports (possibility for) ψ. In the same
way we have ∀π ∈ S, if π is a possibility for ψ then π is also a possibility
for ϕ. Thus [ϕ] = [ψ] and therefore (by the definition of equivalence) we
have that ϕ ≡ ψ.

We also need the fact that if two formulas are equivalent in inquisitive semantics
they are eqivalent in classical semantics. But to proof that, we first have to proof
that the truth set of a formula is the union of the possibilities for that formula.

Fact 6 For all ϕ ∈ Lp, |ϕ| = the union of all possibilities in [ϕ].

Proof The right-to-left direction: Take an arbitrary ϕ ∈ LP . By persistence we
know that all single states (a set of one index) in a possibility for ϕ support ϕ.
We also know that every state that supports ϕ is contained in a possibility for
ϕ (by fact 2), then in particular all single states that support ϕ are contained in
a possibility for ϕ. Therefore the union of all possibilities contain exactly those
indices in which ϕ is classically true.
Now we can proof that if two formulas are equivalent in inquisitive semantics,
they are also equivalent in classical semantics.

Fact 7 For all ϕ,ψ ∈ Lp, if ϕ ≡ ψ then |ϕ| = |ψ|.

Proof Take two arbitrary formulas ϕ,ψ ∈ Lp, and suppose ϕ ≡ ψ. This means
[ϕ] = [ψ]. Then also the union of all possibilities in [ϕ] = the union of all
possibilities in [ψ]. Therefore |ϕ| = |ψ| (by fact 6).

3 Compliance

The notion of compliance in inquisitive semantics judges whether a certain con-
versation move is related in a coherent way to some raised issue in the con-
versation. In other words it judges if the participants response is compliant to
the issue he responded to. Before stating the formal definition, we give a basic
intuition of what kind of responses are desirable given an issue.

Basic intuitions Participants joining a conversation can typically make two
possible conversation moves. One can either raise a new issue or try to resolve
an issue that have been raised earlier in the conversation. Such moves that try
to resolve an issue that have been raised earlier in the conversation are sup-
posed to be coherent conversation moves, and are the kind of moves compliance
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is concerned with. One way to contribute to resolve an issue is to provide infor-
mation that (partially) resolve the issue. If this is not possible (because you’re
information state doesn’t contain such kind of information, or you don’t know
it does) a conversational move can still make a significant contribution when
you replace the issue by an easier to answer sub-question. What is important is
that being compliant, and thus making a coherent conversation move, means to
do nothing more than this: it should not provide information that is not related
to the given issue, and it should not raise issues that are not raised by the given
issue, or that are more difficult to answer.
So there are basically two ways to be compliant:

1. Provide information that (partially) resolves an issue.

2. Raise an easier to answer sub-question.

Combinations are also possible: one can partially resolve the issue and at the
same time raise an easier to answer sub-question of the remaining unresolved
part of the issue.

The following definition captures exactly those properties that decide if a certain
response ϕ is compliant to some issue ψ.

Definition 9 (Compliance) ϕ is compliant with ψ, in symbols ϕ ∝ ψ, iff

1. every possibility in [ϕ] is the union of a set of possibilities in [ψ]

2. every possibility in [ψ] restricted to |ϕ| is contained in a possibility in [ϕ]

Desirable compliant responses are repsonses that (partially) resolve an issue, or
responses that raise an easier to answer subquestion, or responses that partially
resolve an issue and at the same time ask an easier to answer subquestion of
the remaining issue. Now we will explore what kind of answers satisfy one of
those properties and what kind of answers don’t. Furthermore we will explain
why the definition supports the kind of answers that do satisfy those properties
and rules out the kind of answers that don’t.

Provide information that (partially) resolves an issue The first thing we
defined as being a compliant responses is to provide information that (par-
tially) resolves an issue. To provide information is to rule out one or more
indices. When you respond to an issue with an assertion, then this is
the only thing you have to keep in mind if you want to give a compliant
response. There are roughly three ways to be compliant by responding to
an issue with an assertion.

Do: provide information that resolves an issue.
To totally resolve an issue is to respond by choosing one from the
possibilities provided by the issue. The definition of compliance al-
lows for this kind of responses since the possibility in the response is
also an possibility in the issue. And the second condition is always
true when one talks about assertions as responses.
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Example 1 Suppose we have an initiative ’Does John or Ben come?’
(?(p ∨ q), figure 1(a)), one can resolve the issue by answering with
John comes (p, figure 1(b)).

11 10

01 00

(a) ?(p ∨ q)

11 10

01 00

(b) p

Figure 1: totally resolve issue

Do: provide information that partially resolves an issue.
To partially resolve an issue is to respond with an answer that ex-
cludes one (or more) possibilities from the initiative by providing
information. The definition of compliance allows for this kind of re-
sponses since the possibility in the response is the union of a set of
(not all) possibilities in the issue. And the second condition is always
true when one talks about assertions as responses.

Example 2 Suppose we have an imitative ’Is John coming to the
party and can I come?’ (?p∧?q, figure 2(a)), one can partially resolve
the issue by answering with ’You can come’ (q, figure 2(b)).

11 10

01 00

(a) ?p∧?q

11 10

01 00

(b) q

Figure 2: partially resolve issue

Do: confirme the initiative.
By confirming the initiative one doesn’t really make a significant
contribution in resolving the initiative, however it still is a compliant
response because it is of great significance for the coherence of a
conversation. The definition of compliance allows for this kind of
responses because the possibility of the response is the union of a set
of (all) possibilities in the issue. And the second condition is always
true when one talks about assertions as responses.
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Example 3 Suppose we have an initiative ’It is beautiful day’ (p,
figure 3(a)), one can confirm the initiative by answering with ’Yes it
is’ (p, figure 3(b)).

11 10

01 00

(a) p

11 10

01 00

(b) p

Figure 3: confirm the issue

The assertions as responses to a given issue that provide irrelevant in-
formation are not compliant responses. There are roughly two ways to
provide irrelevant information.

Don’t: be over-informative.
Being over-informative is saying something that is not asked. This
is undesirable because its unnecessary risk of being rejected by the
other participants of the conversation. It is not something that is
asked to be resolved by the initiator of the issue. So it is not related
to the domain of discussion 2. The definition of compliance doesn’t
allow this kind of responses because the possibility of the response
is a strict subset of some possibility in the issue and therefore not a
union of a set of possibilities for the issue.

Example 4 Suppose we have an initiative ’Does John comes to the
party?’ (?p, figure 4(a)), the reponse ’John and Ben come’ (p ∧ q,
figure 4(b)) would not be compliant to the initiative.

