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Abstract

A central notion in inquisitive semantics is that of support. A common way
to formulate the semantics is to start with a recursive definition of when a
state supports a sentence, and then define the proposition expressed by a
sentence as the set of all (maximal) states supporting that sentence. This
approach is similar to the one that is usually taken in classical logic. There
we start with a recursive definition of truth, and then define the propo-
sition expressed by a sentence as the set of all worlds where the sentence
is true. Thus, the role of support in inquisitive semanics is comparable to
that of truth in classical logic.

However, Ciardelli (2009, 2010) has shown that there are certain sen-
tences in the language of first-order logic, the so-called boundedness for-
mulas, which are equivalent in terms of support, even though, intuitively,
they license a different range of responses. Ciardelli concludes from this
observation that a support-based inquisitive semantics is not fine-grained
enough in the first-order setting.

In the semantics we will propose in this paper, states do not only
contain information, but also a set of witnesses. The main feature of the
semantics, then, is that an existentially quantified sentence like ∃x.Px is
only supported in a state if there is a specific witness in that state which
is known to have the property P . As a result, an inquisitive sentence
may not only request a response that provides certain information, but
also a response that introduces a certain witness. Thus, the notion of
inquisitiveness is richer than in the basic first-order system. Because the
notion of inquisitiveness is enriched in this way, the semantics is able
to make more fine-grained distinctions. In particular, it suitably assigns
different semantic values to the boundedness formulas. At the same time,
unlike the semantics that Ciardelli proposed to avoid the boundedness
problem, the semantics developed here is still support-based.

∗This is work in progress. The paper has been presented in this form at the Prague
Workshop on the Logic of Questions, October 26, 2011.
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1 Setting the stage

The main purpose of inquisitive semantics is to enrich the notion of semantic
meaning in such a way that it does not only embody informative content, but
also inquisitive content. Of course, there are different ways to achieve this goal.
The starting point of the present paper is what we currently see as the most
basic implementation of inquisitive semantics, which we will refer to as inqb.
This system was initially specified for the language of propositional logic (Cia-
rdelli, 2008; Groenendijk and Roelofsen, 2009). The system has been motivated
quite extensively, and its logical properties are well-understood (Ciardelli and
Roelofsen, 2011; Roelofsen, 2011). However, the issues that arise in extending
inqb to the first-order setting are not yet fully resolved.

In section 1.1, we will briefly review the definition of inqb for the language
of propositional logic. Subsequently, in section 1.2, we will consider the main
issues that arise in extending inqb to the first-order setting, as pointed out
by Ciardelli (2009, 2010). This will set the stage for our inquisitive witness
semantics, to be introduced in section 2.

1.1 A semantics for the language of propositional logic

We start with a brief recapitulation of inqb for the language of propositional
logic, as specified in Ciardelli (2009); Groenendijk and Roelofsen (2009); Cia-
rdelli and Roelofsen (2011).

Definition 1 (Language). Let P be a finite set of proposition letters. We denote
by LP the set of formulas built up from letters in P and ⊥ using the binary
connectives ∧,∨ and→. We will refer to LP as the propositional language based
on P.

We will also make use of the following abbreviations: ¬ϕ for ϕ → ⊥, !ϕ for
¬¬ϕ , and ?ϕ for ϕ ∨ ¬ϕ.

Definition 2 (Worlds).
A world is a function from P to {0, 1}. We denote by W the set of all worlds.

Definition 3 (States).
A state is a set of worlds. We denote by S the set of all states.

Definition 4 (Support).

1. s |= p iff ∀w ∈ s : w(p) = 1

2. s |= ⊥ iff s = ∅

3. s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

4. s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ

5. s |= ϕ→ ψ iff ∀t ⊆ s : if t |= ϕ then t |= ψ
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It follows from the above definition that the empty state supports any formula ϕ.
Thus, we may think of ∅ as the absurd state.

Fact 1 (Persistence). If s |= ϕ then for every t ⊆ s: t |= ϕ

Fact 2 (Singleton states behave classically). For any world w and formula ϕ:

{w} |= ϕ ⇐⇒ w |= ϕ in classical propositional logic

It can be derived from definition 17 that the support-conditions for ¬ϕ and !ϕ
are as follows.

Fact 3 (Support for negation).

1. s |= ¬ϕ iff ∀w ∈ s : w 6|= ϕ

2. s |= !ϕ iff ∀w ∈ s : w |= ϕ

In terms of support, we define the possibilities for a sentence ϕ and the propo-
sition expressed by ϕ. We also define the truth-set of ϕ, which is the meaning
that would be associated with ϕ in a classical setting.

Definition 5 (Truth sets, possibilities, propositions). Let ϕ be a formula.

1. A possibility for ϕ is a maximal state supporting ϕ, that is, a state that
supports ϕ and is not properly included in any other state supporting ϕ.

2. The proposition expressed by ϕ, [ϕ], is the set of possibilities for ϕ.

3. The truth set of ϕ, |ϕ|, is the set of all worlds w such that {w} |= ϕ.

The following result guarantees that the proposition expressed by a formula
completely determines which states support that formula, and vice versa.

