To Be Announced — quantifying over information change

Hans van Ditmarsch, CNRS, France hansvanditmarsch@gmail.com

2025

# What is epistemic logic good for?

Alice and Bob meet. Bob is a conference chair. Alice submitted a paper to that conference. They both don't know whether Alice's submission has been accepted. But Bob knows that rejections have already been sent out. They talk:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Alice to Bob: "Is my submission accepted?"
- Bob to Alice: "Yes!"
- Alice to Bob: "I am glad to know that."

#### What is dynamic epistemic logic?

Alice and Bob meet. Bob is a conference chair. Alice submitted a paper to that conference. They both don't know whether Alice's submission has been accepted. But Bob knows that rejections have already been sent out. They talk:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

rejected <u>Alice</u> <u>accepted</u> <u>Bob</u> rejected Alice to Bob: "Is my submission accepted?"  $\Rightarrow$ rejected <u>Alice</u> <u>accepted</u> Bob to Alice: "Yes!"  $\Rightarrow$ <u>accepted</u>

Alice to Bob: "I am glad to know that."

# Quantifying over information change

- What is said in the example is called a public announcement.
- Public announcements are interpreted as model updates.
- Announcements may be false after the announcement.
- In many settings, such as epistemic planning, we wish to realize goal formulas.
- Announcing a goal may not make it true! How to make it true?
- Quantifying over information change:
   Is there an announcement after which φ is true?
   Is there an epistemic action after which φ is true?
   Is there an ontic action (factual change) after which φ is true?
- Quantifiers in dynamic epistemic logic are like temporal modalities in temporal epistemic logic: [φ]K<sub>a</sub>ψ is like XK<sub>a</sub>ψ.
- In this talk we present different ways to quantify over information change.

# Quantifying over information change

Different ways to quantify over information change:

- $\blacktriangleright\,$  there is an announcement after which  $\varphi$
- $\blacktriangleright$  there is a boolean/positive/... announcement after which  $\varphi$
- $\blacktriangleright$  there is an announcement by the agents in G after which  $\varphi$
- there is an announcement by the agents in G after which φ... no matter what the other agents simultaneously announce
- $\blacktriangleright$  there is an epistemic action (action model) after which  $\varphi$
- $\blacktriangleright$  there is an arrow update after which  $\varphi$
- $\blacktriangleright$  there is a refinement after which  $\varphi$
- $\blacktriangleright$  there is a simulation after which  $\varphi$
- there is a model minus a state after which  $\varphi$  (sabotage logic)
- there is a resolution after which  $\varphi$  (resolving distr.knowledge)
- there is ... any other submodel operation after which  $\varphi$ .

# [vD. To Be Announced. Information & Computation, 2023]

#### Language, structures and semantics

**Languages.** Countable set of *propositional variables* (*atoms*) *P*. Finite set of *agents A*. Below,  $p \in P$ , and  $a \in A$ :

Abbreviations: prop. connectives,  $\Box_a \varphi := \neg \Diamond_a \neg \varphi$ ,  $[\varphi] \psi := \neg \langle \varphi \rangle \neg \psi$ .

**Structures.** Epistemic model M = (S, R, V) with non-empty domain S of states, accessibility function  $R : A \to \mathcal{P}(S \times S)$  (accessibility relation  $R_a$ ), and valuation  $V : P \to \mathcal{P}(S)$ . Pointed models  $M_s$ , multi-pointed models  $M_T$  (where  $T \subseteq S$ ). If  $R_a$  is an equivalence relation we write  $\sim_a$  (indistinguishability relation).

#### Semantics.

 $M_s \models \Diamond_a \varphi$  iff there is a  $t \in S$  such that  $R_a st$  and  $M_t \models \varphi$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Public Announcement

$$M_{s} \models \langle \psi 
angle arphi$$
 iff  $M_{s} \models \psi$  and  $(M|\psi)_{s} \models \varphi$ 

where  $M|\psi$  is the restriction of the model to the states satisfying  $\psi$ 

Announcing a formula may not make it true.

