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Mission statement

Main aims of inquisitive semantics

• Develop a notion of meaning that captures both informative
and inquisitive content in order to provide a logical foundation
for the analysis of discourse that is aimed at the exchange of
information.

• A sentence is taken to express a proposal to update the
common ground of a conversation in one or more ways.

• If a sentence proposes two or more alternative updates it is
inquisitive, it requests a response that establishes one of the
alternative updates.

• The semantics is intended to give rise to a logical pragmatical
notion of compliant responsehood.



Mission statement

Main aims of this paper

• We address a foundational issue for an inquisitive semantics
for a language of first-order logic.

• The notion of compliant responsehood that our inquisitive
semantics for a language of propositional logic gives rise to
does not fit its most straightforward lift to the first order case.

• This is illustrated by Ciardelli’s infamous boundedness
sentences, which are a symptom of the disease.

• We present an inquisitive witness semantics that takes care of
the symptoms in that it can deal with compliant responses to
the boundedness sentences.

• However, there still remain open questions as to whether the
new semantics is also a cure for the disease as such.



Overview
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1. Propositional inquisitive semantics



Propositional inquisitive semantics

Language of propositional logic

• Let P be a finite set of proposition letters. We denote by LP
the set of formulas built up from letters in P and ⊥ using the
binary connectives ∧,∨ and→. We will refer to LP as the
propositional language based on P.

Abbreviations

• ¬ϕ for ϕ→ ⊥

• !ϕ for ¬¬ϕ (non-inquisitive projection)

• ?ϕ for ϕ ∨ ¬ϕ (non-informative projection)



Worlds and states

Definition (Worlds)

• A P-world is a function from P to {0, 1}.

• We denote byWP the set of all P-worlds.

Definition (States)

• A P-state is a set of P-worlds.

• We denote by SP the set of all P-states.

• We will usually drop reference to P and simply talk about
worlds and states.

• We also take the common ground to be a state.



Propositions as proposals

Meaning and support

• We look upon the meaning of a sentence ϕ, the proposition
expressed by ϕ, as a proposal to update the common ground
in such a way that the new common ground supports ϕ.

• In the semantics we recursively specify the notion of when a
state s ∈ SP supports a sentence ϕ ∈ LP, denoted by s |= ϕ.



Support

Definition (Support)
Let s ∈ SP be a P-state and ϕ ∈ LP.

1. s |= p iff ∀w ∈ s : w(p) = 1 for p ∈ P

2. s |= ⊥ iff s = ∅

3. s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

4. s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ

5. s |= ϕ→ ψ iff ∀t ⊆ s : if t |= ϕ then t |= ψ

Note: the absurd state ∅ supports any formula ϕ.

Definition (Entailment, and equivalence)

1. ϕ |= ψ iff for all s: if s |= ϕ, then s |= ψ

2. ϕ ≡ ψ iff ϕ |= ψ and ψ |= ϕ



Some facts

Fact (Persistence)

• If s |= ϕ then for every t ⊆ s: t |= ϕ

Fact (Singleton states behave classically)

• {w} |= ϕ ⇐⇒ w |= ϕ in classical propositional logic

Fact (Support for negation and the projection operators)

1. s |= ¬ϕ iff ∀w ∈ s : {w} 6|= ϕ

2. s |= !ϕ iff ∀w ∈ s : {w} |= ϕ

3. s |= ?ϕ iff s |= ϕ or s |= ¬ϕ



Propositions, truth sets, and alternatives

Definition (Propositions and truth sets)

1. The proposition expressed by ϕ, [ϕ] B {s ∈ S | s |= ϕ}.

2. The truth set of ϕ, |ϕ| B {w ∈ W | {w} |= ϕ}.

Definition (Alternatives)

1. Every maximal element of [ϕ] is called an alternative for ϕ.

2. The alternative set of ϕ, [[ϕ]], is the set of alternatives for ϕ.



Propositions and alternatives

The alternative set of a sentence completely determines the
proposition that is expressed by that sentence, and vice versa.