Fact 4 (Support and possibilities). For any state s and any formula ϕ:

s |= ϕ ⇐⇒ s is contained in a possibility for ϕ

Example 1 (Disjunction). Inquisitive semantics differs from classical semantics
in its treatment of disjunction. To see this, consider figures 1(a) and 1(b). In
these figures, it is assumed that P = {p, q}; world 11 makes both p and q true,
world 10 makes p true and q false, etcetera. Figure 1(a) depicts the truth set—
that is, the classical meaning—of p ∨ q: the set of all worlds that make p, q or
both p and q true. Figure 1(b) depicts the proposition expressed by p ∨ q in
inquisitive semantics. It consists of two possibilities. One possibility is made up
of all worlds that make p true, and the other of all worlds that make q true.

We think of a sentence ϕ as expressing a proposal to update the common ground
of a conversation—formally conceived of as a set of possible worlds—in such a
way that the new common ground supports ϕ. In other words, given fact 4, a
sentence proposes to update the common ground in such a way that the resulting
common ground is contained in one of the possibilities for ϕ.
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Figure 1: (a) classical picture of p ∨ q, (b) inquisitive picture of p ∨ q, and (c)
polar question ?p.

Worlds that are not contained in any state supporting ϕ will not survive any
of the updates proposed by ϕ. In other words, if any of the updates proposed
by ϕ is executed, all worlds that are not contained in any state supporting ϕ
will be eliminated. Given fact 4, a world is contained in a state supporting ϕ
iff it is contained in the union of all the possibilities for ϕ,

⋃
[ϕ]. Therefore, we

refer to
⋃

[ϕ] as the informative content of ϕ.

Definition 6 (Informative content).

• info(ϕ) =
⋃

[ϕ]

In the classical setting, the informative content of ϕ is captured by |ϕ|. The
following result says that, as far as informative content goes, inqb does not
diverge from classical propositional logic. In this sense, inqb is a conservative
extension of classical propositional logic.

Fact 5. For any formula ϕ: info(ϕ) = |ϕ|

A sentence ϕ is informative in a state s iff it proposes to eliminate at least
one world in s, i.e., iff s ∩ info(ϕ) 6= s. On the other hand, ϕ is inquisitive
in s iff in order to reach a state s′ ⊆ s that supports ϕ it is not enough to
incorporate the informative content of ϕ itself into s, i.e., s ∩ info(ϕ) 6|= ϕ,
which means that ϕ requests a response from other participants that provides
additional information.

Definition 7 (Inquisitiveness and informativeness in a state).

• ϕ is informative in s iff s ∩ info(ϕ) 6= s

• ϕ is inquisitive in s iff s ∩ info(ϕ) 6|= ϕ

Besides these notions of informativeness and inquisitiveness relative to a state
we may also define absolute notions of informativeness and inquisitiveness.

Definition 8 (Absolute inquisitiveness and informativeness).

• ϕ is informative iff it is informative in W , i.e., iff info(ϕ) 6= W
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• ϕ is inquisitive iff it is inquisitive in W , i.e., iff info(ϕ) 6|= ϕ

Inquisitive sentences are characterized here in terms of support and informative
content. Alternatively, they may also be characterized in terms of the number
of possibilitites in the proposition that they express.

Fact 6 (Alternative characterization of inquisitiveness).

• ϕ is inquisitive iff [ϕ] contains at least two possibilities.

Example 2 (Disjunction continued). As in the classical setting, p ∨ q is infor-
mative, in that it proposes to eliminate the world where both p and q are false.
But it is also inquisitive, in that it proposes to move to a state that supports p or
to a state that supports q, while merely eliminating the world where both p and
q are false is not sufficient to reach such a state. Thus, p∨ q requests a response
that provides additional information. This inquisitive aspect of meaning is not
captured in the classical setting.

Definition 9 (Questions, assertions, and hybrids).

• ϕ is a question iff it is not informative;

• ϕ is an assertion iff it is not inquisitive;

• ϕ is a hybrid iff it is both informative and inquisitive.

Example 3 (Questions, assertions, and hybrids). We saw above that p ∨ q
is both informative and inquisitive, i.e., hybrid. The proposition depicted in
figure 1(a) is the proposition expressed by !(p ∨ q). This proposition consists of
exactly one possibility. So !(p ∨ q) is an assertion. The proposition depicted in
figure 1(c) is expressed by ?p. This proposition covers the entire logical space,
so ?p does not propose to eliminate any world. That is, ?p is a question.1

1.2 Moving to the first-order setting

Now let us extend the propositional system specified above to the first-order
setting, and describe the problem that arises in doing so. Our exposition here
will closely follow that of Ciardelli (2010).

Let L be a first-order language. A state will now be a set of first-order
models for L. For simplicity, we will assume that all models in a state share the
same domain and the same interpretation of individual constants and function
symbols. Thus, every model in a state is based on a common proto-model
D = 〈D, I〉, where D is a domain and I an interpretation of all individual

1Notice that questions, as defined here, are not necessarily inquisitive, and assertions are
not necessarily informative. For instance, the tautology !(p ∨ ¬p) is both a question and
an assertion, even though (or rather because) it is neither inquisitive nor informative. It is
possible to give a slightly more involved definition of questions and assertions, which makes
sure that the two notions are strictly disjoint (see Groenendijk and Roelofsen, 2009). This
may be more desirable from a linguistic point of view, but the additional complexity is not
quite relevant in the present setting, and is therefore avoided.
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constants and function symbols in L. If D = 〈D, I〉 is a proto-model, and
M = 〈DM , IM 〉 a model such that DM = D and IM coincides with I as far
as individual constants and function symbols are concerned, then M is called a
model based on D, or simply a D-model.