11 10

01 00

(a) ?p

11 10

01 00

(b) p ∧ q

Figure 4: being over-informative

2In some case it is desirable to resolve an issue that is not asked directly, but then this
issue that has to be resolved is an implicature. And then the desirable response is compliant
to the implicature.
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Don’t: be less-informative.
Being less-informative then the issue is not a compliant response to
that issue. The definition of compliance doesn’t allow for this kind
of responses because indices occur in the possibility for the response
that don’t occur in the issue and therefore it cannot be an union of
a set of possibilities for the issue.

Example 5 Suppose we have an initiative ’I’m hungry, would you
also like to eat something’ (p∧?q, figure 5(a)),one is not answering
compliant by saying ’Well if you’re hungry or not, I like to eat some-
thing’ (q, figure 5(b)).

11 10

01 00

(a) p∧?q

11 10

01 00

(b) q

Figure 5: being less-informative

Raise an easier to answer sub-question The second property we defined
as being a compliant response is to raise an easier to answer subquestion.
Here we talk about a question as response that provides the same infor-
mation as the issue at hand (no more and no less). An easier to answer
subquestion of an issue means that enough information to answer the issue
is certainly enough information to answer the question.

Do: ask an easier to answer subquestion.
Asking an easier to answer subquestion can make a significant contri-
bution. If someone can’t provide information that (partially) resolves
the issue in the first place because he doesn’t know he commands
the right information, reformulating the issue can help him to make
the relevant information available. The definition of compliance al-
lows for this kind of questions as responses to an issue because you
ask a question that unites possibilities for the issue (what makes
the question easier to answer). This means that the possibilities for
the response are all unions of a subset of possibilities for the issue.
Furthermore, the information needed to answer the issue is always
enough to answer the subquestion. This property is checked by the
second condition of compliance, and is thus satisfied by this kind of
responses.

Example 6 Suppose we have an initiative ’Does John or Ben come?’
(?(p ∨ q), figure 6(a)) then a compliant response would be ’Is one of
them coming?’ (?!(p ∨ q), figure 6(b)).
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11 10

01 00

(a) ?(p ∨ q)

11 10

01 00

(b) ?!(p ∨ q)

Figure 6: ask an easier to answer sub-question

This means that asking a question that is not at least as easy to answer is
not a compliant response. There are roughly two ways of asking a question
that is not as least as easy to answer then the issue responded to.

Don’t: ask for more specific information than the issue asks for.
Asking for more specific information than the issue asks for, means
that enough information to answer the issue is not always enough
information to answer the response. If the response ask for more
specific information than the issue, the response is not totally rel-
evant to the issue. The definition of compliance doesn’t allow for
this kind of answers because if you ask for more specific information,
there is a possibility for the response that is a strict subset of some
possibility for the issue. And therefore we have in that case that
not all possibilities for the response are also unions of a subset of
possibilities for the issue.

Example 7 Suppose we have an initiative ’Does john come to the
party?’ (?p, figure 7(a)) then the following response would not be
compliant to the issue ’Does John come?, and does Bea come?’ (?p∧?q,
figure 7(b)).

11 10

01 00

(a) ?p

11 10

01 00

(b) ?p∧?q

Figure 7: ask for more specific information

Don’t: rule out possible answers, without providing information.
Ruling out possible answers without providing information, means
also that enough information to answer the issue is not always enough
information to answer the response. The definition of compliance
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doesn’t allow for this kind of responses because it means that there is
some possibility in the issue restricted to the truth set of the response
that is not contained in a possibility for the response.

Example 8 Suppose we have an initiative ’I want to know if John
comes or I want to know if Bea comes!’ (?p∨?q, figure 8(a)) then the
response ’Does John come?’ (?p, figure 8(a)) would not be compliant
to the initiative 3.

11 10

01 00

(a) ?p∨?q

11 10

01 00

(b) ?p

Figure 8: rule out possibilities without providing information

A combination of the previous two A combination of the previous two means
a response that partially resolves the issue and simultaneously raises a sub-
question that is at least as easy to answer as the remaining part of the
issue.

Do: partially resolve the issue and raises a subquestion that is at least as
easy to answer as the remaining part of the issue.

Don’t: make a combination with a previous defined don’t.
This means you can’t give information that does not (partially) re-
solve the issue and you can’t reformulate the unresolved part of the
issue in a not as least as easy to answer sub-question, than the re-
maining part of the issue asks for.

4 Algorithm for Computing Compliant Responses

In this section we specify the algorithm which computes all compliant responses
for a given initiative. A first draft for the algorithm was already available
(Ciardelli and Roelofsen [2009b]). In this paper we made an addition to the
algorithm which reduces the space and time complexity of the algorithm in order
to make it possible for a computer to run an implementation of this algorithm
in real time for initiatives with few proposition letters.
The algorithm takes as input some formula ψ ∈ LP and outputs all compliant
reponses to ψ (i.e. every compliant response for ψ is equivalent with some
formula in the output of the algorithm, and every formula in the output of the

3Since you can answer the initiative if you know if Bea comes, but you can’t answer the
response. Thus the response is not easier to answer.
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algorithm is compliant to ψ). The algorithm its first steps are to compute the
disjunctive normal form of ψ and from there on the clean disjunctive normal
form of ψ. Therefore we first define how to calculate the disjunctive normal
form and the clean disjunctive normal form of a formula ψ.

Definition 10 (DNF(ψ)) For all p ∈ P and all ϕ,ψ, χ ∈ Lp,

1. dnf(p) = p

2. dnf(⊥) =⊥

3. dnf(¬ϕ) = ¬ϕ

4. dnf(ϕ ∨ χ) = dnf(ϕ) ∨ dnf(χ)

5.
dnf(ϕ ∧ χ) =

∨
1≤i≤n
1≤j≤m

(ϕi ∧ χj)

where:

• dnf(ψ) = ϕ1 ∨ ... ∨ ϕn

• dnf(χ) = χ1 ∨ ... ∨ χm

6.

dnf(ϕ→ χ) =
∨

1≤k1≤m
.
.
.

1≤kn≤m

 ∧
1≤i≤n

(ϕi → χki
)



where:

• dnf(ϕ) = ψ1 ∨ ... ∨ ϕn

• dnf(χ) = χ1 ∨ ... ∨ χm

To compute the clean disjunctive form we will need the notion of classical en-
tailment.

Definition 11 (classical entailment) For all ϕ1, ..., ϕn, ψ ∈ Lp,
We say that ψ is entailed 4 by ϕ1, ..., ϕn, in symbols ϕ1, ..., ϕn|=ψ, iff
|ϕ1| ∪ ... ∪ |ϕn| ⊆ ψ

Definition 12 (CDNF(ψ)) For all ψ ∈ Lp,
cdnf(ψ) is obtained from dnf(ψ) by removing any disjunct that assymetrically
entails any other disjunct and remove all but one equivalent disjuncts.

