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Causality, Interventions and Counterfactuals

Pearl’s causal models have become the standard/dominant
approach to representing and reasoning about causality.

The setting is based on the ‘static’ notion of causal graphs, but it
also makes an essential use of the ‘dynamic’ notion of causal
interventions.

In particular, Halpern and Pearl used this setting to define and
investigate various notions of actual causality.

As noted by many, causal interventions have an obvious
‘counterfactual’ flavor.

But... their relationship with the counterfactual conditionals
(a la Lewis-Stalnaker) has remained murky! A lot of confusion
surrounds this topic, affecting even the crucial contributions of
(Galles & Pearl 1998), (Halpern 2000, 2019), (Briggs 2012),
(Halpern 2013), (Zhang 2013) etc.



This Talk

The purpose of this talk is threefold:
1. understand interventions as dynamic modalities (rather than
conditionals);
2. elucidate the relationship between dynamic intervention
modalities and counterfactual conditionals;

3. formalize and completely axiomatize a Causal Intervention
Calculus (CIC), that is general enough to give a causal
meaning to arbitrary Lewis conditionals, but also expressive
enough to capture the various notions of actual causality
proposed in the literature.



0. Preliminaries: Causal Signatures

Signature: a structure S = (V,V =J,, Vi, F'), where:

>

>

V ={Xo,X1,...,Xn} is a finite set of causal variables,
some being designated as exogenous, and the others as
endogenous.

For simplicity, | assume only one exogenous variable: Xj.
Causal variables are ‘empirical’ variables, having intrinsic
meaning, e.g. denoting time, velocity, temperature, etc
(unlike FOL variables, which are simple placeholders).

V =, Va is a set of (multi-sorted) logical variables
(which are variables in the sense of FOL: simple placeholders);
here, for each n > 0, V;, = {zy, yn,...} is a (finite or
countably infinite) set of logical variables of type/sort X,,;

F is a map associating to each endogenous variable X,, (with
n > 1) some function symbol F), of arity N = |V| — 1.

NOTE: The standard notion of causal signature in the literature
includes only causal variables. The set V of logical variables is my

addition, allowing us to denote (and quantify over) values.
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Causal Models

Model (over a signature S = (V,V, F)):
a structure M = (R, F), consisting of:

> a map R assigning to each causal variable X,, € V some
non-empty range of values R;

» a structural map F, assigning to each endogenous variable
X, € Var (with n > 1) some ‘structural’ causal function
FniRoX - Rpo1 X Rys1 X - X Ry = Ry, of arity
N =1V -1

A context u is an assignment of values to the exogenous
variable(s): in my simplified presentation, this is just a value
u € RXo i

An assignment is a map «, assigning to each logical variable z,
of type X, some value a(x,) € R,.

A state is a pair s = (u,«) of a context u and an assignment «.



Local dependence (direct and indirect)

Given a context u € Ry, the (local) direct dependence relation
at u is a relation X, ~», X, ((“X,, directlu affects X, in context
u ") between variables X,, and X,,, defined for n > 0 by:

Xy~ X iff m#0,n and Vi # 0,n,m 3z; € R; Jzn, 2, € Ry sit.

Fon(uy 1y Ty ooy IN) 7 Fin(Uy 1, oo X0y TN);

while for n = 0, we set
Xo ~y X iff m >0 and Vi > 0(X,, 4 Xn).

The (local) indirect dependence relation X <, Y (“X affects YV
in context u ") is the reflexive-transitive closure of the relation

X ~,Y:

X =<, Y says that there exists a finite chain of variables that start
with X and end with Y, s.t. each variable directly affects the next

one.
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Recursive models

A causal model M is recursive if, for every context u € Ry, the
indirect dependence relation =<, is a partial order (-or equivalently,
the direct dependence relation is acyclic).

NOTE: If M is recursive, then each relation < structures the set of
variables V into a rooted tree, having the exovariable X as its
(unique) root.

Most of the literature on causality (including all known logical
axiomatizations of interventions) assume that the causal model is
recursive.