Definition 10 (States).
A state is a set of models which are all based on the same proto-model.

For any assignment g, let |ϕ|g denote the truth set of ϕ relative to g, i.e., the
set of models M such that M, g |= ϕ in classical first-order logic. The most
straightforward definition of support in the first-order setting is as follows.

Definition 11 (First-order support).

1. s, g |= ϕ iff ∀M ∈ s : M, g |= ϕ for atomic ϕ

2. s, g |= ⊥ iff s = ∅

3. s, g |= ϕ ∧ ψ iff s, g |= ϕ and s, g |= ψ

4. s, g |= ϕ ∨ ψ iff s, g |= ϕ or s, g |= ψ

5. s, g |= ϕ→ ψ iff ∀t ⊆ s : if t, g |= ϕ then t, g |= ψ

6. s, g |= ∀x.ϕ iff s, g[x/d] |= ϕ for all d ∈ D

7. s, g |= ∃x.ϕ iff s, g[x/d] |= ϕ for some d ∈ D

Recall that in the propositional setting, we defined the proposition expressed
by a sentence as the set of maximal states supporting the sentence. Ciardelli
observes that this definition is problematic in the first-order setting, because
now there are sentences that do not have any maximal supporting states.

Example 4 (The boundedness formula). Consider a language which has a
unary predicate symbol P , a binary function symbol +, and the set N of natural
numbers as its individual constants. Consider the proto-model D = 〈D, I〉,
where D = N, I maps every n ∈ N to itself, and + is interpreted as addition.
Let x ≤ y abbreviate ∃z(x + z = y), let B(x) abbreviate ∀y(P (y) → y ≤ x),
and for every n ∈ N, let B(n) abbreviate ∀y(P (y) → y ≤ n). Intuitively, B(n)
says that n is greater than or equal to any number in P . In other words, B(n)
says that n is an upper bound for P .

A state s supports a formula B(n), for some n ∈ N, if and only if B(n) is
true in every model in s, that is, if and only if n is an upper bound for P in
every M in s. Now consider the formula ∃x.B(x), which intuitively says that
there is an upper bound for P . This formula, which Ciardelli refers to as the
boundedness formula, does not have a maximal supporting state. To see this,
let s be an arbitrary state supporting ∃x.B(x). Then there must be a number
n ∈ N such that s supports B(n), i.e., B(n) must be true in all models in s. Now
let M∗ be the model in which P denotes the singleton set {n + 1}. Then M∗

cannot be in s, because it does not make B(n) true. Thus, the state s∗ which is
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obtained from s by adding M∗ to it is a proper superset of s itself. However, s∗

clearly supports B(n+1), and therefore also still supports ∃x.B(x). This shows
that any state supporting ∃x.B(x) can be extended to a larger state which still
supports ∃x.B(x), and therefore no state supporting ∃x.B(x) can be maximal.

Ciardelli concludes from this observation that propositions cannot be defined
as sets of maximal supporting states in the first-order setting. However, his
argument does not stop here. Based on an additional example, reproduced
below, he argues that there is in fact no satisfactory way to define the meaning
of first-order formulas in terms of support at all.

Example 5 (The positive boundedness formula). Consider the following variant
of the boundedness formula: ∃x(x 6= 0∧B(x)). This formula says that there is a
positive upper bound for P . Intuitively, it differs from the ordinary boundedness
formula in that it does not license the response “Yes, zero is an upper bound
for P .” However, in terms of support, ∃x(x 6= 0 ∧ B(x)) and ∃x.B(x) are
equivalent. Thus, support is not fine-grained enough to capture the fact that
these formulas intuitively do not license the same range of responses.

1.3 The maximality problem revisited

Ciardelli concludes from the maximality problem that there is no satisfactory
way whatsoever to define the meaning of first-order formulas in terms of support.
We would like to show that it is in fact possible to devise a support-based first
order system that deals appropriately with the boundedness formulas. Before
introducing this system, however, we will briefly revisit the maximality problem
as presented by Ciardelli. In particular, it is very important to understand
precisely what Ciardelli’s requirements are for a “satisfactory way to define the
meaning of first-order formulas.”

Recall Ciardelli’s first observation: as exemplified by the boundedness for-
mula, certain intuitively non-contradictory sentences do not have maximal sup-
porting states. This means that we cannot define the proposition expressed by
a sentence as the set of maximal states supporting that sentence, as we did in
the propositional setting. But this does not yet mean that there is no suitable
way of defining propositions in terms of support. For instance, it would be very
natural to define the proposition expressed by a sentence as the set of all states
supporting that sentence, rather than just the maximal ones. This would be
in direct analogy with the classical definition of the proposition expressed by a
sentence as the set of all worlds that make that sentence true.

Proceeding in this way indeed gives rise to a well-behaved system, which
has been arrived at via independent considerations as well (Roelofsen, 2011). In
this system the informative content of a sentence ϕ can still be defined as the
union of all the states in [ϕ]. Moreover, we can still define when a sentence is
informative and when it is inquisitive in a state s, exactly as we did before: ϕ
is informative in s iff s∩ info(ϕ) 6= s, and ϕ is inquisitive in s iff s∩ info(ϕ) 6|= ϕ.

