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From an evolutionary point of view
I Single-game model
I Evolution of simple behavior

r p s
r 0,0 -1,1 1,-1
p 1,-1 0,0 -1,1
s -1,1 1,-1 0,0

Replicator dynamics [Taylor and Jonker, 1978]:

ṗi = pi (u(ai , σ)− u(σ, σ))

where:
I u utility/payoff/fitness
I ai action of type i

I σ action mix in the population
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From an evolutionary point of view

By focusing on expressed behavior and neglecting the
underlying mechanism, behavioral ecologists unwittingly
adopt the behavioral gambit, extending the phenotypic
gambit beyond its accepted remit.

Natural environments are so complex, dynamic, and unpre-
dictable that natural selection cannot possibly furnish an
animal with an appropriate, specific behavior pattern for
every conceivable situation it might encounter. Instead,
we should expect animals to have evolved a set of psycho-
logical mechanisms which enable them to perform well on
average across a range of different circumstances.

[Fawcett et al., 2012]
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From an evolutionary point of view

The model:
I The environment: a set G of symmetric two-player games
I The types: decision criteria, mechanisms that produce

behavior in each game

Example:
I The environment:

PD I II

I 2,2 0,3
II 3,0 1,1

SH I II

I 3,3 0,2
II 2,0 2,2

I The types: T ⊆ {I , II}|G| = {I , II} × {I , II}
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From an evolutionary point of view
Decision criteria as types:

Decision criteria:

d : Utilities× Beliefs→ Actions

where
I u : Z → R utility function
I B ⊆ ∆(S) belief

Decision problem:
(S ,A,Z , c)

where
I S set of states of the world
I A set of actions
I Z set of outcomes
I c : S × A→ Z outcome function



From an evolutionary point of view

1/3 2/3
0 1

SH I II

I 3,3 0,2
II 2,0 2,2

A game is a decision problem:
I S = A−i = {I , II}
I Ai = {I , II}
I Z = {(3, 3), (0, 2), (2, 0), (2, 2)}
I c((I , I )) = (3, 3), c((I , II )) = (0, 2), c((II , I )) = (2, 0),

c((II , II )) = (2, 2)

I ui ((3, 3)) = 3, ui ((0, 2)) = 0, ui ((2, 0)) = 2, ui ((2, 2)) = 2
I B = {p ∈ ∆(S) : 0 ≤ p(I ) ≤ 1/3}



From an evolutionary point of view
Decision criteria as types:

Classic decision criteria:
I Expected utility maximization

a∗ ∈ argmaxa∈AEp[u|a]

I Maxmin expected utility

a∗ ∈ argmaxa∈A min
p∈B

Ep[u|a]

I Realization-regret minimization

a∗ ∈ argmina∈A max
p∈B

rR(a, p)

Where
Ep [u|a] :=

∑
s∈S

u(c(s, a))p(s)

and

rR (a, p) := Ep

[
max
a′∈A

u(c(s, a′))− u(c(s, a))

]
=
∑
s∈S

p(s)

(
max
a′∈A

u(c(s, a′))− u(c(s, a))

)
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From an evolutionary point of view

Decision criteria as types: example.
1/3 2/3
0 1

SH I II

I 3,3 0,2
II 2,0 2,2

I Expected utility maximization (+ principle of insufficient
reason):

E [u|I ] = 3 · 1/6 = 0.5
E [u|II ] = 2 · 1/6 + 2 · 5/6 = 2

I Maxmin expected utility:

minp∈B Ep[u|I ] = min{1, 0} = 0
minp∈B Ep[u|II ] = min{2, 2} = 2



From an evolutionary point of view
Decision criteria as types:

Less classic decision criteria:
I Distribution-regret minimization

a∗ ∈ argmina∈A max
p∈B

rD(a, p)

I Altruistic expected utility maximization

a∗ ∈ argmaxa∈AEp[ũ|a]

I Random type: pick an action at random
I Action-I type: d(u,B) = I for all u and B

I ...