So from now | will restrict the setting to recursive models.



1. Interventions as dynamic transformations

Given a causal model M = (R, F), an endogenous variable
X, € Var — {Xo} and a value a € R,,, the result of the
intervention X,, < a on the model M is the model

MXnea _ (R’an%a%

obtained by putting:

> FXn<a .= g (the constant function that maps every value
b € R, into a), and

> FXnea .= F, in rest (for all m # n).



Multi-variable Interventions

For a tuple X = (Xj,, ..., X;,) of endogenous variables and a
corresponding tuple of values @ = (a1, ...,a;) € Riy X -+ R;,, we
can similarly define the result of the intervention X < @ on the
model M = (R, F) to be the model

MX<—E — (R fX:(—c_i)
obtained by putting:

» FX<d.— g, and

in

> FXed = £ forallm & {1, ... i)



Reduction to repeated single-variable interventions

It is easy to see that multi-variable interventions are reducible to
compositions of single-variable interventions:
given X = (Xil,.. . 7Xik) and d = (al,...,ak) S sz X -'"Rik,
we have .

MX<—5 — ((MXi1<—a1) L. )Xik(—ak'

This is why in our logical language we will only consider as
primitive the dynamic modalities [X « x] for single-variable
interventions (and defined the others as abbreviations).
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Intervention Operators

Judea Pearl first proposed intervention operators, which were
then formalized in (Galles & Pearl 1998) and axiomatized in
(Halpern 2000), then generalized in (Briggs 2012), (Halpern
2013), (Zhang 2013), etc.

For formulas ¢ (in some formal language), states s = (u,«) in a
recursive model M, strings X of endogenous variables and
matching strings @ of values, we put:

sEu X e i sEyxoay
Most of these authors take this to be a kind of causal conditional
(X = a@)0— ¢ ("if the values of X were @, then ¢ would hold™)
and compare it with counterfactual conditionals in the
Lewis-Stalnaker tradition. But... not all their properties match!
However, Pearl and Halpern were aware of the analogy with

—

dynamic modalities, as witnessed by their notation [)2 + dj
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Dynamic operators

Dynamic modalities [a] (“after action « is performed, ¢ will be
true) occur in formalisms such as PDL (Propositional Dynamic
Logic), PAL (Public Announcement Logic), DEL (Dynamic
Epistemic Logic), QDL (Quantum Dynamic Logic) etc.

Their standard semantics is the usual Kripke-relational semantics:
given a set W of “possible worlds” or ‘states’, endowed with an
accessibility relation R, (the “transition relation”), the operator
[a] is the Kripke modality for R,; i.e.

w = [o]e iff Vo' (wRaw' = o' = )

In fact, PAL and DEL use a variation of this semantics in which
the accessibility relations R, are between models, or more
precisely go from a world w in the current model M to a world w’
in an updated model M’.

At an abstract level, these can still be subsumed under the general
pattern of a Kripke modality, if we take as our “worlds” to be the

model-world pairs (M, w). b



Test modalities

In the particular case of ‘test’ actions « :=7l¢) (that in some sense
correspond to ‘testing’, ‘observing’ or ‘announcing’ a proposition
1), the corresponding relations Ry, will be indexed by propositions.

EXAMPLES: PDL “test” [?4]p (in programming), public
announcement operator [!1]p, private announcement [l,]¢] to
some agent a, quantum tests [?,1]¢p, etc.
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Interventions as dynamic modalities

To package intervention operators [ap as dynamic modalities, we
have to think of our “worlds” as pairs w = (M, s) consisting of a
causal model M and a state s = (u, ) for this model.

Furthermore, we introduce accessibility relations R)?<—,4Y between
“worlds”, defined by:

(M, S)R)@—E

Then the semantics of intervention operators becomes a special
case of the standard Kripke semantics for dynamic modalities: in
fact, a special case of the above-mentioned propositionally-indexed
dynamic modalities [?!4]¢, with ¥ := (X = ).

Nevertheless, this does NOT show that these are counterfactuals

of the form (X = @)0— ¢.

