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1 Introduction

It is important for the development of a first-order inquisitive semantics that we can retrace the
motivations for changes that have been made to the previous semantics. A key work in that respect
is (Ciardelli 2009) in which some problems for an extension of propositional to first-order inquis-
itive semantics are examined. In the first part of the present paper, we revisit these problems and
Ciardelli’s solutions. Although we will not draw any strong conclusions with regard to the future
of first-order inquisitive semantics, we will show that some of Ciardelli’s changes to the semantics
lack proper motivation, and that others do not provide a solution.

It is also important that a first-order inquisitive semantics yield empirical predictions in the
domain of natural language. In the second part of this paper we suggest a first analysis for the
semantics of indefinite and interrogative noun phrases.

2 Inquisitive Semantics

2.1 Propositional inquisitive semantics

The primary goal of inquisitive semantics is to capture the ‘interactive’ use of language in ex-
changing information in a dynamic setting. As such, inquisitive semantics views conversations as
the process of raising and resolving issues. This process is collaborative in the sense that proposi-
tions represent proposals to update the common ground, which at each turn may denote more than
one possibility for update. At each proposal turn, the addressee is given a choice to assent to one
possibility among a set of alternatives to update the common ground. Formally, a proposition de-
notes a set of possibilities, which are in turn a set of indices (possible worlds). The update process
involves the standard elimination of indices that do not fall within any one of the possibilities for
the proposition. A proposition is inquisitive if and only if it consists of more than one possibility
to update the common ground, and it is informative if it eliminates at least one world from the
common ground (Groenendijk and Roelofsen (2009)).

The core innovation of inquisitive semantics is its interpretation for disjunction, represented in
figure (1). Whereas classically a disjunctive sentence of the form p∨q updates the common ground
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(b) Inquisitive disjunction

Figure 1: Classical and inquisitive pictures for p∨q

by eliminating indices where both p and q are false, in inquisitive semantics the disjunction is an
inquisitive proposal with overlapping possibilities. Figure (1) represents two possibilities made up
of those indices where p is true, and those where q is true, and thereby, also proposes to eliminate
indices where p and q are both false.

As such, p∨q denotes a hybrid proposition that is at once inquisitive and informative.

Maximal possibilities So far we said that a proposition is a set of possibilities. Let us add
the notion of a maximal possibility. A possibility ρ is maximal for a sentence ϕ iff there is no
possibility ρ� for ϕ such that ρ ⊂ ρ�. As we will see in the remainder of this paper, the question of
whether propositions should only denote their maximal possibilities or whether we should allow
for non-maximal possibilities requires a careful treatment.

States and support A state is a set of indices. We use a state to indirectly define the proposition
expressed by a sentence via the notion of support (Groenendijk and Roelofsen (2009)).

(1) a. σ � ϕ iff ∀i ∈ σ : i(p) = 1

b. σ � ¬ϕ iff ∀τ ⊆ σ : τ � ϕ
c. σ � ϕ∨ψ iff σ � ϕ or σ � ψ
d. σ � ϕ∨ψ iff σ � ϕ and σ � ψ
e. σ � ϕ → ψ iff ∀τ ⊆ σ : if τ � ϕ then τ � ψ

Informative and Inquisitive meaning The meaning of a sentence ϕ, in notation, [ϕ], simultane-
ously provides but also requests information. The information provided by [ϕ] coincides with the
set of indices that make the sentence true, in notation, |ϕ|. We call |ϕ| the truth-set of ϕ. Alterna-
tively, we write info(ϕ), defined as

�
[ϕ] (Ciardelli (2009)). There is yet a third way of specifying
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the informative content of ϕ, namely, its double negation, ¬¬ϕ. As discussed in Groenendijk and
Roelofsen (2009), ¬ϕ is never inquisitive, since it always denotes a single possibility, i.e. the set
of indices where ϕ is false. Thus, applying negation twice gets us the union of the possibilities for
ϕ, i.e. its informative content.

The inquisitive content of [ϕ] can be defined in two different ways. In §4.3 below, we will
evaluate both definitions. The first definition calls a sentence ϕ inquisitive if and only if there are
at least two maximal possibilities for ϕ. That is, if the sentence proposes more than one way to
update the common ground. The second definition calls a sentence ϕ inquisitive if and only if
|ϕ| /∈ [ϕ]. According to the second definition, a sentence is inquisitive just in case it requests more
information than it provides.

Attentive content Ciardelli et al. (2009) appeal to an unrestricted inquisitive semantics in which
a proposition does not only denote its maximal possibilities, but its non-maximal possibilities also.1

As such, propositions do not only provide and request information, but they may also draw atten-
tion to certain possibilities. Ciardelli et al. (2009) argue that attentive content can be used to account
for the semantics of might in English. We will say that ϕ is attentive if and only if [ϕ] contains a
non-maximal possibility.

2.2 First-order inquisitive semantics

Ciardelli (2009) embarks to construct, based on propositional inquisitive semantics, a first-order
inquisitive semantics. He begins by making the simplifying assumption that our models all share
the same domain D and the same interpretation I for all the constants and function symbols of our
language L .

Let D be such a fixed structure: we call a first-order model for L based on D a D-model.
A state is defined as set of D-models. A proposition is a set of maximal supporting states.

(2) Let s be a state and g an assignment function into D .

a. s,g � ϕ ⇐⇒ ∀M ∈ s : M,g � ϕ for ϕ atomic

b. Boolean connectives ⇐⇒ as in the propositional case

c. s,g � ∃xϕ ⇐⇒ s,g[x �→ d] � ϕ for some d ∈ D
d. s,g � ∀xϕ ⇐⇒ s,g[x �→ d] � ϕ for all d ∈ D

Importantly, the existential behaves like disjunction: “it will only be supported in those states
where a specific witness for the existential is known.” We will refer to the first order inquisitive
semantics in (2) as the MAX-restricted FOIS, as we are only interested in maximal supporting
states by this definition.

1That is, with the exception of /0, which is filtered out. See the original paper for discussion.
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|B(10)| |B(11)| |B(12)| ...

Figure 2: [B(10)] ⊂ [B(11)] ⊂ [B(12)] . . .

3 Amending the semantics: the maximality problem

3.1 The maximality problem

As observed by Ciardelli (2009), the MAX-restricted FOIS gives rise to what we will refer to as
the ‘maximality problem’. Ciardelli uses the example in (3) to illustrate the problem, henceforth
called the boundedness formula, which proposes a bound for some set P.