Clearly, the maximality problem does not arise in this system, because
propositions are not defined in terms of maximal supporting states any more.
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In particular, the boundedness formula is associated with a proposition which
suitably captures the information that this formula provides and the informa-
tion that it requests. Namely, it provides the information that there is an upper
bound for P , and it requests a response that provides enough information to
establish for a particular number n ∈ N, that it is an upper bound for P . So if
these are the relevant requirements for a “satisfactory way to define the meaning
of first-order formulas,” then Ciardelli’s conclusion is clearly too strong.

However, the second example, the one involving the positive boundedness
formula, makes clear that Ciardelli’s requirements are more demanding: he
wants the proposition expressed by a sentence to capture not only the informa-
tion that the sentence provides and the information that the sentence requests,
but also the range of responses that the sentence “licenses.” After all, the two
boundedness formulas do not differ in the information that they provide or in
the information that they request, they only differ in the range of responses
that they license. And this, Ciardelli concludes, can never be captured if the
meaning of first-order formulas is defined in terms of support.

From this closer examination of the maximality problem we draw the follow-
ing three conclusions. First, referring to the problem at hand as the maximality
problem may be a bit misleading, since the maximality issue itself is rather inno-
cent and easily resolved. Second, as long as we only require of a proposition that
it captures the information that a sentence provides and the information that
a sentence requests, then it is appropriate to define the proposition expressed
by a sentence as the set of all states supporting that sentence. And third, the
real challenge posed by Ciardelli is to find a notion of meaning that captures
differences in licensing, and that allows us in particular to account for the fact
that the two boundedness formulas differ in this respect.

This challenge will be addressed in the next section. In the semantics we
will develop, states do not only contain information, but also a set of witnesses.
The main feature of the semantics, then, is that an existentially quantified
sentence like ∃x.Px is only supported in a state if there is a specific witness in
that state which is known to have the property P . As a result, an inquisitive
sentence may not only request a response that provides certain information,
but also a response that introduces a certain witness. Thus, the notion of
inquisitiveness is richer than in inqb. Because the notion of inquisitiveness is
enriched in this way, the semantics is able to make more fine-grained distinctions.
In particular, it suitably assigns different semantic values to the boundedness
formulas. At the same time, unlike the semantics that Ciardelli proposed to
avoid the boundedness problem, the semantics developed here will still be based
on the notion of support.

2 An inquisitive witness semantics

In this section we will develop a first-order inquisitive witness semantics, inqw.
This system will explicitly reflect the idea that an existentially quantified sen-
tence like ∃x.Px is supported in a state if and only if there is a specific witness
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in that state which is known to have the property P . This idea is not new. For
instance, when informally describing the clause for existential quantification in
inqb, Ciardelli (2010) writes that “an existential will only be supported in those
states where a specific witness for the existential is known.” And the idea has
always been part of our own thinking about first-order inquisitive semantics as
well. However, it has always remained at the level of informal intuitions, and
was never fully incorporated into a concrete first-order system. This is exactly
what we intend to do below.

2.1 Witnesses and states

The first question to ask is, of course, what our formal notion of witnesses
should be. The simplest answer would be that witnesses are simply objects
in the domain D. This is indeed sufficient for the simplest cases of existential
quantification. For instance, it would be reasonable to think of a state s as
supporting a sentence ∃x.Px just in case there is a specific object d ∈ D which is
known in s to have the property P . However, this notion of witnesses as objects
in D is not general enough. In particular, it becomes problematic when we
consider formulas where an existential quantifier is embedded under a universal
quantifier. For instance, it would not be appropriate to think of a state s as
supporting a sentence ∀x.∃y.Rxy just in case there is a specific object d ∈ D
which is known in s to stand in the relation R with all other objects in D.
Intuitively, this is not what ∀x.∃y.Rxy requires.

To avoid problems of this sort, we will take witnesses to be functions fromDn

to D, where n ≥ 0.2 Notice that some of these functions are 0-place functions
into D, which can be simply identified with objects in D. So witnesses can still
be objects in D. But they can be other things as well.

In the definitions below, we will assume a fixed first-order language L and a
fixed proto-model D = 〈D, I〉 for L.

Definition 12 (Witnesses).

• For any n ∈ N, let D?
n be the set of functions δ : Dn → D.

• Then D? =
⋃

n≥0 D
?
n is the set of all witnesses based on D.

The next step is to reconsider our notion of a state. Before, states were sets of
worlds, reflecting a certain body of information. Now states will not only reflect
a certain body of information, but also contain a set of witnesses.

2 Note that Skolem-functions are of this nature. And the Skolemnization of the sentence
∀x.∃y.Rxy, a technique that is often used in proof systems for first order logic, is to transform
∀x.∃y.Rxy into ∃f.∀x.R(x, f(x)). Note, the latter is not a sentence of first order logic, since
it does not quantify over objects but over functions from objects to objects. But the idea is
that we can prove ∀x.∃y.Rxy if we can prove that ∀x.R(x, f(x)) for some function symbol f .
Just like that we can prove ∃x.Px if we can prove Pc for some individual constant, i.e., some
0-place function expression c.
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Definition 13 (States).