The static formula X = @ is one of the effects (results) of the
intervention X < d@; but the intervention is not reduceable to this
effect. The “world” (MX% s) is not necessarily the closest world
to (M. s) that satisfies the effect X = 4. 14

(M, ') iff M' =M% and s =5



Interpretation

In general, it's best to think of interventions, not necessarily as
“actual” actions (that may happen in a given world or model), but
as counterfactual actions: abstract manipulations of the causal
structure, that happen to the model (world).

However, for practical applications, it is essential that sometimes
such interventions can also be actually performed in the world (e.g.
controlled experiments).
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Relationship with counterfactual conditionals

There is a persistent confusion in the literature between
intervention modalities and counterfactual conditionals.

Pearl and others claimed that intervention modalities constitute a
new, better semantics for counterfactual conditionals, one that is
‘structural’ or ‘causal’, i.e. based on the causal structure of the
world, rather than on comparative similarity. Others claimed that
the structural counterfactuals are a special case of Lewis
counterfactuals, in which comparative similarity is based on
causality.

| will argue that interventions can be used to define a causal-based
notion of counterfactual conditionals, but that these are not
exactly the same as the intervention modalities. Still, the two are
interdefinable.

Moreover, the notion of counterfactual conditional obtained in this
way falls well within the frame of Lewis’ account!
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RECALL: Stalnaker conditionals

Stalnaker's semantics for conditionals assumes given a selection
function f(w,):

for every possible world w € W and every proposition (expressed
by some sentence) 1, the function f selects some world

f(w, ) € W, interpreted as “the closest i)-world to w".

The selection function f is required to satisfy a number of
semantic conditions, including CENTERING:

if w =1, then f(w,v) = w.

Stalnaker’s semantical clause for the conditional ¢)0— ¢ is

w = YO= ¢ iff flw, ) = .

17



RECALL: Lewis conditionals

Lewis generalized this, by dropping the uniqueness of the “closest

world":
the selection functions f now associates a (possibly empty) set of
worlds f(w,p) C W to every world w and proposition ¢.

Once again, a number of conditions are required for Lewis
conditionals. In particular, CENTERING comes now in a strong
version (“STRONG CENTERING")

if w =, then f(w,¢) = {w},
and a weak version (“WEAK CENTERING")
if wE @, then w € f(w, ).
Lewis' semantical clause for the conditional ¥O— ¢ is

w = YO— ¢ iff w = ¢ for every w' € f(w,).
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Equivalent presentation: comparative similarity relations

An equivalent presentation of Lewis conditionals uses comparative
similarity relations between worlds w, w’, w” € W:

/ "
W < W

means that w' is ‘at least as close to w as w"” (i.e. w' is at
least as similar to w as w").

Once again, there are a number of requirements: comparative
similarity is reflexive, transitive, total (i.e. every two worlds are
comparable: either w' <, w” or w” <, w'), and satisfies WEAK
CENTERING

w <, w'.
The selection function f(w,) can be taken to be the set of
closest 1-worlds:

Fw,¥) == (W e W:w =&V (W ¢ =w <4 w’)}
Every selection function f satisfying Lewis’ conditions can be

represented in this way. i



Conditionals as ‘test’ modalities

Lewis conditionals ¢yO0— ¢ can be considered as a very special
case of test modalities [7!)]p:

by taking the proposition-indexed relation R, given by
wRyw' iff w' € f(w,),

and applying the above-mentioned Kripke/relational semantics for
test modalities, we obtain the Lewis/Stalnaker conditional as a
special case!
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Going backwards: dynamic modalities as “generalized
conditionals” ?

In a trivial sense, the Kripke semantics of any test modality [?!¢]¢
can be considered as a ‘wild generalization’ of conditionals: if we
take as our Stalnaker-Lewis selection function to be

. /. /
then the relational /dynamic semantics becomes “the same” as the
selection-function semantics.

Arbitrary dynamic modalities [« can be considered as a further,
even “wilder”, generalization.