(3) ∃x ∈ N [∀y ∈ N [P(y)→ y ≤ x]] abbr. ∃xB(x)

Ciardelli notes that (3) does not have a maximal supporting state, because for every state s that
supports (3), we can find a superstate of s, call it s�, such that s� also supports (3).2 For example,
consider a state that supports B(10), i.e. 10 is a bound for P. This sentence will be supported
at every index where 10 is a bound for P, and excludes all indices where 10 is not a bound for
P, i.e. indices where the extension of P includes numbers greater than 10. Now consider the
sentence B(11). Clearly, every index that makes [B(10)] true, also makes [B(11)] true. However,
there will be indices where [B(11)] is true, while [B(10)] is not. As such, any state supporting
B(10) also supports B(11), and not the other way around. Therefore, [B(10)] cannot be considered
as an alternative to [B(11)], as the former is properly included in the latter. Now, in the case
of the boundedness formula, for every witness that we consider, we will always find a state that
properly includes the possibility for that witness. Given the infinity of N, the formula does not
have a maximal supporting state. And so the formula denotes the empty set! See figure 2 for an
illustration.

In conclusion, given our MAX-restricted FOIS, the boundedness formula yields the empty
proposition, as it has no maximal supporting state. Ciardelli rightly observes that something has
gone amiss:

Let us meditate briefly on this example. [...] The existential quantifier [...] is designed
to be satisfied only by the knowledge of a concrete bound, just like in the propositional
case a disjunction [...] is designed to be satisfied only by the knowledge of a disjunct.

2See Ciardelli (2009) for a formal proof.
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Therefore, what we would expect from the boundedness formula is a hybrid behaviour:
of course, it should inform that there is an upper bound to P; but it should also raise
the issue of what number is an upper bound of P.

According to Ciardelli, the boundedness formula should not yield the empty proposition, be-
cause (i) we expect it to be informative, informing us that there is an upper bound to P, and (ii)
we expect it to be inquisitive, raising the issue what number is an upper bound to P. Ciardelli
concludes that the requirement that states in a proposition be maximal should be dropped.

While we agree with (i), we wish to argue against the expectation in (ii), as we believe that
Ciardelli’s motivation for the expected inquisitivity of the boundedness formula rests on a miscon-
ception. We will return to expectation (ii) in section 4.3, where we will argue that the boundedness
formula is not expected to be inquisitive. But let us not worry about that detail quite yet, and tackle
the worry raised by (i).

3.2 Candidate solution 1: Unrestricted FOIS

As Ciardelli remarks, the most straightforward solution to the maximality problem is to drop the
requirement that the states in a proposition be maximal. So the definition of ‘proposition’ becomes
as follows:

(4) [ϕ] is the set containing all (maximal and non-maximal) states that support ϕ.

We will call this the unrestricted FOIS, although Ciardelli reserves this name for another system,
which we will discuss further below.3 We will shortly see that the system Ciardelli calls ‘unre-
stricted’ is in fact more restricted than the unrestricted FOIS presently under discussion.

Since the definition of ‘proposition’ in unrestricted FOIS does not rule out any states, all sup-
porting states are maintained in the case of the boundedness formula (which, consequently, will
contain infinitely many states). As a result, info(∃xB(x)) contains all worlds in which there is an
upper bound for P - this is exactly the informative content we would expect of the boundedness
formula. Hence, unrestricted FOIS complies with Ciardelli’s first desiderata in (i).

3.2.1 The maximality problem partially unresolved

But the unrestricted FOIS leaves Ciardelli’s second worry unsolved, namely, the expectation that
the boundedness formula should raise the issue as to which number is a bound. After all, in the
unrestricted system, the proposition expressed by the boundedness formula now contains not only
one supporting state for each number (i.e. each possible response), but it also contains every sub-
states for each possibility. In other words, the boundedness formula’s proposition is the powerset
of the formula’s informative content. As such, it is not exactly clear what issue the boundedness
formula raises in the present setting. This becomes especially apparent in the following example,

3The difference lies in the treatment of atomic sentences, which, in Ciardelli’s system is restricted to atom’s truth-set.
By contrast, we here even allow for any substate of the atom.
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taken from Ciardelli (2009). Consider the boundedness formula with the additional constraint that
the bound be non-zero. Think of this formula as the counterpart of the interrogative sentence “what
is a non-zero bound for P?”:

(5) ∃x ∈ N [∀y ∈ N [P(y)→ y ≤ x]∧ x �= 0] abbr. ∃x(B(x)∧ x �= 0)

We will call this the non-zero boundedness formula. Crucially, the original–unconstrained– bound-
edness formula is truth-conditionally equivalent to the non-zero boundedness formula.4 If there is
a bound, then there is a non-zero bound; and vice versa, if there is a non-zero bound, then there is a
bound. Therefore, the boundedness formula and the non-zero boundedness formula are supported
by the same states. Hence, they both yield the same proposition.

The problem arises, as Ciardelli makes clear, that while the formulas yield identical proposi-
tions, we have the strong intuition that while “zero!” resolves the issue to “what is a bound for P?”,
it is entirely unacceptable as an answer to “what is a non-zero bound for P?”. By Ciardelli’s diag-
nostic, this problem poses a challenge for a support-based definition of inquisitive content. Instead,
he considers two new definitions for a first-order inquisitive semantics, given below, both of which
bypass the notion of support by giving a direct, recursive definition of propositions. We will call
these ‘atom-restricted FOIS’ (what Ciardelli calls ‘unrestricted’ semantics), in which the proposi-
tions of atomic formulas are restricted to maximal states, and ‘NOD-restricted FOIS’ (Ciardelli’s
‘restricted’ semantics), in which propositions are restricted to non-optimally dominated supporting
states.

3.3 Candidate solution 2: Atom-restricted FOIS

In order to better capture inquisitive content, Ciardelli proposes what we call ‘atom-restricted
FOIS’. Ciardelli called this system ‘unrestricted semantics’, which is an unhappy choice because
atomic formulas are still restricted by the maximality of the supporting states (hence the name).
Atom-restricted semantics bypasses the notion of support, defining propositions directly in terms
of other propositions, as follows:

(6) Atom-restricted-FOIS

a. [p] = {|p|} if p ∈ P
b. [⊥] = { /0}

c. [ϕ∨ψ] = ([ϕ]∪ [ψ])
d. [ϕ∧ψ] = {s∩ t | s ∈ [ϕ] and t ∈ [ψ] }

e. [ϕ → ψ] = {Πf | f : [ϕ]→ [ψ]},

where Πf = {w ∈ ω | for all s ∈ [ϕ], if w ∈ s then w ∈ f (s)}

4The same argument applies to other variants of the non-zero boundedness formula, e.g. what is an even bound for
P?
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f. [∃ϕ]g =
�

d∈D [ϕ]g[x �→d]

g. [∀ϕ]g = {
�

d∈D sd | sd ∈ [ϕ]g[x �→d]}

While the semantics for Atom-restricted FOIS have been formulated without a notion of sup-
port - indeed, the non-zero boundedness formula is taken by Ciardelli as evidence against the notion
of support - a suitable notion of support can be defined. It must capture the single difference be-
tween atom-restricted FOIS and unrestricted FOIS: in the atom-restricted FOIS, atomic formulas
denote only their maximal supporting state (hence the name). Translating this into the notion of
support, the only part of the definition of support that needs to be changed with respect to the old
notion is the part concerning atomic formulas: a state supports an atomic formula only if it is a
maximal state in which the formula is true; for other formulas, support remains the same: TODO:
add the clauses for negation, implication, universal.