• A D-state is a pair 〈V,∆〉, where V is a set of D-models and ∆ ⊆ D?.

• The set of all D-states is denoted by SD.

• If s = 〈V,∆〉 is a D-state, then:

– worlds(s) := V

– witn(s) := ∆

– s? := 〈V,D?〉
– s∅ := 〈∅,∆〉

In what follows, we will usually drop reference to D, and simply refer to a D-
state as a state. The set of states is partially ordered by the following extension
relation.

Definition 14 (Extension). Let s and t be two states. Then we say that s is
an extension of t, s ≥ t, iff worlds(s) ⊆ worlds(t) and witn(t) ⊆ witn(s).

Definition 15 (top and bot).

• top := 〈W, ∅〉

• bot := 〈∅, D?〉

Fact 7. For any state s: bot ≥ s ≥ top

The extension relation will be used in the support definition, more specifically in
the clause for implication: a state s supports an implication iff every extension
of s that supports the antecedent, supports the consequent as well.

Before turning to the definition of support, however, we have to introduce one
more auxiliary notion, namely that of a witness feed. The role of these witness
feeds will be similar to that of assignments: they will be used to store certain
information in evaluating whether or not a certain state supports a certain
sentence. In particular, they play a role in evaluating existentially quantified
sentences in the scope of one or more universal quantifiers. This will be further
explained once we have specified the support relation.

Definition 16 (Witness feeds).

1. A witness feed ~e is an n-tuple of objects in D, n ≥ 0.

2. We denote the 0-tuple in D0 by ε and call it the empty witness feed.

3. If ~e = 〈d1 , . . . , dn〉 ∈ Dn is a witness feed, then, the witness feed ~e aug-
mented with d, ~e_d = 〈d1 , . . . , dn , d〉 ∈ Dn+1 .
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2.2 Support

We now have all the necessary ingredients to state the support relation.

Definition 17 (Support in inqw).
Let s be a D-state, g an assignment, ~e a witness feed, and ϕ a formula in L.

1. s |=g,ẽ ϕ for atomic ϕ iff

(i) ∀M ∈ worlds(s) : M |=g ϕ and

(ii) for every function symbol f occurring in ϕ: I(f) ∈ witn(s)

2. s |=g,ẽ ⊥ iff worlds(s) = ∅

3. s |=g,ẽ ϕ ∧ ψ iff s |=g,ẽ ϕ and s |=g,ẽ ψ

4. s |=g,ẽ ϕ ∨ ψ iff s |=g,ẽ ϕ or s |=g,ẽ ψ

5. s |=g,ẽ ϕ→ ψ iff ∀t ≥ s : if t |=g,ẽ ϕ then t |=g,ẽ ψ

6. s |=g,ẽ ∀x.ϕ iff s |=g[x/d],ẽ _d ϕ for all d ∈ D

7. s |=g,ẽ ∃x.ϕ iff s |=g[x/δ(ẽ )],ẽ ϕ for some δ ∈ witn(s)

The clauses that have changed w.r.t. inqb are those for atomic formulas, im-
plication, universal quantification, and existential quantification. Let us look at
these four clauses in some detail.

Atoms. For a state s to support an atomic sentence ϕ, the sentence has to be
true in all worlds in worlds(s), as before, but moreover, for every function symbol
f occurring in ϕ, I(f) must be available as a witness in witn(s). To illustrate
this, consider a language with one binary predicate symbol R and two 0-place
function symbols (i.e. individual constants) a and b, such that I(a) = d1 and
I(b) = d2 . Then a state s supports the sentence Rab if and only if (i) for every
M ∈ worlds(s) we have that 〈d1 , d2 〉 ∈ M(R), and (ii) d1 and d2 are available
as witnesses in witn(s).

Recall that in uttering a sentence, a speaker proposes to update the common
ground of the conversation in such a way that it comes to support the sentence.
Thus, in particular, in uttering Rab, a speaker proposes to add d1 and d2 to
the witness set of the common ground. In this sense, we can think of atomic
sentences like Rab as introducing new witnesses. We will see that other sen-
tences, in particular existentials, may request a response that introduces new
witnesses.

Implication. In order to determine whether a state s supports an implication
ϕ → ψ we have to consider all extensions t of s that support ϕ. An extension
t of s is a state such that worlds(t) ⊆ worlds(s) and witn(t) ⊇ witn(s). Thus, it
may be that all the extensions of s that support ϕ contain certain witnesses that
are not contained in s itself. This means that if ψ requires certain witnesses,
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as long as we need to introduce them to support ϕ, it is not necessary for s as
such to already contain them for the implication to be supported in s.

To illustrate this, let us show that top |=g,ε Pa→ ∃x.Px. Given the atomic
clause, every t ≥ top that supports Pa must be such that I(a) ∈ witn(t). In
other words, every t ≥ top that supports Pa contains a witness, namely I(a),
which is known to have the property P . It follows that t |=g,ε ∃x.P (x), which in
turn means that top |=g,ε Pa→ ∃x.Px, even though top itself does not contain
any witnesses.

