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Stalnaker

PI ⊢ Bφ→ KBφ

NI ⊢ ¬Bφ→ K¬Bφ
KB ⊢ Kφ→ Bφ

D ⊢ Bφ→ ⟨B⟩φ
SB ⊢ Bφ→ BKφ

If K is an S4 modality then B is KD45.

⊢ Bφ↔ ⟨K⟩Kφ

⊢ ⟨K⟩Kφ→ K⟨K⟩φ

Stalnaker, R.,”On logics of knowledge and belief. Philosophical studies. 128
(2006): 169-199.
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Introspection

¬Kφ→ K¬Kφ

Stalnaker rejects negative introspection as a plausible
rational requirement for knowledge:

If evidence is misleading, I am not irrational if I’m
uncertain or mistaken about what I don’t know.

Kφ→ KKφ

He “provisionally” accepts positive introspection.

But the principle has been heavily challenged, for
instance by Williamson
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What happens to B if K is a KT.2 modality?

Bφ↔ ⟨K⟩Kφ

⟨K⟩Kφ→ K⟨K⟩φ
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Introspection and normality

Bφ ∧ Bψ ↔ B(φ ∧ ψ)

..w1.⟨K⟩Kφ ∧ ⟨K⟩Kψ .

w2

.

Kφp,¬q

.

w3

.

Kψ¬p, q

. w4.

Kφ,KψK(φ ∧ ψ)p, q
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Non-normal beliefs

⊢ φ
(NEC)⊢ Bφ

⊢ φ→ ψ
(REG)⊢ Bφ→ Bψ

⊢ Bφ→ ⟨B⟩φ (D)

Thm (NEC), (REG) and (D) are sound and complete for B.
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MUD frames

A neighborhood frame ⟨W,n⟩ is a MUD frame iff

M For all w, if X ∈ n(w) and X ⊆ Y then Y ∈ n(w).
(Monotonicity)

U For all w,W ∈ n(w). (contains the Unit)

D If X ∈ n(w) then for all Y ∈ n(w), X ∩ Y ̸= ∅.

Thm (NEC), (REG) and (D) are sound and complete for the class
of MUD frames.
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Completeness through representation

..w1.
w2

.

blaR[w2]bla

. w4.
w3

.

blaR[w3]bla

Thm LetM,w be a pointed model based on a KT.2 frame.
Then there is a pointed modelNM,w based on a MUD-frame
such that for all formula φ in the “B fragment”:

M,w ⊨ φ⇔ NM,w ⊨ φ

M,w ⊨ φ⇔ NM,w ⊨ φ
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What kind of belief is this?

Credence above 1/2?

Bφ iff p(φ) ≥ t > 1/2

⊢ φ
(NEC)⊢ Bφ

⊢ φ→ ψ
(REG)⊢ Bφ→ Bψ

⊢ Bφ→ ⟨B⟩φ (D)

Thm For every ϵ > 0 there is a finite MUD frame and a state w
such that some X ∈ n(x)must receive p(X) < ϵ.
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Fix a natural number n ∈ N, and let:
Possible worlds: All wij with i < j ≤ n

For each k ≤ n define the set Tk as

Tk = {wij|i = k or j = k}

The neighborhood N is defined as N =↑ {T1, ... , Tn} .
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To illustrate this with an example, for n = 4 we have

W =

w12 w13 w14

w23 w24

w34

T1 ={w12,w13,w14} T2 ={w12,w23,w24}
T3 ={w13,w23,w34} T4 ={w14,w24,w34}

and finally N = {T1, T2, T3, T4}.
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What kind of belief is this?

D in neighborhood models: pairwise agglomerativity

Bφ→ ⟨B⟩φ

Plausible consistency requirement for resource-bounded
agents.

Closure under conjunction:

Bφ ∧ Bψ → B(φ ∧ ψ)

Not a plausible requirement. Cluttering objection applies.