NOTE though that these ‘selection functions’ will not necessarily
satisfy any of the Stalnaker-Lewis conditions.

So this repackaging of dynamic Kripke semantics does NOT show
that all dynamic modalities are counterfactual conditionals!
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Pearl on causal counterfactuals

The confusion between interventions and causal counterfactuals
originates from Pearl himself (Pearl 1998, 2000) and was clearly
spelled out in (Galles and Pearl 1998).

They read [)? < @y as some kind of counterfactual conditional
(X = @)0— v, and claim that all Lewis’ axioms hold for this
interpretation.

But... this is an artifact of their restrictions on the language: both
they and (Halpern 2000) use a very restricted syntax, consisting
essentially of propositional logic based on atoms of the form

X =a

(where X is any causal variable and a is any value), as well as on
intervention operators of the form

(X « dle,

where ¢ is itself a conjunction of formulas of the form X =a.



Pearl's comparative similarity

Galles and Pearl simply ignore the Lewis axioms that cannot be
even expressed in their language (since they involve disjunctions).
Moreover, the Lewis axiom of Modus Ponens for Counterfactuals
only holds for conjunctions of formulas of the form X = a!

To compare with Lewis' account, Galles and Pearl take the
“worlds” to be causal-variable assignments, and they define
the distance d(w,w’) as the minimal number of local
interventions needed for transforming w into w’.

This gives rise to a natural notion of comparative similarity: world
w' is at least as similar to w as a world w” iff d(w,w") < d(w,w”).

They seem to believe that intervention modalities can be thought
of as Lewis conditionals based on this notion of similarity (but they
are not clear on this, so | am not sure they actually believe this).

Pearl reiterates the same claims (more explicitly) in his book on
Causality.

23



Briggs and Zhang

Briggs 2012 starts by noting that:

“A number of recent authors (Galles and Pearl 1998; Hid-
dleston 2005; Halpern 2000) advocate a causal modeling
semantics for counterfactuals. But the precise logical sig-
nificance of the causal modeling semantics remains murky.
Particularly important, yet particularly under-explored, is
its relationship to the similarity-based semantics for coun-
terfactuals developed by Lewis (Counterfactuals 1973)."

Then Briggs... proceeds to add to this murkiness, by treating
intervention modalities and Lewis counterfactuals as is they are
two different versions of the same thing!
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Briggs' “common framework”

Specifically, Briggs reformulates the intervention semantics into a
selection-based unified setting (for both Lewis’ similarity semantics
and causal modelling): Brigg's so-called “common framework”,
based on selection functions (not necessarily satisfying the
Lewis-Stalnaker conditions).

That seems pretty obvious and rather trivial: as we already saw
(and it was known for a long time), the Kripke-style semantics of
any formula-indexed relational modality [¢7!?]1) based on some
underlying relation R, (and in particular any dynamic modality,
even the kind that involves changes of model: public
announcements, upgrades, quantum test etc) can be reformulated
in terms of “set-valued selection functions” f(w,¢) (-albeit ones
that do not necessarily satisfy any of the requirements that are
specific to conditionals).
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Further complications

To avoid having set-valued selection functions, Briggs adopts
Fine's truthmaker semantics (in which sets of states are thought of
as “worlds"): but in this case, this move just complicates the
semantics further, for no good reasons and no clear benefits!

By this trick, Briggs can maintain Pearl’s reading of [X' + d)y as
some kind of counterfactual conditional (X = @)0— 1 (albeit of a
very non-standard kind), without relying on Pearl’s proposal of
intervention-based comparative similarity.

But, of course, this is just wrong: not every formula-indexed
Kripke modality gives is a “conditional” (not even speaking of a
counterfactual conditional), but only those satisfying the
Lewis-Stalnaker conditions (or closely related ones).
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No Weak Centering: failure of Modus Ponens

All these authors have problems generalizing this semantics from
the very restricted format of Galles and Pearl to the arbitrary
format of Lewis conditionals ¥O— ¢.