Fact (Propositions and alternatives)

s ∈ [ϕ] ⇐⇒ s is contained in some α ∈ [[ϕ]]

Thus, an utterance of ϕ proposes to update the common ground in
such a way that the new common ground is contained in one of the
alternatives for ϕ.



Informative content

• Worlds that are not contained in any state supporting ϕ will
not survive any of the updates proposed by ϕ.

• In other words, if any of the updates proposed by ϕ is
executed, all worlds that are not contained in

⋃
[ϕ] will be

eliminated.

Definition (Informative content)

• info(ϕ) B
⋃

[ϕ]

Fact (Informative content is classical)

• For any formula ϕ: info(ϕ) = |ϕ|



Informativeness and inquisitiveness

Informativeness and inquisitiveness

• A sentence ϕ is informative in a state s iff it proposes to
eliminate at least one world in s, i.e., iff s ∩ info(ϕ) , s.

• A sentence ϕ is inquisitive in s iff in order to reach a state
s′ ⊆ s that supports ϕ it is not enough to incorporate the
informative content of ϕ itself into s, i.e., s ∩ info(ϕ) 6|= ϕ.

• This means that ϕ requests a response from other
participants that provides additional information.



Informativeness and inquisitiveness

Definition (Inquisitiveness and informativeness in a state)

• ϕ is informative in s iff s ∩ info(ϕ) , s

• ϕ is inquisitive in s iff s ∩ info(ϕ) 6|= ϕ

Definition (Absolute inquisitiveness and informativeness)

• ϕ is informative iff it is informative inW, i.e., iff info(ϕ) ,W

• ϕ is inquisitive iff it is inquisitive inW, i.e., iff info(ϕ) 6|= ϕ

Fact (Alternative characterization of inquisitiveness)

• ϕ is inquisitive iff [[ϕ]] contains at least two alternatives.



Three semantic categories

Definition (Questions, assertions, and hybrids)

• ϕ is a question iff it is not informative;

• ϕ is an assertion iff it is not inquisitive;

• ϕ is a hybrid iff it is both informative and inquisitive.

Fact (Characterizing questions and assertions)

• ϕ is an assertion iff ϕ ≡ !ϕ.

• ϕ is an question iff ϕ ≡ ?ϕ.



Two possibilities for disjunction

11 10

01 00

(a) p

11 10

01 00

(b) ?p

11 10

01 00

(c) p ∨ q

11 10

01 00

(d) !(p ∨ q)

(a) p is informative but not inquisitive⇒ an assertion.

(b) ?p is inquisitive but not informative⇒ a question.

(c) p ∨ q is both informative and inquisitive⇒ a hybrid.

(d) !(p ∨ q) is informative but not inquisitive⇒ an assertion.



Compliance

• Inquisitive semantics is intended to give rise to
a logical notion of compliant responsehood.

• Here we only consider the most basic type of compliance.

Definition (Basic compliant responses)

• ψ is a basic compliant response to ϕ just in case

[[ψ]] = {α} for some α ∈ [[ϕ]]

• Recall: an alternative α for ϕ is a ⊆-maximal supporting state.

• A basic compliant response to an inquisitive sentence is a
minimally informative issue resolving assertion.

• Propositional inquisitive semantics deals with (basic)
compliance in a satisfactory way.



2. First order inquisitive semantics



Worlds based on a discourse model

Definition (Discourse models)
Let L be a first-order language with n-ary predicate symbols and
n-ary function symbols (individual constants are 0-ary function
symbols).

• A discourse-model D for L is a pair 〈D, I〉, where D is a
domain and I an interpretation of all function symbols in L.

Definition (D-worlds)
Let D = 〈D, I〉 be a discourse model.

• A world w based on D, or simply a D-world, is a model
〈DM , IM〉 such that DM = D and IM coincides with I as far as
the function symbols are concerned.

