FREE CHOICE IN DEONTIC INQUISITIVE SEMANTICS (DIS)

Martin Aher

Osnabrueck University, Institute of Cognitive Science

09.03.2012 34th DGfS Meeting Workshop: Questions in Discourse

FREE CHOICE IN DIS

MARTIN AHER

PUZZLES

ROSS'S PARADO

Noss 3 FARADO

IGNORANCE READI

PREVIOUS ACCOUNTS

PRAGMATIC MECHANISM

REDUCTION

RADICAL INQUISITIV

SEMANTICS

LANGUAGE ENTAILMENT

ENTAILMEN DEONTICS

SOLUTIONS

FREE CHOIC

IGNORANCE READI

IGNORANCE READI

COUNTERARGUMEN COUNTERED

FREE CHOICE

AN EXAMPLE OF FREE CHOICE

(1) A country may establish a research center or a laboratory.

FREE CHOICE IN DIS

MARTIN AHER

FREE CHOICE

Ross's Paradox

AN EXAMPLE OF STANDARD DISJUNCTION

- (2) a. A country established a research center.
 - b. A country established a research center or a laboratory.

AN EXAMPLE OF ROSS'S PARADOX

- (3) a. A country may establish a research center.
 - b. A country may establish a research center or invade its neighbour.

FREE CHOICE IN DIS

MARTIN AHER

PUZZLES

ROSS'S PARADOX

Ross's parado:

IGNORANCE READIN

PREVIOUS ACCOUNTS

PRAGMATIC MECHANISM IMPLICATURES

REDUCTION

Radical Inquisitive Semantics

LANGUAGE ENTAILMENT

DEONTICS

DLUTIONS

FREE CHOIC

GNORANCE READIN

COUNTER ARGUME

NON-MONOTONICITY

FREE CHOICE IN DIS

MARTIN AHER

ROSS'S PARADOX

CARIANI [2011]

The problem is inheritance:

$$p \models p \lor q$$

 $\Diamond p \nvDash \Diamond (p \lor q)$

Proposed solution: non-monotonicity

NEGATION

AN EXAMPLE OF NEGATED PERMISSION

(4) A country may not establish a research center or a laboratory.

FREE CHOICE IN DIS

MARTIN AHER

NEGATION

IGNORANCE READING

AN EXAMPLE OF THE IGNORANCE READING

(5) A country may establish a research center or a laboratory, but I do not know which.

FREE CHOICE IN DIS

MARTIN AHER

Puzzles

Ross's paradox

IGNORANCE READING

PREVIOUS ACCOUNTS

PRAGMATIC MECHANISM IMPLICATURES

RADICAL INOUISITIVE

SEMANTIC LANGUAGE

ENTAILMEN

OLUTIONS

FREE CHOICE

NORANCE READING

COUNTERARGUMEN

STRENGTHENING THE ANTECEDENT ANDERSON'S COUNTERARGUMENT

SUMMARY OF THE DATA

SUMMARY OF THE DATA

- Free choice
- Negation
- Ignorance reading
- ► Ross's paradox

FREE CHOICE IN DIS

MARTIN AHER

PUZZI

ROSS'S PARADOX

NEGATION

IGNORANCE READING

PREVIOUS

PRAGMATIC MECHANISM

REDUCTION

Radical Inquisitive

SEMANTIC Language

ENTAILMENT

DEONTI

DLUTIONS

FREE CHOIC

NORANCE READING

Ross's paradox

Counterargumen: Countered

PRAGMATIC MECHANISM

ZIMMERMANN [2000]

Reinterpret deontic disjunction as a conjunction

DOES NOT CORRECTLY PREDICT NEGATION

FREE CHOICE IN DIS

MARTIN AHER

PRAGMATIC MECHANISM

IMPLICATURES

ECKARDT [2007]

Implicature-based account

- 1. Informed speaker uses disjunction: $\Diamond(\varphi \lor \psi)$.
- 2. Either disjunct would be more economical.
- 3. Infer that permissions are best described by disjunction because either disjunct would be false.
- 4. Free choice effect: There must be some worlds where $\Diamond \phi \wedge \overline{\Diamond \psi}$ and others where $\overline{\Diamond \phi} \wedge \Diamond \psi$

MARTIN AHER

IMPLICATIONS

PROBLEMS WITH IMPLICATURE-BASED ACCOUNTS

WHAT IS BEING SAID AND WHAT IS BEING IMPLICATED?