Briggs has a generalization, but only when the premise 1 contains
no instances of the conditional operator O—: so no nested
‘conditionals’.

In particular, Weak Centering fails in this system. Briggs derives
very radical conclusions from this generalization:

“The extended language is unlike any logic of Lewis's:
modus ponens is invalid (for counterfactuals—my note),
and classical logical equivalents cannot be freely substi-
tuted in the antecedents of conditionals.”

| think this simply shows that Briggs' notion of “causal
counterfactuals” is not the right one: intervention modalities are

NOT the same as causal counterfactuals.
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Causal counterfactuals versus intervention modalities

| will argue that the confusion arises from the identification of
“worlds” with causal-variable assignments (‘states’), while
interventions are in fact model-changing operations.

So, to faithfully compare causal modelling with Lewis semantics,

one needs to identify the “worlds” with the models themselves, or

rather with the pairs (model, state).

It is then very easy to introduce natural notions of comparative
similarity relations between causal models, that satisfy all Lewis
conditions (including Weak Centering, in fact even Strong
Centering).
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Various similarity relations

In fact, there are several different such notions, which implement
different views on how “miraculous” is a given intervention.

One of these is essentially the one proposed by Galles and Pearl
(counting the number of variables that are being intervened upon),
except that it has to be lifted to the level of models.

Another natural proposal involves counting the number of causal
links that are being disconnected by a given intervention:
intervening upon a variable X that corresponds in the causal graph
to a node with many parents is a “bigger” intervention that one
acting only upon a variable Y with very few parents.

Finally, we might also count the number of value-changes: i.e. the
number of variables whose values are different between the two
assignments; but in this case, we need to choose a way to compare
the relative size of value-changes and causal changes.

All the resulting causal conditionals will automatically satisfy all

the axioms of Lewis' counterfactual logic. 2



The Difference: causality disruption

But recall that an intervention X + @ changes the “world"”
(model) in three ways:

1. the value of X is ‘fixed’ to @ (i.e. X = @ becomes true);

2. the variables in X become independent from all the others
(i.e. their backwards-causal connections are disrupted);

3. as in a Stalnaker-Lewis conditional, this is in some sense the
minimal change that satisfies (1) and (2).

Hence, the intervention modalities CANNOT be identified with
causal conditionals having the same premise (of the form X = a)!
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The hidden premise: independence

Instead, intervention modalities can be recovered as conditionals
only if we add an independence requirement to the premise,
strengthening it to X = @ A Indep(X).

The reason is precisely the fact that interventions do not just
change/reassign values to variables, but also disrupt causality,
erasing the causal dependence between the (intervened) variables
and their parents.

This explains the apparent failure of Weak Centering in Briggs'’
setting: her formalization simply fails to incorporate the required
independence in the premises of her counterfactuals.
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Distance between causal models

We'll adopt the first notion of distance: counting the number of
variables that are being intervened upon.

The quasi-distance d(M, M') between two causal models M and
M’ is the size of the minimal intervention converting M into M’

(i.e. the number of variables whose structural equations are
different in M’ from M).

This means that
d(M,M") = |Y],
if |Y'| is the length of the minimal tuple of variables ¥ s.t.

M’ = MY* for some tuple of values @.
If no such tuple exists, then we have

d(M,M") = oo
Note that the quasi-distance is indeed a quasi-metric rather than a
metric (since in general symmetry does not hold, and in fact it

doesn't make sense: M and M’ can be causal submodels of each
other only when M = M"). 32



Comparative similarity

But the quasi-distance still gives rise to a comparative similarity
relation between “worlds” as (model, state) pairs w = (M, s):

(M, ") Z(prsy (M",8") iff d(M,M") < d(M,M") and s = 5" = 5"

This is really the same natural notion of “distance” proposed by
Galles and Pearl, except that we consider it in its appropriate
setting: as a measure of similarity between model-state pairs (not
between variable assignments).