• The set of all D-worlds is denoted byWD.



States based on a discourse model

Definition (D-states)
Let D be a discourse model.

• A state based on a discourse model D or simply a D-state, is
a set of D-worlds.

Some properties of states

• A state is a set of first-order models for L, called worlds.

• All worlds in a state share the same domain and the individual
constants and function symbols are rigid designators in a
state.

• Since the discourse model does not assign an interpretation
to the predicate symbols in L, the worlds in a state may
assign different denotations to them.



Why discourse models are called like that

The shared discourse model assumption

• We assume that the information states of all participants in a
conversation are based on the same discourse model, and
(hence) the common ground of the conversation is too.

• The interpretation of all individual constants and function
symbols in the language is part of the common ground.

• The exchange of information in a conversation thus only
concerns the denotation of the predicate symbols.

• Of course this is an idealization that can (and must) eventually
be relaxed.



Note on the interpretation of terms

• The interpretation function I of a discourse model extends in a
natural way to an interpretation of all terms t ∈ L.

• If the free variables of t are x1, . . . , xn, then I(t) will be the
function Dn → D which maps a tuple (d1, . . . , dn) ∈ Dn to the
element d ∈ D denoted by the term t in the discourse model D
when xi is interpreted as di for all i = 1, . . . , n.

• Roughly, think of I(t) as λx1 . . . λxn.t , where x1, . . . , xn are the
free variables occurring in the term t , in that order.

• Note that if a term t is a variable x, then I(t) ' λx.x is the
identity function on D.

• We will make use of this notion of the interpretation of terms
in the witness semantics.



Basic first order support

Definition (First-order support)
Let s be a D-state, g an assignment, and ϕ a formula in L.

1. s |=g ϕ iff ∀M ∈ s : M |=g ϕ for atomic ϕ

2. s |=g ⊥ iff s = ∅

3. s |=g ϕ ∧ ψ iff s |=g ϕ and s |=g ψ

4. s |=g ϕ ∨ ψ iff s |=g ϕ or s |=g ψ

5. s |=g ϕ→ ψ iff ∀t ⊆ s : if t |=g ϕ then t |=g ψ

6. s |=g ∀x.ϕ iff s |=g[x/d] ϕ for all d ∈ D

7. s |=g ∃x.ϕ iff s |=g[x/d] ϕ for some d ∈ D



Examples quantifiers and inquisitiveness

• The existential quantifier inherits the inquisitive features of
disjunction.

• s |=g ∃x.P(x) iff there is some object d ∈ D such that d is in
the denotation of P in all worlds w ∈ s. The state has to
contain the information that some specific object d has the
property P.

• s |=g ?!∃x.P(x) iff either in all worlds w ∈ s de denotation of
P is non-empty, or in all worlds w ∈ s de denotation of P is
empty.

• s |=g ∀x.?P(x) iff in all w ∈ s the denotation of P is the same.



Basic first order semantics

Except for relativization to assignment functions

• The basic facts of persistence and classical behavior of
singleton states is preserved.

• The definitions of entailment and equivalence are preserved.

• The definitions of informative content, informativeness and
inquisitiveness are preserved.

• The definitions of assertion, question and hybrids are
preserved.

• The facts concerning the characterization of assertions and
questions are preserved.



3. Problems with the boundedness sentences



The maximality problem

• One feature of the propositional semantics system is not
preserved in the basic first order setting:

• The proposition expressed by a sentence is no longer fully
determined by the alternative set of that sentence.

• It is not always the case that every state supporting ϕ is
contained in a maximal state supporting ϕ.

• Ciardelli has shown there are first-order formulas that do not
have any maximal supporting states in the basic first-order
system.



A specific discourse model for a specific language

• Consider a language which has a unary predicate symbol P,
a binary function symbol +, and the set N of natural numbers
as its individual constants.

• Consider the discourse-model D = 〈D, I〉, where D = N, I
maps every n ∈ N to itself, and + is interpreted as addition.