Universal quantification. The clause for universal quantification is very
much like the clause we had in inqb. Only now the witness feed plays a role
as well. In determining whether a state s supports a formula ∀x.ϕ we do not
only set the current assignment g to g[x/d], but we simultaneously augment the
current witness feed ~e with the same object d. Then we check whether ϕ is
supported by s relative to the adapted assignment and the augmented witness
feed. As we will see below, the augmented witness feed is put to use in particular
when ϕ contains an existential quantifier.

Existential quantification. At first sight, the clause for existential quan-
tification is very much like the clause we had in inqb. But there is a crucial
difference. Instead of checking whether s |= g[x/d],ẽ ϕ holds for some object
d ∈ D, we have to check whether s |= g[x/δ(ẽ )],ẽ ϕ holds for some witness
δ ∈ witn(s). Thus, as desired, support of an existentially quantified sentence
∃x.Px now really requires the presence of a witness which is known to have the
property P . This means that in uttering ∃x.Px, a speaker requests a response
from other participants that introduces a suitable witness and then establishes
of this witness that it has the property P .

Example 6 (Interaction between existentials and universals). Consider the
sentence ∀x.∃y.Rxy. In order to determine whether s |= g,ε ∀x.∃y.Rxy, we
have to check whether s |= g[x/d],〈d〉 ∃y.Rxy for all d ∈ D. And this means
that we have to verify whether for every d ∈ D, there is some f ∈ witn(s)
such that s |=g[x/d][y/f (d)],〈d〉 Rxy. This, then, is how universal and existential
quantifiers interact: universal quantifiers add objects to the witness feed, and
these objects then serve as the input for functional witnesses that may be needed
for existentials in the scope of the universal. In this way, the witness that is
required for the embedded existential in ∀x.∃y.Rxy may functionally depend on
the value that the current assignment assigns to x.

Now let us take a step back, and make some general observations about the
support relation. First of all, support is persistent. That is, if a state s supports
a formula ϕ relative to a certain assignment g and a certain witness feed ~e, then
any extension of s also supports ϕ relative to g and ~e.

Fact 8 (Persistence). If s |=g,ẽ ϕ and t ≥ s, then t |=g,ẽ ϕ
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As before, the semantics can be related to that of classical first-order logic: a
model M classically satisfies a formula ϕ relative to an assignment g if and only
if the state 〈{M}, D?〉 supports ϕ relative to g.3

Fact 9 (Singleton states with access to all witnesses behave classically).
For all M , ϕ, g and ~e:

〈{M}, D?〉 |=g,ẽ ϕ ⇔ M |= g ϕ classically

The semantics can also be related to that of inqb: a set of D-models V supports
a formula ϕ relative to an assignment g in inqb if and only if the state 〈V,D?〉
supports ϕ relative to g in inqw.4

Fact 10 (States with access to all witnesses behave as in inqb).
For all ϕ, g and ~e, and for every set of D-models V :

〈V,D?〉 |=g,ẽ ϕ ⇔ V |=g ϕ in inqb

The maximal state, bot, supports all formulas, relative to all assignments and
all witness feeds.

Fact 11 (bot supports all formulas). For all ϕ, g, and ~e: bot |= ϕ.

As before, we take ¬ϕ to be an abbreviation of ϕ→ ⊥, and !ϕ an abbreviation
of ¬¬ϕ. Given fact 9, then, the derived clauses for ¬ϕ and !ϕ read as follows.

Fact 12 (Support for negation).

• s |=g,ẽ ¬ϕ iff for all M ∈ worlds(s): M 6|=g ϕ classically

• s |=g,ẽ !ϕ iff for all M ∈ worlds(s): M |=g ϕ classically

2.3 Propositions, entailment, and equivalence

Based on the notion of support, we define the proposition expressed by a for-
mula, and the notions of entailment and equivalence. Recall that our definitions
assume a fixed first-order language L and a fixed proto-model D = 〈D, I〉 for L.

Definition 18 (Propositions). The proposition expressed by ϕ relative to an
assignment g is the set of all states that support ϕ relative to g and ε:

[ϕ]g = {s ∈ SD | s |=g,ε ϕ}

Definition 19 (Entailment and equivalence).

• ϕ |= ψ iff for all s and g: if s |=g,ε ϕ, then s |=g,ε ψ

• ϕ ≡ ψ iff ϕ |= ψ and ψ |= ϕ

3Witness feeds do not play a role in this case: since 〈{M}, D?〉 has access to all witnesses,
we either have that 〈{M}, D?〉 |=g,ẽ ϕ for all witness feeds, or for none.

4Again, witness feeds do not play a role here, since 〈{M}, D?〉 has access to all witnesses.
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Of course, entailment and equivalence can also be characterized in terms of
propositions rather than directly in terms of support.

Fact 13 (Entailment and equivalence in terms of propositions).

• ϕ |= ψ iff for all g: [ϕ]g ⊆ [ψ]g

• ϕ ≡ ψ iff for all g: [ϕ]g = [ψ]g

We also introduce notions of factive support, entailment, and equivalence, which
ignore witness issues. These notions will be useful for several purposes.5

Definition 20 (Factive support, entailment, and equivalence).

• A state s factively supports ϕ relative to g,~e iff s? |=g,ẽ ϕ

• ϕ factively entails ψ if for all s, g, ~e : if s? |=g,ẽ ϕ, then s? |=g,ẽ ψ

• ϕ and ψ are factively equivalent iff they factively entail each other.