[Plaza 1989] [Wang, Cao. On axiomatizations of public ann. logics. Synthese 2013]

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

# Arbitrary Announcement

Add  $\langle ! \rangle \varphi$  to the BNF.

 $M_{s}\models\langle !
angle arphi$  iff there is a quantifier-free  $\psi$  such that  $M_{s}\models\langle \psi
angle arphi$ 

$$0 \xrightarrow{a} \underline{1} \quad \stackrel{\top}{\leftarrow} \quad 0 \xrightarrow{a} \underline{1} \quad \stackrel{p}{\Rightarrow} \quad \underline{1}$$
$$\neg \Box_{a} p \qquad \langle ! \rangle \neg \Box_{a} p \land \langle ! \rangle \Box_{a} p \qquad \Box_{a} p$$

A (boring) validity:  $(p \land \neg \Box_a p) \rightarrow \langle ! \rangle \neg \Box_a p \land \langle ! \rangle \Box_a p$ .

 $0 \xrightarrow{a} \underline{1} \xrightarrow{p} \underline{1} \qquad \underline{0} \xrightarrow{a} 1 \xrightarrow{\neg p} \underline{0}$ 

A (not so boring) validity:  $\langle ! \rangle (\Box_a p \lor \Box_a \neg p)$ . An interesting validity:  $\langle ! \rangle (\Box_a \varphi \lor \Box_a \neg \varphi)$ .

[van Benthem. What one may come to know. Analysis 2004] [Balbiani et al. Knowable as known after an announcement. RSL 2008] [vD, van der Hoek, Iliev. Everything is knowable. Theoria 2012]

# Arbitrary Announcement

 $M_s \models \langle ! 
angle arphi$  iff there is a quantifier-free  $\psi$  such that  $M_s \models \langle \psi 
angle arphi$ 

- $[!]\varphi \rightarrow [!][!]\varphi$  is valid 'first  $\psi$  then  $\chi$ ' is ann.  $\psi \land [\psi]\chi$
- ▶  $[!] \varphi \rightarrow \varphi$  is valid if true after any ann. then already true
- ▶  $\langle ! \rangle [!] \varphi \rightarrow [!] \langle ! \rangle \varphi$  (CR) is valid closing the update diamond
- ▶  $[!]\langle !\rangle \varphi \rightarrow \langle !\rangle [!] \varphi$  (MK) most informative ann. given  $\varphi$
- ▶ APAL is not a normal modal logic!  $p \rightarrow \langle ! \rangle \Box_a p$  is valid, but  $(p \land \neg \Box_a p) \rightarrow \langle ! \rangle \Box_a (p \land \neg \Box_a p)$  is invalid (on S5 models)
- ► complete infinitary axiomatization: PAL + derivation rule: from  $\xi([\psi]\varphi)$  for all  $\psi$ , infer  $\xi([!]\varphi)$ axiom:  $[!]\varphi \rightarrow [\psi]\varphi$  (quantifier-free  $\psi$  in both)
- more expressive than PAL, because [!] quantifies over (i) all atoms and over (ii) formulas of arbitrarily large modal depth

non-compact, undecidable satisfiability, model ch. PSPACE-c.
 [French, vD. Undecidability for APAL. AiML 2008]
 [Balbiani, vD. A simple proof of the completeness of APAL. 2015]

#### Arbitrary Announcement — open questions

 $M_s \models \langle ! 
angle arphi$  iff there is a quantifier-free  $\psi$  such that  $M_s \models \langle \psi 
angle arphi$ 

- Is there a finitary axiomatization for APAL?
- Alternative semantics for arbitrary announcement:  $M_{s} \models \langle ! \rangle \varphi$  iff there is a qu.fr.  $\psi$  such that  $(M|\psi)_{s} \models \varphi$ Axiomatization of the language without public announcement  $\langle \psi \rangle \varphi$  but with arbitrary announcem.  $\langle ! \rangle \varphi$ ?
- Axiomatization of knowability logic with bundled  $\langle ! \rangle \Box_a \varphi$ ?

