Introduction	Learning as a Sabotage Game	Non-strict alternation	More on learning and games	Conclusions
	000000			

GAMES FOR LEARNING A SABOTAGE APPROACH

Nina Gierasimczuk, Lena Kurzen and Fernando R. Velázquez-Quesada

Institute for Logic, Language and Computation Universiteit van Amsterdam

			0	÷		
L.	0		c	÷		

Learning as a Sabotage Game

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

OUTLINE

1 INTRODUCTION

- 2 Learning as a Sabotage Game
 - Sabotage Modal Logic
 - Learning in Sabotage Modal Logic
 - Complexity of Sabotage-Type Learning
- **3** Non-strict alternation
- More on learning and games

э

 		 - •		
			IO	n
	ou		10	

Learning as a Sabotage Game

OUTLINE

1 INTRODUCTION

- 2 Learning as a Sabotage Game
 - Sabotage Modal Logic
 - Learning in Sabotage Modal Logic
 - Complexity of Sabotage-Type Learning
- **3** Non-strict alternation
- 4 More on learning and games
- **5** CONCLUSIONS

Introduction	Learning as a Sabotage Game	Non-strict alternation	More on learning and games	Conclusions

AIM

To highlight the *interactive* nature of the learning process by showing its relation with games.

(日) (個) (目) (目) (目) (目)

Learning as a Sabotage Game

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

OUR PERSPECTIVE ON LEARNING

- High-level analysis of inductive inference.
- Singling out a correct hypothesis from a range of possibilities.
- Many steps of "update" before the conclusion is reached.

3

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

Conclusions

Successful Learning

Definition

Learner identifies Teacher's choice *in the limit* if after some finite number of guesses his choices stabilize on a correct hypothesis.

DEFINITION

Learner *finitely* identifies Teacher's choice if after some finite number of guesses he makes the right choice.

OUTLINE

1 INTRODUCTION

2 Learning as a Sabotage Game

- Sabotage Modal Logic
- Learning in Sabotage Modal Logic
- Complexity of Sabotage-Type Learning
- **3** Non-strict alternation
- 4 More on learning and games
- **5** CONCLUSIONS

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

Conclusions

Sabotage Game - Example

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

ヘロン 人間 とくほと くほとう

Conclusions

Sabotage Game - Example

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

・ロト ・ 一 ト ・ モト ・ モト

Conclusions

SABOTAGE GAME – EXAMPLE

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

ヘロン 人間 とくほと くほとう

Conclusions

Sabotage Game - Example

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

ヘロン 人間 とくほと くほとう

Conclusions

Sabotage Game - Example

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

ヘロン 人間 とくほと くほとう

Conclusions

Sabotage Game - Example

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

・ロト ・ 一 ト ・ モト ・ モト

Conclusions

SABOTAGE GAME – EXAMPLE

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

・ロト ・ 一 ト ・ モト ・ モト

Conclusions

SABOTAGE GAME – EXAMPLE

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

ヘロト ヘ週ト ヘヨト ヘヨト

Conclusions

SABOTAGE GAME – EXAMPLE

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

ヘロト ヘ週ト ヘヨト ヘヨト

Conclusions

Sabotage Game - Example

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

ヘロト ヘ週ト ヘヨト ヘヨト

Conclusions

Sabotage Game - Example

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

Conclusions

Sabotage Game - Example

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

Conclusions

Sabotage Modal Logic

SABOTAGE MODAL LOGIC

DEFINITION (SABOTAGE MODAL LANGUAGE)

$$\phi \coloneqq p \mid \neg \phi \mid \phi \lor \phi \mid \diamondsuit_a \phi \mid \diamondsuit_a \phi$$

with $p \in PROP$ and $a \in \Sigma$ (finite).

$$\Diamond\phi\coloneqq\bigvee_{\mathsf{a}\in\Sigma}\Diamond_{\mathsf{a}}\phi\qquad\qquad \Diamond\phi\coloneqq\bigvee_{\mathsf{a}\in\Sigma}\diamondsuit_{\mathsf{a}}\phi$$

DEFINITION (SABOTAGE MODEL)

$$M = \langle W, \{ R_a \mid a \in \Sigma \}, Val \rangle$$
 where

$$W \neq \varnothing, \qquad R_a \subseteq W \times W, \qquad Val: \text{PROP} \rightarrow \mathcal{P}(W)$$

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

Conclusions

Sabotage Modal Logic

SABOTAGE MODAL LOGIC

DEFINITION (REMOVAL OPERATION)

Let $M = \langle W, \{R_a \mid a \in \Sigma\}, Val \rangle$ be a Sabotage Model.