By unfolding in this setting the Lewis’ definition of counterfactuals
we obtain the following semantics, for a given model M, state

s = (u,a) and formulas ¢ and ¥:

s Em eO— 1 iff  either VX,&' (s I#MXH; SO) or

3X,a (s =, %ea @ and v?,5(|37| < |X| implies s, v ;o= ¢)j
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Full Independence

For every tuple X = (X, ... , X, ) of endovariables
X; € Var — {Xo}, we use the abbreviation

Indep(X) := /\ Y 4 X
YeVar—{Xo}

for the formula saying that every endovariable in Xis fully
independent (in the current context) from all other endovariables.

With these notions, we can now spell out the connection between
dynamic intervention modality and causal-counterfactual
conditionals.
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The correct relationship

Proposition Given a causal submodel N of the model M, NXHT
is the (unique) closest submodel (most similar) to N satisfying

X = @ A Indep(X).
Corollary Intervention modalities and counterfactual conditionals

are mutually definable: every intervention-modality formula of the
form [X < @]v is logically equivalent to the counterfactual formula

(X' =daA Indep(X)) O— ).

Conversely, every counterfactual formula of the form ¢O— ) is
logically equivalent to the intervention-modality formula

N-X«de|vV [[X<den A\ Vblle=v)
X.a X.a Y bs.t.|Y|<|X]

35



3. Causal Intervention Calculus (CIC)

Previous authors (Galles & Pearl 1998), (Halpern 2000, 2019),
(Briggs 2012) use languages that refer directly to values.

But this presents a number of disadvantages. Defining actual
causality and other notions requires quantifying over all values (in
the range of a causal variable). Since the above formalisms cannot
do that, these authors restrict the models to have a fixed finite
range of values for each variable, so they can simulate quantifiers
by just taking conjunctions indexed by values.

This is a severe restriction: it excludes variables such as
temperature, position, velocity etc, which take infinitely many (in
fact, a continuum) of values.

| chose to explicitly introduce logical variables x,,, y,, ..., as well
FOL quantifiers Vx,, ranging over all values in R,,.

In addition, | internalize the structural equations in the
syntax, thus using complex terms F'(X,..., Xy) (in addition to

causal and logical variables). w6



Syntax of C'IC": Causal Terms

Terms We simultaneously define, for every natural number n > N,
a set T,, of terms t,, of sort/type X,,. The definition is by
simultaneous recursion, as follows:

for the exogenous type(s) n = 0, we simply put

tg = XO ‘ xo,

where X is our (unique) exogenous variable, and zg € Vj are
logical variables of type Xo;
while for n > 1, we recursively put

tn = Xn|xn‘Fn(th s in—1,tnt1, - - - ,tN),

where X, € V is the corresponding endogenous variable, z,, € V,
are logical variables of type X,,, N := V| — 1, and for each i # n,
t; is an already formed term of sort X;.

The set of all causal terms is T := | J,<,,< n Th-
o 37



SYNTAX OF CIC: Causal Formulas

The set @ of formulas is given recursively by

o n= t=t'| ol oAp|[Xntao | VEnp
where t,t’ ¢ T,z €V, X, €V and t, € T),.

Free and bound (occurrences of) variables (in a formula): as
usual in (multi-sorted) FOL.

Sentences: closed formulas (all variables have only bounded
occurrences).

Constraint: in the construct [X,, < t,]p, every variable occurring
in t,, must have only free occurrences in ¢.
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Abbreviations

We have the usual FOL abbreviations: disjunction

VY = a(cpA), o =9 = mp VY,

e = (p=Y)A W) =), Inp = Van.op.

In addition, we can also can define multi-variable intervention
modalities [X <« Z]p, for any tuple X = (X;,, ... , X, ) of
endogenous variables and any corresponding tuple

Z = (z4,,...,x;,) of values of appropriate sorts.

The definition is by recursion on k, using the clause:

[XaXz <~ fa xik+1]90 = [X < f][XZkJrl — xik+1]¢

k+1
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Semantics: term interpretation

Given a causal model M = (R, F) for a signature S = (V,V, F),
we will evaluate formulas at states s = (u, @), but note that the
assignment « is irrelevant for the evaluation of closed formulas.
So propositions can in fact be evaluated at contexts u € Ry.