[Wang. Beyond knowing that: a new generation ... 2018] [Galimullin, Kuijer. Satisfiability of Arbitrary Public Announcement Logic with Common Knowledge is  $\Sigma_1^1$ -hard. TARK 2023] [Liu, Fan, vD, Kuijer. Logics for knowability. Logic and Log. Ph. 2022] [Christensen. Logics of knowability. AiML 2024]

# Variations of APAL

Why are there variations of APAL?

APAL has a (known) infinitary axiomatization, and is undecidable. We want finitary axiomatizations, decidable logics. But why? (...)

 $\begin{array}{ll} M_{s} \models \langle ! \rangle \varphi & \text{iff} & \text{there is a qu.fr. } \psi \text{ such that } M_{s} \models \langle \psi \rangle \varphi & (\text{APAL}) \\ M_{s} \models \langle ! \rangle \varphi & \text{iff} & \text{there is a } \psi \text{ such that } M_{s} \models \langle \psi \rangle \varphi & (\text{full APAL}) \\ M_{s} \models \langle ! \rangle \varphi & \text{iff} & \text{there is a positive } \psi \text{ such that } M_{s} \models \langle \psi \rangle \varphi & (\text{APAL}^{+}) \\ M_{s} \models \langle ! \rangle \varphi & \text{iff} & \text{there is a boolean } \psi \text{ such that } M_{s} \models \langle \psi \rangle \varphi & (\text{BAPAL}) \end{array}$ 

full APAL:  $\langle ! \rangle \varphi$  iff there is ordinal  $\alpha$  with  $\langle !_{\alpha} \rangle \varphi$ . Just  $\langle !_{\omega} \rangle$  is enough? APAL<sup>+</sup>: infinitary axiomatization and conjectured decidable BAPAL: finitary axiomatization and conjectured decidable  $\psi \rightarrow [\chi][p]\varphi$  implies  $\psi \rightarrow [\chi][!]\varphi$ , with p fresh

[vD, van der Hoek, Kuijer. Fully Arbitrary Pub. Announcem. AiML 2016][vD, French, Hales. Positive Announcements. Studia Logica 2021][vD, French. Quantifying over Boolean Announcements. LMCS 2022]

### More variations of APAL

- ► APAL with memory: 1. current & initial domain; 2. φ<sup>0</sup> for 'φ was true'; 3. in ⟨φ⟩ψ, φ is qu.free; 4. finitary axiomatization
- ► SCAPAL:  $M_s \models \langle ! \rangle \varphi$  iff there is a qu.fr.  $\psi$  with only atoms from  $\varphi$  such that  $M_s \models \langle \psi \rangle \varphi$  ( $\not\models \langle ! \rangle \varphi \lor \langle ! \rangle \psi \leftrightarrow \langle ! \rangle (\varphi \lor \psi)$ )
- FSAPAL: M<sub>s</sub> ⊨ ⟨!<sub>Q</sub>⟩φ iff there is a qu.fr. ψ with only atoms in Q such that M<sub>s</sub> ⊨ ⟨ψ⟩φ

Novel: M<sub>s</sub> ⊨ ⟨!<sup>n</sup>⟩φ iff there is a ψ ∈ L(◊,!) with d(ψ) ≤ n and such that M<sub>s</sub> ⊨ ⟨ψ⟩φ. Anyone? PS: restrict atoms too?
 [Baltag, Özgün, Vargas Sandoval. APAL with memory. JPL 2022.]
 [vD, Liu, Kuijer, Sedlár. Almost APAL. JLC 2023.]