4We will refer to classical entailment with entailment. In this article we will not use
inquisitive entailment and therefore we can drop ’classically’ without confusion.
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With this information we can specify an algorithm for computing the compliant
responses for an input ψ.

Definition 13 (Algorithm)

Input ψ ∈ LP

1. Compute dnf(ψ) from ψ according to the definition.

2. Compute cdnf(ψ), ψ1 ∨ ...∨ψn, from dnf(ψ) according to the definition.

3. Compute the set of potentially compliant assertions, pca(ψ), as follows:
pca(ψ) = {!(ψi1 ∨ ... ∨ ψim

) | i1, ..., im ∈ {1, ..., n}}

4. Compute the set of potentially compliant responses, pcr(ψ), as follows:

pcr(ψ) = {χ1 ∨ ...∨χn | 1 ≤ n ≤ |pca(ψ)| and χ1, ..., χn ∈ pca(ψ) and

for no i, j ∈ {1, ..., n}χi |= χj}

5. For all ϕ ∈ pcr(ψ) do:
If for all disjuncts ψj in cdnf(ψ),
there is a disjunct ϕg in ϕ,
such that ψj∧!ϕ |= ϕg,
then ϕ is a compliant response, ϕ ∈ cr(ψ).

Output cr(ψ), compliant responses (in clean disjunctive normal vorm) to ψ 5

Basic intuitions for soundness and completeness of the presented al-
gorithm Given an input ψ the algorithm computes the disjunctive normal
form of ψ (dnf(ψ)) because from there the clean disjunctive normal form of ψ
(cdnf(ψ)) can be easily calculated. The definition of cdnf(ψ) leads towards a
form where ψ is a disjunction of assertions. All assertions have only one possi-
bility and therefore every possibility of ψ has to be contained in the possibility
for some disjunct of cdnf(ψ). According to the definition cdnf(ψ) has only
disjuncts left for which the possibility is not contained in the possibility for
some other disjunct of cdnf(ψ). So the possibility for a disjunct of cdnf(ψ)
is also a possibility for ψ. Thus computing the cdnf(ψ) results in getting all
possibilities for ψ.
Then the Potentially Compliant Assertion of ψ (pca(ψ)) are computed by tak-
ing the power set (without the empty set) of the disjuncts of cdnf(ψ), make
a disjunction of every set and put it under the scope of an exclamation mark.
What you get is a set of assertions (due to the exclamation mark), which have
as only possibility the union of a set of possibilities in [ψ]. All possible unions
have been created by the powerset. Thus the result is the set of assertions that
satisfy the first condition of compliance and all the assertions that satisfy the

5In the algorithm described by Ciardelli and Roelofsen [2009b], there is a clean-up step
before the formulas are putted out. This is redundant in this adapted version of the algorithm,
because only responses that are in CDNF are generated by step 4.
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first condition are equivalent with a formula in pca(ψ).
Then the Potentially Compliant Responses (pcr(ψ)) are computed by taking
the power set of pca(ψ) make a disjunction of every set in the powerset and
throw away all those formulas in which there is some disjunct that entails some
other disjunct in that formula. By throwing away all formulas in which there is
some disjunct that entails some other disjunct, there are only formulas left that
are all in disjunctive normal form. This clean-up step in this phase is added
to the algorithm described by Ciardelli and Roelofsen [2009b]. What you get
is a set of responses which only possibilities are possibilities for the formulas in
pca(ψ) (which are unions of a set of possibilities in ψ). All possible responses
are created, since all possible unions have been created by the power set and
only those formulas that are equivalent with some other formula in cdnf(ψ) are
thrown away. Thus the result is the set of responses (questions and assertions)
that satisfy the first condition of compliance and all the responses that satisfy
the first condition are equivalent with a formula in pcr(ψ).
In this stage we have all formulas that satisfy the first condition of compliance.
We now only need to keep those formulas in pcr(ψ) that also satisfy the second
condition of compliance. That is every possibility in [ψ] restricted to |ϕ| must
be contained in a possibility in [ϕ]. In the algorithm we check for every formula
ϕ ∈ pcr(ψ) if for each of the disjuncts ψj in ψ, we have ψj∧!ϕ (every possibil-
ity in [ψ] restricted to |ϕ|) entails some disjunct of ϕ (must be contained in a
possibility in [ϕ]). All formulas that survive this check end up in the Compliant
Responses of ψ, cr(ψ). So all formulas in cr(ψ) are compliant responses to ψ
and all compliant responses to ψ are equivalent with a formula in cr(ψ).

5 Soundness and Completeness of the Algorithm

In this section we want to proof that the presented algorithm is sound and
complete. Thus with ψ as input all the compliant formulas that are found by
the algorithm really are, according to the definition, compliant to ψ, and every
formula that is, according to the definition, compliant to ψ is equivalent with
some formula in the output of the algorithm.
To proof this we first have to proof that by computing dnf(ψ) of ψ, we do
not lose any properties of ψ that are of importance for compliance. The only
properties playing a role in the definition of compliance concerning ψ, are the
possibilities for ψ. Therefore we have to be sure that the possibilities for ψ are
the same as the possibilities for dnf(ψ). We earlier defined the property between
two formulas of having exactly the same possibilities as being equivalent.
So if we don’t want to lose any information concerning ψ that is of importance
for compliance, we want to show that for any formula ϕ ∈ LP , we have that
dnf(ϕ) ≡ ϕ.
Since it will be easier to proof that dnf(ϕ) ≡ ϕ trough terms of support, we will
use fact 5 and proof that for every s ∈ S, we have that s |= ϕ iff s |= dnf(ϕ).
To proof this we first need to proof equivalence between steps that must be
taken to compute dnf(ϕ), namely when ϕ is of the form ψ ∧ χ and when ϕ is
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of the form ψ → χ.
We begin with the case that ϕ = ψ ∧ χ.
We have to show that

dnf(ψ) ∧ dnf(χ) ≡
∨

1≤i≤n
1≤j≤m

(ψi ∧ χj) (1)

where:

• dnf(ψ) = ϕ1 ∨ ... ∨ ϕn

• dnf(χ) = χ1 ∨ ... ∨ χm

Therefore we will first need a proof of the fact that

s |=
∨

1≤i≤n

ψi ≡ s |= ψ1 or ... or s |= ψn (2)

This proof will become very important during the soundness and completeness
proof of the presented algorithm.