- (6) X is meeting a woman this evening.
- (7) A country may establish a research center or a laboratory.

CANCELLATION

- (8) X is meeting a woman this evening but it's only his mother.
- (9) A country may establish a research center or a laboratory, although in fact a country may not establish a laboratory.

FREE CHOICE IN DIS

MARTIN AHER

PUZZLI

Ross's paradox

IGNORANCE READING

REVIOUS CCOUNTS

PRAGMATIC MECHANISM

IMPLICATURES

Radical Inquisitive

SEMANTICS Language

ENTAILMENT DEONTICS

SOLUTIONS

PROHIBITION

IGNORANCE READING

COUNTERED

PROBLEMS WITH IMPLICATURE-BASED ACCOUNTS

WHAT IS BEING SAID AND WHAT IS BEING IMPLICATED?

- (6) X is meeting a woman this evening.
- (7) A country may establish a research center or a laboratory.

CANCELLATION

- (8) X is meeting a woman this evening but it's only his mother.
- (9) A country may establish a research center or a laboratory, although in fact a country may not establish a laboratory.

FREE CHOICE IN DIS

MARTIN AHER

PUZZLES

Ross's paradox

NEGATION

PREVIOUS

PRAGMATIC MECHANISM IMPLICATURES

Radical Inquisitive

INQUISITIVE SEMANTICS LANGUAGE

ENTAILMENT DEONTICS

SOLUTIONS

PROHIBITION

IGNORANCE READING

COUNTERARGUMENT COUNTERED

STRENGTHENING THE ANTECEDENT ANDERSON'S COUNTERARGUMENT

CANCELLATIONS EXPLORED FURTHER

Вотн

(10) A country may establish a research center or a laboratory, but not both.

FREE CHOICE IN DIS

MARTIN AHER

PUZZLES

Ross's paradox

IGNORANCE READING

Previous accounts

PRAGMATIC MECHANISM

IMPLICATURES
REDUCTION

RADICAL INQUISITIVE SEMANTICS

LANGUAGE ENTAILMENT

ENTAILMENT

OLUTIONS

FREE CHOICE
PROHIBITION
IGNORANCE READING

Counterargument

REDUCTION

EDUCTION DIS MARTIN AHER

BARKER [2010]

ISSUES

- 1. Different violations and permissions
- 2. Negation: $\overline{\Diamond \varphi} \vee \overline{\Diamond \psi}$

FREE CHOICE IN

EDEE CHOICE

Ross's paradox

NEGATION

IGNORANCE READING

PREVIOUS ACCOUNTS

AGMATIC MECHANISM

IMPLICATURES
REDUCTION

RADICAL Inquisitivi Semantics

LANGUAGE

ENTAILMENT

OLUTIONS

FREE CHOIC

GNORANCE READIN

Ross's paradox

Counterargumen: Countered

STRENGTHENING THE
ANTECEDENT
ANDERSON'S
COUNTED A RGUMENT

ATOMS AND NEGATION

ATOMS

$$\sigma \models^+ p \text{ iff } \forall w \in \sigma : w(p) = 1$$

 $\sigma \models^- p \text{ iff } \forall w \in \sigma : w(p) = 0$

NEGATION

$$\sigma \models^+ \overline{\varphi} \text{ iff } \sigma \models^- \varphi$$
 $\sigma \models^- \overline{\varphi} \text{ iff } \sigma \models^+ \varphi$

FIGURE 1: p

FREE CHOICE IN DIS

MARTIN AHER

PUZZI

ROSS'S PARADOX

NEGATION

PREVIOUS ACCOUNTS

PRAGMATIC MECHANISM IMPLICATURES

RADICAL INQUISITIVE

SEMANTICS Language

ENTAILMENT

SOLUTIONS

PROHIBITION

IGNORANCE READING

COUNTERED

Informativeness and inquisitiveness

Informative and inquisitive

 φ is informative iff $\bigcup [\varphi]^+ \neq W$. φ is inquisitive iff $\bigcup [\varphi]^+ \notin [\varphi]^+$.