IPAL — relation to dynamic consequence:  $\varphi, \psi \Rightarrow \chi$  iff  $\models [\varphi][\psi]\chi$ 

- $M_s \models \langle \chi^{\downarrow} \rangle \varphi$  iff there is qu.fr.  $\psi$  implying  $\chi$  s.t.  $M_s \models \langle \psi \rangle \varphi$ quantify over restrictions of M contained in  $M \mid \chi$
- $M_s \models \langle \chi^{\uparrow} \rangle \varphi$  iff there is qu.fr.  $\psi$  implied by  $\chi$  s.t.  $M_s \models \langle \psi \rangle \varphi$ quantify over restrictions of M containing  $M | \chi$

# Group Announcement

 $M_s \models \langle !_G \rangle \varphi$  iff there is a qu.fr.  $\{ \psi_a \mid a \in G \}$  s.t.  $M_s \models \langle \bigwedge_{a \in G} \Box_a \psi_a \rangle \varphi$ 



• 
$$M_{10} \models \langle !_a \rangle \Box_b p$$
 but  $M_{10} \not\models \langle !_b \rangle \Box_b p$ 

$$\blacktriangleright M_{10} \models \langle !_b \rangle \Box_a \neg q \text{ but } M_{10} \not\models \langle !_a \rangle \Box_a \neg q$$

 $M_{10} \models \langle !_{ab} \rangle (\Box_b p \land \Box_a \neg q) \text{ but } M_{10} \not\models \langle !_a \rangle (\Box_b p \land \Box_a \neg q) \text{ and } \\ M_{10} \not\models \langle !_b \rangle (\Box_b p \land \Box_a \neg q)$ 

$$\blacktriangleright \ \langle !_G \rangle \langle !_H \rangle \varphi \rightarrow \langle !_{G \cup H} \rangle \varphi \text{ and so } \langle !_G \rangle \langle !_G \rangle \varphi \rightarrow \langle !_G \rangle \varphi$$

[Ågotnes, vD. *Coalitions and Announcements*, AAMAS 2008] [Ågotnes, Balbiani, vD, Seban, *Group Announcement Logic*. JAL 2010]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

# **Coalition Announcement**

$$\begin{split} M_{s} &\models \langle\!\![!_{G} \rangle\!\!] \varphi \text{ iff there is a qu.fr. } \{\psi_{a} \mid a \in G\} \text{ s.t. } M_{s} &\models \bigwedge_{a \in G} \Box_{a} \psi_{a} \\ \text{and for all qu.-fr. } \{\psi_{a} \mid a \in A \setminus G\}, \ M_{s} &\models [\bigwedge_{a \in A} \Box_{a} \psi_{a}] \varphi \end{split}$$

 $M_{10} \not\models \langle [!_a] \rangle \Diamond_a q$ : *b* can prevent *a* from remaining ignorant about *q* by announcing  $\neg q$ . No matter whether *a* announces *p* or  $\top$ .



 $M_{10} \models \{\!\!\{!_{ab}\}\!\!\} (\Box_b p \land \Box_a \neg q): \text{ trivial, as } \langle !_A \rangle \varphi \leftrightarrow \{\!\!\{!_A\}\!\!\} \varphi.$ 

Embeds Coalition Logic:  $(!_G)\varphi \land (!_H)\varphi' \to (!_{G\cup H})(\varphi \land \varphi') G \cap H = \emptyset$ 

[Ågotnes, vD. *Coalitions and Announcements*, AAMAS 2008.] [Galimullin. *Coalition Announcements*. Ph.D. Uni Nottingham, 2019]

## Quantifying over announcements and over actions

We are playing cards. Let p be the proposition 'I hold the red queen'.

Putting the red queen open on the table is a public announcement of p. A public announcement is observed the same by all agents.

Showing the red queen to my right neighbour without the other players seeing which card it it, is a private announcement of p. A private announcement is not observed the same by all agents. Some players consider it possible you showed the black ace.

I am even more private when I sneakily show my right neighbour the red queen while the other players did not notice me doing so.

Such generalizations of public announcements are described with **action models** [Baltag, Moss, Solecki. TARK 1998]

Quantifying over action models is **easier** than quantifying over public announcements. Easy?

# Action models, arrow updates, and refinements

Let *a* and *b* be ignorant about *p*. Different non-public updates where *a* but not *b* is informed about *p* are (assume transitivity):  $0 \xrightarrow{b} 1 \stackrel{*}{=} 0 \xrightarrow{ab} 1 \implies 0 \xrightarrow{ab} 1 \xrightarrow{b} 1$ 

Updates can be represented in very different ways. Update (\*) is an:

**Action model** consisting of two announcements p and  $\neg p$  that a observes but b is uncertain about. We compute the restricted modal product of the epistemic model and the action model.

