

N. Gratzl D. Klein O. Roy

Introspection, Normality and Agglomeration

MCMP Munich

Universität Bamberg

Universität Bayreuth

1 Stalnaker

- Introspection and Normality
- **3** Normality and Agglomeration

Stalnaker

PI	$dash$ $egin{array}{c} eta & eta$
NI	$dash \neg \pmb{B} arphi o \pmb{K} \neg \pmb{B} arphi$
КВ	$\vdash {\it K} arphi ightarrow {\it B} arphi$
D	$\vdash {\it B} arphi ightarrow \langle {\it B} angle arphi$
SB	$dash m{B}arphi o m{B} K arphi$

If K is an S4 modality then B is KD45.

$$\vdash \mathbf{B}\varphi \leftrightarrow \langle \mathbf{K} \rangle \mathbf{K}\varphi$$

 $\vdash \langle \textit{K} \rangle \textit{K} \varphi \rightarrow \textit{K} \langle \textit{K} \rangle \varphi$

Stalnaker, R.,"On logics of knowledge and belief. *Philosophical studies*. 128 (2006): 169-199.

Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S., "The topology of belief, belief revision and defeasible knowledge". *Logic, Rationality, and Interaction*. Springer (2013): 27–40.

Özgün, A.. Topological Models for Beliefs and Belief Revision. Master's Thesis, ILLC, (2013).

Introspection

$$\neg K\varphi \rightarrow K\neg K\varphi$$

- Stalnaker rejects negative introspection as a plausible rational requirement for knowledge:
 - If evidence is misleading, I am not irrational if I'm uncertain or mistaken about what I don't know.

$$\mathbf{K} \varphi \rightarrow \mathbf{K} \mathbf{K} \varphi$$

- He "provisionally" accepts positive introspection.
- But the principle has been heavily challenged, for instance by Williamson

What happens to B if K is a KT.2 modality?

 $\mathbf{B}\varphi\leftrightarrow \langle \mathbf{K}\rangle \mathbf{K}\varphi$

 $\langle \mathbf{K} \rangle \mathbf{K} \varphi \to \mathbf{K} \langle \mathbf{K} \rangle \varphi$

Introspection and normality

 $B\varphi \wedge B\psi \leftrightarrow B(\varphi \wedge \psi)$

Non-normal beliefs

$$\frac{\vdash \varphi}{\vdash \mathbf{B}\varphi} \text{ (NEC)} \qquad \frac{\vdash \varphi \to \psi}{\vdash \mathbf{B}\varphi \to \mathbf{B}\psi} \text{ (REG)}$$

$$\vdash \mathbf{B}\varphi \rightarrow \langle \mathbf{B} \rangle \varphi$$
 (D)

Thm (NEC), (REG) and (D) are sound and complete for B.

MUD frames

A neighborhood frame $\langle W, n \rangle$ is a MUD frame iff

- M For all w, if $X \in n(w)$ and $X \subseteq Y$ then $Y \in n(w)$. (Monotonicity)
- U For all $w, W \in n(w)$. (contains the Unit)
- **D** If $X \in n(w)$ then for all $Y \in n(w)$, $X \cap Y \neq \emptyset$.

Thm (NEC), (REG) and (D) are sound and complete for the class of MUD frames.

Completeness through representation

$$\mathcal{M}$$
, $\mathbf{w} \vDash \varphi \Leftrightarrow \mathcal{N}_{\mathcal{M}}$, $\mathbf{w} \vDash \varphi$

What kind of belief is this?

Credence above 1/2?

 $B \varphi \operatorname{iff} p(\varphi) \geq t > 1/2$

$$\begin{array}{c} \vdash \varphi \\ \hline \vdash B\varphi \end{array} \text{(NEC)} \qquad \begin{array}{c} \vdash \varphi \to \psi \\ \hline \vdash B\varphi \to B\psi \end{array} \text{(REG)} \\ \\ \vdash B\varphi \to \langle B \rangle \varphi \text{(D)} \end{array}$$

Thm For every $\epsilon > 0$ there is a finite MUD frame and a state w such that some $X \in n(x)$ must receive $p(X) < \epsilon$.

Fix a natural number $n \in \mathbb{N}$, and let:

- **Possible worlds:** All w_{ij} with $i < j \le n$
- For each $k \leq n$ define the set T_k as

$$T_k = \{ w_{ij} | i = k \text{ or } j = k \}$$

The neighborhood N is defined as $N = \uparrow \{T_1, ..., T_n\}$.

To illustrate this with an example, for n = 4 we have

$$T_1 = \{w_{12}, w_{13}, w_{14}\} \qquad T_2 = \{w_{12}, w_{23}, w_{24}\}$$

$$T_3 = \{w_{13}, w_{23}, w_{34}\} \qquad T_4 = \{w_{14}, w_{24}, w_{34}\}$$

and finally $N = \{T_1, T_2, T_3, T_4\}$.