Fact 8 For all ϕ1, ..., ϕn ∈ Lp,
s |= ϕ1 ∨ ... ∨ ϕn iff s |= ϕ1 or ... or s |= ϕn

Proof
For all ϕ1, ..., ϕn ∈ Lp,
s |= ϕ1 ∨ ... ∨ ϕn iff (by definition 5.4)
s |= ϕ1 or s |= ϕ2 ∨ ... ∨ ϕn

By IH s |= ϕ2 ∨ ... ∨ ϕn iff
s |= ϕ2 or ... or s |= ϕn

Now we can proof equation 1.

Fact 9 For all ϕ1, ..., ϕn, ψ1, ..., ψm ∈ Lp and s ∈ S,
s |= (ϕ1 ∨ ... ∨ ϕn) ∧ (ψ1 ∨ ... ∨ ψm) iff
s |= (ϕ1 ∧ ψ1) ∨ ... ∨ (ϕ1 ∧ ψm) ∨ ... ∨ (ϕn ∧ ψ1) ∨ ... ∨ (ϕn ∧ ψm)

Proof For all ϕ1, ..., ϕn, ψ1, ..., ψm ∈ Lp,
s |= (ϕ1 ∨ ... ∨ ϕn) ∧ (ψ1 ∨ ... ∨ ψm) iff (by definition 5.3)
s |= (ϕ1 ∨ ... ∨ ϕn) and s |= (ψ1 ∨ ... ∨ ψm) iff (by fact 8)
(s |= ϕ1 or ... or s |= ϕn) and (s |= ψ1 or ... or s |= ψm) iff (by convention)
(s |= ϕ1 and s |= ψ1) or ... or (s |= ϕ1 and s |= ψm) or ... or
(s |= ϕn and s |= ψ1) or ... or (s |= ϕn and s |= ψm) iff (by definition 5.3)
s |= (ϕ1 ∧ ψ1) or ... or s |= (ϕ1 ∧ ψm) or ... or
s |= (ϕn ∧ ψ1) or ... or s |= (ϕn ∧ ψm) iff (by fact 8)
s |= (ϕ1 ∧ ψ1) ∨ ... ∨ (ϕ1 ∧ ψm) ∨ ... ∨ (ϕn ∧ ψ1) ∨ ... ∨ (ϕn ∧ ψm)

Next we want to proof equivalence between ϕ and dnf(ϕ) when ϕ is of the
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form ψ → χ.
Therefore we have to proof that:

dnf(ψ)→ dnf(χ) ≡
∨

1≤k1≤m
...

1≤kn≤m

 ∧
1≤i≤n

(ψi → χki
)

 (3)

where

• dnf(ψ) = ψ1 ∨ ... ∨ ψn

• dnf(χ) = χ1 ∨ ... ∨ χm

We split this up in several parts.

dnf(ψ)→ dnf(χ) ≡ (ψ1 → dnf(χ)) ∧ ... ∧ (ψn → dnf(χ)) (4)

ψ1 → dnf(χ) ≡ ψ1 → χ1 ∨ ... ∨ ψ1 → χm (5)

((ψ1 → χ1) ∨ ... ∨ (ψ1 → χm)) ∧ ... ∧ ((ψn → χ1) ∨ ... ∨ (ψ1 → χm)) ≡

((ψ1 → χ1) ∧ ... ∧ (ψn → χ1))∨
...∨

((ψ1 → χm) ∧ ... ∧ (ψn → χm)) (6)

With the right side of equation 6 we mean the formula that you get when you
take one disjunct of every conjunct of the left side of the equation and bring
those together in a new conjunction. Do this for all possible combinations and
bring this new conjunction together in a new disjunction. You get the same
formula as described by the right side of equation 3.

First we proof equation 4.

Fact 10 For all ϕ1, ..., ϕn, ψ1, ..., ψm ∈ Lp and s ∈ S,
s |= (ϕ1 ∨ ... ∨ ϕn)→ (ψ1 ∨ ... ∨ ψm) iff
s |= (ϕ1 → ψ1 ∨ ... ∨ ψm) ∧ ... ∧ (ϕn → ψ1 ∨ ... ∨ ψm)

Proof ϕ1, ..., ϕn, ψ1, ..., ψm ∈ Lp,

⇒ Take an arbitrary s ∈ S, and suppose s |= (ϕ1 ∨ ... ∨ ϕn)→ (ψ1 ∨ ... ∨ ψn).
We want to show that s |= (ϕ1 → ψ1∨ ...∨ψm)∧ ...∧ (ϕn → ψ1∨ ...∨ψm).
Take an arbitrary conjunct ϕk →

∨
1≤i≤mψi, with k ∈ {1, ..., n}. We

want to show that s supports that conjunct. Then we want to show that
∀t ⊆ s: if t |= ϕk then also t |=

∨
1≤i≤mψi. Take an arbitrary t ⊆ s, and

suppose t |= ϕk. Then t |= ϕ1∨ ...∨ϕn. Then, by the original assumption,
t |=

∨
1≤i≤mψi.
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⇐ Take an arbitrary s ∈ S, and suppose s |= (ϕ1 → ψ1 ∨ ...∨ψm)∧ ...∧ (ϕn →
ψ1 ∨ ... ∨ ψm). We want to show that s |= (ϕ1 ∨ ... ∨ ϕn) → (ψ1 ∨ ... ∨
ψm). Then we have to show that ∀t ⊆ s: if t |=

∨
1≤j≤nϕj then also

t |=
∨

1≤i≤mψi. Take an arbitrary t ⊆ s, and suppose t |=
∨

1≤j≤nϕj .
Then there is a j, such that t |= ϕj . Then by the original assumption:
t |=

∨
1≤i≤mψi.

Now we proof equation 5.

Fact 11 For all ϕ ∈ Lp, all assertions ψ1, ..., ψm ∈ Lp and all s ∈ S,
s |= ϕ→ (ψ1 ∨ ... ∨ ψm) iff
s |= (ϕ→ ψ1) ∨ ... ∨ (ϕ→ ψm)

Proof

⇒ Take an arbitrary s ∈ S, and suppose s |= ϕ → (ψ1 ∨ ... ∨ ψm). We want
to show that s |= (ϕ→ ψ1) ∨ ... ∨ (ϕ→ ψm). Therefore we want to show
there is some k ∈ {1, ...,m}, such that s |= ϕ → ψk. Therefore we want
to show that ∀t ⊆ s: if t |= ϕ then there is some k ∈ {1, ...,m}, such that
t |= ψk. Let u ∈ S be the union of all t ⊆ s, such that t |= ϕ. Then
u ⊆ s (because it is the union of subsets from s) and u |= ϕ (by fact 3 and
because ϕ is an assertion). By the original assumption u |= ψ1 ∨ ... ∨ ψm.
Therefore there is some k, such that u |= ψk. Take an arbitrary t, and
suppose t |= ϕ and t ⊆ s, then t ⊆ u and therefore (by fact 1) t |= ψk.