• Let x ≤ y abbreviate ∃z(x + z = y).

• Let B(x) abbreviate ∀y(P(y)→ y ≤ x).

• For every n ∈ N, let B(n) abbreviate ∀y(P(y)→ y ≤ n).

• Intuitively, B(n) says that n is greater than or equal to any
number in P.

• In other words, B(n) says that n is an upper bound for P.



The boundedness formula

• A state s supports a formula B(n), for some n ∈ N, if and only
if B(n) is true in every world in s, that is, if and only if n is an
upper bound for P in every w in s.

• Now consider the formula ∃x.B(x), which intuitively says that
there is an upper bound for P.

• This formula, which Ciardelli refers to as the boundedness
formula, does not have any maximal supporting state.



The boundedness formula

B(0) B(1) B(2) B(3)
. . . . . .

|∃xB(x)|

The intended alternatives |B(n)| for the boundedness formula and its
truth set |∃xB(x)|, which is not itself an alternative.



The maximality problem

• Let s be an arbitrary state supporting ∃x.B(x).

• Then there must be a number n ∈ N such that s supports
B(n), i.e., B(n) must be true in all worlds in s.

• Now let w∗ be the world in which P denotes the singleton set
{n + 1}.

• Then w∗ cannot be in s, because it does not make B(n) true.

• Thus, the state s∗ which is obtained from s by adding w∗ to it
is a proper superset of s itself.

• However, s∗ clearly supports B(n + 1), and therefore also still
supports ∃x.B(x).

• This shows that any state supporting ∃x.B(x) can be
extended to a larger state which still supports ∃x.B(x).

• Therefore no state supporting ∃x.B(x) can be maximal.



The compliance issue

• This example shows that our notion of basic compliant
responses, which makes crucial reference to maximal
supporting states, does not always yield satisfactory results in
the first-order setting.

• At first sight, it is tempting to conclude from this that there
must be something wrong with the given notion of basic
compliant responses.

• However, the problem is deeper than that.

• Ciardelli’s next example shows that the very notion of
meaning assumed in basic inquisitive semantics is not
fine-grained enough to serve as a basis for a suitable notion
of compliance in the first-order setting.



The boundedness problem

• Consider the following variant of the boundedness formula:

∃x(x , 0 ∧ B(x))

• This formula says that there is a positive upper bound for P.

• Intuitively, it differs from the ordinary boundedness formula in
that B(0) is not a compliant response.

• However, in terms of support, ∃x(x , 0 ∧ B(x)) and ∃x.B(x)
are equivalent.

• The current notion of support is not fine-grained enough to
capture the fact that these formulas intuitively do not have the
same range of compliant responses.



Intermediate conclusions

Under the support semantics presented above:

∃x(x , 0 ∧ B(x)) ≡ ∃x.B(x)

• This does not imply that the semantics does not give an
appropriate account of the logical-semantical notions of
informativeness and inquisitiveness in the first order setting.

Purely in terms of these notions the equivalence should hold!

• It does imply that the semantics is not fine-grained enough to
provide a general account of compliance.

In terms of compliance the equivalence should not hold.



4. Inquisitive witness semantics



Introducing witnesses

• In the basic semantics for a state to support ∃x.Px, there
should be a witness in the sense that: there is some object
such that in every world in the state, that object belongs to the
denotation of P.

• There can be very many such witnesses in a supporting state
(Cf. the boundedness sentences, where if there is one
witness in this sense, there are infinitely many).

• However, states as such only embody information, they are
not rich enough to represent that some specific object has
been introduced by the discourse as a witness.

• We will enrich states to allow for this.



Witnesses

• For a formula like ∃x.Px an object d ∈ D suffices as a witness.

• But when an existential is embedded under a universal, as in
∀x∃y.Rxy, this no longer suffices.