**Arrow update** consisting of arrows  $p \rightarrow_a p, \neg p \rightarrow_a \neg p$ , and  $\top \rightarrow_b \top$ . We restrict the initial model to the arrows (links) satisfying the source and target conditions.

**Refinement** pruning the tree representation of the (pointed) initial model resulting in the updated model.

#### Action models, arrow updates, and refinements

We now quantify over action models, arrow updates, refinements.

 $\begin{array}{ll} M_{s} \models \langle \otimes \rangle \varphi & \text{iff} & \text{there is a qu.fr. action model } E_{e} \text{ s.t. } M_{s} \models \langle E_{e} \rangle \varphi \\ M_{s} \models \langle \uparrow \rangle \varphi & \text{iff} & \text{there is a qu.fr. arrow update } U_{o} \text{ s.t. } M_{s} \models \langle U_{o} \rangle \varphi \\ M_{s} \models \langle \succeq \rangle \varphi & \text{iff} & \text{there is a refinement } M'_{s'} \text{ of } M_{s} \text{ s.t. } M'_{s'} \models \varphi \end{array}$ 

In all these logics the quantifiers can be eliminated. Not in APAL. These logics are decidable. Not APAL. The restriction to qu.free formulas is not necessary, because the logics permit synthesis: for all  $\varphi$  there is a (unique!)  $E_T$  with  $\models \langle \otimes \rangle \varphi \leftrightarrow \langle E_T \rangle \varphi$ . Not APAL.

Furthermore:  $\langle \otimes \rangle \varphi$  is equivalent to  $\langle \uparrow \rangle \varphi$  is equivalent to  $\langle \succeq \rangle \varphi$ 

[Hales. Arbitrary Action Model Logic and Action Model Synthesis, 2013] [vD, van der Hoek, Kooi, Kuijer. Arrow Update Synthesis, 2020] [Bozzelli, vD, French, Hales, Pinchinat. Refinement Modal Logic, 2014]

PS Some results are for arbitrary frames ( $\mathcal{K}$ ), not equiv. relations ( $\mathcal{S}$ 5).

### Bisimulation, refinement, simulation

To compare the information content of epistemic models binary relations between their domains may satisfy different properties.

Given M = (S, R, V) and M' = (S', R', V'),  $Z \subseteq S \times S'$ ,  $(s, s') \in Z$ : — **atoms.**  $s \in V(p)$  iff  $s' \in V'(p)$  for all  $p \in P$ 

- forth. if  $R_ast$ , then there is a  $t' \in S'$  such that  $R'_as't'$  and Ztt'
- back. if  $R'_{a}s't'$ , then there is a  $t \in S$  such that  $R_{a}st$  and Ztt'
  - bisimulation: atoms, forth, back $M_s \simeq M'_{s'}$ refinement: atoms, back $M_s \succeq M'_{s'}$ simulation: atoms, forth $M_s \preceq M'_{s'}$

$$0 \xrightarrow{b} \underline{1} \leftarrow 0 \xrightarrow{ab} \underline{1} \Rightarrow 2 \xrightarrow{ab} 0 \xrightarrow{ab} \underline{1} \\ M' \qquad M \qquad M''$$

M' is a refinement of M and M'' is a simulation of M. Vice versa: M is a simulation of M' and M is a refinement of M''. A submodel is a refinement. A supermodel is a simulation. More or less.