⇐ Take an arbitrary s ∈ S, and suppose s |= (ϕ → ψ1) ∨ ... ∨ (ϕ1 → ψm).
We want to show that s |= ϕ → (ψ1 ∨ ... ∨ ψm). Thus we have to show
that ∀t ⊆ s: if t |= ϕ then also t |= ψ1 ∨ ... ∨ ψm. Take an arbitrary
t ⊆ s, and suppose t |= ϕ. Then by the original assumption there is some
k ∈ {1, ...,m}, such that t |= ψk. Then also t |= ψ1 ∨ ... ∨ ψm.

The essential part of the last step from equation 3, equation 6, is actually already
proven by fact 9. Then finally we can proof equivalence between an arbitrary
formula ϕ and its disjunctive normal form, dnf(ϕ).

Fact 12 For all ϕ ∈ Lp, we have that dnf(ϕ) ≡ ϕ

Proof
For all p ∈ P and all ψ, χ ∈ Lp:

1. dnf(p) = p, thus
dnf(p) ≡ p

2. dnf(⊥) =⊥, thus
dnf(⊥) ≡⊥

3. dnf(¬ψ) = ¬ψ, thus
dnf(¬ψ) ≡ ¬ψ
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4. dnf(ψ ∨ χ) = dnf(ψ) ∨ dnf(χ)
According to the IH:
dnf(ψ) ≡ ψ and
dnf(χ) ≡ χ.
Therefore dnf(ψ) ∨ dnf(χ) ≡ ψ ∨ χ, thus
dnf(ψ ∨ χ) ≡ ψ ∨ χ.

5.
dnf(ψ ∧ χ) =

∨
1≤i≤n
1≤j≤m

(ψi ∧ χj)

where:

• dnf(ψ) = ψ1 ∨ ... ∨ ψn

• dnf(χ) = χ1 ∨ ... ∨ χm

According to the IH:
dnf(ψ) ≡ ψ and
dnf(χ) ≡ χ.
Therefore ψ ∧ χ ≡ (ψ1 ∨ ... ∨ ψn) ∧ (χ1 ∨ ... ∨ χm)
≡ (by fact 9 and by definition equivalence)
(ψ1 ∧ χ1) ∨ ... ∨ (ψ1 ∧ χm) ∨ ... ∨ (ψn ∧ χ1) ∨ ... ∨ (ψn ∧ χm)
≡ dnf(ψ ∧ χ).
Thus dnf(ψ ∧ χ) ≡ ψ ∧ χ.

6.

dnf(ψ → χ) =
∨

1≤k1≤m
...

1≤kn≤m

 ∧
1≤i≤n

(ψi → χki
)


where:

• dnf(ψ) = ψ1 ∨ ... ∨ ψn

• dnf(χ) = χ1 ∨ ... ∨ χm

According to the IH:
dnf(ψ) ≡ ψ and
dnf(χ) ≡ χ.
Therefore ψ → χ ≡ (ψ1 ∨ ... ∨ ψn)→ (χ1 ∨ ... ∨ χm)
≡ (by fact 10 and by definition equivalence)
(ψ1 → (χ1 ∨ ... ∨ χm)) ∧ ... ∧ (ψn → (χ1 ∨ ... ∨ χm))
≡ (by fact 11 and by definition equivalence)
((ψ1 → χ1) ∨ ... ∨ (ψ1 → χm)) ∧ ... ∧ ((ψn → χ1) ∨ ... ∨ ((ψn)→ χm))
≡ (by fact 9 and by definition equivalence)
((ψ1 → χ1) ∧ ... ∧ (ψn → χ1)) ∨ ... ∨
((ψ1 → χ1) ∧ ... ∧ (ψn → χm)) ∨ ... ∨
((ψ1 → χm) ∧ ... ∧ (ψn → χ1)) ∨ ... ∨
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((ψ1 → χm) ∧ ... ∧ (ψn → χm))
≡ dnf(ψ → χ).
Thus dnf(ψ → χ) ≡ ψ → χ.

Now that we know that when we compute dnf(ψ) we don’t lose any properties
of importance of ψ to compute its compliant responses when we compute its dis-
junctive normal form, we can focus on the next step in the algorithm: compute
the clean disjunctive normal form of ψ. Of course we also have to proof that
computing the cdnf(ψ) maintain the properties of importance of ψ to compute
its compliant responses. And therefore we proof equivalence between ϕ and
cdnf(ϕ).

Fact 13 For ϕ ∈ Lp, we have that cdnf(ϕ) ≡ ϕ.

Proof We already know (by fact 12) that dnf(ϕ) ≡ ϕ, so we only need to show
that cdnf(ϕ) ≡ dnf(ϕ).

⇒ Take an arbitrary s ∈ S, and suppose s |= cdnf(ϕ). We want to show
that s |= dnf(ϕ). We know that s supports some of the disjuncts in
cdnf(ϕ) (by fact 8). All the disjuncts in cdnf(ϕ) also occur in dnf(ϕ)
(by definition 12) and therefore s also supports some of the disjuncts
in dnf(ϕ) (the same disjuncts as in cdnf(ϕ)). Therefore (by fact 8)
t |= dnf(ϕ).

⇐ Take an arbitrary s ∈ S, and suppose s |= dnf(ϕ). We want to show that
s |= cdnf(ϕ). There is some disjunct d in dnf(ϕ) which is supported by
s (by fact 8). Two possibilities: (1) d is also a disjunct in cdnf(ϕ), then
also s |= cdnf(ϕ). Or (2) d is not a disjunct in cdnf(ϕ), but then (by
definition 12) d entails some other disjunct d′ in cdnf(ϕ). Because s |= d
we have also that s |= d′. Therefore also s |= cdnf(ϕ).

We compute cdnf(ψ) to get all possibilities of ψ. We want to proof that ev-
ery disjunct of cdnf(ψ) has a one-on-one relation with the possibilities for ψ.
Therefore we want to show that evey disjunct in cdnf(ψ) has only one possibil-
ity, i.e. that it is an assertion. To proof that, we first have to proof that dnf(ψ)
is a disjunction of assertions.

Fact 14 For all ϕ ∈ Lp, we have that dnf(ϕ) is a disjunction of assertions

Proof

1. dnf(p) = p
p is an assertion (fact 4.1) and therefore also a disjunction of assertions.

2. dnf(⊥) =⊥
⊥ is an assertion (fact 4.2) and therefore also a disjunction of assertions.