• Intuitively, support of ∀x.∃y.Rxy does not require that a
specific object d ∈ D is known to stand in the relation R with
all other objects in D.

• To avoid problems of this sort, we will take witnesses to be
functions from Dn to D, where n ≥ 0.

• Notice that some of these functions are 0-place functions into
D, which can be simply identified with objects in D.

• So witnesses can still be objects in D. But they can be other
things as well.



Witnesses and states

• We assume a fixed first-order language L and a fixed
discourse-model D = 〈D, I〉 for L.

Definition (Witnesses)

• For any n ∈ N, let D?
n be the set of functions δ : Dn → D.

• Then D? =
⋃

n≥0 D?
n is the set of all D-witnesses.

Definition (States with witnesses)

• A D-state is a pair 〈V ,∆〉, where V is a set of D-worlds and ∆
is a finite set of D-witnesses, which contains the identity
function id : D → D.

• The set of all D-states is denoted by SD.

• If s = 〈V ,∆〉 is a D-state, then: worlds(s) = V & witn(s) = ∆.



Extension

• In what follows, we will usually drop reference to D, and
simply refer to a D-state as a state.

• The set of states is partially ordered by the extension relation.

Definition (Extension)
Let s and t be two states. Then we say that s is an extension of t ,
s ≥ t , iff worlds(s) ⊆ worlds(t) and witn(t) ⊆ witn(s).

• Notice that there is a minimal state, namely top = (W, {id}),
of which any other state is an extension.



Witness feeds

Definition (Witness feeds)

• A witness feed ε is a finite set of elements of D.

The role of witness feeds

• The role of witness feeds will be similar to that of assignments:
they will be used to store certain information in evaluating
whether or not a certain state supports a certain sentence.

• In particular, they play a role in evaluating existentially
quantified sentences in the scope of one or more universal
quantifiers.



Definition (Witness support)
Let s be a D-state, g an assignment, ε a witness feed, and ϕ ∈ L.

1. s |=g,ε R(t1, . . . , tn) iff

(i) worlds(s) ⊆ |R(t1, . . . , tn)| and

(ii) I(ti) ∈ witn(s) for i = 1, . . . , n

2. s |=g,ε ⊥ iff worlds(s) = ∅

3. s |=g,ε ϕ ∧ ψ iff s |=g,ε ϕ and s |=g,ε ψ

4. s |=g,ε ϕ ∨ ψ iff s |=g,ε ϕ or s |=g,ε ψ

5. s |=g,ε ϕ→ ψ iff ∀t ≥ s : if t |=g,ε ϕ then t |=g,ε ψ

6. s |=g,ε ∀x.ϕ iff s |=g[x/d],ε∪{d} ϕ for all d ∈ D

7. s |=g,ε ∃x.ϕ iff s |=g[x/δ(e1,...,en)],ε ϕ for some

(i) δ ∈ witn(s) and

(ii) ei ∈ ε for i = 1, . . . , n



Atomic sentences

s |=g,ε R(t1, . . . , tn) iff

(i) worlds(s) ⊆ |R(t1, . . . , tn)| and

(ii) I(ti) ∈ witn(s) for i = 1, . . . , n

• Only the last part is special: for each term ti that forms an
argument of the predicate symbol R, the function I(ti) it
denotes must be available as a witness in witn(s).

• In case an argument ti is a variable x, I(ti) is the identity
function, which is always present in the witness set.

• In case an individual constant c is an argument of R, the
object it denotes must be available as a witness.

• In case f(x) is an argument of R, since I(f(x)) = I(f), it is this
1-place function that must be available as a witness.



Atomic sentences introduce new witnesses

• In line with our general view of propositions as proposals to
update the common ground:

In uttering an atomic sentence R(t1, . . . , tn), a speaker
proposes to add I(t1) . . . I(tn) to the witness set of the
common ground.

(next to proposing to eliminate worlds from the common
ground where the atomic sentence does not hold.)

• Thus, we can think of atomic sentences like R(t1, . . . , tn) as
introducing new witnesses.

