

From game logics to logic games: a strategy perspective

(ongoing work)

Sujata Ghosh

University of Groningen

LDIP special session on Strategies

ILLC, Amsterdam

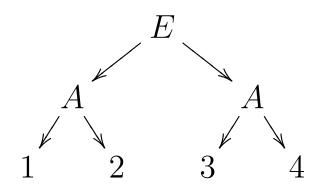
October 26, 2009

- Output Series Parikh's Game logic gives us a framework to talk about both games and strategies.
- 6 How does this framework relate to evaluation games for different logics?

- 6 game logic
- incorporating strategies
- evaluation games
- some representation result(s)

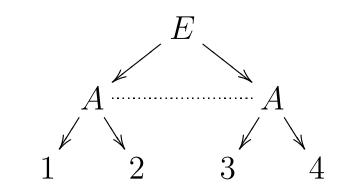
games as forcing relations:

 $w \rho_G^i X$ player *i* has a strategy for playing game *G* from state *w* onwards, whose resulting states are always in the set *X*.



E's powers : {1, 2}, {3, 4}. *A*'s powers : {1, 3}, {1, 4}, {2, 3}, {2, 4}.

From game logics to logic games: a strategy perspective – p.5



E's powers : {1, 2}, {3, 4}. *A*'s powers : {1, 3}, {2, 4}.

Conditions on Forcing Relations:

- 6 Monotonicity: If $s\rho_G^i X$ and $X \subseteq X'$, then $s\rho_G^i X'$.
- 6 Consistency: If $s\rho_G^E Y$ and $s\rho_G^A Z$, then Y and Z overlap.
- Determinacy: If it is not the case that s ρ_G^E X, then, s ρ_G^A S - X, and the same for A vis-a-vis E, where S denotes the total set of states.

composite game structures:

Choice $(G \cup G')$, Dual (G^d) , Sequential composition (G; G')

determined version:

$w \rho^E_{G \cup G'} X$	iff	$w ho_G^E X$ or $w ho_{G'}^E X$
$w \rho_{G^d}^E X$	iff	it is not the case that $w ho_G^E X^{\mathcal{C}}$
$w \rho^E_{G;G'} X$	iff	$\exists Z: w ho_G^i Z$ and for all $z\in Z$, $z ho_{G'}^i X$
$w \rho_{\varphi?}^E X$	iff	$w \in [[arphi]]$ and $w \in X$

non-determined version:

$w \rho^E_{G \cup G'} X$	iff	$w ho_G^E X$ or $w ho_{G'}^E X$
$w \rho^A_{G \cup G'} X$	iff	$w ho^A_G X$ and $w ho^A_{G'} X$
$w \rho_{G^d}^E X$		$w ho_G^A X$
$w \rho^A_{G^d} X$	iff	$w ho_G^E X$
$w \rho^i_{G;G'} X$	iff	$\exists Z: w ho_G^i Z$ and for all $z\in Z$, $z ho_{G'}^i X$
$w \rho_{\varphi?}^E X$	iff	$w\in [[arphi]]$ and $w\in X$
$w \rho_{\varphi?}^A X$	iff	$w ot\in [[arphi]]$ and $w \in X$

language:

$$\begin{split} \gamma &:= g \mid \varphi? \mid \gamma; \gamma \mid \gamma \cup \gamma \mid \gamma^d \\ \phi &:= \bot \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \gamma \rangle \varphi \end{split}$$

Game Model: $\mathcal{M} = (W, \{\rho_g \mid g \in \Gamma\}, V)$, $\rho_g \subseteq W \times \mathcal{P}(W)$

Semantics:

 $\mathcal{M}, w \models \langle \gamma \rangle \varphi$ iff there exists $X : w \rho_{\gamma} X$ and $\forall x \in X : \mathcal{M}, x \models \varphi$

some valid statements and rules:

6 if
$$\vdash \varphi \rightarrow \psi$$
 then $\vdash \langle \gamma \rangle \varphi \rightarrow \langle \gamma \rangle \psi$

language:

$$\begin{split} \gamma &:= g \mid \phi? \mid \gamma; \gamma \mid \gamma \cup \gamma \mid \gamma^d \\ \phi &:= \bot \mid p \mid \neg \phi \mid \phi \lor \phi \mid \langle \gamma, i \rangle \phi \end{split}$$

Game Model: $\mathcal{M} = (W, \{\rho_g^i \mid g \in \Gamma\}, V), \rho_g \subseteq W \times \mathcal{P}(W)$

Semantics:

 $\mathcal{M}, w \models \langle \gamma, i \rangle \phi$ iff there exists $X : w \rho_{\gamma}^{i} X$ and $\forall x \in X : \mathcal{M}, x \models \varphi$

some valid statements and rules:

- 6 if $\vdash \varphi \rightarrow \psi$ then $\vdash \langle \gamma, i \rangle \varphi \rightarrow \langle \gamma, i \rangle \psi$

- input-output behavior
- 6 generic games on game boards
- quantification over strategies to achieve something
- 6 winning strategy vs. φ -strategy
- o uniform study

- o winning strategies
- 6 best response strategy
- strategies to achieve something

games as forcing relations:

 $w \rho_G^i X$ player *i* has a strategy for playing game *G* from state *w* onwards, whose resulting states are always in the set *X*.

strategy in game as forcing relations:

 $w \rho^i_{\langle G,S \rangle} X$ by following the strategy *S* in the game *G* from state *w* onwards, the resulting final states reached by the player *i* are always in the set *X*, whatever the other player chooses to do.

conditions on these strategy-forcing relations:

- 6 monotonicity: if $w \rho^i_{\langle G,S \rangle} X$ and $X \subseteq X'$, then $w \rho^i_{\langle G,S \rangle} X'$.
- 6 consistency: if $w \rho^{E}_{\langle G,S \rangle} Y$ and $w \rho^{A}_{\langle G,S' \rangle} Z$, then Y and Z overlap.
- \circ subset: $\rho^i_{\langle G,S\rangle} \subseteq \rho^i_G$

composite game-strategy structures:

Choice $(G \cup G', S \cup S')$, Dual (G^d, S) , Sequential composition (G; G', S; S'), Test games $(\varphi?, \top)$, $(\varphi?, \bot)$

$$\begin{split} & w \rho^{E}_{\langle G \cup G', S \cup S' \rangle} \mathsf{X} & \text{iff} & w \rho^{E}_{\langle G, S \rangle} \mathsf{X} \text{ or } w \rho^{E}_{\langle G', S' \rangle} X \\ & w \rho^{A}_{\langle G \cup G', S \cup S' \rangle} \mathsf{X} & \text{iff} & w \rho^{A}_{\langle G, S \rangle} X \text{ and } w \rho^{A}_{\langle G', S' \rangle} X \end{split}$$

$w \rho^E_{\langle G^d, S \rangle} X$	iff	$w \rho^A_{\langle G,S \rangle} X$
$w \rho^A_{\langle G^d, S \rangle} X$	iff	$w \rho^E_{\langle G,S \rangle} X$

 $w \rho^i_{\langle G;G',S;S' \rangle} X$ iff $\exists Z : w \rho^i_{\langle G,S \rangle} Z$ and for all $z \in Z$, $z \rho^i_{\langle G',S' \rangle} X$

$$\begin{split} & w\rho^E_{\langle \varphi^?, \top \rangle} X \quad \text{iff} \quad w\rho^A_{\langle \varphi^?, \perp \rangle} \overline{X} \quad \text{iff} \quad w\rho^E_{\varphi^?} X \quad \text{iff} \quad w \in [[\varphi]] \text{ and } w \in X \\ & w\rho^A_{\langle \varphi^?, \top \rangle} X \quad \text{iff} \quad w\rho^E_{\langle \varphi^?, \perp \rangle} \overline{X} \quad \text{iff} \quad w\rho^A_{\varphi^?} X \quad \text{iff} \quad w \not \in [[\varphi]] \text{ or } w \in X \end{split}$$

Language:

$$\begin{split} \gamma &:= g \mid \varphi? \mid \gamma; \gamma \mid \gamma \cup \gamma \mid \gamma^d \\ \sigma &:= s \mid \top \mid \perp \mid \sigma; \sigma \mid \sigma \cup \sigma \\ \varphi &:= \perp \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \gamma \rangle \varphi \mid \langle (\gamma, \sigma), i \rangle \varphi \end{split}$$

In the syntax for $\langle (\gamma, \sigma), i \rangle$, we require that $\sigma \in \Sigma(\gamma)$, where, for each game γ , $\Sigma(\gamma)$ is defined inductively as follows:

$$\begin{split} \Sigma(g) &= \Sigma \\ \Sigma(\phi?) &= \{\top, \bot\} \\ \Sigma(\gamma^d) &= \Sigma(\gamma) \\ \Sigma(\gamma; \gamma) &= \{\sigma; \sigma' : \sigma \in \Sigma(\gamma) \text{ and } \sigma' \text{ in } \Sigma(\gamma')\} \\ \Sigma(\gamma \cup \gamma) &= \{\sigma \cup \sigma' : \sigma \in \Sigma(\gamma) \text{ and } \sigma' \in \Sigma(\gamma')\} \end{split}$$