(7) a. σ,g � ϕ ⇐⇒ σ = |ϕ| for ϕ atomic
b. σ,g � ϕ∨ψ ⇐⇒ σ,g � ϕ or σ,g � ψ
c. σ,g � ϕ∧ψ ⇐⇒∃σ�∃σ�� s.t. σ�,g � ϕ and σ��,g � ψ and σ = σ� ∩σ��

d. σ,g � ∃xϕ ⇐⇒ σ,g[x �→ d] � ϕ for some d∈ D

As in the unrestricted case, the proposition of a formula is simply the set of states that support the
formula: [ϕ]g,τ = {σ| σ,g �τϕ }

An advantage of having a notion of support underlying the semantics, is that we can see whether
the atom-restricted FOIS makes sense by interpreting this notion of support. It no longer captures
only knowledge, like the old notion - after all, such an interpretation of the new notion of support
would mean that an atom ϕ would not be known in any of the proper substates of |ϕ|, and that is
of course not true. If a state s� supports ϕ, that means s� can be reached from the current state s by
updating s with ϕ and resolving any issue raised by ϕ in s. In other words, if a state s� supports
ϕ, it means that accepting and resolving ϕ in the current state s is sufficient for reaching s�. For an
atom ϕ, every substate of the state that supports ϕ cannot be reached by only updating with ϕ, for it
requires additional information. For an inquisitive formula, each particular way of resolving it may
be sufficient for a different state, and it is irrelevant whether and how these states overlap (unlike
in the MAX-restricted FOIS, in which only maximal states are maintained). With this notion of
support, a formula denotes the set of states that can be reached by accepting and resolving it in the
current state.

TODO: Possibly interesting stuff: Discuss that it is a departure from classical logic - inf and
inq no longer exhaust meaning. (p∨q)∧ (p∨q) (perhaps weakened case of pairwise intersection?
Jeroen? - mention attentive content here. Is it to be expected that the notion of ‘sufficient knowl-
edge’ does not behave classically? Yes, obviously, pairtwise intersection is non-classical. Grmlm.
BUT: inquisitive and informative content may still behave classically. [(p∨ q)∧ (p∨ q)] contains
not only |p| and |q|, but also |p∧ q| - that is the non-classical part. But from this perspective, it
makes sense: accepting and resolving the first conjunct, followed by accepting and resolving the
second conjunct.
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3.4 Candidate solution 3: NOD-restricted FOIS

Ciardelli then constructs a more conservative extension of propositional inquisitive semantics: a
first-order semantics in which quantifier-free formulas behave classically. He calls this system
‘restricted semantics’, but we will call it ‘NOD-restricted FOIS’ in order to contrast it with the two
other restricted semantics (MAX-restricted FOIS and atom-restricted FOIS). Like the definition
of atom-restricted FOIS, this definition bypasses the notion of support. Also like atom-restricted
FOIS, the propositions of atomic formulas are restricted by the maximality of supporting states.
However, unlike atom-restricted FOIS, the propositions of non-atomic formulas are restricted by
the notion of ‘non-optimal dominance’ (NOD) as follows:

(8) Atom-restricted-FOIS

a. [ϕ]g = {|ϕ|g} if ϕ is atomic

b. [⊥]g = { /0}

c. [ϕ∨ψ]g = NOD([ϕ]g ∪ [ψ]g)

d. [ϕ∧ψ]g = NOD{s∩ t | s ∈ [ϕ]g and t ∈ [ψ]g }

e. [ϕ → ψ]g = NOD{Πf | f : [ϕ]g → [ψ]g}
f. [∃ϕ]g = NOD(

�
d∈D [ϕ]g[x �→d])

g. [∀ϕ]g = NOD{
�

d∈D sd | sd ∈ [ϕ]g[x �→d]}

As before, we can try and define a notion of support to go with these semantics. The notion of
support will be identical to atom-restricted FOIS, except for the support-definition for inquisitive
formulas. In this case, a state s supports an inquisitive formula ϕ if it is a possible resolution
for ϕ (as before), with the additional constraint that none of the other possible resolutions for ϕ
that contain s may be maximal. Hence, in order to compute whether a certain state supports an
inquisitive formula ϕ, one has to investigate all other states that potentially support ϕ. We believe
this is less pretty than the notion of support underlying atom-restricted FOIS - whether a state
supports a formula can no longer be determined ‘locally’.

The main advantage that Ciardelli believes NOD-restricted FOIS has over atom-restricted FOIS
is that in the NOD-restrictef FOIS, any quantifier-free formula behaves as in the propositional case.
In other words, NOD-restricted FOIS is a more orthodox extension of propositional inquisitive
semantics. However, we believe that it is undesirable for a propositional connective to behave
differently when combined with a quantifier. For instance, while [(p∨q)∧(p∨q)] does not contain
|p∧ q| (i.e. as in the propositional case, it is equivalent with [p∨ q]), |p∧ q| does come out as a
possible resolution when embedding [p∨ q] within the proposition of the boundedness formula.
For instance, if we know that whenever p or q, then P is empty, then (∃xB(x)∨(p∨q))∧(∃xB(x)∨
(p∨q)) is not equivalent with ∃xB(x)∨ (p∨q): the former contains |p∧q| as an extra possibility.
TODO: maybe a picture here

More generally, the NOD-restricted FOIS discriminates between finite and infinite propositions
in a way that we think is ad-hoc and has nothing to do with informative or inquisitive content.
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|B(0)| |B(1)| |B(2)| ...

Figure 3: [∃xB(x)]

|B(0)| |B(1)| |B(2)| ...

Figure 4: [∃xB(x)& x �= 0]

Somehow, for ∃xB(x)∧ x < 999 all the inner states are irrelevant, while for ∃xB(x) they are all
maintained. The same issue will surface when discussing definitions of inquisitivity, in section 4.3,
and we postpone a further discussion of it to that section.