• The reason for this is that we assume the participants in a
conversation to share the same discourse model, and hence
to share the rigid interpretation of all function symbols.



Implication

s |=g,ε ϕ→ ψ iff ∀t ≥ s : if t |=g,ε ϕ then t |=g,ε ψ

• It may be that all the extensions of s that support ϕ contain
certain witnesses that are not contained in witn(s) itself.

• This means that if ψ requires certain witnesses, as long as we
need to introduce them to support ϕ, it is not necessary for s
as such to already contain them for the implication to be
supported in s.

• Example: top |=g,ε P(a)→ ∃x.P(x).



Universal quantification

s |=g,ε ∀x.ϕ iff s |=g[x/d],ε∪{d} ϕ for all d ∈ D

• In determining whether a state s supports a formula ∀x.ϕ we
do not only set the current assignment g to g[x/d], but we
simultaneously augment the current witness feed ε with the
same object d.

• Then we check whether ϕ is supported by s relative to the
adapted assignment and the augmented witness feed.

• As we will see below, the augmented witness feed is put to
use when ϕ contains an existential quantifier.



Existential quantification

s |=g,ε ∃x.ϕ iff s |=g[x/δ(e1,...,en)],ε ϕ for some

(i) δ ∈ witn(s) and

(ii) ei ∈ ε for i = 1, . . . , n

• In checking whether s |=g,ε ∃x.ϕ holds, we have to check
whether s |=g[x/d],ε ϕ holds, where d is an object that we
obtain by applying some witness δ ∈ witn(s) to objects
e1, . . . , en in the witness feed.

• Thus, as desired, support of ∃x.Px now really requires the
presence of a witness which is known to have the property P.

• This means that in uttering ∃x.Px, a speaker requests a
response that introduces a suitable witness and then
establishes that this witness has the property P.



Existentials in the scope of universals

• In order to determine whether s |=g ∀x.∃y.Rxy, we have to
check whether s |=g[x/d],{d} ∃y.Rxy for all d ∈ D.

• We have to verify whether for every d ∈ D, there is a witness
f ∈ witn(s) such that s |=g[x/d][y/f(d,...,d)],{d} Rxy.

• The witness f used may be an element of the domain or a
function of arity n ≥ 1.

• It may also be the identity function, then objects d introduced
by the universal can serve as witnesses for the existential.

• Universal quantifiers add objects to the witness feed which
can serve as input for functional witnesses that may be
needed for existentials in its scope.

• In this way, the witness that is required for the embedded
existential in ∀x.∃y.Rxy may functionally depend on the value
that the current assignment assigns to x.



Three (of the many) states that support ∀x.∃y.Rxy

1. The witness feed is not used.

witn(s) = {id, I(a)}

〈d, I(a)〉 ∈ w(R) for all d ∈ D and all w ∈ worlds(s).

Basic compliant response ∀x.R(x, a) supported.

2. Identity function is applied to the object in the witness feed.

witn(s) = {id}

〈d, d〉 ∈ w(R) for all d ∈ D and all w ∈ worlds(s)

Basic compliant response ∀x.R(x, x) supported.

3. Additional function in witness set applied to object in feed.

witn(s) = {id, I(f)}

〈d, I(f)(d)〉 ∈ w(R) for all d ∈ D and all w ∈ worlds(s)

Basic compliant response ∀x.R(x, f(x)) supported.



Linguistic relevance

Natural language examples

(1) Everyone loves someone.

(2) Who does everyone love?

a. Everyone loves Mary.
b. Everyone loves himself.
c. Everyone loves his mother.
d. John loves Mary and everyone else loves Sue.

• When we translate (1) as ∀x.∃y.Rxy, then (a)-(c) correspond
to the three responses discussed above.

• And (d) can be accounted for along the same lines.