 $M^{a}_{(u,v)} \coloneqq \langle W, \{R_{b} \mid b \in \Sigma \setminus \{a\}\} \cup R_{a} \setminus \{(u,v)\}, Val \rangle$

DEFINITION (SEMANTICS)

$$M,w\vDash \varphi_{a}\phi \quad \text{iff} \quad \text{there is } (u,v)\in R_{a} \text{ s. t. } M^{a}_{(u,v)},w\vDash \phi$$

THEOREM

Model checking of SML is PSPACE-complete.

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

Conclusions

Learning in Sabotage Modal Logic

SABOTAGE LEARNING GAME

DEFINITION

A Sabotage Learning Game is a Sabotage Game played between Learner and Teacher on a directed multi-graph with an initial vertex and a "goal" vertex.

э

Introduction

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

Conclusions

Learning in Sabotage Modal Logic

VARIOUS SCENARIOS

Game	Winning Condition
<i>SLG_{UE}</i>	Learner wins iff he reaches the goal state, Teacher wins otherwise.
SLG _{HU}	Teacher wins iff Learner reaches the goal state, Learner wins otherwise.
SLG _{HE}	Both players win iff Learner reaches the goal state, Both lose otherwise.

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

ヘロン 人間 とくほと くほとう

Conclusions

Learning in Sabotage Modal Logic

CHARACTERIZATION RESULTS

Game	Existence of winning strategy	Winner
SLG _{UE}	$\begin{array}{l} \gamma_0^{UE}\coloneqq \textit{goal},\\ \gamma_{n+1}^{UE}\coloneqq \textit{goal}\lor\diamondsuit\boxminus\gamma_n^{UE} \end{array}$	Learner
SLG _{HU}	$\begin{array}{l} \gamma_0^{HU}\coloneqq goal,\\ \gamma_{n+1}^{HU}\coloneqq goal\vee (\diamondsuit{T}\land(\Box \mathbin{\Leftrightarrow} \gamma_n^{HU})) \end{array}$	Teacher
SLG _{HE}	$\begin{array}{l} \gamma_0^{\textit{HE}}\coloneqq\textit{goal},\\ \gamma_{\textit{n+1}}^{\textit{HE}}\coloneqq\textit{goal}\lor\diamondsuit\Leftrightarrow\gamma_{\textit{n}}^{\textit{HE}} \end{array}$	Both

Learning as a Sabotage Game

(日)、(四)、(E)、(E)、(E)

Complexity of Sabotage-Type Learning

Complexity of Sabotage-Type Learning

Game	Winning Condition	Complexity
SLG _{UE}	Learner wins iff he reaches the goal state, Teacher wins otherwise	PSPACE- complete.
SLG _{HU}	Teacher wins iff Learner reaches the goal state, Learner wins otherwise.	PSPACE
SLG _{HE}	Both players win iff Learner reaches the goal state. Both lose otherwise.	NL- complete.

OUTLINE

1 INTRODUCTION

- 2 Learning as a Sabotage Game
 - Sabotage Modal Logic
 - Learning in Sabotage Modal Logic
 - Complexity of Sabotage-Type Learning
- **3** Non-strict alternation
- 4 More on learning and games

5 CONCLUSIONS

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Conclusions

LOCAL VS GLOBAL MOVES

- Players moves are of a different nature:
 - Learner moves by *local* transitions.
 - Teacher moves by *globally* removing an edge.
- Teacher only needs to act when necessary.