Setting aside the possible advantages and disadvantages of the last two candidates - atom-
restricted FOIS and NOD-restricted FOIS - do they actually solve the problem they were designed
to solve, i.e. explain why “zero!” is not a possible answer to “what is a non-zero bound for P?”? At
first sight (figures 3.4 and 3.4), yes: both candidates assign a different proposition to the bounded-
ness formula than to the non-zero boundedness formula: the non-zero boundedness formula lacks
the smallest (inner) supporting state. However, upon closer examination, the proposition assigned
by both semantics to the non-zero boundedness formula in fact does not rule out “zero!” as an
answer - it is overinformative, but acceptable nonetheless. So what is going on?
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4 Inquisitive content

Let us start this section with a short summary. So far, we have seen four definitions for first-order
inquisitive semantics. In the MAX-restricted FOIS, the boundedness formula undesirably yields
the empty proposition. In the unrestricted FOIS, the boundedness formula is informative in the
right way, but from its proposition it is unclear what issue it raises - e.g. its proposition is identical
to the proposition of the non-zero boundedness formula, which Ciardelli claims has a different
inquisitive content. In both atom-restricted FOIS and NOD-restricted FOIS, the propositions for
these formulas are different, but not in a way that explains the contradictory nature of “zero!” as an
answer to the non-zero boundedness formula. In this section, we attempt to clean up the landscape.

4.1 Why the unacceptability of “zero!” is not due to inquisitive content

The formula to which an answer like “zero!” corresponds is underspecified. A number on its own
is not a valid formula in the logical language. Instead, the meaning assigned to “zero!” is saturated
by its linguistic context. Here are some illustrative examples.

(9) a. A: How many children do you have? / B: Zero! (= I have zero children)
b. A: What is your favourite number? / B: Zero! (= Zero is my favourite number)
c. A: What is the current temperature? / B: Zero! (= Zero is the current temperature)

Regardless of what kind of syntactic analysis one wishes to apply to B’s answers, we must ac-
knowledge that the semantic content of a sentence fragment is sensitive to its discourse context.
From this perspective, what does the non-zero bound problem look like?

(10) a. A: What is a bound for P? / B: Zero! (= Zero is a bound for P)
b. A: What is a non-zero bound for P? / B: # Zero! (= Zero is a non-zero bound for P)

Once we have fully spelled out the “zero!”-answers, it becomes clear what has gone wrong in
(10b): “zero is a non-zero bound for P!” is contradictory, regardless of the issue it is meant to
resolve. The contradictory nature of this answer is completely independent of the semantics of
the questions. As such, we do not find the argument strong enough as a motivation to replace the
unrestricted FOIS by either one of the atom-restricted or the NOD-restricted FOIS. The non-zero
bound problem, we argue, is really a linguistic problem.

But perhaps Ciardelli’s argument can be saved, if the boundedness formula and the non-zero
boundedness formula differ in some other way in their range of possible answers. Consider first
the non-zero boundedness formula answered with “zero is a bound” (B(0)). This answer is not
contradictory like the underspecified “zero!” - rather, it is overinformative: it resolves the issue,
but there are safer answers available. To indicate the overinformativeness, it is natural to mark it
with “well” as in (11a), analogously to (11b):

(11) a. A: What is a non-zero bound for P? / B: Well, zero is a bound for P.
b. A: Is it rainy or sunny? / B: Well, it is rainy and sunny.
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In both cases, B is not being annoying or contradictory, but simply very helpful.
But if we take ‘overinformative’ to mean ‘providing more information than required to resolve

the issue’, then, in a similar fashion, all answers to the non-zero boundedness formula are over-
informative. For any number you give as an answer, you could have given infinitely many less
informative, safer answers with a higher number, which would successfullu resolve the issue. In-
deed, it seems natural to precede any answer to the interrogative “what is a non-zero bound for P?”,
marked with “well” (12), suggesting that the answer is non-compliant. Likewise, for the original
boundedness formula (13).5

(12) A: What is a non-zero bound for P? / B: Well, eight is a non-zero bound for P.

(13) a. A: What is a bound for P? / B: Well, zero is a bound for P.
b. A: What is a bound for P? / B: Well, eight is a bound for P.

If there is no difference in essence to B’s answer in (11a) and B’s answers in (12) and (13) - i.e.
they are all compatible but overinformative - then there is no reason why the boundedness formula
and the non-zero boundedness formula should denote different propositions. As a result, there is
no reason (at least as far as inquisitive content is concerned) for replacing unrestricted FOIS by
atom-restricted FOIS or NOD-restricted FOIS, as Ciardelli proposes.

So far we have argued that, even if the boundedness formula is expected to be inquisitive, then
the non-zero bound problem is not caused by a ‘wrong’ implementation of inquisitive content. We
think, however, that a more pressing question at this stage is: should the boundedness formula
really be considered inquisitive at all?

4.2 Why the boundedness formula need not be inquisitive

What motivation does Ciardelli offer for the expected inquisitivity of the boundedness formula? He
argues that we expect the boundedness formula to be inquisitive, because the existential quantifier
is designed to be satisfied only by the knowledge of a concrete bound. We have our reservations
about the strength of this motivation. For while disjunction and (its higher-order counterpart) exis-
tential quantification are a source of inquisitivity, they are (obviously) not sufficient conditions for
inquisitivity: not every formula that contains a disjunction or an existential quantifier is inquisitive.
For instance, p∨ (p∧ q) is not inquisitive; it has only one maximal supporting state (or, using
definition 1, it contains its own informative closure). There should be nothing surprising about
some disjunctive formulas being non-inquisitive, nor does their existence mean that our semantics
is wrong.

Note that natural language intuitions cannot be of any assistance here: See section 5 below.
While for us this settles the issue - there is no reason why the boundedness formula should be

inquisitive - we believe the following perspective may be insightful. The inquisitivity of a formula
is always evaluated relative to a state. For instance, p∨q is not inquisitive in a state where p → q is

5In these cases, overinformativity marking with “well” seems to be optional, but this - we will propose later - has to
do with the availability of a pragmatically strengthened reading.
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known, because in such a state the possibility for p is included in the possibility for q. If the state
is not made explicit, this comparison state is taken to be the ignorant state ω. Hence, one could
say that whenever a potentially inquisitive formula (i.e. a formula with an existential quantifier or
a disjunction) turns out to be non-inquisitive, it must be the case that the state against which its
inquisitivity is evaluated is not entirely ignorant. For instance, consider the formula ∃x(2+2 = x),
which will not be inquisitive with respect to ω, since in every world in ω 2 + 2 yields the same sum.
This would be different, of course, were we to allow for ‘mathematically impossible worlds’ in ω
(e.g. worlds where 2 + 2 =5 ), due to which the formula would become inquisitive. Similarly, the
boundedness formula is not inquisitive in a state where the ordering relation on N is held constant,
which we assume for ω. For in all mathematically possible worlds, knowing one bound results
in knowing all higher bounds, and the boundedness formula yields the set of nested supporting
states and comes out as non-inquisitive. Note that if we populate ω with worlds where the ordering
relation on N does not hold, then the boundedness formula does come out inquisitive, as each
supporting state for a witness will no longer conform to the nested structure. To wrap up: the fact
that the boundedness formula comes out as non-inquisitive is not due to a defect in the semantics,
but because the ‘ignorant’ state ω is not truly ignorant.