Not so for pairwise agglomerativity.

And violation threatens the truth aim.

Note: agents otherwise logically omniscient in this logic!
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Strengthening agglomerativity

It is still plausible that the agent holds beliefs that are
pairwise consistent, but for which no triple is consistent.

(Bφ1 ∧ ... ∧ Bφn) → ⟨B⟩(φ1 ∧ ... ∧ φn) (n-AGG)

Still plausible for resource bounded agents.

But nonetheless demanding when it comes to identifying
violations and revising.
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Unbounded agglomerativity

What about (n-AGG) for all n? Call that unbounded
agglomerativity.

Let □φ be true at a state w in a neighborhood model if
and only if∩

X∈n(w)

X ⊆ ||φ||

where ||φ|| is the extension of φ in that model.

Obs □ is not definable in the present logic of belief.
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BAGG logic

A BAGG frame is a MUD frame except that D is replaced by the
following requirement.

AGG
∩

X∈n(w) X ̸= ∅

The new modality □ (interpreted as in previous slide) is a
normal modality.

Unbounded agglomerativity requirement is D for □:
□φ→ ♢φ

N. Gratzl, D. Klein, O. Roy 17



BAGG Logic

Bφ→ □φ Belief Consistency

□φ→ ♢φ Unbounded Agglomerativity

Thm These axioms, together with K for □, Necessitation for B
and □ and REG for B are sound and complete with respect to
the class of BAGG frames.
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(Bφ1 ∧ ... ∧ Bφn) → ⟨B⟩(φ1 ∧ ... ∧ φn) (n-AGG)

Derivable in BAGG logic:

(Bφ1 ∧ ... ∧ Bφn) → (□φ1 ∧ ... ∧□φn)

→ □(φ1 ∧ ... ∧ φn)

→ ♢(φ1 ∧ ... ∧ φn)

→ ⟨B⟩(φ1 ∧ ... ∧ φn)

→ ⟨B⟩(φ1 ∧ ... ∧ φn)

N. Gratzl, D. Klein, O. Roy 19



Proof theory of BAGG

Γ =⇒ φ|Γ| ≤ 1 (1-Reg)
BΓ =⇒ Bφ

Γ,∆ =⇒ Φ|Φ| ≤ 1 (B□)
BΓ,□∆ =⇒ □Φ

φ =⇒ φ
φ,¬φ =⇒
Bφ,B¬φ =⇒
Bφ =⇒ ¬B¬φ
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Call LK-BAGG the sequent calculus LK augmented with the
rules above.

Thm LK-BAGG admits the following generalization of the CUT
rule.

Γ =⇒ ∆, Fn Fm,Φ =⇒ Ψ
(Mix) (n,m > 0)

Γ,Φ =⇒ ∆,Ψ

Cor. LK-BAGG has the sub-formula property and is consistent.

Thm. Satisfiability for LK-BAGG is decidable.

⇒ Similar result for the logic of B alone.
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Probabilistic Interpretation of BAGG?

Contrary to B alone, BAGG frames are “too easy” to
measure:

Obs. Let ,w be at countable BAGG frame. Then for every
t ∈ (0;1) there is a probability function Prob : W → [0;1]
such that B ∈ n(w) implies Prob(B) > t

So we do get completeness for models with high enough
threshold... but many more as well.

And, back to Stalnaker, most threshold can’t make sense
of Bφ→ BKφ.
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Conclusions
Philosophical points:

Non-normal beliefs when knowledge is KT.

Agglomerativity plausible weakening of closure for
resource-bounded agents.

The resulting beliefs are not high credence (nor stable
p-beliefs for that matter).

Technical points:

Sound and complete axiomatizations for logic of Beliefs
with bounded and unbounded agglomerativity.

Well-behaved proof theory.

To do:

Dynamics.

Mutli-agent, common belief, game theory.

N. Gratzl, D. Klein, O. Roy 23