3. dnf(¬ψ) = ¬ψ
¬ψ is an assertion (fact 4.3) and therefore also a disjunction of assertions.
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4. dnf(ψ ∨ χ) = dnf(ψ) ∨ dnf(χ)
According to the IH dnf(ψ),dnf(χ) are disjunctions of assertions.
Therefore also dnf(ψ) ∨ dnf(χ) is a disjunction of assertions.

5.
dnf(ψ ∧ χ) =

∨
1≤i≤n
1≤j≤m

(ψi ∧ χj)

where:

• dnf(ψ) = ψ1 ∨ ... ∨ ψn

• dnf(χ) = χ1 ∨ ... ∨ χm

According to the IH dnf(ψ),dnf(χ) are disjunctions of assertions.
Therefore ψ1, ..., ψn, χ1, ..., χm are assertions.
Therefore and by fact 4.4 ψi ∧ χj are assertions.
Therefore the disjunction of ψi ∧ χj is a disjunction of assertions.
Thus dnf(ψ ∧ χ) is an assertion.

6.

dnf(ψ → χ) =
∨

1≤k1≤m
...

1≤kn≤m

 ∧
1≤i≤n

(ψi → χki
)


where:

• dnf(ψ) = ψ1 ∨ ... ∨ ψn

• dnf(χ) = χ1 ∨ ... ∨ χm

According to the IH dnf(χ) is a disjunction of assertions.
Therefore χ1, ..., χm are assertions.
Therefore and by fact 4.5 ψi → χki

are assertions.
Therefore and by fact 4.4 the conjunction of ψi → χki

is an assertion.
Therefore the disjunction of conjunctions of ψi → χki

is a disjunction of
assertions.
Thus dnf(ψ → χ) is an assertion.

Now we can proof that cdnf(ψ) is a disjunction of assertions.

Fact 15 For all ϕ ∈ Lp,
cdnf(ϕ) is a disjunction of assertions.

Proof According to the definition cdnf(ϕ) is obtained from dnf(ϕ) by only
removing some disjuncts. Nothing is added, and because all disjuncts in dnf(ϕ)
are assertions (by fact 14) also the disjuncts in cdnf(ϕ) are assertions.

Next we can proof that the unique possibility for a disjunct of cdnf(ψ) is a
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possibility for cdnf(ψ) and that for every possibility for cdnf(ψ) there is some
disjunct of cdnf(ψ) for which it is the possibility. Which means cdnf(ψ) makes
the possibilities for ψ come into sight.

Fact 16 For ϕ ∈ Lp and π ∈ S,
π is a possibility for ϕ iff π is a possibility (the unique possibility) for some
disjunct of cdnf(ϕ).

Proof

⇒ Take an arbitrary s ∈ S, and suppose s is a possibility for cdnf(ϕ), then
s is a maximal state that supports cdnf(ϕ). Then there is a disjunct d
of cdnf(ϕ), such that s |= d (by fact8). Take an arbitrary s′ ∈ S, and
suppose s ⊂ s′ and s′ |= d. Then s′ |= cdnf(ϕ) (by fact 8). But then
s 6⊂ s′ (because s is a maximal state supporting cdnf(ϕ)). This leads
towards a contradiction. Thus s is a maximal state that supports d, and
therefore a possibility for d. Moreover s is the unique possibility because
d is an assertion (by fact 15).

⇐ Take some disjunct d of cdnf(ϕ), then d is an assertion (by fact 15). There-
fore d has only one possibility. This unique possibility is a state s, such
that s |= d. Then also s |= cdnf(ϕ) (by fact 8). Take an arbitrary other
state s′ ∈ S, and suppose s ⊂ s′. Then according to the left-to-right di-
rection of this proof, there is some disjunct d′ of cdnf(ϕ), such that s′ is
the unique possibility for d′, and so s′ |= d′. Then s |= d′ (by fact 1). But
this means that d |= d′. This is only possible if d = d′ (by definition 12).
But then s = s′. This leads towards a contradiction. Thus s is a maximal
state that supports cdnf(ϕ), and therefore a possibility for cdnf(ϕ).

The next step in the algorithm is to compute the potentially compliant assertion
of ψ, pca(ψ). What we want to show is that every ϕ ∈ pca(ψ) satisfies the
first condition of being compliant to ψ and that every assertion that satisfies
the first condition of being compliant to ψ is equivalent with some ϕ ∈ pca(ψ).

Fact 17 For ϕ,ψ, χ ∈ LP ,
ϕ is logically equivalent with some χ ∈ pca(ψ) iff
[ϕ] = {|ϕ|} and |ϕ| is the union of a set of possibilities in [ψ].

Proof

⇒ Take an arbitrary ϕ ∈ Lp, and suppose there is some χ ∈ pca(ψ), such
that ϕ ≡ χ. Since χ ∈ pca(ψ), we have that χ =!(ψi1 ∨ ... ∨ ψim

), with
i1, ..., im ∈ {1, ..., n} and cdnf(ψ) = ψ1 ∨ ... ∨ ψn. Since χ =!(...), we
know that χ is an assertion (by definition of ! and fact 4.3) and therefore
[χ] = {|χ|} (by fact 3). By the original assumption (and by definition
8) [χ] = [ϕ], and therefore [ϕ] = {|χ|} = {|ϕ|}. We want to show that
|ϕ|, that is |χ|, is the union of a set of possibilities in [ψ]. We know
|χ| = |!(ψi1 ∨ ... ∨ ψim

)| = (by double negation law in classical logic)
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|ψi1 ∨ ... ∨ ψim | = (because the truthset of a disjunction is the union of
truthsets of all disjuncts) |ψi1 | ∨ ... ∨ |ψim |. Take an arbitrary ψik

, with
k ∈ {1, ...,m}. Then ik ∈ {1, ..., n}, so ψik

is a disjunct of cdnf(ψ).
Therefore |ψik

| is a possibility for ψ (by fact 16). And therefore |χ| is the
union of a set of possibilities in [ψ].

⇐ Take arbitrary |ψi1 |, ..., |ψim
| ∈ [ψ]. Then ψi1 , ..., ψim

are disjuncts of cdnf(ψ)
(by fact 16). Take an arbitrary ϕ, and suppose [ϕ] = {|ϕ|} and |ϕ| is the
union of a set of possibilities in [ψ]. Then we know |ϕ| = |ψi1 |

⋃
...
⋃
|ψim | =

(because the union of truthsets is the truthset of the disjunction) |ψi1 ∨
... ∨ ψim

| = (by double negation law in classical logic) |!(ψi1 ∨ ... ∨ ψim
)|.

