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Background: my view



Bundling and unbundling
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Bundling and unbundling in modal and non-classical logics

Bundling: take a construction as a modality

• Temporal Logic e.g., CTL ∶ AFϕ,ATL ∶ ⟪A⟫ϕUψ
• Epistemic Logic of Know-wh:

Kwϕ ∶= Kϕ ∨ K¬ϕ,Kvd ∶= ∃xK(x ≈ d),Khϕ ∶= ∃σK[σ]ϕ

• Bundled fragments of FOML (Wang 2017 -):

α ∶∶= P(x1, . . . , xn) ∣ ¬α ∣ α∧α ∣ ◻α ∣ ∀x◻α ∣ ∃x◻α ∣ ◻∀xα ∣ ◻∃xα

• Other applications: Modal syllogistic, Deontic logic,
Contingency logic, Group knowledge ...

Usual advantages: capture the concepts as a whole; balancing
expressivity and complexity... E.g., Normal modalities are
bundles too! ◻ϕ ∶= ∀y(xRy→ ϕ)

ESSLLI24 Course:
http://wangyanjing.com/introduction-to-bundled-modalities/
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Bundling and unbundling in modal and non-classical logics

Unbundling: break constructions into certain components

• Temporal Logic: CTL∗,ATL∗

• Epistemic Logic of de re updates (Cohen, Tang & W. 21):

α ∶∶= t ≈ t ∣ Pt⃗ ∣ ¬α ∣ α ∧ α ∣ [x ∶= t]α ∣ Kα ∣ [!α]α

[x ∶= c]K(x ≈ c), [x ∶= c][y ∶= d]K(M(x, y)), [x ∶= c][!c ≈ x]α
• Non-classical logic: intuitionistic and intermediate logics
as epistemic logic of knowing how (Wang3 21 22)

Advantages: compositional, (sometimes) easier to axiomatize
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Bundling or unbundling?

That is the question.

We take a certain neighborhood logic as a case study to
demonstrate the use of unbundling.

Not so much about fancy or surprising techniques, but that is
the point: making simple things simple!

My personal taste in research:

Max (conceptual significance − technical complexity)
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Neighborhood Structures

Neighborhood (nbd) frame: F = (W,N)

• W ≠ ∅, a set of possible worlds;
• N ∶ W→ 22W , a nbd function.

Nbd Model: M = (F,V)

Different perspectives:

• Technical tools for non-normal modal logic
• As genuine structures or abstractions of finer structures
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Monotonic Neighborhood Logic

Monotonic neighborhood logic with a unary operator ◻.

M,w ⊧ ◻α iff (∃X ∈ N(w))(∀x ∈ X)M, x ⊧ α.

There exists a nbd of w has α true everywhere inside.

Some schemes as examples:

invalid valid
◻α ∧ ◻β→◻(α ∧ β) ◻(α ∧ β)→◻α ∧ ◻β
⊧ ϕ
⊧ ◻ϕ

◻�→◻α
⊧ ϕ→ ψ

⊧ ◻ϕ→ ◻ψ
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Instantial Neighborhood Logic (van Benthem et al. 2017 )

Instantial Neighborhood Logic adds instances in the modality
where j ∈ N:

◻(α1, ..., αj;α0)

M,w ⊧ ◻(α1, ..., αj;α0) iff ∃X ∈ N(w)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(∀x ∈ X)M, x ⊧ α0
(∃x1 ∈ X)M, x1 ⊧ α1

⋮
(∃xj ∈ X)M, xj ⊧ αj

There exists a nbd of w that has the following properties:

• α0 holds everywhere inside, and
• each instance (respectively) holds somewhere inside.
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Instantial nbd logic INL (van Benthem et al 2017)

Some invalid schemes:

• ¬ ◻ (;�), ◻(;α) ∧ ◻(;β)→◻(;α ∧ β)
• ⊧ α
⊧ ◻(;α)

, ◻(α;γ) ∧ ◻(β;γ)→◻(α,β;γ)

Some valid schemes:

• ◻(α1, ..., αj;α0)→◻(α1, ..., αj;α0 ∨ η)
• ◻(α1, ..., αj, β;α0)→◻(α1, ..., αj, β ∨ γ;α0)
• ◻(α1, α2, ..., αj;α0)→◻(α2, ..., αj;α0)
• ◻(α1, ..., αj;α0)→◻(α1, ..., αj, αi;α0) where i ∈ {1, ..., j}

• ◻(α1, ..., αj, η;α0)→◻(α1, ..., αj, η ∧ α0;α0)
• ¬ ◻ (α1, ..., αj,�;α0)
• ◻(α1, ..., αj;α0)→(◻(α1, ..., αj, δ;α0) ∨ ◻(α1, ..., αj;α0 ∧ ¬δ))