For this, we first define a term interpretation map s(t),s, that
extends the assignment « to all terms: given a state s = (u, «)
and a term ¢, we define the interpretation s(t)y; of term t in state
s of model M. When the model is understood, we skip the
subscript M and simply write s(¢). The definition is by recursion:

s(Xo) = u, s(xn) = axy),
$(Xn) = Fu(s(Xo), ...y s(Xn-1),8(Xnt1), ... s(Xn)),

S(Fo(toy .o tn)) = Ful(s(to)s -+ 8(Xn1), $(Xng1), - - - s(tN))-

40



Semantics: satisfaction (truth)

Second, we define the satisfaction relation s =), ¢ between
states s = (u, ) and formulas ¢, by the recursive clauses:

sEumt="t iff s(t)y=s{t)u

S ):M - iff s I#M (2
sEmeNY iff skEm@and sy ¢
S ':M [Xn — tn]go iff s ):MXnHSUn)M 2

s Em Vg iff 7T =0 o for all a, € Ry,

where s 1= (y, ™% is given by putting
a®non () := a, and " (x,,) = a(x,,) for all m # n.

Once again, when the model is understood, we skip the subscript
M and simply write s = ¢.
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Abbreviation: direct dependence

We can express local direct dependence in our syntax, as a formula
X,, ~ X,,, definable as follows:

» for n,m # 0,n # m, we set X,, ~» X,,, as an abbreviation for
A1, B, Tt 1y - - - &N 3T Frp (20, ooy Ty oy EN—1) F#
Fo(zo, ..., 2, ...,oN_1);

» while for n = 0,m > 0, we set

Xo~ X iff N\ (X~ X);
0<k<|Var|

» and in all other cases, we put
Xp ~ X i= false.

We can now easily check that this abbreviation fits the semantics
of direct dependence. For all contexts u and assignments «a:

(u,a) E X ~Y iff X ~, Y.
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Abbreviation: dynamic/counterfactual value

For any term t € T', causal variable X,, and term t,, of sort X,,, we
introduce the notation [X,, + ¢,]t as an abbreviation for another
term, defined by the recursive clauses:

[Xn — tn]x =, [Xn — tn}XO = X(], [Xn — tn]Xn = tna

(X < tn) X i= Fo ([ X < 0] Xo, ..., [Xn 6] XN),
(X0 < talFulto, .- tnet tnsts - tN) = tn,
(X  tn]Em(to, -y tn) = Fi([Xn < talto, ... [Xn < ta]tn),
where m # 0,n and N = |V| — 1.

Intuitively, [X,, < t,]t denotes the value that term ¢ would take
after the intervention [X,, « t,]t.
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The Proof System CIC

>

| 4

all the axioms and rules of multi-sorted FOL, with equality as
its only predicate and functional symbols F};;
the Structural Equation axiom: for all n > 1, we have

Xn = Fo(Xoy -, X1, Xpg1, -, XN).
Necessitation rule for intervention modalities: from ¢, infer
[X « t]p;

The following Recursion/reduction Axioms:
(X +—tj(t' =t") & ([X « ]t/ = [X « t]t")
(X t]mp < a[X g
(X = t(pny) & (X < te A [X —t]y)
[X « t]Vz.p & V. [X + tlp

provided that in the last axiom x does not occur in t.
Recursiveness:
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Soundness, Completeness, Expressivity, Complexity

Proposition
The system CIC is sound and complete with respect to the class
of recursive models.

In addition, intervention modalities are eliminable: every
formula is provable equivalent to one that belongs to the ‘static’
fragment (without any intervention modalities).

Finally, the satisfiability problem for the static fragment is
equivalent to the satisfiability problem for multi-sorted FOL
with equality as the only predicate and with functional symbols,
and thus it is undecidable.
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Theorems, relation to previous calculi

All axioms of Halpern's causal calculus can be proven as theorems
in the above calculi (in full generality, not just in the case when we
are given finite bounds on the size of the ranges R x, as stated in
Halpern's calculus).