Therefore [ϕ] = {|!(ψi1 ∨ ... ∨ ψim
)|}. Take χ =!(ψi1 ∨ ... ∨ ψim

). Then χ
is in cdnf(ψ), and therefore [χ] = {|!(ψi1 ∨ ...∨ψim)|} (by fact 16). Then
[ϕ] = [χ] and therefore ϕ ≡ χ. And by definition χ ∈ pca(ψ).

Now that we have the potentially compliant assertion of ψ the algorithm its next
step is to compute the potentially compliant responses of ψ (pcr(ψ)). What
we want to show is that every ϕ ∈ pcr(ψ) satisfies the first condition of being
compliant to ψ and every response that satisfies the first condition of being
compliant to ψ is equivalent with some ϕ ∈ pcr(ψ).

Fact 18 For ϕ,ψ, χ ∈ LP ,
ϕ is logically equivalent with some χ ∈ pcr(ψ) iff
every possibility in [ϕ] is the union of a set of possibilities in [ψ].

Proof

⇒ Take an arbitrary ϕ ∈ Lp, and suppose that there is some χ ∈ pcr(ψ),
such that ϕ ≡ χ. Then [ϕ] = [χ]. Thus since we want to show that
every possibility in [ϕ] is the union of a set of possibilities in [ψ], it is
sufficient to show that every possibility in [χ] is the union of a set of
possibilities in [ψ]. Because χ ∈ pcr(ψ), we have that χ = (χ1 ∨ ...∨χn),
with 1 ≤ n ≤ |pca(ψ)| and χ1, ..., χn ∈ pca(ψ) and for no i, j ∈ {1, ...n}
χi |= χj . Then χ is in dnf(χ) (because χ is a disjunction of assertions of
the form !(..)) and χ is also in cdnf(χ) (because χ is in dnf(χ) and there
is no disjunct in χ which entails some other disjunct in χ). Then every
possibility in [χ] is the unique possibility for some disjunct of χ (by fact
16). Take an arbitrary disjunct d of χ, then d ∈ pca(ψ). Therefore the
unique possibility for d is the union of a set of possibilities in [ψ] (by fact
17). So every possibility in [χ] is the union of a set of possibilities in [ψ].

⇐ Take an arbitrary ϕ ∈ LP , and suppose every possibility in [ϕ] is the union of
a set of possibilities in [ψ]. We want to show that ϕ is logically equivalent
with some χ such that χ ∈ pcr(ψ). We know ϕ ≡ cdnf(ϕ) (by fact
13) and every possibility in [cdnf(ϕ)] is the unique possibility for some
disjunct in cdnf(ϕ). Take an arbitrary disjunct d of cdnf(ϕ), then [d] =
{|d|} (because d is an assertion by fact 15) and by the original assumption
d is the union of a set of possibilities in [ψ]. But then d ∈ pca(ψ) (by
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fact 17). So cdnf(ϕ) is a disjunction of formulas in pca(ψ). Because by
definition all possible disjunctions of formulas in pca(ψ) are in pcr(ψ) in
which no disjunct entails another disjunct, also cdnf(ϕ) ∈ pcr(ψ). So ϕ
is logically equivalent with χ (χ = cdnf(ϕ)) and χ ∈ pcr(ψ).

The last step in the soundness and completeness proof for the algorithm pre-
sented in the paper is that all the formulas in the output, that is in cr(ψ), really
are compliant to ψ and that every formula that is compliant to ψ is equivalent
with a formula in the output, that is cr(psi).

Theorem 1 (Soundness and Completeness of the Algorithm) For ϕ,ψ, χ ∈
LP ,
ϕ is logically equivalent with some χ ∈ cr(ψ) iff
ϕ is compliant with ψ.

Proof

⇒ Take an arbitrary ϕ ∈ Lp, and suppose ϕ is logically equivalent with some
χ ∈ cr(ψ). We want to show that ϕ is compliant with ψ, therefore we have
to show that 1. every possibility in [ϕ] is the union of a set of possibilities
in [ψ] and 2. every possibility in [ψ] restricted to |ϕ| is contained in a
possibility in [ϕ].
1. All formulas in cr(ψ) are also in pcr(ψ). Hence χ ∈ pcr(ψ), and
therefore every possibility in [ϕ] is the union of a set of possibilities in [ψ]
(by fact 18).
2. Since ϕ ≡ χ, we know |ϕ| = |χ| (by fact 7) and also [ϕ] = [χ] (by
definition 8). Therefore it is sufficient to prove that every possibility in
[ψ] restricted to |χ| is contained in a possibility in [χ]. Take an arbitrary
possibility π in [ψ], then we know π is the unique possibility for some
disjunct ψj of cdnf(ψ) (by fact 16). Since χ ∈ cr(ψ), we have ψj∧!χ |= χg

for some disjunct χg of χ. Therefore we have |ψj | ∩ |χ| ⊆ |χg|. We
know that |ψj | ∩ |χ| is the restriction of a possibility in [ψ] to |χ| and is
contained in the unique possibility α for |χg|. So it remains to show that
α is contained in some possibility for χ. Since α |= χg, we have also α |= χ
(by fact 8). But then we know that α is contained in a possibility for χ
(by fact 2).

⇐ Take arbitrary ϕ,ψ ∈ Lp, and suppose ϕ is compliant to ψ. We want to show
there is some χ ∈ cr(ψ), such that ϕ ≡ χ. We know every possibility in
[ϕ] is the union of a set of possibilities in [ψ] and therefore there is some
χ ∈ pcr(ψ), such that ϕ ≡ χ (by fact 18). Now we will show that χ is
also in cr(ψ). We know that every possibility in [ψ] restricted to |ϕ| is
contained in a possibility in [ϕ]. Since ϕ ≡ χ, we have that |ϕ| = |χ| (by
fact 7) and [ϕ] = [χ] (by definition 8). Therefore we have also that every
possibility in [ψ] restricted to |χ| is contained in a possibility in [χ].
Take an arbitrary disjunct ψj of cdnf(ψ). We want to show that ψj∧!χ |=
χg for some disjunct χg of χ. That is |ψj |

⋂
|χ| ⊆ |χg| for some disjunct
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χg of χ (since ψj , !χ and χg are assertions). We know that |ψj | ∩ |χ| is the
restriction of a possibility in [ψ] to |χ|. We also know that every possibility
for ψ restricted to |χ| is contained in a possibility π for χ. Then we know
that |ψj | ∩ |χ| ⊆ π. So it remains to show that π ⊆ |χg| for some disjunct
χg of χ. We know that π |= χ. So (by fact 8) π |= χg for some disjunct
χg of χ. Therefore π ⊆ |χg|.