Game Model:

$$\begin{split} \mathcal{M} &= (W, \{ \rho_g \mid g \in \Gamma \}, \{ \rho_{\langle g, s \rangle}^i \mid g \in \Gamma, s \in \Sigma \}, V), \\ \rho_g^i, \rho_{\langle g, s \rangle}^i \subseteq W \times \mathcal{P}(W) \text{, both monotonic, with } \rho_g^i \supseteq \rho_{\langle g, s \rangle}^i \text{ and } \\ s \rho_g^A X \text{ iff it is not that } s \rho_g^E(W \setminus X). \end{split}$$

Semantics:

 $\mathcal{M}, w \models \langle (\gamma, \sigma), i \rangle \varphi$ iff there exists $X \subseteq W : w \rho^i_{\langle \gamma, \sigma \rangle} X$ and for all $x \in X : \mathcal{M}, x \models \varphi$.

some valid statements and rules:

- $(\varphi?,\top), E \rangle \psi \leftrightarrow (\varphi \wedge \psi)$

questions and comments

- 6 using a ' \perp '-like syntax for 'no available strategy' (as in the test games), we can do away with the game formulas, where $\langle (\gamma, \perp), E \rangle \varphi$ will be equivalent to $\neg \langle \gamma, E \rangle \varphi$.
- o complete axiomatizations.
- 6 can we discard the (un-intuitive) monotonicity condition on the strategy forcing relations?

questions and comments

- adding game-strategy pair for the iteration operation:
 do we have to consider the same strategy for iteration
 game?
- exploring the identical game-strategy pairs algebraic viewpoint.
- 6 bisimulation-invariant formulas a correct notion.
- o representing evaluation games.

propositional evaluation game:

- \vee move for 'E'
- \wedge move for 'A'

 \neg - players change roles, winning conditions get interchanged.

a propositional formula - game form a valuation - winning conditions

$$\varphi = (p \lor q) \land \neg (p \land q), V \coloneqq p \to 1, q \to 0.$$

equivalent c.n.f. = $(p \lor q) \land (\neg p \lor \neg q)$, only winning conditions get altered.

$$gs_{V}(\varphi) = \langle ((p? \lor q?) \land ((p?)^{d} \lor (q?)^{d}), (\top \lor \bot) \land (\bot \lor \top)), E \rangle \top$$

$$\leftrightarrow (\langle (p?, \top), E \rangle \top \lor \langle (q?, \bot), E \rangle \top) \land (\langle ((p?)^{d}, \bot), E \rangle \top \lor \langle ((q?)^{d}, \top), E \rangle \top)$$

formal representation:

atomic games: p?, atomic strategies: \top , \bot composite games: $G \cup G'$, $G \cap G'$, G^d composite strategies: $S \cup S'$, $S \cap S'$ game frame (\mathcal{G}): $\langle \{w\}, \rho_g^E = \rho_{g,\top}^E = \rho_{g,\top}^A = \{w, \{w\}\} \rangle$

Given a propositional formula φ , and a propositional valuation V, $V \models \varphi$ iff $(\mathcal{G}, V) \models gs_V(\varphi)$.

modal evaluation game:

propositional evaluation game

+

 \Diamond - move for 'E'

 \Box - move for 'A'

a modal formula + Kripke frame - game form a valuation - winning conditions

a finite model:

 $\mathcal{M} = (\{1,2\}, \{(1,1), (1,2)\}, V(p) = \{1,2\}, V(q) = \emptyset)$

 $\varphi = \Diamond \Diamond \top.$ $gs_{\mathcal{M},1}(\varphi) = \langle ((C_{11}^E; C_{11}^E \lor C_{12}^E) \lor C_{12}^E, (\top; \top \lor \top) \lor \bot), E \rangle \top.$

 $\varphi = \Diamond p \lor \Diamond q.$

$$\begin{split} gs_{\mathcal{M},1}(\varphi) = \\ \langle (C_{11}^E \lor C_{12}^E, \top \lor \top), E \rangle p \lor \langle (C_{11}^E \lor C_{12}^E, \bot \lor \bot), E \rangle q. \end{split}$$

formal representation:

effort continues.....

Thank you!

From game logics to logic games: a strategy perspective - p.31