ASSERTIONS, QUESTIONS, HYBRIDS AND RADICAL **ASSERTIONS**

- $\triangleright \varphi$ is an assertion iff φ is not inquisitive.
- $\triangleright \varphi$ is a question iff φ is not informative.
- $\triangleright \varphi$ is a hybrid iff φ is inquisitive and informative.
- $\triangleright \varphi$ is a radical assertion iff both φ and $\overline{\varphi}$ are not inquisitive.

FREE CHOICE IN DIS

MARTIN AHER

LANGUAGE

DISJUNCTION

DISJUNCTION

$$\sigma \models^+ \varphi \lor \psi \text{ iff } \sigma \models^+ \varphi \text{ or } \sigma \models^+ \psi$$

 $\sigma \models^- \varphi \lor \psi \text{ iff } \sigma \models^- \varphi \text{ and } \sigma \models^- \psi$

FIGURE 2: $p \lor q$

FREE CHOICE IN DIS

MARTIN AHER

PUZZL

POSS'S BARADOV

NEGATION

IGNORANCE READING

PREVIOUS ACCOUNTS

RAGMATIC MECHANISM

IMPLICATURES
REDUCTION

RADICAL INQUISITIVE SEMANTICS

SEMANTICS LANGUAGE

ENTAILMENT

LUTIONS

SOLUTIONS

FREE CHOICE

I KOHIBITION IGNORANCE READING

ROSS S PARADOX

COUNTERARGUMEN COUNTERED

ANTECEDENT

ANDERSON'S

CONDITIONALS

CONDITIONALS

$$\begin{array}{l} \sigma \models^+ \phi \rightarrow \psi \text{ iff } \forall \tau \subseteq \sigma. (\ \tau \models^+ \phi \text{ implies } \tau \models^+ \psi) \\ \sigma \models^- \phi \rightarrow \psi \text{ iff } \exists \tau. (\tau \models^+ \phi \text{ and } \forall \tau' \supseteq \tau. (\tau' \models^+ \phi \text{ implies } \sigma \cap \tau' \models^- \psi)) \end{array}$$

FIGURE 3: $p \rightarrow q$

FREE CHOICE IN DIS

MARTIN AHER

CONDITIONALS CONTINUED

FREE CHOICE IN DIS

MARTIN AHER

FALSE TAUTOLOGY RECTIFIED

$$(p \rightarrow q) \lor (q \rightarrow p)$$

FIGURE 4: $p \rightarrow q$

FIGURE 5: $q \rightarrow p$

CONDITIONALS CONTINUED

CONDITIONALS

$$\begin{array}{l} \sigma \models^+ \phi \rightarrow \psi \text{ iff } \forall \tau \subseteq \sigma. (\ \tau \models^+ \phi \text{ implies } \tau \models^+ \psi) \\ \sigma \models^- \phi \rightarrow \psi \text{ iff } \exists \tau. (\tau \models^+ \phi \text{ and } \forall \tau' \supseteq \tau. (\tau' \models^+ \phi \text{ implies } \\ \sigma \cap \tau' \models^- \psi)) \end{array}$$

FIGURE 6: $p \lor q \rightarrow r$

FREE CHOICE IN DIS

MARTIN AHER

PUZZLES

OSS'S PARADOX

IGNORANCE READING

PREVIOUS ACCOUNTS

PRAGMATIC MECHANISM IMPLICATURES

Radical Inquisitive Semantics

LANGUAGE ENTAILMENT

DEONTICS

SOLUTIONS

FREE CHOICE

IGNORANCE READI

COUNTERARGUMEN

CONDITIONALS CONTINUED

CONDITIONALS

$$\begin{array}{l} \sigma \models^+ \phi \rightarrow \psi \text{ iff } \forall \tau \subseteq \sigma. (\ \tau \models^+ \phi \text{ implies } \tau \models^+ \psi) \\ \sigma \models^- \phi \rightarrow \psi \text{ iff } \exists \tau. (\tau \models^+ \phi \text{ and } \forall \tau' \supseteq \tau. (\tau' \models^+ \phi \text{ implies } \\ \sigma \cap \tau' \models^- \psi)) \end{array}$$