4.3 Why the boundedness formula is not inquisitive

TODO: Add an ‘apart from definitions’ to the previous section. Of course, the question whether
the boundedness formula is or is not inquisitive is really a question regarding the definition of
inquisitivity. Two definitions have been proposed. According to one, it is inquisitive; according to
the other, it is not. Hence, deciding which of the definitions is the right one will suffice to reveal
whether the boundedness formula is inquisitive.

The first definition of inquisitivity comes from Groenendijk and Roelofsen (2009).

(14) A sentence ϕ is inquisitive if and only if [ϕ] contains at least two maximal states.

(14) captures the effect of an inquisitive sentence on the common ground. Accordingly, an in-
quisitive sentence proposes alternative ways to update the common ground. Inherent to inquisitive
semantics is the notion that proposing maximal alternative substates on the common ground re-
quires that the addressee choose one of the alternatives. As such, (14) highlights the philosophical
underpinning of the inquisitive turn as the view that language use is about information exchange.
(14) allegedly faces a problem concerning the boundedness formula (Ciardelli 2009) discussed
above. If we want the boundedness formula to be inquisitive, then it falls hopelessly short of (14),
since the boundedness formula does not have a maximal possibility.6

The second definition of inquisitivity comes from Ciardelli (2009).

(15) A sentence ϕ is inquisitive if and only if |ϕ| /∈ [ϕ].
6Of course, if we disregard the expectation that the boundedness formula should be inquisitive, then (14) is quite

satisfactory.
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According to (15), if the informative content of a sentence is not included in the proposition ex-
pressed by the sentence, then it is inquisitive. Or, in other words, a sentence is inquisitive just in
case it requests more information than it provides. First, notice that definition (14) could be called
‘constructive’ analogously to ‘constructive’ proofs in mathematics: it tells you not only whether a
formula is inquisitive, but also, if it is, what issue it raises: it requests information to establish one
of the formula’s maximal supporting states. Definition (15), on the other hand, is not constructive:
it tells you whether a formula is inquisitive, but not what issue it raises. Are all the states in a
proposition part of a raised issue, or only a selected few of them? This is a question that defi-
nition (15) leaves unanswered. Our suggested answer would be ‘only maximal states are part of
the raised issue’, but that would yield an account of inquisitivity according to which sentences can
raise an issue without any alternatives to choose from... Setting aside this issue, let us consider
what definition (15) as such gives us.

This definition of inquisitivity covers the following (and only the following) three cases:

i) Formulas that yield propositions with alternative supporting states.

ii) Formulas that yield propositions with no supporting states at all.

iii) Formulas that yield propositions with an infinite number of supporting states, none of which
is maximal

The most prototypical case of inquisitivity is (i), and it is also (and only) covered by (14). Case
(ii) expresses the fact that non-proposals are inquisitive. It is a rather strange case to include in a
definition of inquisitivity, even if only as an unintended side effect. In the MAX-restricted FOIS,
i.e. the orthodox extension of the propositional case with which we commenced our quest, this
definition would have ruled in the boundedness formula as inquisitive. It just wasn’t the right kind
of inquisitivity. Of course, empty propositions may be ruled out by adding a clause to the definition
of ‘proposition’, but that changes nothing about the fact that this definition of inquisitivity an sich
considers non-proposals (wherever they be) to be inquisitive. Perhaps the empty proposition could
be reserved for non-sensical utterances in natural language, such as (16).

(16) Colorless green ideas sleep furiously.

This sentence has been traditionally analysed as non-sensical and lacking a truth value. If this is a
proper analysis, and if non-sensicality amounts to failing to make a proposal, whether informative
or inquisitive, then this would be an example of a sentence that is inquisitive according to definition
(15).

Case (iii) deals with the boundedness formula and its relatives. Indeed, the switch from defini-
tion (14) to definition (15) was intended in part to rule the boundedness formula as inquisitive (even
though it need not be, as discussed in the previous subsection). But we believe a strong objection
to (15) is precisely case (iii): it discriminates between finite and infinite propositions. For instance,
∃xB(x) would be inquisitive while ∃xB(x)∧ x < 1000 would not be inquisitive, because it contains
a maximal possibility (namely |B(999)|) and as a result it contains its own informative content. Ac-
cording to definition (14), on the other hand, both kinds of formulas come out as non-inquisitive -
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a uniformity that we believe is desirable. From a more epistemic perspective, it seems wrong to let
a notion of inquisitivity depend so strongly on whether a proposition is infinite. Any agent dealing
with the real world needs to be pragmatic anyway, ignoring irrelevant possibilities for efficiency
reasons (e.g. ignore all B(x) for x > 20 if the agent knows the set P represents John’s roommates -
no one has more than 20 roommates). Similarly, any agent dealing with the real world will never
be able to compute all possible supporting states, and will never know for sure whether there is a
maximal state - but does that mean that for this agent all formulas are inquisitive?

Similarly, case (iii) discriminates between ‘at most’ and ‘at least’, which becomes apparent if
we consider the following two formulas.

(17) a. ∃xJohn− read −books−amount(x)∧ x > 3
b. ∃xJohn− read −books−amount(x)∧ x < 3

While (17a) lacks a maximal possibility (just like the boundedness formula), (17b) does not. The
maximal possibility for (17b) is the possibility containing indices where John read four or less
books. According to (15), (17a), but not (17b), is inquisitive.

It might be insightful to look at the following (approximate) natural language paraphrases of
both formulas:

(18) John read at least three books.

(19) John read at most three books.

Surely if ‘Yes, four books!’ is a felicitous response to (18), then so is ‘Yes, two books!’ to (19).
Although the mapping from inquisitive logic to natural language may be non-trivial, we believe it
would be a waste if the similarity between both natural language sentences would not in some way
be reflected by a similarity between both logical formulas.7 According to (14), neither formula is
inquisitive, since the propositions expressed by (17a) and (17b) each have less than two maximal
states.

In sum, we believe definition (15) should be abandoned and definition (14) reinstated. 8 Now,
let us go back to the maximality problem. If we adopt, as we have tried to argue in favor of,
definition (14) of inquisitivity, then the boundedness formula and its relatives (e.g. the non-zero
boundedness formula) do not come out as inquisitive. As a result, the difference between e.g.