2.4 Informativeness and inquisitiveness

As before, we define the informative content of a sentence ϕ relative to an
assignment g as the set of worlds that are contained in at least one state that
supports ϕ relative to g.

Definition 21 (Informative content). infog(ϕ) =
⋃
{worlds(s) | s ∈ [ϕ]g}

Also as before, the informative content of a sentence ϕ relative to an assignment
g always coincides with the truth set of ϕ relative to g, |ϕ|g , i.e., the set of worlds
that satisfy ϕ in classical first-order logic relative to g. So as far as informative
content is concerned, inqw does not diverge from classical first-order logic.

Fact 14 (inqw preserves classical treatment of informative content).
For every ϕ and every g: infog(ϕ) = |ϕ|g

In terms of the informative content of a formula, we define whether it is infor-
mative and/or inquisitive. These definition are parallel to the ones we had in
inqb, only now we add a distinction between factual inquisitiveness and witness
inquisitiveness.

Definition 22 (Inquisitiveness and informativeness in a state).

• ϕ is informative in s w.r.t. g iff worlds(s) ∩ infog(ϕ) 6= worlds(s)

• ϕ is inquisitive in s w.r.t. g iff 〈worlds(s) ∩ infog(ϕ),witn(s)〉 6|=g,ε ϕ

• ϕ is factively inquisitive in s w.r.t. g iff it is inquisitive in s? w.r.t. g

• ϕ is witness inquisitive in s w.r.t. g iff it is inquisitive in s∅ w.r.t. g

5When considering the definition of these notions, recall that s? is defined as the state that
is just like s, except that it contains D? as its witness set.
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As before, these relative notions also given rise to the following absolute notions.

Definition 23 (Absolute inquisitiveness and informativeness).

• ϕ is informative w.r.t. g iff it is informative in some s w.r.t. g

• ϕ is inquisitive w.r.t. g iff it is inquisitive in some s w.r.t. g

• ϕ is factively inquisitive w.r.t. g iff for some s, ϕ is inquisitive in s? w.r.t. g

• ϕ is witness inquisitive w.r.t. g iff for some s, ϕ is inquisitive in s∅ w.r.t. g

Note that because of persistence, rather than stating these absolute notions
in terms of “some s” we could also state them in terms of top. In terms of
these notions of informativeness and inquisitiveness, we may distinguish several
semantic categories. In defining these categories we will suppress reference to
assignments. So, strictly speaking, the definitions only apply to sentences with-
out free variables. Of course, they can easily be generalized so as to apply to
formulas in general.

Definition 24 (Questions, assertions, and hybrids).

• ϕ is a question iff it is not informative

• ϕ is an assertion iff it is not inquisitive

• ϕ is a hybrid iff it is both inquisitive and informative

Definition 25 (Tautologies and contradictions).

• ϕ is a tautology iff it is neither informative nor inquisitive

• ϕ is a factive tautology iff info(ϕ) = W

• ϕ is a contradiction iff info(ϕ) = ∅

Definition 26 (Non-trivial questions and assertions).

• ϕ is a non-trivial question iff it is inquisitive and not informative

• ϕ is a non-trivial assertion iff it is informative and not inquisitive

Definition 27 (Witness questions and factive questions).

• ϕ is a witness question iff it is not informative, and witness inquisitive

• ϕ is a factive question iff it is not informative, and factively inquisitive

Definition 28 (Factive hybrids and assertions).

• ϕ is a factive hybrid iff it is informative and factively inquisitive

• ϕ is a factive assertion iff it is informative and not factively inquisitive
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Given these semantic categories, we can prove a number of facts which give
further insight into the system.

Fact 15 (The propositional case).
Let ϕ be a formula containing only 0-place predicate symbols. Then:

• ϕ is a non-trivial question iff it is a factive question

• ϕ is a non-trivial assertion iff it is a factive assertion

• ϕ is a hybrid iff it is a factive hybrid

• ϕ is a tautology iff it is a factive tautology

Fact 16 (Atomic sentences). Every atomic sentence is a factive assertion.

Notice that atomic sentences containing one or more function symbols are always
witness inquisitive. However, they are never factively inquisitive.

Fact 17 (Some sufficient syntactic conditions for (factive) assertionhood).

1. If ϕ is an atomic sentence, then:

• ϕ is a factive assertion, and

• ϕ is an assertion iff there are no occurrence of function symbols in ϕ

2. ⊥ is an assertion;

3. If ϕ,ψ are (factive) assertions, then so is ϕ ∧ ψ;

4. If ψ is a (factive) assertion, then so is ϕ→ ψ;

5. If ϕ is a (factive) assertion, then so is ∀x.ϕ.

Fact 18. For any ϕ: !ϕ is an assertion and ?ϕ is a question.

Fact 19 (Inquisitiveness and existential quantification).

• For any ϕ, ∃x.ϕ is witness inquisitive.

• An extreme case: ∃x.x = x is a factive tautology, but not a tautology tout
court, because it is witness inquisitive.

2.5 The boundedness problem

Now that we have investigated the logical properties of inqw in some detail, let
us return to the main problem that we set out to resolve. The problem was that
Ciardelli’s boundedness formulas were semantically indistinguishable in inqb.
They were supported by exactly the same states. As a result, it was impossible
in inqb to capture the intuition that these formulas license a different range of
responses.