# Refinement Modal Logic (RML)

 $M_s \models \langle \succeq \rangle \varphi$  iff there is a  $M'_{s'}$  with  $M_s \succeq M'_{s'}$  such that  $M'_{s'} \models \varphi$ 

- refining a model is like pruning a tree
- ▶ therefore, validities :  $[\succeq] \varphi \rightarrow [\succeq] [\succeq] \varphi$  (4),  $[\succeq] \varphi \rightarrow \varphi$  (T),  $(\succeq) [\succeq] \varphi \rightarrow [\succeq] (\succeq) \varphi$  (CR),  $[\succeq] (\succeq) \varphi \rightarrow (\succeq) [\succeq] \varphi$  (MK)
- ▶ action model execution is refinement & v.v.  $(\langle \succeq \rangle \varphi \leftrightarrow \langle \otimes \rangle \varphi)$
- ▶ refinement is bisimulation quantification plus relativization:  $\langle \underline{\succ} \rangle \varphi$  is equivalent to  $\exists p \varphi^p$
- $\begin{array}{l} & \langle \succeq \rangle \text{ can be eliminated and RML is decidable, crucially:} \\ & \langle \succeq \rangle \bigwedge_{a \in A} (\bigwedge_{\varphi_a \in \Phi_a} \Diamond_a \varphi_a \land \Box_a \psi_a) \leftrightarrow \bigwedge_{a \in A} \bigwedge_{\varphi_a \in \Phi_a} \Diamond_a \langle \succeq \rangle (\varphi_a \land \psi_a) \end{array}$
- axiomatization for KD45, S5 ...: not a conservative extension!
   e.g., (≿)□<sub>a</sub>⊥ (remove all arrows) is valid on K but not on S5.

[Bozzelli, vD, French, Hales, Pinchinat. *Refinement Modal Logic*, 2014] [Hales. *Quantifying over epistemic updates.* Ph.D. 2016]

# Simulation Modal Logic (SML)

Refinement quantifier (pro memori):

 $M_s \models \langle \succeq \rangle \varphi$  iff there is a  $M'_{s'}$  with  $M_s \succeq M'_{s'}$  such that  $M'_{s'} \models \varphi$ 

Simulation quantifier:

 $\mathit{M_s} \models \langle \preceq \rangle \varphi \text{ iff there is a } \mathit{M'_{s'}} \text{ with } \mathit{M_s} \preceq \mathit{M'_{s'}} \text{ such that } \mathit{M'_{s'}} \models \varphi$ 

- simulating a model is like growing a tree we recall that: refining a model is like pruning a tree terminology is not ideal, but 'enforced' by the community
- ► there are more ways to grow trees than to prune trees: SML is less straightforward (no reduction) than RML: (≤) ∧<sub>a∈A</sub>(∧<sub>φ<sub>a∈Φa</sub> ◊<sub>a</sub>φ<sub>a</sub> ∧ □<sub>a</sub>ψ<sub>a</sub>) ↔ ∧<sub>a∈A</sub> □<sub>a</sub> ∨<sub>φ<sub>a∈Φa</sub> (≤)(φ<sub>a</sub> ∧ ψ<sub>a</sub>) provided all sets Φ<sub>a</sub> are consistent</sub></sub>
- an open question is simulation epistemic logic

[Xing, Zhu, Zhang. *Covariant-Contravariant Ref. Modal Logic*. 2019] [Xing. Covar.-Contravar. Refinement Modal µ-calculus. arXiv 2022] [vD, French, Galimullin, Kuijer. Manuscript involving Simulation ML] Removing, adding, swapping arrows



Highly expressive, complex, and undecidable. [van Benthem. An Essay on Sabotage and Obstruction. 2005] [Areces, Fervari, Hoffmann. Relation-changing modal operators. 2015]

# Anything else?

- iterating announcements instead of quantifying over them
- iterating actions instead of quantifying over them
- ▶ factual change (epist. planning) [vB . . . 2009],[vD, Kooi. 2008]
- common knowledge, distributed knowledge
- quantifying over what subgroups know (& distr. knowledge)
   [Åg., Wang][Baltag, Smets][Castañeda...][Cachin...][dos Santos Gomes]
- propositionally quantified modal logics [Li, Ding. AiML 2024]
- ... open questions: [vD. To Be Announced. Inf.&Comp. 2023]

Literature additions and omissions and resolved open questions are most welcome. The arXiv version will be updated next year.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Thank you!