What kind of belief is this?

D in neighborhood models: pairwise agglomerativity

 $\mathbf{B}\varphi
ightarrow \langle \mathbf{B}
angle \varphi$

Plausible **consistency requirement** for **resource-bounded** agents.

Closure under conjunction:

$$B\varphi \wedge B\psi \to B(\varphi \wedge \psi)$$

Not a plausible requirement. Cluttering objection applies.

- Not so for pairwise agglomerativity.
- And violation threatens the truth aim.

Note: agents otherwise logically omniscient in this logic!

Strengthening agglomerativity

It is still plausible that the agent holds beliefs that are pairwise consistent, but for which no triple is consistent.

$$(\mathbf{B}\varphi_{1}\wedge \ldots \wedge \mathbf{B}\varphi_{n}) \rightarrow \langle \mathbf{B} \rangle (\varphi_{1}\wedge \ldots \wedge \varphi_{n}) \quad (\mathbf{n}\text{-}\mathsf{A}\mathsf{G}\mathsf{G})$$

- Still plausible for resource bounded agents.
- But nonetheless demanding when it comes to identifying violations and revising.

Unbounded agglomerativity

What about (*n*-AGG) for all *n*? Call that unbounded agglomerativity.

■ Let □φ be true at a state w in a neighborhood model if and only if

$$\bigcap_{X \in n(w)} X \subseteq ||\varphi||$$

where $||\varphi||$ is the extension of φ in that model.

Obs \Box is not definable in the present logic of belief.

BAGG logic

A BAGG frame is a MUD frame except that D is replaced by the following requirement.

$$\mathsf{AGG} \ \bigcap_{X \in n(w)} X \neq \emptyset$$

The new modality \Box (interpreted as in previous slide) is a normal modality.

 \blacksquare Unbounded agglomerativity requirement is D for $\Box :$ $\Box \varphi \to \Diamond \varphi$

BAGG Logic

$\begin{array}{ll} B\varphi \to \Box\varphi & & \text{Belief Consistency} \\ \Box\varphi \to \Diamond\varphi & & \text{Unbounded Agglomerativity} \end{array}$

Thm These axioms, together with K for \Box , Necessitation for *B* and \Box and REG for *B* are sound and complete with respect to the class of BAGG frames.

$$(B\varphi_1 \wedge ... \wedge B\varphi_n) \to \langle B \rangle (\varphi_1 \wedge ... \wedge \varphi_n)$$
 (n-AGG)

Derivable in BAGG logic:

Proof theory of BAGG

$$|\Gamma| \leq \mathbf{1} \frac{\Gamma \Longrightarrow \varphi}{\mathsf{B}\Gamma \Longrightarrow \mathsf{B}\varphi} \text{ (1-Reg) } |\Phi| \leq \mathbf{1} \frac{\Gamma, \Delta \Longrightarrow \Phi}{\mathsf{B}\Gamma, \Box \Delta \Longrightarrow \Box \Phi} \text{ (B}\Box)$$

$$\frac{ \varphi \Longrightarrow \varphi}{\varphi, \neg \varphi \Longrightarrow} \\
 \overline{\mathbf{B}\varphi, \mathbf{B}\neg \varphi \Longrightarrow} \\
 \overline{\mathbf{B}\varphi \Longrightarrow \neg \mathbf{B}\neg \varphi}$$

Call LK-BAGG the sequent calculus LK augmented with the rules above.

Thm LK-BAGG admits the following generalization of the CUT rule.

$$(\mathsf{Mix}) \frac{\Gamma \Longrightarrow \Delta, F^n \quad F^m, \Phi \Longrightarrow \Psi}{\Gamma, \Phi \Longrightarrow \Delta, \Psi} (n, m > 0)$$

Cor. LK-BAGG has the sub-formula property and is consistent.

Thm. Satisfiability for LK-BAGG is decidable.

 \Rightarrow Similar result for the logic of *B* alone.

Probabilistic Interpretation of BAGG?

- Contrary to B alone, BAGG frames are "too easy" to measure:
 - Obs. Let , w be at countable BAGG frame. Then for every $t \in (0; 1)$ there is a probability function $Prob : W \to [0; 1]$ such that $B \in n(w)$ implies Prob(B) > t
- So we do get completeness for models with high enough threshold... but many more as well.
- And, back to Stalnaker, most threshold can't make sense of $B\varphi \rightarrow BK\varphi$.

Conclusions

Philosophical points:

- Non-normal beliefs when knowledge is KT.
- Agglomerativity plausible weakening of closure for resource-bounded agents.
- The resulting beliefs are not high credence (nor stable p-beliefs for that matter).

Technical points:

- Sound and complete axiomatizations for logic of Beliefs with bounded and unbounded agglomerativity.
- Well-behaved proof theory.

To do:

Dynamics.

Mutli-agent, common belief, game theory.