This problem no longer arises in inqw. In particular, the boundedness
formulas are no longer semantically equivalent.

Fact 20 (The boundedness formulas). The boundedness formula and the posi-
tive boundedness sentence are not equivalent in inqw.
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Proof. Consider a state s such that:

• worlds(s) = {w}, where w(P ) = {0}

• witn(s) = {0}

This state factively supports both ∃x.B(x) and ∃x.(x > 0 ∧ B(x)). However,
while the boundedness formula is supported in s tout court, s |= ∃x.B(x), the
positive boundedness formula is not, s 6|= ∃x.(x > 0 ∧ B(x)). So, the bound-
endness sentence and the positive boundedness sentence are not equivalent in
inqw (although they are factually equivalent). 2

2.6 Licensing

In order to fully address Ciardelli’s challenge, we do not only have to show that
the boundedness formulas are semantically distinguishable in inqw; we also need
to specify a sensible formal notion of licensing, under which the boundedness
formulas indeed license different responses. In particular, the response B(0)
should be licensed by the boundedness formula itself, but not by the positive
boundedness formula.

The main intuition about licensing that can be found in previous work on
inquisitive semantics (e.g, Groenendijk and Roelofsen, 2009), and also in earlier
work on the semantics and pragmatics of questions and answers (e.g., Groe-
nendijk and Stokhof, 1984; Groenendijk, 1999), is that an initiative ϕ licenses a
response ψ just in case: (i) ψ provides enough information to resolve the issue
raised by ϕ, and (ii) ψ does not provide more information than is needed to
resolve the issue raised by ϕ. To illustrate this idea, consider the question in
(1) and the responses in (1-a-c).

(1) Is Mary going to the party?

a. Yes, she is going.
b. Cats don’t like brocolli.
c. Yes, she is going, and cats don’t like brocolli.

The intuition is that (1) licenses the response in (1-a), but not those in (1-b)
and (1-c). The response in (1-b) is not licensed because it does not resolve the
issue raised by (1), and the response in (1-c) is not licensed because it provides
more information than is needed to resolve the issue raised by (1). Only (1-a)
provides exactly enough information to resolve the given issue.

This intuitive notion of licensing can be made precise in inqw as follows.6

Definition 29 (Licensing).
Let ϕ be inquisitive and let ψ be an assertion. Then:

1. ϕ is a issue-resolving response to ψ iff ϕ |= ψ.

6For simplicity, we restrict our attention here to the case where the initiative is inquisitive
and the response is an assertion. Presumably, the notion can be generalized in a natural way
so as to apply to arbitrary initiatives and responses.
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2. ϕ licenses ψ iff ψ is an issue-resolving response to ϕ, and there is no other
issue-resolving response χ to ϕ such that ψ |= χ.

According to this notion of licensing, B(0) is indeed licensed by the boundedness
formula itself, but not by the positive boundedness formula.

Fact 21 (Responses licensed by the boundedness formulas).

• ∃x.Bx licenses B(n) for any n ≥ 0

• ∃x.(x 6= 0 ∧Bx) licenses B(n) for any n > 0, but not for n = 0

Finally, we note that one licensed response may intuitively be preferred over
another. For instance, B(1) and B(135) are both licensed responses to ∃x.Bx.
However, B(1) is intuitively preferred over B(135): if the information state of
the responder supports B(1) then it would be misleading for her to actually
choose B(135) as a response. In general, if ψ and χ are two licensed responses
to ϕ, and ψ factually entails χ, then ψ is preferred over χ as a response to ϕ.

Definition 30 (Comparing licensed responses).
Let ϕ be an inquisitive initiative, let ψ and χ be two licensed responses to ϕ,
and let σ be an information state, i.e., a set of worlds. Then:

1. ψ is preferred over χ as a response to ϕ iff ψ factively entails χ.

2. ψ is an optimal response to ϕ in σ iff

• ψ is a licensed response to ϕ,

• σ ⊆ info(ψ), and

• for every licensed response ξ to ϕ that is preferred over ψ, σ 6⊆ info(ξ).

To illustrate the notion of an optimal response, consider an information state
consisting of three worlds, one where the highest element of P is 5, one where
it is 14, and one where it is 3. The optimal response to ∃x.Bx in this infor-
mation state is B(14). This accounts for the intuition that, on the one hand,
any response B(n) with n < 14, even though licensed, would be qualitatively
inappropriate, while any response B(n) with n > 14 would be quantitively dis-
preferred. The only optimal response in this scenario is B(14).

3 Conclusion

We have seen in this paper that it is possible to construe a support-based first-
order inquisitive semantics which avoids the boundedness problem described by
Ciardelli (2009, 2010). The central idea was that a state supports an existentially
quantified sentence ∃x.Px just in case there is a specific witness in that state
which is known to have the property P . Once this idea is explicitly incorporated
into the system, all the familiar notions like that of informative and inquisitive
sentences, entailment, equivalence, etc. can be defined in the usual way. The
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only additional distinction that we get is that between factive inquisitiveness
and witness inquisitiveness. Most importantly, the resulting system allows us to
define a natural notion of licensing, which makes exactly the desired predictions
for Ciardelli’s boundedness formulas.
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