7We do not claim that these natural language sentences raise an issue - the point we are making is orthogonal to that.
8Apart from (14) and (15), we point out the possibility for an informal, non-semantic definition of inquisitive meaning

for natural language that the literature implicitly endorses: a sentence is inquisitive if and only if it requests information.
We have our reservations about definitions of this sort, since our pre-theoretic linguistic intuitions about whether a
sentence requests information is not fine-tuned. In fact, were we to endorse such an informal definition, then we might
be hard-pressed not to call sentences like (1) inquisitive, since declarative sentences in natural language are not generally
used to request information.

(1) Alf or Bea is coming to the party.

But the inquisitive turn relies precisely on examples like (1) for lift-off. And the logical intuition here is that a sentence
with disjunction proposes alternative possibilities the common ground may be updated with (as per (14)).
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the boundedness formula and the non-zero boundedness formula does not reflect a difference in
inquisitive content (as we already hinted at in section 4.1).

5 ∃, ∨, and inquisitive meaning

In this section, we tackle some natural language examples as an an empirical test-bed to evalu-
ate our notion of inquisitivity, but also to gain a better understanding of the difference between
inquisitive meaning on the one hand, and raising issues on the other.

The inquisitive turn views sentences as making proposals that serve the dual function of simul-
taneously providing information, but also requesting information. Traditionally, in the grammar of
natural languages, declarative sentences are considered to perform the former function, while inter-
rogative sentences perform the latter. The inquisitive turn challenges this simple division of labour
between grammatical sentence-types by observing that declarative sentences containing disjunc-
tion or indefinites also have the potential to request information.9 In this section, we investigate the
relationship between inquisitive meaning and requesting information.

5.1 Inquisitive meaning and scope

5.1.1 Generics/habituals

Inquisitive semantics identifies disjunction and indefinites as the source of inquisitive meaning.
Now consider the following sentences, under the reading where ‘or’ in (20) and ‘a movie’ in (21)
take scope under the adverbial.

(20) After dinner, John smokes a cigarette or drinks a martini.

(21) On Fridays, Liesolette watches a movie.

Somewhat simple-mindedly, we might want to say that inquisitive semantics predicts (20) and
(21) to be inquisitive, since they contain disjunction and indefinites. However, from a purely in-
tuitive perspective on language use, neither sentence seems to request any information. In other
words, the sentences do not seem to give rise to any issues. We observe this by the infelicity of the
responses in (22) and (23).

(22) a. A: After dinner, John smokes a cigarette or drinks a martini.
b. B: # Yes, he drinks a martini!

(23) a. A: On Fridays, Liesolette watches a movie.
b. B: # Yes, The Titanic!10

9Another question worth considering is whether interrogative sentences can ever be informative, and to provide a
formal explanation for why they are strictly more demanding.

10Of course, if Liesolette does indeed have the habit of typically watching the Titanic on Fridays, then B’s response is
OK. But for the sake of these examples, we are not interested in the wide-scope reading of the indefinite or disjunction.
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We observe that B’s response in the examples above are not only infelicitous (insofar as they
appear to provide an unsolicited resolution), but that they also violate other principles of conversa-
tion. In the case of (22), B’s response is under-informative, and in (23), B’s response is (potentially)
false.

Let us see why B’s response in (22) is under-informative. If John has the disposition to smoke
cigarettes or drink martinis after dinner (the content of A’s assertion), then John must be disposed
to smoking cigarettes and drinking martinis after dinner. John need not (and the sentence seems
to implicate that he does not) indulge in his smoking and his drinking habits after every (typical)
dinner event. But for any (typical) dinner event, both dispositions are a possibility. As such, the
sentence has a conjunctive interpretation. And yet, this interpretation is quite unlike (24).

(24) After dinner, John smokes a cigarette and drinks a martini.

What (24) seems to say is that every typical after-dinner-event for John is one in which he
smokes a cigarette and drinks a martini. This is not what (20) says. (20) allows for after-dinner
events where John consumes either one of cigarettes or martinis and not the other. Not so for (24).
But crucially, (20) is false if John only smokes cigarettes and does not drink martinis after every
typical dinner.

Now, since the information contained in B’s response in (22) is only a subset of the information
that A provides, B’s response cannot even be taken to confirm what A is proposing. As such,
given the information contained in A’s assertion, B’s response is both redundant, but also under-
informative.

In the case of B’s response in (23), things are a little different. This time, B’s response can be
plain false (again, excluding the wide-scope interpretation of the indefinite). So unlike the case of
disjunction, where stating only one of the disjuncts would be under-informative, in the case of (23),
providing an explicit witness in the context of a habitual sentence could make the sentence false.
Liesolette may very well be disposed to watching movies on Fridays without ever having watched
the Titanic, rendering B’s response false. In the case of (22), John cannot be disposed to smoking
or drinking without ever drinking.

As a starting hypothesis, we may want to say that inquisitive meaning arises only from wide-
scope disjunction or indefinites. In (20) and (21), the disjunction and indefinites fall within the
scope of a generic-like operator (i.e. the adverbials) that retards an inquisitive interpretation. Let
us now take a closer look at this hypothesis.

5.1.2 Wide vs narrow scope inquisitives

If the scope of an indefinite (or disjunction) determines inquisitive meaning, this would predict
only the wide-scop reading of ‘a girl’ in (25) to yield an inquisitive interpretation.

(25) Every sailor loves a girl.

(26) a. ∃y[Girl(y) & ∀x[Sailor(x)→ Loves(x,y)]]
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b. ∀x[Sailor(x)→∃y[Girl(y) & Loves(x,y)]]

Intuitively, (26) seems to confirm our hypothesis. The wide-scope reading of the indefinite
behaves inquisitively insofar as it gives rise to the question who this girl is whom every sailor
loves. But what about the narrow-scope reading of the indefinite? Does this reading also invite
a response? Well, it turns out that (26b) is also inquisitive by either definition of inquisitivity
discussed above (whether or not it invites a response). For let us restrict ourselves to a model M ,
wherein our domain of sailors consist of {a, b}, and our domain of girls {c, d}. Now, what are the
possibilities that make (26b) true? Well, every possibility we get from the set of functions that map
each sailor to a girl.

(27) [(26b)]M = {ρ| ρ ∈ { f |{a,b}→ {c,d}}}
= {ρ| ρ ∈ {{�a,c�,�b,d�}f1,{�a,d�,�b,c�}f2,{�a,c�,�b,c�}f3,{�a,d�,�b,d�}f4}
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The same is true of course for narrow scope disjunction. e.g. Every sailor loves beef or chicken.
There are four alternative possibilities that will make this sentence true. For comparison, note that
sentences like (28) and (29) are never inquisitive, in that their maximal possibilities will always be
at most one, i.e. there is only one way in which the the proposition in (28) or (29) can be realized.