• This may take us to assume that at the logical level the
interrogative (2) is also associated with ∀x.∃y.Rxy



Some logical facts

Fact (Persistence)

• If s |=g,ε ϕ and t ≥ s, then t |=g,ε ϕ

Fact (Support for negation)

• s |=g,ε ¬ϕ iff for all w ∈ worlds(s): w 6|=g ϕ classically

• s |=g,ε !ϕ iff for all w ∈ worlds(s): w |=g ϕ classically



Propositions and alternatives
Definition (Propositions)

1. [ϕ]g B {s ∈ SD | s |=g ϕ}

Definition (Alternatives)
Let ϕ be a formula and g an assignment.

1. Every ≥-minimal element of [ϕ]g is called an alternative for ϕ
relative to g.

2. The alternative set of ϕ relative to g, [[ϕ]]g, is the set of
alternatives for ϕ relative to g.

Two questions:

• Does [ϕ]g always have at least one ≥-minimal element?

• Does [[ϕ]] always give rise to an appropriate characterization
of basic compliant responses?



Entailment and equivalence

Convention
We write s |=g ϕ for s |=g,ε ϕ, when ε = ∅.

Definition (Entailment and equivalence)

• ϕ |= ψ iff for all s and g: if s |=g ϕ, then s |=g ψ

• ϕ ≡ ψ iff ϕ |= ψ and ψ |= ϕ

• The entailment relation also concerns the availability of
witnesses. That means for example that:

∀x.Px 6|= P(a)

• We introduce a notion of factual entailment in terms of factual
support under which, e.g., universal instantiation does hold.



Factive support and entailment

Definition (Factive (?) support, entailment, and equivalence)

• V |=g
? ϕ iff s |=g ϕ for some state s with worlds(s) = V

• ϕ |=? ψ iff for all V , g : if V |=g
? ϕ, then V |=g

? ψ

• ϕ ≡? ψ iff ϕ |=? ψ and ψ |=? ϕ

The following proposition shows that as soon as we disregard
witness issues, the witness semantics coincides with the basic
semantics.

Fact (Factive support and basic support)

V |=g
? ϕ ⇔ V |=g ϕ in basic inquisitive semantics



Witness insensitivity

Definition (Witness insensitivity)

• ϕ is witness insensitive iff for all s, g :

if worlds(s) |=g
? ϕ then s |=g ϕ

Fact (Partial characterization of witness insensitivity)

1. For atomic ϕ, including ⊥, ϕ is witness insensitive iff there is
no occurrence of a constant or a function symbol in ϕ;

2. If ϕ and ψ are witness insensitive, then ϕ ∨ ψ and ϕ ∧ ψ are.

3. If ψ is witness insensitive, then ϕ→ ψ is witness insensitive;

4. ∃x.ϕ is not witness insensitive for any ϕ;

5. ∀x.ϕ is witness insensitive iff ϕ is witness insensitive.



Informative content is classical

Definition (Informative content)

• infog(ϕ) =
⋃
{worlds(s) | s ∈ [ϕ]g}.

Fact (Informative content is classical)

• For every ϕ and every g: infog(ϕ) = |ϕ|g



Informativeness and inquisitiveness

Definition (Inquisitiveness and informativeness in a state)

• ϕ is informative in s w.r.t. g iff worlds(s)∩ infog(ϕ) , worlds(s)

• ϕ is inquisitive in s w.r.t. g iff worlds(s) ∩ infog(ϕ) 6|=g
? ϕ

Definition (Absolute inquisitiveness and informativeness)

• ϕ is informative iff for some g : infog(ϕ) ,W

• ϕ is inquisitive iff for some g : infog(ϕ) 6|=g
? ϕ



Informativeness and inquisitiveness

• All notions in the basic system that are defined in terms of
informativeness and inquisitiveness, such as assertion
question and hybrid, remain precisely the same.

• But among assertions and questions there is a further
distinction now between witness sensitive and witness
insensitive ones.