Where
rD (a, p) := max

a′∈A
Ep

[
u|a′

]
− Ep [u|a] = max

a′∈A

∑
s∈S

p(s)u(c(s, a′))−
∑
s∈S

p(s)u(c(s, a))

and
ũ(a, a′) := u1(a, a′) + u2(a, a′) = u(a, a′) + u(a′, a)
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From an evolutionary point of view
What we have done so far:
I Enrich the environment: from single-game to multi-game

model

I Elevate the analysis from simple behavior to underlying
mechanisms

Not investigated very much in the literature in evolutionary game
theory:
I [Zollman, 2008]: multi-game with three games only (Nash

bargaining game, ultimatum game, a hybrid of the two), no
full-fledged decision criteria

I [Klein et al., 2018]: decision criteria as types (ABM, not
EGT), no multi-game environment

I [Lecouteux, 2015]: team reasoning as underlying mechanism,
but no multi-game environment

I Evolution of preferences (i.e., utility functions): preferences as
underlying mechanisms, but no multi-game environment (e.g.,
[Dekel et al., 2007, Robson and Samuelson, 2011])
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From an evolutionary point of view

Analytic results:
I Proposition 1. Let G be the class of 2× 2 symmetric games

G = (a, b, c, d) generated by i.i.d. sampling a, b, c , d from a
set of values with at least three elements in the support.
Then, distribution-regret minimization strictly dominates
maxmin in the resulting multi-game.

I Corollary 1. Let G be as in Proposition 1. The unique
evolutionarily stable state in a population of maximinimizers
and distribution-regret minimizers is a monomorphic
population of regret minimizers.

[Galeazzi and Franke, 2017]
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From an evolutionary point of view

Simulation results:

I {0, ..., v} the set of randomly drawn fitness values
I n the number of actions in the games
I m the number of points in the beief set B

[Galeazzi and Galeazzi, 2020]



From a game-theoretic point of view

I Gap in the literature: games with homogeneous vs
heterogeneous criteria

I Homogeneous criteria:
I [Lo, 1996]: maxmin expected utility
I [Klibanoff, 1996]: maxmin expected utility
I [Marinacci, 2000]: Choquet expected utility
I [Kajii and Ui, 2005]: maxmin expected utility
I [Renou and Schlag, 2010]: realization-regret minimization
I [Halpern and Pass, 2012]: realization-regret minimization
I ...



From a game-theoretic point of view

I Gap in the literature: games with homogeneous vs
heterogeneous criteria

I Heterogeneous criteria:
I [Epstein, 1997]: introduces the concepts of rationalizability,

(iterated) dominance and equilibrium for general preferences
(i.e., utility functions) on acts. Based on
[Epstein and Wang, 1996], more on this later.

I Team reasoning: [Bacharach, 1999, Lecouteux, 2018]
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From a game-theoretic point of view

Two-player Bertrand competition. Each firm i produces the
same commodity at a cost ci , and sell it at a price of pi . The firm
that chooses the lowest price captures the whole market, pocketing
a profit of pi − ci , or (pi − ci )/2 in the case of a tie. Hence:

u1(c1, c2, p1, p2) =


p1 − c1 p1 < p2

(p1 − c1)/2 p1 = p2

0 p1 > p2

where c1, c2 are the types/private information of the players and
p1, p2 are the actions of the players, with ci ∈ Ci := {0, 0.1, ..., 1}
and pi ∈ Pi := {0, 0.1, ...}.



From a game-theoretic point of view

Suppose firm 1 is regret minimizer and firm 2 is maxmin, and
Bi |ci = ∆(C−i ) for all ci .

Equilibrium. An equilibrium is then a pair of strategies (σ1, σ2)
with σi : Ci → Pi such that:
1. ∀c1 ∈ C1, σ1(c1) ∈ arg minp1 maxq∈B1|c1 rR(p1, c1, q)

2. ∀c2 ∈ C2, σ2(c2) ∈ arg maxp2 minq∈B2|c2 Eq[u2|p2, c2]

Where
Eq [u2|p2, c2] :=

∑
c1∈C1

q(c1)u2(c1, c2, σ1(c1), p2))

and

rR (p1, c1, q) := Eq

max
p′1

u1(c1, c2, p
′
1, σ(c2))− u1(c1, c2, p1, σ(c2))


=

∑
c2∈C2

q(c2)

max
p′1

u1(c1, c2, p
′
1, σ(c2))− u1(c1, c2, p1, σ(c2))


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From a game-theoretic point of view
The pair of strategies

σR(c1) =

{
1.1+c1

2 c1 odd
1.1+c1

2 − 0.05 c1 even

and

σM(c2) =


0.4 c2 < 0.4
0.5 c2 = 0.4
c2 + 0.1 0.4 < c2 < 1
1 c2 = 1

constitute an equilibrium of the game.