(28) Every sailor loves every girl.

(29) Every sailor loves beef and chicken.

The semantic analysis that we propose for indefinites below will depart slightly from our ob-
servations at this point. In fact, we will go as far as to say that the semantics of indefinites involves
non-inquisitive closure. Our treatment will thus distinguish sentences such as the one in (25), from
their interrogative counterparts, such as (30).

(30) a. Which girl does every sailor love?
b. Which sailors love which girls?

At this point, we cannot really tell how scope affects inquisitive behavior. For example, narrow-
scope indefinites are predicted to be inquisitive, since the proposition they express denotes several
different possibilities. However, as we will see below, the narrow-scope reading of a disjunctive
sentence gives rise to a different pragmatic behavior than its wide-scope reading. We still need
to uncover the systematic pattern underlying these examples. In the following section, we look at
the principle of inquisitive sincerity (Groenendijk and Roelofsen 2009) and try to use the principle
as a yard stick to discriminate amongst sentences that raise issues, and those that do not. We also
investigate the behavior of interrogative pronouns and probe them for inquisitive meaning alongside
indefinites and disjunction.
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6 Advancing an inquisitive semantics for indefinites

What we ultimately want is a compositional inquisitive semantics for natural language interrogative
and indefinite noun phrases. We want to ground inquisitive meaning in these lexical items (since
they are logically associated with the existential quantifier), but we also want our semantics to
articulate the (contrasting) discourse behaviour of these items. In this section, we investigate the
relationship between indefinite and interrogative NPs, and their similarity and differences with
natural language ‘or’. For the sake of exposition, we find it convenient to revert to a support-based
semantics. Therefore, to side-step the difficulties that support gives rise to in the first-order case,
we will assume a finite domain.

6.1 Indefinite-interrogative affinity

It is already widely recognized that in many languages indefinite and interrogative NPs are mor-
phologically closely related (what Haida (2008) calls the "indefinite-interrogative affinity".) This
view is consonant with the inquisitive philosophy, since ∃ is closely affiliated with indefinites, and
is also the source of inquisitive, and hence, interrogative meaning. We want, therefore, to examine
just how we can harness ∃ in our semantic representation of both indefinite and interrogative NPs.

6.1.1 Knowing who vs. knowing someone

We begin by taking note of the major differences between indefinite and interrogative NPs. For
illustrative purposes, we use who and someone.11 Our first observation is that, when embedded
under the attitude verb ‘to know’,12 who and someone minimally differ in the following way: for
a state to support the sentence ‘who came’, it is necessary that the set of individuals who fall into
the extension of the predicate remain uniform at every index in the state. This constraint is relaxed
for ‘someone came’. The minimal requirement for a state to support ‘someone came’ is that the
extension of the predicate be non-empty at every index. That is, the set of individual witnesses may
differ at each index. We illustrate this observation in (31) and (32) below.

(31) a. I know who came . . . # but I don’t know who!
b. σ � Who came ⇐⇒ ∃x : ∀i ∈ σ : came�(x)(i)

(32) a. I know someone came . . . but I don’t know who!
b. σ � Someone came ⇐⇒ ∀i ∈ σ : ∃x : came�(x)(i)

Our observations in (31) and (32) lead us to conclude that the interrogative pronoun ‘who’ is
more restrictive, or demanding than the indefinite ‘someone’. We will see the consequences of this

11For the time being, we are glossing over the distinct syntactic structure of interrogative vs indefinite NPs.
12We are making the assumption here that inquisitive support models the meaning of natural language ‘know’: much

in the same way that supporting an inquisitive formula comes down to supporting one of its resolutions, knowing a
question comes down to knowing the answer to the question.
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property in the remaining data. But before we go on, it is worthwhile to compare this behavior of
‘who’ and ‘someone’ with ‘or’.

A digression on ‘or’ Recall that a state supports a disjunction if and only if it supports either
one of the disjuncts. We would expect then that the sentence Kx(ϕ∨ψ), x knows ϕ or ψ, to be to
be supported in x’s state, if Kx(ϕ), x knows ϕ. Much like knowing a question means knowing the
resolution to the question, we expect things to work the same way in the case of natural language
‘or’. So if knowing that Bill came qualifies me to utter I know who came, I should also be qualified
to utter I know Bill or Sue came. (33) shows that our expectation does not quite meet the data.

(33) a. I know Bill or Sue came. . . . # Bill came!
b. I know Bill or Sue came. . . . but I don’t know which.
c. I know who came. . . . Bill came.

We might be able to use the principle of Inquisitive Sincerity (Groenendijk and Roelofsen
2009) to explain the infelicity of (33a). The principle states: if ϕ is inquisitive in the common
ground, then it should be inquisitive in the speaker’s information state. We might then want to
argue that the utterance ‘I know that Bill or Sue came’ has an inquisitive effect on the common
ground consisting of two (overlapping) possibilities, one for Bill coming, the other for Sue coming.
But since the speaker is stating that she knows, and hence supports the proposition, she must not
be in an inquisitive state. Hence, the violation of the principle. A word of caution is in order: if
inquisitive sincerity could explain the infelicity of (33a), what prevents (33c) from violating the
principle also?

Let us try again. This time, also taking (33b) into account. What transpires from this com-
parison is that the disjunctive sentence embedded under know must be non-inquisitively closed, as
the continuation makes clear. This means that the speaker’s information state includes both indices
where Bill came, but also indices where Sue came. Furthermore, the speaker’s information state
supports the non-inquisitive closure of the disjunction. In other words, the speaker knows that the
answer to the polar question ‘whether Bill or Sue came’ is affirmative.

Now the first clause in (33) is compatible with indices where Sue but not Bill came, while a
felicitous use of the second clause requires that every index in the speaker’s information be one in
which Bill came. If disjunction is interpreted non-inquisitively under the knowledge operator, then
the content of the speaker’s assertion would simply erase indices where neither Bill nor Sue came
from the common ground, without creating alternative possibilities. See figure 5.

But we still do not have an explanation for the infelicity of (33a), for it is possible that the
speaker be certain about Bill coming, but only be half certain about whether Sue came. In such a
state, the speaker would still support the non-iquisitive closure of Bill or Sue came.

(34) I know that Bill came, and maybe Sue came also.

Now what prevents the speaker in (34) to utter (33a) instead? That is to say, a speaker in the
information state described by figure 6 also knows the non-iquisitive closure of Bill or Sue came.
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Figure 5: Non-inquisitive closure of Bill or Sue came.

