
Pushdown Automata and Context-Free
Grammars in Bisimulation Semantics

Jos Baeten

fellow CWI

emeritus ILLC UvA

LIRa, 16 February 2023



Pushdown Automata and Context-Free
Grammars in Bisimulation Semantics

� with Cesare Carissimo (Master of Logic, UvA, now ETH)
and Bas Luttik (Eindhoven University of Technology)

� arXiv:2203.01713
� preliminary version, CALCO 2021
� extended version, to appear in special issue in LMCS



What is a computation?

� Church-Turing Thesis
� Given by a Turing machine: input at begin, deterministic steps,

output at end
� A computation is a function
� Models a deaf, dumb and blind computer (before advent of

terminal)
� Far removed from a modern-day computer as students see all

around them



Reactive Systems
“A Turing machine cannot drive a car, but a real computer
can!”



Interaction

User interaction: not just initial, final word on the tape.

Make interaction between control and memory explicit.

Integration of automata theory and process theory.

Aim to develop course on foundations of computer science for all
first-year computer science students.
Course in Master of Logic: Computability and Interaction



Reactive Turing Machine

Defined in I&C 2013 with Bas Luttik and Paul van Tilburg

Executability instead of computability, but not more expressive

Robustness: π-calculus (Robin Milner) is the λ-calculus with
interaction (with Bas Luttik and Fei Yang)



Well-known theorem

A language can be defined by a pushdown automaton iff it can be
defined by a context-free grammar.

A process can be defined by a pushdown automaton iff it can be
defined by a finite guarded sequential recursive specification, with
a notion of state awareness added.



Well-known theorem

A language can be defined by a pushdown automaton iff it can be
defined by a context-free grammar.

A process can be defined by a pushdown automaton iff it can be
defined by a finite guarded sequential recursive specification, with
a notion of state awareness added.



Definition

A language is a language equivalence class of process graphs.

A process is a bisimulation equivalence class of process graphs.

A process graph is a non-deterministic automaton, possibly infinite.
A process graph is a labelled transition system with an initial state.



Definition

A language is a language equivalence class of process graphs.

A process is a bisimulation equivalence class of process graphs.

A process graph is a non-deterministic automaton, possibly infinite.
A process graph is a labelled transition system with an initial state.



Bisimulation

p↔ q, p is bisimilar to q if there is a symmetric binary relation R
with p R q satisfying the following conditions:

1. whenever s R t and s a−→ s′, there is t′ such that t a−→ t′ and
s′ R t′; and

2. whenever s R t and s↓, then t↓.



Pushdown Automaton

↑ ↓
a[ε/1]
a[1/11]
b[1/ε]

c[ε/ε]
c[1/1]

b[1/ε]

(↑, ε) (↑, 1) (↑, 11) . . .

(↓, ε) (↓, 1) (↓, 11) . . .

a a a

bbb

bbb

c c c

Bounded branching.



Context-Free Processes

� Use SOS to give automata for syntax 0,1, a., ;,+

� (Used this to tackle the theorem since CONCUR 2008)

1 ↓ a.p
a−→ p

p
a−→ p′

(p+ q)
a−→ p′

q
a−→ q′

(p+ q)
a−→ q′

p ↓
(p+ q) ↓

q ↓
(p+ q) ↓

p
a−→ p′

p ; q
a−→ p′ ; q

p ↓ q
a−→ q′

p ; q
a−→ q′

p ↓ q ↓
p ; q ↓



Context-Free Processes

� Use SOS to give automata for syntax 0,1, a., ;,+

� (with Bas Luttik and MSc student Astrid Belder)

1 ↓ a.p
a−→ p

p
a−→ p′

(p+ q)
a−→ p′

q
a−→ q′

(p+ q)
a−→ q′

p ↓
(p+ q) ↓

q ↓
(p+ q) ↓

p
a−→ p′

p ; q
a−→ p′ ; q

p ↓ p 6→ q
a−→ q′

p ; q
a−→ q′

p ↓ q ↓
p ; q ↓



The difference

X
def
= a.(X ; Y ) + b.1 Y

def
= c.1+ 1 .

X XY XY 2 XY n−1 XY n

1 Y Y 2 Y n−1 Y n

a a a

b b b b b

ccc

c
c

c

c
c

c

Unbounded branching.



Recursion

p
a−→ p′ (N = p) ∈ E

N
a−→ p′

p ↓ (N = p) ∈ E
N ↓

Limit to finite guarded recursive specifications.



Guardedness necessary

X
def
= 1+X ; a.1 .

X

(a.1)0 (a.1)1 (a.1)2 (a.1)3

a a a a

aaa

a

a

Infinitely branching.