6 Complexity

In this section we explore the time complexity of the algorithm presented in this
paper. First we look at the complexity for computing the disjunctive normal
form of some formula ψ with l occurrences of propositions.

Complexity Disjunctive Normal Form. The first 3 cases of the disjunc-
tive normal form can be computed in polynomial time. The complexity of
the 4th case of the disjunctive normal form, O(dnf(ϕ ∨ χ)) = O(O(dnf(ϕ)) +
O(dnf(χ))). The complexity of the 5th case of the disjunctive normal form,
O(dnf(ϕ ∧ χ)) = O(O(dnf(ϕ)) ∗ O(dnf(χ))). The complexity of the 6th and
last case of the disjunctive normal form, O(dnf(ϕ → χ)) = O(O(dnf(ϕ)) ∗
O(dnf(χ))O(dnf(ϕ))).
This means that worst case complexity of computing dnf(ψ), with l occurrences
of propositions in ψ is O(ll).

Next we look at the complexity for computing the clean disjunctive normal
form of some formula ψ with l occurrences of propositions.

Complexity Clean Disjunctive Normal Form. For every disjunct in dnf(ψ)
we have to check if it entails any of the other disjunct. Entailment over (worst-
case) ll disjuncts is in O(2ll). In worst case one has to check it for every disjunct
over all other disjuncts which is in O(l2). But the O(O(l2) ∗O(2ll)) = O(2ll).

We know that the clean disjunctive normal form of some formula ψ gives us
just as much disjunctions as there are possibilities for ψ. Possibilities are better
known is mathematics as ’antichains’. From antichains is known that the max-
imal possible antichains over m indices (according to the Sperner’s theorem) is
the middle of the binominal coefficient ([Sperner, 1928, 544-548]). Suppose we
have n proposition letters in formula ψ, then there are 2n indices, which means
at most

(
2n

0.5∗2n

)
possibilities. Now we can compute the complexity of the next

step, computing the potentially compliant assertions of ψ, on the basis of n
which denotes the number of proposition letters in ψ.

Complexity Potentially Compliant Assertions. By computing the po-
tentially compliant assertions we take the power set (without the empty set) of
the possibilities for ψ. There are O(22n

) possibilities for n propositions in ψ,
which means a complexity for computing potentially compliant assertions is in
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O(222n

).

Next we explore the complexity of computing the potentially compliant re-
sponses.

Complexity Potentially Compliant Responses. By computing the po-
tentially compliant responses we (roughly) take the power set of the potentially
compliant assertions for ψ (without the empty set). There are O(222n

) poten-
tially compliant assertions for n propositions in ψ, which means a complexity

for computing potentially compliant responses is in O(2222
n

).

And then finally the last step of the algorithm is to compute the compliant
responses.

Complexity Compliant Responses. By computing the compliant responses

we look for every potentially compliant response O(2222
n

) if for every disjunct
of ψ together with the truthset of the potentially compliant, there is some dis-

junct of the potentially compliant response which entails it. This is in O(2222
2n

).

The complexity analyses tells us that the source of the complexity lies in com-
puting the dnf(ψ), but this is only the case when ψ is built up from (some)
arrows. However, in pratice computing the disjunctive normal form of ψ doesn’t
seem to be the real comptational time bottleneck for this algorithm since in hu-
man conversation an utterance is rarely built up from more than three arrows.
And when a sentence does reach an amount of more than three arrows humans
get confused themselves. So this is a good reason not to worry so much about
the complexity of computing dnf(ψ), since computing the disjunctive normal
form of formulas that have no implication is not very complex in time steps.
None the less is the time complexity for computing all compliant responses of

a formula still in O(2222
2n

), with n the number of proposition letters in the
formula. Here we can bring in that the total amount of potentially compliant
responses is certainly not as great as the amount of the power set of the power
set. The exact amount of how many compliant responses are possible for n
proposition letters is the same question as, how many antichains are there for
the 2n-set when the empty set is not considered a valid antichain. This question
is unresolved and known as the Dedekind problem ([Dedekind, 1897, 103-148]).
For small 2n-sets the the number of antichains is known (see figre 9).
Despite the fact that the number of possible compliant responses for a formula

is much less than the computation steps it takes the presented algorithm to
compute all those responses, this number is still extremely large. Suppose we
would expand the system inquisitive semantics to first order logic, for question
like ’Who comes to the party’, for n people in the domain of discourse, we have
as much as compliant responses as there are antichains for the 2n-set.
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n 2n highest amont of compliant responses
0 0 1
1 2 4
2 4 165
3 8 56130437228687557907786

Figure 9: amount compliant answers, Sloane
http://www.research.att.com/ njas/sequences/table?a=14466&fmt=4

7 Implementation

The algorithm presented in this paper is implemented and can be found at:

www.illc.uva.nl/inquisitive-semantics/computing-compliance

8 Conclusion, Discussion and Future Work

In this paper the notion of compliance in inquisitive semantics has been brought
into practice. An algorithm for compliance is presented and investigated. The
algorithm presented is proved to be sound and complete according to the defi-
nition of compliance.
The computation time has also been analyzed. The result is that the algorithm
for computing all compliant responses for some formula ψ with length l is in
O(ll). However this is worst case complexity and depends on the worst case
assumption that the connectives in ψ all are implications. When we talk about
human conversation this assumption seems to be very unlikely. Most people
don’t speak in sentences with many implications. Still, when we ignore the
large computation time when many implications are involved, the computation

time is in O(2222
2n

).
The algorithm is implemented and can be found at www.illc.uva.nl/inquisitive-
semantics/computing-compliance.

The impact of these results (especially of the analyzed complexity) for the philo-
sophical and psychological interest is that it is somewhat unlikely that people
consider all possible compliant answers to an issue when they choose how to
respond. Question like ’Who comes to the party?’ are for humans easy to an-
swer when we talk about 30 possible candidates. But the amount of compliant
answers for n = 30 is not even known by scientists, which makes it very unlikely
that people consider al these answers.
The impact of these results (especially of the analyzed complexity) for the
AI/HCI is that it is too bad that it take so much computational power to
calculate the compliant answers for the input. On the other side it is good to
know that it is possible to compute the compliant responses (at least for small
formulas), but there is still room for improvement.
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Fortunately inquisitive semantics provides us a framework on which we can base
further improvements. It would be straight forward to go on with computing
the best compliant response (or maybe the n-best compliant responses) and try
to find a way in which it would not be necessary to first compute all compliant
responses and then pick the best, but to only calculate the best responses. A
step further would be to calculate the best compliant response relative to an
information state. This means you have to consider except the maxim of related-
ness (dependent on compliance) also the other maxims of inquisitive pragmatics
that are the maxims of quantity and quality.
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