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objectives

Parikh’s Game logic gives us a framework to talk about
both games and strategies.

How does this framework relate to evaluation games
for different logics?
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outline

game logic

incorporating strategies

evaluation games

some representation result(s)
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game logic

games as forcing relations:

wρiGX player i has a strategy for playing game G from

state w onwards, whose resulting states are always

in the set X.
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game logic
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game logic

Conditions on Forcing Relations:

Monotonicity: If sρiGX and X ⊆ X ′, then sρiG X
′.

Consistency: If sρEGY and sρAGZ, then Y and Z overlap.

Determinacy: If it is not the case that s ρEG X, then,
s ρAG S - X, and the same for A vis-a-vis E, where S
denotes the total set of states.
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game logic

composite game structures:

Choice (G ∪G′),

Dual (Gd),

Sequential composition (G;G′)
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game logic

determined version:

wρE
G∪G′X iff wρE

GX or wρE
G′X

wρE
Gd
X iff it is not the case that wρE

GX
C

wρE
G;G′X iff ∃Z : wρi

GZ and for all z ∈ Z, zρi
G′X

wρE
ϕ?
X iff w ∈ [[ϕ]] and w ∈ X
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game logic

non-determined version:

wρE
G∪G′X iff wρE

GX or wρE
G′X

wρA
G∪G′X iff wρA

GX and wρA
G′X

wρE
Gd
X iff wρA

GX

wρA
Gd
X iff wρE

GX

wρi
G;G′X iff ∃Z : wρi

GZ and for all z ∈ Z, zρi
G′X

wρE
ϕ?
X iff w ∈ [[ϕ]] and w ∈ X

wρA
ϕ?
X iff w 6∈ [[ϕ]] and w ∈ X
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game logic

language:
γ := g | ϕ? | γ; γ | γ ∪ γ | γd

φ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | 〈γ〉ϕ

Game Model: M = (W, {ρg | g ∈ Γ}, V ), ρg ⊆W × P(W )

Semantics:
M, w |= 〈γ〉ϕ iff there exists X : wργX and
∀x ∈ X : M, x |= ϕ
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game logic

some valid statements and rules:

〈γ ∪ γ′〉ϕ↔ 〈γ〉ϕ ∨ 〈γ′〉ϕ

〈γd〉ϕ↔ ¬〈γ〉¬ϕ

〈α;β〉ϕ ↔ 〈α〉〈β〉ϕ

〈ϕ?〉ψ ↔ (ϕ ∧ ψ)

if ⊢ ϕ→ ψ then ⊢ 〈γ〉ϕ→ 〈γ〉ψ
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game logic

language:
γ := g | φ? | γ; γ | γ ∪ γ | γd

φ := ⊥ | p | ¬φ | φ ∨ φ | 〈γ, i〉φ

Game Model: M = (W, {ρig | g ∈ Γ}, V ), ρg ⊆W × P(W )

Semantics:
M, w |= 〈γ, i〉φ iff there exists X : wρiγX and
∀x ∈ X : M, x |= ϕ
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game logic

some valid statements and rules:

〈γ ∪ γ′, E〉ϕ↔ 〈γ,E〉ϕ ∨ 〈γ′, E〉ϕ

〈γ ∪ γ′, A〉ϕ↔ 〈γ,A〉ϕ ∧ 〈γ′, A〉ϕ

〈γd, E〉ϕ↔ 〈γ,A〉ϕ

〈ϕ?, E〉ψ ↔ (ϕ ∧ ψ)

〈ϕ?, A〉ψ ↔ (¬ϕ ∧ ψ)

if ⊢ ϕ→ ψ then ⊢ 〈γ, i〉ϕ→ 〈γ, i〉ψ
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game logic

input-output behavior

generic games on game boards

quantification over strategies to achieve something

winning strategy vs. ϕ-strategy

uniform study
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incorporating strategies

winning strategies

best response strategy

strategies to achieve something

.

.

.
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incorporating strategies

games as forcing relations:

wρi
GX player i has a strategy for playing game G from state w onwards,

whose resulting states are always in the set X.

strategy in game as forcing relations:

wρi
〈G,S〉

X by following the strategy S in the game G from state w onwards,

the resulting final states reached by the player i are always in the

set X, whatever the other player chooses to do.
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incorporating strategies

conditions on these strategy-forcing relations:

monotonicity: if wρi〈G,S〉X and X ⊆ X ′, then wρi〈G,S〉 X
′.

consistency: if wρE〈G,S〉Y and wρA〈G,S′〉Z, then Y and Z
overlap.

subset: ρi〈G,S〉 ⊆ ρiG
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incorporating strategies

composite game-strategy structures:

Choice (G ∪G′, S ∪ S′),

Dual (Gd, S),

Sequential composition (G;G′, S;S′),

Test games (ϕ?,⊤), (ϕ?,⊥)
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incorporating strategies

wρE
〈G∪G′,S∪S′〉

X iff wρE
〈G,S〉

X or wρE
〈G′,S′〉

X

wρA
〈G∪G′,S∪S′〉

X iff wρA
〈G,S〉

X and wρA
〈G′,S′〉

X

wρE
〈Gd,S〉

X iff wρA
〈G,S〉

X

wρA
〈Gd,S〉

X iff wρE
〈G,S〉

X

wρi
〈G;G′,S;S′〉

X iff ∃Z : wρi
〈G,S〉

Z and for all z ∈ Z, zρi
〈G′,S′〉

X

wρE
〈ϕ?,⊤〉

X iff wρA
〈ϕ?,⊥〉

X iff wρE
ϕ?
X iff w ∈ [[ϕ]] and w ∈ X

wρA
〈ϕ?,⊤〉

X iff wρE
〈ϕ?,⊥〉

X iff wρA
ϕ?
X iff w 6∈ [[ϕ]] or w ∈ X

From game logics to logic games: a strategy perspective – p.20



incorporating strategies

Language:
γ := g | ϕ? | γ; γ | γ ∪ γ | γd

σ := s | ⊤ | ⊥ | σ;σ | σ ∪ σ

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | 〈γ〉ϕ | 〈(γ, σ), i〉ϕ

In the syntax for 〈(γ, σ), i〉, we require that σ ∈ Σ(γ), where, for each game γ, Σ(γ) is
defined inductively as follows:

Σ(g) = Σ

Σ(φ?) = {⊤,⊥}

Σ(γd) = Σ(γ)

Σ(γ; γ) = {σ;σ′ : σ ∈ Σ(γ) and σ′ in Σ(γ′)}

Σ(γ ∪ γ) = {σ ∪ σ′ : σ ∈ Σ(γ) and σ′ ∈ Σ(γ′) }
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incorporating strategies

Game Model:
M = (W, {ρg | g ∈ Γ}, {ρi〈g,s〉 | g ∈ Γ, s ∈ Σ}, V ),
ρig, ρ

i
〈g,s〉 ⊆W × P(W ), both monotonic, with ρig ⊇ ρi〈g,s〉 and

sρAgX iff it is not that sρEg (W \X).

Semantics:
M, w |= 〈(γ, σ), i〉ϕ iff there exists X ⊆ W : wρi〈γ,σ〉X and
for all x ∈ X : M, x |= ϕ.

From game logics to logic games: a strategy perspective – p.22



incorporating strategies

some valid statements and rules:

〈(γ, σ), E〉ϕ→ 〈γ,E〉ϕ

〈(γ ∪ γ′, σ ∪ σ′), E〉ϕ↔ 〈(γ, σ), E〉ϕ ∨ 〈(γ′, σ′), E〉ϕ

〈(γ ∪ γ′, σ ∪ σ′), A〉ϕ↔ 〈(γ, σ), A〉ϕ ∧ 〈(γ′, σ′), A〉ϕ

〈(γd, σ), E〉ϕ↔ 〈(γ, σ), A〉ϕ

〈(ϕ?,⊤), E〉ψ ↔ (ϕ ∧ ψ)

〈(ϕ?,⊤), A〉ψ ↔ (¬ϕ ∨ ψ)

if ⊢ ϕ→ ψ then ⊢ 〈(γ, σ), i〉ϕ→ 〈(γ, σ), i〉ψ

From game logics to logic games: a strategy perspective – p.23



questions and comments

using a ‘⊥’-like syntax for ‘no available strategy’ (as in
the test games), we can do away with the game
formulas, where 〈(γ,⊥), E〉ϕ will be equivalent to
¬〈γ,E〉ϕ.

complete axiomatizations.

can we discard the (un-intuitive) monotonicity condition
on the strategy forcing relations?
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questions and comments

adding game-strategy pair for the iteration operation:
do we have to consider the same strategy for iteration
game?

exploring the identical game-strategy pairs - algebraic
viewpoint.

bisimulation-invariant formulas - a correct notion.

representing evaluation games.
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evaluation game

propositional evaluation game:

∨ - move for ‘E’

∧ - move for ‘A’

¬ - players change roles, winning conditions get
interchanged.

a propositional formula - game form

a valuation - winning conditions
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evaluation game

ϕ = (p ∨ q) ∧ ¬(p ∧ q), V := p→ 1, q → 0.

equivalent c.n.f. = (p ∨ q) ∧ (¬p ∨ ¬q), only winning
conditions get altered.

gsV (ϕ) = 〈((p? ∨ q?) ∧ ((p?)d ∨ (q?)d), (⊤ ∨⊥)∧

(⊥ ∨⊤)), E〉⊤

↔ (〈(p?,⊤), E〉⊤ ∨ 〈(q?,⊥), E〉⊤)∧

(〈((p?)d,⊥), E〉⊤ ∨ 〈((q?)d,⊤), E〉⊤)
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evaluation game

formal representation:

atomic games: p?, atomic strategies: ⊤, ⊥

composite games: G ∪G′, G ∩G′, Gd

composite strategies: S ∪ S′, S ∩ S′

game frame (G): 〈{w}, ρEg = ρEg,⊤ = ρAg,⊤ = {w, {w}}〉

Given a propositional formula ϕ, and a propositional
valuation V , V |= ϕ iff (G, V ) |= gsV (ϕ).
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evaluation game

modal evaluation game:

propositional evaluation game

+

♦ - move for ‘E’

� - move for ‘A’

a modal formula + Kripke frame - game form

a valuation - winning conditions
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evaluation game

a finite model:

M = ({1, 2}, {(1, 1), (1, 2)}, V (p) = {1, 2}, V (q) = ∅)

ϕ = ♦♦⊤.

gsM,1(ϕ) = 〈((CE
11;C

E
11 ∨ C

E
12) ∨ C

E
12, (⊤;⊤ ∨⊤) ∨ ⊥), E〉⊤.

ϕ = ♦p ∨ ♦q.

gsM,1(ϕ) =
〈(CE

11 ∨ C
E
12,⊤ ∨⊤), E〉p ∨ 〈(CE

11 ∨ C
E
12,⊥ ∨⊥), E〉q.
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evaluation game

formal representation:

effort continues........

Thank you!
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