Axiomatization: distributivity not valid

x+ y = y + x

x+ (y + z) = (x+ y) + z

x+ x = x

(x+ y) ; z = x ; z + y ; z

(x ; y) ; z = x ; (y ; z)

x+ 0 = x

0 ; x = 0

x ; 1 = x

1 ; x = x

(a.x) ; y = a.(x ; y)



Axiomatization requires auxiliary operator

NA(0) = 0

NA(1) = 0

NA(a.x) = a.x

NA(x+ y) = NA(x) +NA(y)

NA(x+ y) ; z = NA(x) ; z +NA(y) ; z

(a.x+ y + 1) ;NA(z) = (a.x+ y) ;NA(z)

(a.x+ y + 1) ; (z + 1) = (a.x+ y) ; (z + 1) + 1



Sound and Ground-Complete

Theorem: This axiomatization is sound and ground-complete.
Proof: By elimination of operators ; and NA.

Moreover, for guarded recursion we have a Head Normal Form
Theorem: Every process expression can be written in the form
p = (1+)

∑n
i=1 ai.pi.

As a consequence, every guarded specification can be brought
into Greibach Normal Form X = (1+)

∑n
i=1 ai.αi (αi a sequence of

identifiers), and every state in the process graph is given by a
sequence of identifiers.



Sound and Ground-Complete

Theorem: This axiomatization is sound and ground-complete.
Proof: By elimination of operators ; and NA.

Moreover, for guarded recursion we have a Head Normal Form
Theorem: Every process expression can be written in the form
p = (1+)

∑n
i=1 ai.pi.

As a consequence, every guarded specification can be brought
into Greibach Normal Form X = (1+)

∑n
i=1 ai.αi (αi a sequence of

identifiers), and every state in the process graph is given by a
sequence of identifiers.



Context-free Grammar
A recursive specification for the process of {anbn | n ≥ 0} is

X = 1+ a.Y

Y = b.1+ a.Y ; b.1

A recursive specification for the always accepting stack is

S = 1+
∑
d∈D

push(d).Td ;S

Td = 1+ pop(d).1+
∑
e∈D

push(e).Te ;Td



Context-free Grammar
A recursive specification for the process of {anbn | n ≥ 0} is

X = 1+ a.Y

Y = b.1+ a.Y ; b.1

A recursive specification for the always accepting stack is

S = 1+
∑
d∈D

push(d).Td ;S

Td = 1+ pop(d).1+
∑
e∈D

push(e).Te ;Td



Theorem 1

For every finite guarded sequential specification there is a
pushdown automaton with the same process (with two
non-bisimilar states).

Proof: carefully encode (intermediate) acceptance, remove
redundant acceptance ((a.1+ 1) ; b.1↔ a.1 ; b.1). The stack
contains sequences of identifiers of the specification,
non-accepting identifiers followed by accepting identifiers.



Theorem 1

For every finite guarded sequential specification there is a
pushdown automaton with the same process (with two
non-bisimilar states).

Proof: carefully encode (intermediate) acceptance, remove
redundant acceptance ((a.1+ 1) ; b.1↔ a.1 ; b.1). The stack
contains sequences of identifiers of the specification,
non-accepting identifiers followed by accepting identifiers.



Theorem 2

For every one-state pushdown automaton there is a finite guarded
sequential specification with the same process.

Proof: Use an identifier for the initial state and an identifier for each
data element. A step of the pushdown automaton corresponds to a
summand of an equation in the specification.



Theorem 2

For every one-state pushdown automaton there is a finite guarded
sequential specification with the same process.

Proof: Use an identifier for the initial state and an identifier for each
data element. A step of the pushdown automaton corresponds to a
summand of an equation in the specification.



Theorem 3

There is a pushdown automaton with two states, such that there is
no finite guarded sequential specification with the same process.



Pushdown Automaton

↑ ↓
a[ε/1]
a[1/11]
b[1/ε]

c[ε/ε]
c[1/1]

b[1/ε]

(↑, ε) (↑, 1) (↑, 11) . . .

(↓, ε) (↓, 1) (↓, 11) . . .

a a a

bbb

bbb

c c c



Proof
Suppose not, there is a specification in Greibach normal form.
There is a sequence of identifiers corresponding to each state
(↑, 1i). For k large enough, there is a repetition in the first elements
of these sequences up to k, i.e. Xn = Xm for n < m ≤ k. Xn can
execute at most one c and n b’s before executing an a, so since the
sequence starting with Xm can execute m consecutive b’s, it must
reach the second identifier, so this identifier can initially execute a
c. But the sequence starting with Xm can also execute a c followed
by m consecutive b’s, so this must also reach the second identifier.
Now a second c can be executed, and this is a contradiction.

We see the contradiction is reached, because when we reach the
second identifier, we do not know in which state of the pushdown
automaton we are, a top state or a bottom state.