FIGURE 7: $[p \lor q \rightarrow r]^-$

FREE CHOICE IN DIS

MARTIN AHER

PUZZLES

ROSS'S PARADOX

IGNORANCE READING

PREVIOUS ACCOUNTS

PRAGMATIC MECHANISM IMPLICATURES

RADICAL NQUISITIVE SEMANTICS

LANGUAGE ENTAILMENT

DEUNTICS

FREE CHOIC

IGNORANCE READIN

COUNTERARGUMEN COUNTERED

CONJUNCTION IN INQUISITIVE SEMANTICS

FIGURE 8: $\overline{p \lor q}$

FIGURE 9: $\overline{p \wedge q}$

FIGURE 10: $\overline{p} \wedge \overline{q}$

FIGURE 11: $\overline{p} \vee \overline{q}$

FREE CHOICE IN DIS

MARTIN AHER

Puzzles

Ross's paradox

NEGATION

PREVIOUS ACCOUNTS

PRAGMATIC MECHANISM

RADICAL

INQUISITIVE SEMANTICS

LANGUAGE ENTAILMENT

DEONTICS

OLUTIONS

FREE CHOICE

IGNORANCE READIN

COUNTERARGUMENT

CONJUNCTION IN DIS

CONJUNCTION

$$\sigma \models^+ \varphi \land \psi \text{ iff } \sigma \models^+ \varphi \text{ and } \sigma \models^+ \psi$$

 $\sigma \models^- \varphi \land \psi \text{ iff } \sigma \models^- \varphi \text{ or } \sigma \models^- \psi$

FIGURE 12: $p \land q$

FREE CHOICE IN DIS

MARTIN AHER

PUZZLE

REE CHOICE

Ross's paradox

IGNORANCE READING

PREVIOUS ACCOUNTS

RAGMATIC MECHANISM

IMPLICATURES REDUCTION

RADICAL INQUISITIVE SEMANTICS

LANGUAGE

ENTAILMENT

DLUTIONS

FREE CHOICE PROHIBITION

IGNORANCE READIN

COUNTERARGUMEN COUNTERED

ENTAILMENT

STANDARD INQUISITIVE ENTAILMENT

 $\varphi \models \psi \text{ iff } \forall \alpha \in \lfloor \varphi \rfloor : \exists \beta \in \lfloor \psi \rfloor : \alpha \subseteq \beta$

ENTAILMENT TEST [LEWIS AND LANGFORD 1932]

If φ entails ψ then it's impossible that $\varphi \wedge \overline{\psi}$.

FIGURE 13: $\overline{p} \lor q$

FIGURE 14: $p \rightarrow q$

FREE CHOICE IN

MARTIN AHER

PUZZLES

Ross's paradox

NEGATION

PREVIOUS

PRAGMATIC MECHANISM

RADICAL INQUISITIVE

LANGUAGE

ENTAILMENT

DLUTIONS

PROHIBITION

IGNORANCE READING

ROSS'S PARADOX

COUNTERARGUMENT COUNTERED

RADICAL ENTAILMENT

FREE CHOICE IN DIS

MARTIN AHER

STANDARDLY

If $\varphi \models \psi$ then $\overline{\psi} \models \overline{\varphi}$.

RADICAL ENTAILMENT

 $\varphi \models \psi$ iff

 $\forall \sigma \text{ if } \sigma \models^+ \varphi \text{ then } \sigma \models^+ \psi \text{ and if } \sigma \models^- \psi \text{ then } \sigma \models^- \varphi.$

DEONTICS

VIOLATIONS

Atom v.