Now, if we say that disjunction embedded under ‘know’ is interpreted non-inquisitively, then saying
‘I know Bill or Sue came’ in an uninquisitive state such as figure 6 should be fine. We seem to need
a more refined explanation still for the infelicity of (33a).
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Figure 6: Bill came and maybe Sue did too.

Yet a third explanation, perhaps a consequence of Inquisitive Sincerity, would be to say that
the use of disjunction comes along with an ignorance implicature: why use an inquisitive sentence
if you can be more informative? If we allow for this implicature to project globally, then the
continuation could be seen as a violation of this seemingly non-cancelable implicature. Note that
in the case of an indefinite like ‘someone’, no such implicature is necessary, as witnessed by (35).

(35) I know that someone came. . . . It was Bill.

So we seem to actually be observing a three-way division between ‘who’, ‘or’, and ‘someone’.
Both ‘who’ and ‘someone’ allow the speaker to provide a resolution for the question that she claims
to know. We can also include ‘whether’ in this category (including embedded alternative questions,
(36d)).

(36) a. I know who came. . . . It was John.
b. I know that someone came. . . . It was John.
c. I know whether Sue came. . . . She didn’t.
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d. I know whether BILL or SUE came. . . . BILL came.
e. I know that Bill or Sue came. . . . # Bill came.

Having taken note of the bahaviour of ‘or’, let us recap what we learnt about indefinites and
interrogative pronouns so far. It appears that interrogative pronouns resist non-inquisitive readings
(see (31)). As for indefinites, the data so far seems to suggest that indefinites are compatible with
the non-inqusitively closed reading.

6.1.2 The self-answerability test

Our second observation, which we would like to suggest as a test for inquisitivity (though more
precisely, issue-raising) in natural language is what we call ‘the self-answerability test.’ This test
also follows directly from the principle of Inquisitive Sincerity.

Self-answerability the issue raised by an inquisitive sentence cannot be resolved by the speaker.

We see that (37) fails the self-answerability test, and is hence inquisitive: it requires inquisitive
sincerity. We observe the same requirement for interrogative pronouns, as in (38).

(37) Bill or Sue came. . . . # It was Bill!

(38) Who came? . . . # It was Bill!

Interestingly, however, indefinites do not seem to pass the test. That is, indefinites are not
constrained by inquisitive sincerity.

(39) Someone came. . . . It was Bill!

In fact, we would like to suggest that any attempt at resolving the referent of the indefinite by
the hearer runs the risk of giving rise to disagreements, and is hence deemed ‘unsafe’. As such, B’s
response cannot be regarded as compliant.

(40) a. A: Someone came.
b. B: Yes, it was Sue.
c. A: No, Sue didn’t come. It was Bill!

It is not clear to us however, whether the self-answerability test is really a test for inquisitivity,
or perhaps more specifically, it is a test for issue-raising. We may want to keep these ideas distinct.
We could say that only inquisitive sentences give rise to issues, but that other pragmatic factors
may interfere with this process. For consider the following example, where we are only concerned
with the narrow-scope interpretation of ‘or’.

(41) a. Every sailor ate chicken or tofu.
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b. . . . Sailors A and B ate chicken, and sailors B and C ate tofu.

Now, we know that the sentence in (41a) is inquisitive, since there are more than one way the
sentence can be realized (the proposition contains more than one supporting state). However, as
the continuation in (41b) makes evident, the sentence passes the self-answering test and is hence
predicted to be non-inquisitive. For the present, we may just want to say that narrow-scope dis-
junction requires obligatory non-inquisitive closure, though we still need a better explanation for
such phenomena.

6.2 One remaining observation

Before suggesting a semantics for who and someone, we would like to discuss one remaining,
albeit vexing issue. It is commonly assumed that wh-terms carry an existential presupposition, e.g.
a question like ‘who came?’ presupposes ‘someone came.’

While we happen to share these intuitions, formalizing presuppositions in our current frame-
work requires a level of sophistication we have not currently developed. For the time being, we
propose that we disregard the existential presupposition of wh-terms. In defense of this view,
consider the examples below.

(42) a. I know that someone came. . . . # No one did!
b. I know who came. . . . ? No one did!

While our judgements regarding the continuation in (42b) causes us small discomfort, we con-
fidently reject the continuation in (42a), which is a flat-out contradiction. For the time being, we
would like to allow the ‘no one!’ answer as a possibility for ‘who came?’. Armed with this distinc-
tion, we are now ready to provide a preliminary semantics for ‘who’ and ‘someone’.

6.3 A preliminary semantics for who & someone

Ok, here we go. We want to build the semantics of our indefinite and interrogative NPs using the
existential quantifier, but also we want to account for the patterns that we observed above: i. that
interrogative pronouns are necessarily inquisitive; ii. that inquisitive sincerity does not apply to
indefinites; and iii. that wh-questions contain the negative answer as one of their possibilities.

We present the semantics that most readily suggests itself in (43) and (44). According to (43),
‘someone came’ consists of the union of the possibilities for ∃xϕ and its non-inquisitive closure.
Accordingly, the sentence ‘someone came’ eliminates those indices where no one came, but that
crucially, it makes a non-inquisitive proposal: it proposes the single possibility that does not contain
any indices where no one came, but for every individual, it may draw attention to the possibility
that that individual came.13 We use � to indicate that the proposition is non-inquisitive (although
informative and possibly attentive).

13We still do not have any strong empirical evidence to support the attentive content of ‘someone’, but stipulate it for
the time being without any strong commitments.
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(43) [someone ϕ]g = [∃xϕ]g ∪ [¬¬∃xϕ]g
= [�∃xϕ]g

Our semantics for the wh-question ‘who came?’ minimally differs from ‘someone came’ by
removing one of the negations in the second disjunct. This move seems to give us the desired inter-
pretation. The wh-question proposes, for each individual, the possibility that that individual came,
but also, the possibility that no one came. Furthermore, the sentence may never be informative,
since it is non-eliminative.

(44) [who ϕ]g = [∃xϕ]g ∪ [¬∃xϕ]g
= [?∃xϕ]g

The proposed semantics seems to get the support conditions for ‘who came’ and ‘someone
came’ right. Knowing who came requires supporting either the possibility that no one came, or else,
supporting the existential formula, i.e. the answer to the question. And knowing someone came
requires supporting the informative content of the sentence or supporting the existential formula.

7 Conclusion

In this paper we have attempted to better understand Ciardelli (2009)’s motivations for moving
away from a support-based semantics in the first-order setting, with the view that the support re-
lation provides a stronger notion of inquisitive meaning. We then looked to natural language to
provide a first attempt at the inquisitive semantics of indefinites and interrogative pronouns. The
ideas in this paper remain under construction.
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