Proof
Suppose not, there is a specification in Greibach normal form.
There is a sequence of identifiers corresponding to each state
(↑, 1i). For k large enough, there is a repetition in the first elements
of these sequences up to k, i.e. Xn = Xm for n < m ≤ k. Xn can
execute at most one c and n b’s before executing an a, so since the
sequence starting with Xm can execute m consecutive b’s, it must
reach the second identifier, so this identifier can initially execute a
c. But the sequence starting with Xm can also execute a c followed
by m consecutive b’s, so this must also reach the second identifier.
Now a second c can be executed, and this is a contradiction.

We see the contradiction is reached, because when we reach the
second identifier, we do not know in which state of the pushdown
automaton we are, a top state or a bottom state.



Signals and conditions

� The visible part of the state of a process is a proposition, an
expression in propositional logic

� Fix a Boolean algebra B, with constants true, false, logical
connectives, freely generated by generators P1, . . . , Pn

(propositional variables).
� φ :→ x is guarded command
� φ∧Nx is root signal emission
� Comes with a valuation in every state of the transition system:

execution of a in state s with valuation v results in state t with
valuation v′ = effect(a, v).

� Stateless bisimulation: in each state, consider again all
possible valuations



〈1, v〉 ↓
v′ = effect(a, v)

〈a.p, v〉 a−→ 〈p, v′〉
〈p, v〉 a−→ 〈p′, v′〉

〈NA(p), v〉 a−→ 〈p′, v′〉

〈p, v〉 a−→ 〈p′, v′〉
〈p+ q, v〉 a−→ 〈p′, v′〉 likewise q + p

〈p, v〉 ↓
〈p+ q, v〉 ↓ likewise q + p

〈p, v〉 ↓ 〈q, v〉 ↓
〈p ; q, v〉 ↓

〈p, v〉 a−→ 〈p′, v′〉
〈p ; q, v〉 a−→ 〈p′ ; q, v′〉

〈p, v〉 ↓ 〈p, v〉9 〈q, v〉 a−→ 〈q′, v′〉
〈p ; q, v〉 a−→ 〈q′, v′〉

〈p, v〉 a−→ 〈p′, v′〉 X
def
= p

〈X, v〉 a−→ 〈p′, v′〉
〈p, v〉↓ X

def
= p

〈X, v〉↓

〈p, v〉 a−→ 〈p′, v′〉 v(φ) = true

〈φ :→ p, v〉 a−→ 〈p′, v′〉
〈p, v〉 ↓ v(φ) = true

〈φ :→ p, v〉 ↓



Guarded Command

true :→ x = x
false :→ x = 0
(φ ∨ ψ) :→ x = (φ :→ x) + (ψ :→ x)
(φ ∧ ψ) :→ x = φ :→ (ψ :→ x)
φ :→ (x+ y) = (φ :→ x) + (φ :→ y)
φ :→ (x ; y) = (φ :→ x) ; y
φ :→ NA(x) = NA(φ :→ x)

(NA(x) + φ :→ 1) ; (NA(y) + ψ :→ 1) =

= NA(x) ; (NA(y) + ψ :→ 1) + (φ ∧ ψ) :→ 1

No elimination.



Root Signal Emission

Cons(〈0, v〉) Cons(〈1, v〉) Cons(〈a.p, v〉)

Cons(〈p, v〉) Cons(〈q, v〉)
Cons(〈p+ q, v〉)

Cons(〈p, v〉)
Cons(〈φ :→ p, v〉)

Cons(〈p, v〉) v(φ) = true

Cons(〈φ∧Np, v〉)

Cons(〈p, v〉) 〈p, v〉 6↓
Cons(〈p ; q, v〉)

〈p, v〉 ↓ Cons(〈q, v〉)
Cons(〈p ; q, v〉)

Cons(〈p, v〉)
Cons(〈NA(p), v〉)

Cons(〈p, v〉) X
def
= p

Cons(〈X, p〉)



Cons(〈p, v′〉) v′ = effect(a, v)

〈a.p, v〉 a−→ 〈p, v′〉

〈p, v〉 a−→ 〈p′, v′〉 Cons(〈q, v〉)
〈p+ q, v〉 a−→ 〈p′, v′〉 〈q + p, v〉 a−→ 〈p′, v′〉

〈p, v〉 ↓ Cons(〈q, v〉)
〈p+ q, v〉 ↓ 〈q + p, v〉 ↓

〈p, v〉 a−→ 〈p′, v′〉 Cons(〈p′ ; q, v′〉)
〈p ; q, v〉 a−→ 〈p′ ; q, v′〉

〈p, v〉 a−→ 〈p′, v′〉 v(φ) = true

〈φ∧Np, v〉 a−→ 〈p′, v′〉
〈p, v〉 ↓ v(φ) = true

〈φ∧Np, v〉 ↓



Axiomatization

true ∧Nx = x
false ∧Nx = false ∧N0
a.(false ∧Nx) = 0
(φ∧Nx) + y = φ∧N(x+ y)
φ∧N(ψ∧Nx) = (φ ∧ ψ)∧Nx
φ :→ (ψ∧Nx) = (¬φ ∨ ψ)∧N(φ :→ x)
φ∧N(φ :→ x) = φ∧Nx
φ∧N(x ; y) = (φ∧Nx) ; y
φ∧NNA(x) = NA(φ∧Nx)