I In equilibrium, firm 1 or firm 2 gets positive profit
I The same pricing strategies do not constitute a single-criterion

equilibrium
I (σR , σR) is a regret-equilibrium, but (σM , σM) is not a

maxmin-equilibrium



From an epistemic point of view

I [Epstein and Wang, 1996]
I [Di Tillio, 2008]
I [Bjorndahl et al., 2017]



From an epistemic point of view

[Epstein and Wang, 1996, Di Tillio, 2008]: Inconsistency between
probabilistic type spaces and Savage approach.

Savage approach (single-agent decision problem):
I Primitives: states of the world S , outcomes Z , acts f ∈ ZS ,

preferences over acts

I Utility and probabilistic beliefs are derived from preferences
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From an epistemic point of view
Type spaces (interactive decision problem):
I Primitives: states of nature A−i (i.e., parameters of the game

and actions of the opponents), player i ’s types Ti , player i ’s
belief function βi : Ti → ∆(A−i × T−i )

I Type spaces generate hierarchies of interactive probabilistic
beliefs, e.g.

t Ii 7→ (1/3t Ij , 2/3t
II
j ) t Ij 7→ (1t Ii )

t IIi 7→ (3/4t Ij , 1/4t
II
j ) t IIj 7→ (2/5t Ii , 3/5t

II
i )

(t Ii , t
I
j ) |= B

1/3
i Ij (t Ii , t

I
j ) |= B

2/3
i (IIj ∧ B

3/5
j IIi )

SH I II

I 3,3 0,2
II 2,0 2,2

t Ij t IIj
t Ii 1/3, 1 2/3, 2/5
t IIi 3/4, 0 1/4, 3/5

I Loosely, B1/3
i Ij ∈ ∆(Aj), B

2/3
i (IIj ∧ B

3/5
j IIi ) ∈ ∆(Aj ×∆(Ai )),

...
I Probabilistic beliefs are taken as primitive and not derived

from behavior, i.e., preferences
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From an epistemic point of view

[Epstein and Wang, 1996] and [Di Tillio, 2008] preference
structures:
I Quite similar, technical differences not relevant for our

purposes here
I Savage approach into type spaces

I Primitives: states of nature A−i (i.e., parameters of the game
and actions of the opponent), player i ’s types Ti , player i ’s
“preference” function θi : Ti → Π(A−i × T−i )

I Π vs ∆: Π(X ) = P(F (X ))
I F (X ) := ZX is the set of acts over X for given outcome set Z
I P(F (X )) is the set of all preference relations over acts over X

I Preference structures generate hierarchies of interactive
preference relations (see next slide)
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Remark. But where are all those acts? E.g., the act f (x) = (2, 2)
for all x ∈ Aj
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I 1 0 2
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III 0 2 1

Table: Regret is not transitive

I � II II � III III � I

I Choice structues: from hierarchies of interactive preference
relations to hierarchies of interactive choice functions
(C : 2X → 2X s.t. C (Y ) ⊆ Y for all Y ⊆ X )

I Primitives: states of nature A−i (i.e., parameters of the game
and actions of the opponent), player i ’s types Ti , player i ’s
“choice” function θi : Ti → Γ(A−i × T−i )

I Γ(X ) := C(F (X ))
I F (X ) := ZX is the set of acts over X for given outcome set Z
I C(F (X )) is the set of all choice functions over acts over X
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Results:

I which is a complicated way to say that there exists a universal
choice structure.

I which is a complicated way to say that choice structures
embed preference structures.
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Conclusion

Thanks for your attention.
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