In particular, the most interesting and the most complex of
Halpern's axioms (“Composition”) can be proven using the
Normality of Interventions (i.e. Necessitation Rule and the
Reduction axiom for negation), together with the following
theorem:

—

(“Trivial Intervention™) X=i=Y=[X+«27zV

In the calculus C'IC, this can be proven for all variables Y,, by
induction on n (while in CICR the proof is more complex, and
proceeds by cases, considering each possible causal graph and
doing induction on the structure of the graph).
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Causality

Halpern and Pearl proposed over the years three different
definitions of causality (which Halpern calls “the original HP
definition”, “the updated HP definition” and “the modified HP
definition™), plus another, simpler notion (“but-for cause”) lying at
the intersection of all three.

All four are expressible in our language, as many other such
proposals by other authors.

| will only encode here the “modified HP definition” (for which
Halpern expresses a clear preference in his book, since it seems
able to cope better with a wide range of examples), as well as the
special case of “but-for cause”, which is of independent conceptual
interest.
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Fix and Reset operators

To easier understand the encodings, it is useful to first define two
derived operators, that describe two specific types of interventions.

Fix ¢ denotes the type of intervention (on the variables in the

string X) by which the variables X are fixed to their current values
(while being causally disconnected from their parents);

Reset i denotes the type of intervention by which the variables X
are reassigned some arbitrary values (while being causally
disconnected from their parents).

For both actions, we can consider the associated existential and
universal modalities (which are de Morgan duals as usual, hence
interdefinable), but the existential versions seems to be more useful
for applications to causality.
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Fix and Reset: formal definitions

The Fix operator is given by

(Fizg)p = [X + X]o,
or equivalently

(Fizg)p = 3T(X = TN [X « T)p).
The Reset operator is given by
(Reset ¢)p 1= 37 [X « T,
where X = 7 is an abbreviation for N Xi = ;.

Note that these operations are only defined for strings X of
endovariables.
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Encoding causality: “but-for cause”

With these notations, we put
cgp = @ A (Resetg)mp.
We read ¢ as “(the current value of) X is a but-for cause of ¢

(in the current context)”.

Halpern captures this formally in his language, but only in
propositional form and only for specific values, by always making
the values explicit: i.e., instead of ¢z he only defines the

expression “X = @ is a but-for cause of ¢ ".
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Encoding causality: actual causality

Finally, we can also define actual causality C)zgo, to be read as

“(the current value of) X is an actual cause of ¢ (in the current
context)”:

Czp = @A \/ (Fizy)(Reset )= N
W s.t. WnX=0

A /\ [Fiz ][ Resety]o
YcX, W s.t. wny=p

This is Halpern and Pearl's “modified HP definition” of actual
causality. The third conjunct is a minimality condition, which
ensures that only those variables in BX whose values are essential
for ¢ are considered part of a cause.
Once again, Halpern's formalization captures this formally in his
language, but only in propositional form and for specific vaIues
i.e., instead of C'¢¢ he defines only ° ‘X = 7 is a cause of p ", etc.
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Causal relations between variables

Although Halpern only applies causal notions to formulas (thus

implicitly treating them as propositional operators cx¢ and Cx ),
he is in fact also interested in causal connections between variables.

This leads us to the following definitions:

cgY = Jycg(Y =y),
saying that “(the current value of) X is a but-for cause of (the
current value of) Y ; and

CgY 1= FyCe(Y =y),

saying that “(the current value of) X is an actual cause of (the
current value of) Y .

Again, Halpern's language can express these forms of causal

dependence between variables only indirectly and for specific
values: e.g., instead of C¢Y’, he writes “X = 7 is a cause of
Y=y".
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Comments

It is important to point that the causal relations cxY and C'xY
are not equivalent to the dependence relation X ~» Y and X <Y.

Also, note that Halpern's notion of causality is reflexive (i.e. C'¢X;
whenever X; occurs in the string X) but non-transitive.
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