With propositional tautologies and replacement of
equivalence, a complete axiomatization of INL is obtained. 11



Sequent calculus G3inl (Yu 2020)

⎛
⎝

J = {−j, ...,−1} K = {1, ..., k}

K(I) = {y ∈ K ∣ I(y) = 0} ΩI
K = {β

i
I(i)}

I(i)≠0

i∈K
D =⊗

i∈K
{0, 1, ..., ji}

⎞
⎠

[α0, α−fI ⇒ ΩI
K]

fI∈J

I∈D
[α0 ⇒ βfI0 ,Ω

I
K]

fI∈K(I)

I∈D
Π,◻(α1, ..., αj;α0)⇒ {◻(βi1, ..., βiji ;β

i
0)}i∈K,Σ

• This is (◻j,k,f
⟨j1,...,jk⟩

), nbd rule with parameters j,k, j1, ..., jk, f.
• It respects the proper sub-formula property (no built-in contraction).
• G3inl is G3cp (in the language of INL) extended by

all (◻j,k,f
⟨j1,...,jk⟩

) where f ∶ D→ J ∪ K is adequate:
i.e., (∀I ∈ D)(fI ∈ K implies fI ∈ K(I), e.g., I(fI) = 0).

G3inl admits Weakening, Contraction, and Cut, and supports
mechanical proof-search. By applying Maehara’s method using
a splitting version of it, Yu (2020) constructively showed that
INL has Lydon Interpolation.
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Bundling and unbundling

The bundles behind the semantics:

• The standard semantics for ◻α: ∃X∀w
• Instantial neighborhood logic: ∃X(Ð→∃vi;∀w)

The (weak) completeness of the Hilbert system of INL is based
on a normal form argument in van Benthem et al. 2017. The
sequent calculus of INL also looks complicated.

Can we do everything much simpler?

What about unbundling INL?
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Point-Set Neighborhood Language

A two-sorted modal language with two types of formulas.
Definition (Language Lps(⊡,⊠))
The language Lps(⊡,⊠) of point-formulas α is defined by the
following mutual induction with the set-formulas ϕ:

Lp ∋ α ∶∶= � ∣ p ∣ (α → α) ∣ ⊡ϕ
Ls ∋ ϕ ∶∶= ¬ϕ ∣ (ϕ→ ϕ) ∣ ⊠α

Note that Lp ∩Ls = ∅. E.g., ⊠p is not a point-formula but ⊡ ⊠ p
is. ∨, ∧,↔, are defined classically for all formulas. Define ¬α as
α → �, ⊺ as ¬�, ⟐ϕ as ¬ ⊡ ¬ϕ, and }α as ¬ ⊠ ¬α.

α,β, γ, δ, θ are used for point-formulas and Γ,∆,Θ,Ω,Υ for
sets/multi-sets of them; ϕ,ψ, π, σ, ξ are used for set-formulas
and Φ,Ψ,Π,Σ,Ξ for sets/multi-sets of them. 14



Semantics

Given a nbd model M = ⟨W,N,V⟩, the satisfaction relation ⊧
between a world w and a point-formula α is defined mutually
with the relation ⊫ between a set X of worlds and a
set-formula ϕ:

M,w ⊧ � ⇔ never
M,w ⊧ p ⇔ w ∈ V(p)

M,w ⊧ (α → β) ⇔ M,w ⊭ α or M,w ⊧ β
M,w ⊧ ⊡ ϕ ⇔ for all X ∈ N(w): M,X ⊫ϕ
M,X⊫ ¬ϕ ⇔ M,X⊯ ϕ

M,X⊫ (ϕ→ ψ) ⇔ M,X⊯ ϕ or M,X⊫ ψ

M,X ⊫ ⊠ α ⇔ for all v ∈ X: M, v ⊧α

An INL formula ◻(α1, . . . αm;β) can be viewed as a formula in
Lps(⊡,⊠): ⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αm ∧ ⊠β). 15



Induced semantics for defined connectives and modalities:

M,w ⊧ ¬α ⇔ M,w ⊭ α
M,w ⊧ α ∧ β ⇔ M,w ⊧ α and M,w ⊧ β
M,w ⊧ α ∨ β ⇔ M,w ⊧ α or M,w ⊧ β
M,w ⊧⟐ϕ ⇔ for some X ∈ N(w): M,X⊫ ϕ

M,X⊫ ϕ ∧ ψ ⇔ M,X⊫ ϕ and M,X⊫ ψ

M,X⊫ ϕ ∨ ψ ⇔ M,X⊫ ϕ or M,X⊫ ψ

M,X⊫}α ⇔ for some v ∈ X: M, v ⊧ α
The following hold:

⊧ ⊡ ϕ↔ ¬⟐¬ϕ ⊫ ⊠ α↔ ¬}¬α
⊧ ⊡ (ϕ ∧ ψ)↔ ⊡ϕ ∧ ⊡ψ ⊫ ⊠ (α ∧ β)↔ ⊠α ∧ ⊠β
⊧⟐ (ϕ ∨ ψ)↔⟐ϕ ∨⟐ψ ⊫} (α ∨ β)↔}α ∨}β

⊫ ϕ↔ ψ

⊧ ⊡ ϕ↔ ⊡ψ
⊫ ϕ↔ ψ

⊧ ⟐ ϕ↔⟐ψ
⊧ α↔ β

⊫ ⊠ α↔ ⊠β
⊧ α↔ β

⊫ } α↔}β16



Normal form

Lemma (Normal form)

Each point-formula γ ∈ Lps(⊡,⊠) is equivalent to a Boolean
combination of point-formulas with the INL-shape
⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αn ∧ ⊠β) with the same propositional letters.

Just need to turn each ⟐ϕ into a boolean combination of
INL-shaped formulas:

• turn ϕ into a disjunction normal form of ψ1 ∨ ⋅ ⋅ ⋅ ∨ψn

(n > 0) s.t. each ψi is a conjunction of some ⊠β and }α.
• turn ⟐(ψ1 ∨ ⋅ ⋅ ⋅ ∨ψn) into the equivalent ⟐ψ1 ∨ ⋅ ⋅ ⋅ ∨ ⟐ψn.
• each ⟐ψi is ⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αm ∧ ⊠β1 ∧ ⋅ ⋅ ⋅ ∧ ⊠βk) which is
equivalent to its INL-shape:

⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αm ∧ ⊠(β1 ∧ ⋅ ⋅ ⋅ ∧ βk))
17



Expressivity

Each Linl(◻)-formula can obviously be rewritten to a
point-formula, of Lps(⊡,⊠) thus:

Theorem

Lps(⊡,⊠) and Linl(◻) are equally expressive.

We can define back and forth translations between Linl(◻)
and the point-formulas of Lps(⊡,⊠). This allows us to transfer
results of PSNL to INL.

18



Hilbert system and sequent calculus



Two-sorted Hilbert system HK⊡⊠

Axioms
TAUTP ⊢p CPLp

DIST⊡ ⊢p ⊡(ϕ→ ψ)→ (⊡ϕ→ ⊡ψ)
TAUTS ⊢s CPLs

DIST⊠ ⊢s ⊠(α → β)→ (⊠α → ⊠β)
CPLp/CPLs stands for classical tautolo-
gies for point-/set-formulas.

Rules

MPP
⊢p α ⊢p α → β

⊢p β

MPS
⊢s ϕ ⊢s ϕ→ ψ

⊢s ψ

NEC⊡ ⊢sϕ

⊢p ⊡ ϕ
NEC⊠

⊢pα

⊢s ⊠ α

A proof of ⊢pα (⊢sϕ) is a finite sequence of both ⊢p and ⊢s

statements ending with ⊢p α (⊢s ϕ).

For any set of point-formulas Γ ∪ {α}, we write Γ ⊢p α iff there
are finitely many β1, . . . , βn ∈ Γ s.t. ⊢p β1 ∧ ⋅ ⋅ ⋅ ∧ βn → α is
provable. Similarly for set-formulas Σ ⊢s ϕ.
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Recall: Hilbert system for INL

Crucial axioms:

• ◻(α1, ..., αj;α0)→◻(α1, ..., αj;α0 ∨ η)
• ◻(α1, ..., αj, ϕ;α0)→◻(α1, ..., αj, ϕ ∨ ψ;α0)
• ◻(α1, α2, ..., αj;α0)→◻(α2, ..., αj;α0)
• ◻(α1, ..., αj;α0)→◻(α1, ..., αj, αi;α0) where i ∈ {1, ..., j}

• ◻(α1, ..., αj, η;α0)→◻(α1, ..., αj, η ∧ α0;α0)
• ¬ ◻ (α1, ..., αj,�;α0)
• ◻(α1, ..., αn;β)→(◻(α1, ..., αn, γ;β) ∨ ◻(α1, ..., αn;β ∧ ¬γ))

Case schema:

⊢p ⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αn ∧ ⊠β)→
⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αn ∧}γ ∧ ⊠β) ∨⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αn ∧ ⊠(β ∧ ¬γ))
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Sample derivation

We only prove the following simplified (n = 1) schema:

⊢p ⟐(}α ∧ ⊠β)→⟐(}α ∧}γ ∧ ⊠β) ∨⟐(}α ∧ ⊠(β ∧ ¬γ))

Proof.
By tautologies for set formulas and normality of ⊠:

⊢s }α ∧ ⊠β → (}α ∧}γ ∧ ⊠β) ∨ (}α ∧ ¬} γ ∧ ⊠β),

⊢s }α ∧ ⊠β → (}α ∧}γ ∧ ⊠β) ∨ (}α ∧ ⊠(¬γ ∧ β)).