Head Normal Form

Can write every process expression in the form

p =

n∑
i=1

φi :→ ai.pi + ψ∧Nχ :→ 1

(ψ the root signal, χ the acceptance condition)

Reduce HNF: for some v, v(φi ∧ ψ) = true and
Cons(〈pi, effect(ai, v〉)).
Reset property: the effect makes every propositional variable true.

a.(¬P1 ∨ · · · ∨ ¬Pk)∧Nx = 0



Head Normal Form

Can write every process expression in the form

p =

n∑
i=1

φi :→ ai.pi + ψ∧Nχ :→ 1

(ψ the root signal, χ the acceptance condition)
Reduce HNF: for some v, v(φi ∧ ψ) = true and
Cons(〈pi, effect(ai, v〉)).
Reset property: the effect makes every propositional variable true.

a.(¬P1 ∨ · · · ∨ ¬Pk)∧Nx = 0



Axiomatization

The axiomatization (including the reset axiom) is sound and
ground-complete.

Give a semantics in terms of process graphs, not depending on
valuations:
Suppose the root signal of t is not false. Define
� t

a−→ s iff for all valuations v such that Cons(〈t, v〉) we have
〈t, v〉 a−→ 〈s, effect(a, v)〉,

� t ↓ iff for all valuations v such that Cons(〈t, v〉) we have 〈t, v〉 ↓.
Makes all undetermined guarded commands false.



Axiomatization

The axiomatization (including the reset axiom) is sound and
ground-complete.

Give a semantics in terms of process graphs, not depending on
valuations:
Suppose the root signal of t is not false. Define
� t

a−→ s iff for all valuations v such that Cons(〈t, v〉) we have
〈t, v〉 a−→ 〈s, effect(a, v)〉,

� t ↓ iff for all valuations v such that Cons(〈t, v〉) we have 〈t, v〉 ↓.
Makes all undetermined guarded commands false.



Example: coin toss

tails

heads

toss

toss

toss

toss

hurray

T
def
= toss.(heads ∧N1) + toss.(tails ∧N1)

S
def
= T ; (heads :→ hurray .1+ tails :→ S)



Theorem 4

For every pushdown automaton there is a guarded sequential
specification with signals and conditions with the same process.

S = a.(state ↑ ∧NA ;(state ↑:→ S + state ↓:→ 1)) + c.(state ↓∧N1)

A = state ↓:→ b.(state ↓∧N1) +

+ state ↑:→ (a.(state ↑∧NA;A) + b.(state ↑∧N1) + c.(state ↓∧NA)).



Pushdown Automaton

↑ ↓
a[ε/1]
a[1/11]
b[1/ε]

c[ε/ε]
c[1/1]

b[1/ε]

(↑, ε) (↑, 1) (↑, 11) . . .

(↓, ε) (↓, 1) (↓, 11) . . .

a a a

bbb

bbb

c c c



Theorem 5

For every guarded sequential specification with signals and
conditions there is a pushdown automaton with the same process.



Conclusion

Interaction is a key ingredient of any computer.
A model of computation needs to incorporate interaction.
Aim is a full integration of automata theory and process theory.
Result is a richer and more refined theory.
Turn lecture notes into a text book:
Models of Computation based on Automata: Formal Languages
and Communicating Processes.



Current Work

A language can be defined by a parallel pushdown automaton iff it
can be defined by a commutative context-free grammar.

A process can be defined by a parallel pushdown automaton iff it
can be defined by a finite guarded parallel recursive specification,
with communication (including asymmetric communication) added.

Data structure of a bag instead of a stack, multisets instead of
sequences.



Current Work

A language can be defined by a parallel pushdown automaton iff it
can be defined by a commutative context-free grammar.

A process can be defined by a parallel pushdown automaton iff it
can be defined by a finite guarded parallel recursive specification,
with communication (including asymmetric communication) added.

Data structure of a bag instead of a stack, multisets instead of
sequences.



Current Work

A language can be defined by a parallel pushdown automaton iff it
can be defined by a commutative context-free grammar.

A process can be defined by a parallel pushdown automaton iff it
can be defined by a finite guarded parallel recursive specification,
with communication (including asymmetric communication) added.

Data structure of a bag instead of a stack, multisets instead of
sequences.