э

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

・ロト ・四ト ・ヨト ・ヨト

Conclusions

NON-STRICT ALTERNATION - EXAMPLE

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

・ロト ・四ト ・ヨト ・ヨト

Conclusions

NON-STRICT ALTERNATION - EXAMPLE

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

・ロト ・四ト ・ヨト ・ヨト

Conclusions

NON-STRICT ALTERNATION - EXAMPLE

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

・ロト ・四ト ・ヨト ・ヨト

Conclusions

NON-STRICT ALTERNATION - EXAMPLE

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

ヘロン 人間 とくほと くほとう

Conclusions

NON-STRICT ALTERNATION - EXAMPLE

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

Conclusions

NON-STRICT ALTERNATION - EXAMPLE

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

ヘロン 人間 とくほと くほとう

Conclusions

NON-STRICT ALTERNATION - EXAMPLE

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

ヘロン 人間 とくほと くほとう

Conclusions

NON-STRICT ALTERNATION - EXAMPLE

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

(日)、(四)、(E)、(E)、(E)

Conclusions

DIFFERENT GAME, SAME SCENARIOS

Game	Winning Condition
SLG [*] _{UE}	Learner wins iff he reaches the goal state, Teacher wins otherwise.
SLG [*] _{HU}	Teacher wins iff Learner reaches the goal state, Learner wins otherwise.
SLG_{HE}^*	Both players win iff Learner reaches the goal state, Both lose otherwise.

Learning as a Sabotage Game

STRICT VS NON-STRICT ALTERNATION

Theorem

- Learner has a w.s. in SLG_{UE}^* iff he has a w.s. in SLG_{UE} .
- 2 Teacher has a w.s. in SLG^*_{HU} iff she has a w.s. in SLG_{HU} .
- **3** Teacher and Learner have a joint w.s. in SLG^{*}_{HE} iff they have a joint w.s. in SLG_{HE}.

COROLLARY

Formulas provided before characterize existence of a winning strategy in SLG_{UE}^* , SLG_{HU}^* and SLG_{HE}^* , resp.

t۰		0	e		
 υı		c	L		

Learning as a Sabotage Game

OUTLINE

1 INTRODUCTION

- 2 Learning as a Sabotage Game
 - Sabotage Modal Logic
 - Learning in Sabotage Modal Logic
 - Complexity of Sabotage-Type Learning
- **3** Non-strict alternation
- **4** More on learning and games

5 CONCLUSIONS

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

Conclusions

GAME THEORY AND LEARNING THEORY

- The use of GT in LT.
- The use of LT in Games.

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

Conclusions

The Game of Queries and Counterexamples

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

・ロット 御 マ イロット キャー

Conclusions

GAME THEORETIC APPROACH TO INDUCTIVE INFERENCE

- Epistemic status of the players, imperfect information, payoff characteristics.
- Choice for Learner
 - at each step the learner can choose from one or more procedures which are part of one algorithm;
 - in the beginning Learner can decide with which of the available algorithms he is going to proceed.

э

Learning as a Sabotage Game

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

LEARNING THEORY IN GAMES

- Inductive inference games.
- Eleusis (identification in the limit), Zendo (queries and counterexamples).
- Complexity analysis of corresponding algorithms.
- Empirical work 1: difficulty vs. complexity of hidden rules.
- Empirical work 2: knowledge reports.

3

t۰		0	e		
 υı		c	L		

Learning as a Sabotage Game

OUTLINE

1 INTRODUCTION

- 2 Learning as a Sabotage Game
 - Sabotage Modal Logic
 - Learning in Sabotage Modal Logic
 - Complexity of Sabotage-Type Learning
- **3** Non-strict alternation
- More on learning and games

5 CONCLUSIONS

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

Conclusions

SUMMARY AND CONCLUSION

Aim

Provide a high-level game-theoretical perspective on formal learning theory. In particular, study strategic abilities, information flow and interaction.

SUMMARY

Game-theoretical approach to learning that accounts for different levels of cooperativeness between Learner and Teacher.

э

Learning as a Sabotage Game

Non-strict alternation

More on learning and games

Conclusions

FURTHER WORK

- Identification in the limit (stable positions).
 - Epistemic and doxastic interpretation: operational, non-introspective knowledge.
 - Fixed-point logics for identification in the limit.
- GT approach to learning algorithms.
- Inductive inference games theoretical and empirical account.

э

Introduction	Learning as a Sabotage Game	Non-strict alternation	More on learning and games	Conclusions
	000000			

Dziękuję, Danke and Gracias

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○