• All formulas in (1)-(4) are factively equivalent, (1) is fully
equivalent with (2), and (3) is fully equivalent with (4), but,
e.g., (1) and (3) are not fully equivalent.

(3) P(a)

(4) ∃x(x = a ∧ P(x))

(5) ∀x(x = a → P(x))

(6) !P(a)



The boundedness problem solved

Fact (The boundedness formulas)
The boundedness formula and the positive boundedness formula
are not equivalent in the witness semantics

Proof
Consider a state s such that:

• worlds(s) = {w}, where w(P) = {0}

• witn(s) = {id, 0}

State s factively supports both ∃x.B(x) and ∃x.(x > 0 ∧ B(x)).
However, while the boundedness formula is supported in s tout
court, s |= ∃x.B(x), the positive boundedness formula is not,
s 6|= ∃x.(x > 0 ∧ B(x)). So, the boundedness sentence and the
positive boundedness sentence are not equivalent in the witness
semantics (although they are factively equivalent). �



Compliance and the boundedness sentences

• If we copy the definition form the basic system, the basic
compliant responses to a sentence ϕ are characterized as
those responses that provide a minimal amount of information
and witnesses to establish a state that supports ϕ.

Definition (Basic compliant responses)

• ψ is a basic compliant response to ϕ just in case:

[[ψ]] = {α} for some α ∈ [[ϕ]]

Fact (Compliant responses to the boundedness formulas)

• For any n ≥ 0, B(n) is a basic compliant response to ∃x.Bx

• For any n > 0, B(n) is a basic compliant response to
∃x.(x , 0 ∧ Bx), and B(0) is not.



The compliance problem is not solved in general

• Let BP(x) = ∀y(P(y)→ y ≤ x)

• Let BQ(x) = ∀y(Q(y)→ y ≤ x)

• So, ∃x.BP(x) and ∃x.BQ(x) are two distinct boundedness
formulas.

• Now consider ∃x.BP(x) ∧ ∃x.BQ(x).

• since BP(3) is a compliant response to ∃x.BP(x)
and BQ(4) is a compliant response to ∃x.BQ(x), we would
expect BP(3) ∧ BQ(4) to come out as a compliant response to
the conjunction.

• However, BP(3) ∧ BQ(4) strictly entails BP(4) ∧ BQ(4) which
is issue-resolving, so that BP(3) ∧ BQ(4) does not count as a
compliant response.

• Intuitively, this is of course wrong: in fact BP(3) ∧ BQ(4) is
preferable as a response over BP(4) ∧ BQ(4).



5. Conclusions and an open question



Conclusions

• Our goal was to provide a notion of meaning that embodies
the informative and inquisitive content of a sentence, and
determines the range of compliant responses to a sentence.

• Basic compliant responses are assertions that resolve a given
issue without providing more information than necessary.

• Inquisitive semantics intends to provide a semantic framework
in which this notion can be formalized in a satisfactory way.

• In the propositional case the basic compliant responses to a
sentence correspond to the alternatives for that sentence.

• This simple picture breaks down in the basic first order
semantics, its notion of meaning is in need of refinement.

• Such a refinement is offered by the witness semantics.

• It allows us to distinguish sentences with the same informative
and inquisitive content but different compliant responses.



Open questions

• Does the witness semantics achieve the goal for which it was
designed?

• Does it generally make satisfactory predictions concerning
compliant responses to first-order formulas?

• We have seen that the notion of alternatives, defined as
≥-minimal supporting states, does not exhaustively
characterize basic compliant responses in all cases.

• It did so for the boundedness sentences as such, not for
conjunctions of them.

• Open questions: is there a different notion of compliant
responses, richer than the notion in terms of ≥-minimal
supporting states, that fits the witness semantics?

• Or, are we in need of a further refinement of the witness
semantics as such?



Thank you for your attention

The full paper van be found at our website
www.illc.uva.nl/inquisitive-semantics

http://www.illc.uva.nl/inquisitive-semantics