DEFINITION OF DEONTIC "MAY"

$$\sigma \models^+ \Diamond \varphi$$
 iff $orall au \subseteq \sigma$.($au \models^+ \varphi$ implies $au \models^- v$ $\sigma \models^- \Diamond \varphi$ iff $orall au \subseteq \sigma$.($au \models^+ \varphi$ implies $au \models^+ v$

FIGURE 15: $\Diamond p$

FREE CHOICE IN DIS

MARTIN AHER

PUZZLI

FREE CHOICE ROSS'S PARADOX

NEGATION IGNORANGE BEADING

PREVIOUS

PRAGMATIC MECHANISM

REDUCTION

RADICAL INQUISITIVE SEMANTICS

LANGUAGE

ENTAILMENT

FREE CHOICE

GNORANCE READING

COUNTERARGUMEN COUNTERED

DEONTICS

VIOLATIONS

Atom v.

DEFINITION OF DEONTIC "MAY"

$$\sigma \models^+ \Diamond \varphi \text{ iff } \forall \tau \subseteq \sigma. (\tau \models^+ \varphi \text{ implies } \tau \models^- v)$$

$$\sigma \models^- \Diamond \varphi \text{ iff } \forall \tau \subseteq \sigma. (\tau \models^+ \varphi \text{ implies } \tau \models^+ v)$$

FIGURE 15: $\Diamond p$

FREE CHOICE IN DIS

MARTIN AHER

FREE CHOICE

DISJUNCTIVE PERMISSION

(11) A country may establish a research center or a laboratory.

FIGURE 16: $\Diamond(p \lor q)$

FREE CHOICE IN DIS

MARTIN AHER

PUZZLES

OSS'S PARADOX

NEGATION

IGNORANCE READING

PREVIOUS ACCOUNTS

PRAGMATIC MECHANISM IMPLICATURES

RADICAL INQUISITIVE

LANGUAGE

ENTAILMENT DEONTICS

SOLUTIONS

FREE CHOICE

PROHIBITION IGNORANCE READI

Counterargumen

FREE CHOICE CONTINUED

FIGURE 17: $[\lozenge(p \lor q)]^+$

FREE CHOICE IN

MARTIN AHER

PUZZLES

ROSS'S PARADOX

NEGATION IGNORANCE READIN

REVIOUS CCOUNTS

PRAGMATIC MECHANISM

IMPLICATURES

PERMATION

RADICAL INQUISITIVE SEMANTICS

LANGUAGE ENTAILMENT

DEONTICS

LUTIONS

FREE CHOICE PROHIBITION

NORANCE READING

COUNTERARGUMENT

STRENGTHENING THE
ANTECEDENT
ANDERSON'S

FIGURE 18: $[\lozenge p \land \lozenge q]^+$

NEGATION

NEGATION

(12) A country may not establish a research center or a laboratory.

FIGURE 20: $[\lozenge p \land \lozenge q]^-$

FREE CHOICE IN DIS

MARTIN AHER

PUZZLES

ROSS'S PARADOX NEGATION

PREVIOUS

PRAGMATIC MECHANISM IMPLICATURES

Radical nquisitive Semantics

LANGUAGE ENTAILMENT

SOLUTIONS

FREE CHOICE

PROHIBITION

IGNORANCE READING

Counterargumen: Countered

IGNORANCE READING

DISJUNCTION SCOPING OVER "MAY"

(13) A country may establish a research center or a laboratory but I don't know which.

FIGURE 21: $[\lozenge p \lor \lozenge q]^+$

FREE CHOICE IN DIS

MARTIN AHER

PUZZLES

FREE CHOICE ROSS'S PARADOX

NEGATION

IGNORANCE READING

PREVIOUS ACCOUNTS

PRAGMATIC MECHANISM IMPLICATURES

RADICAL INQUISITIVE

SEMANTIC Language

ENTAILMENT DEONTICS

SOLUTION

FREE CHOI

GNORANCE READIN

COUNTERARGUMEN COUNTERED

ROSS'S PARADOX

ROSS'S PARADOX

- (14)A country may establish a research center.
 - A country may establish a research center or invade its neighbour.

FIGURE 22: $[\lozenge p]^+$

FIGURE 23: $[\lozenge(p \lor q)]^+$

FREE CHOICE IN DIS

MARTIN AHER

ROSS'S PARADOX

STRENGTHENING THE ANTECEDENT

STRENGTHENING THE ANTECEDENT

(15) a. You may walk a dog.

b. You may walk a dog and kill the president.

FREE CHOICE IN DIS

MARTIN AHER

PUZZLES

Ross's parado

NEGATION IGNORANCE READIN

PREVIOUS ACCOUNTS

PRAGMATIC MECHANISM IMPLICATURES

IMPLICATURES
REDUCTION

RADICAL INQUISITIVE SEMANTICS

SEMANTIC: Language

ENTAILMENT

SOLUTIONS

FREE CHOICE PROHIBITION

NORANCE READING

COUNTERARGUMENT

STRENGTHENING THE ANTECEDENT

FIGURE 26: $[\lozenge(p \land q)]^+$

FIGURE 27: $[\lozenge(p \land q)]^-$

FREE CHOICE IN DIS

MARTIN AHER

Puzzles

ROSS'S PARADOX NEGATION

REVIOUS

PRAGMATIC MECHANISM IMPLICATURES

RADICAL NQUISITIVE SEMANTICS

LANGUAGE ENTAILMENT

OLUTIONS

FREE CHOICE
PROHIBITION
IGNORANCE READING

Counterargument Countered

COUNTERARGUMENT COUNTERED

ANDERSON [1967]

- 1. $\Box p := \overline{p} \rightarrow v$ 2. p
- 3. <u>p</u>
- 4. $\overline{\overline{p}} \lor v$

- 5. $\overline{p} \rightarrow v$
- 6. $p \rightarrow \Box p$

FIGURE 28: $[\overline{\overline{p}} \lor v]^-$

FIGURE 29: $[\overline{p} \rightarrow v]^-$

FREE CHOICE IN DIS

MARTIN AHER

Puzzles

ROSS'S PARADOX
NEGATION

Previous

PRAGMATIC MECHANISM IMPLICATURES

RADICAL NQUISITIVE SEMANTICS

LANGUAGE ENTAILMENT

SOLUTIONS

FREE CHOICE
PROHIBITION
IGNORANCE READING

ROSS'S PARADOX

COUNTERARGUMENT COUNTERED

STRENGTHENING THE
ANTECEDENT
ANDERSON'S
COUNTERARGUMENT

DEONTICS

VIOLATIONS

Atom v.

DEFINITION OF DEONTIC "MAY"

$$\sigma \models^+ \Diamond \varphi$$
 iff $orall au \subseteq \sigma$.($au \models^+ \varphi$ implies $au \models^- v$ $\sigma \models^- \Diamond \varphi$ iff $orall au \subseteq \sigma$.($au \models^+ \varphi$ implies $au \models^+ v$

FIGURE 30: *♦p*

FREE CHOICE IN DIS

MARTIN AHER

PUZZLI

FREE CHOICE ROSS'S PARADOX

NEGATION

IGNORANCE READIN

PREVIOUS

PRAGMATIC MECHANISM

REDUCTION

RADICAL INQUISITIVE

SEMANTICS Language

ENTAILMENT

FREE CHOICE

GNORANCE READIN

COUNTERARGUMEN COUNTERED

STRENGTHENING THE ANTECEDENT

ANDERSON'S COUNTERARGUMENT

DEONTICS

VIOLATIONS

Atom v.

DEFINITION OF DEONTIC "MAY"

$$\sigma \models^+ \Diamond \varphi \text{ iff } \forall \tau \subseteq \sigma. (\tau \models^+ \varphi \text{ implies } \tau \models^- v)$$

$$\sigma \models^- \Diamond \varphi \text{ iff } \forall \tau \subseteq \sigma. (\tau \models^+ \varphi \text{ implies } \tau \models^+ v)$$

FIGURE 30: $\Diamond p$

FREE CHOICE IN DIS

MARTIN AHER

PUZZL

ROSS'S PARADOX

NEGATION

IGNORANCE READI

ACCOUNTS

PRAGMATIC MECHANISM

REDUCTION

RADICAL INQUISITIVE

SEMANTIC: Language

ENTAILMENT DEONTICS

.

SOLUTIONS
FREE CHOICE

GNORANCE **R**EADIN

GNORANCE READIN

COUNTERARGUMEN COUNTERED

STRENGTHENING THE ANTECEDENT ANDERSON'S COUNTERARGUMENT