By the admissible monotonicity rule,

⊢p ⟐(}α ∧ ⊠β)→⟐((}α ∧}γ ∧ ⊠β) ∨ (}α ∧ ⊠(β ∧ ¬γ))),

and then:
⊢p ⟐(}α ∧ ⊠β)→⟐(}α ∧}γ ∧ ⊠β) ∨⟐(}α ∧ ⊠(β ∧ ¬γ))
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Strong completeness

To show Γ ⊢p α iff Γ ⊧ α and Σ ⊢s ϕ iff Σ⊫ ϕ.

Completeness via canonical model.
To show each ⊢p-consistent set of Lp has a pointed model,
and each ⊢s-consistent set of Ls has a model w.r.t. a set X.
We build a single canonical model Mc = ⟨Wc,Nc,Vc⟩ where

• Wc is the set of ⊢p-MCSs of point-formulas,
• Nc(∆) = {X ⊆ Wc ∣∆♭ ⊆ supp(X)} for each ∆ ∈ Wc,
• Vc(p) = {∆ ∈ Wc ∣ p ∈∆};

where ∆♭ ∶= {ϕ ∣ ⊡ϕ ∈∆} and supp(X) is the collection of all
set-formulas supported by X ⊆ Wc in the following sense:

X supports ⊠ α iff α ∈ Θ for all Θ ∈ X
X supports ¬ϕ iff X does not support ϕ

X supports ϕ→ψ iff X does not support ϕ or X supports ψ. 22



Strong completeness

Claim (#) Every ⊢s-consistent set of set-formulas is supported
by an X ⊆ Wc.
Lemma (Truth lemma)
For every point-formula α, set-formula ϕ, ∆ ∈ Wc and X ⊆ Wc:

α ∈∆ iff Mc,∆ ⊧ α and ϕ ∈ supp(X) iff Mc,X⊫ ϕ

In an induction, Boolean cases are trivial, and here we show:

1. ⊡ϕ ∈∆ iff Mc,∆ ⊧ ⊡ϕ
2. ⊠α ∈ supp(X) iff Mc,X⊫ ⊠α

Claim # is needed in (1)⇒.

The canonical model construction can be transformed into an
equivalent one in the setting of INL. 23



Sequent calculus G3psnl

A 2-sorted version of G3k for K features two sorts of sequents,
⇒ and ⇛ for point-and set-formulas.

(pAx)
p,Γ⇒∆,p

(pL�)
�,Γ⇒∆

Π⇛ Σ, ϕ
(sL¬)

¬ϕ,Π⇛ Σ

ϕ,Π⇛ Σ
(sR¬)

Π⇛ Σ,¬ϕ
Γ⇒∆, α β,Γ⇒∆

(pL→)
α→β,Γ⇒∆

α,Γ⇒∆, β
(pR→)

Γ⇒∆, α→β
Π⇛ Σ, ϕ ψ,Π⇛ Σ

(sL→)
ϕ→ψ,Π⇛ Σ

ϕ,Π⇛ Σ, ψ
(sR→)

Π⇛ Σ, ϕ→ψ
Π⇛σ

(p◻)
⊡Π,Γ⇒∆,⊡σ

Γ⇒δ
(s◻)

⊠Γ,Π⇛Σ,⊠δ

G3psnl is sound and complete, and also admits Cut and
support mechanical proof search. 24



Constructing uniform interpolats



Uniform Interpolation Property (UIP)

• Let Q be a finite set of prop. var.’s.
• A pre-interpolant of ⟨β,Q⟩ is a formula θ that meets:

• V(θ) ⊆ V(β) ∖Q;
• ⊩ θ→β;
• for each α, if V(α) ∩Q = ∅ and ⊩ α→β, then ⊩ α→θ.

• A post-interpolant of ⟨β,Q⟩ is a formula θ that meets:
• V(θ) ⊆ V(β) ∖Q;
• ⊩ β→θ;
• for each α, if V(α) ∩Q = ∅ and ⊩ β→α, then ⊩ θ→α.

• Uniform interpolation property UIP:
For each β and Q, pre- and post-interpolant exist.
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Uniform Interpolation Property (UIP)

In a logic with classical ¬, it is sufficient to ensure existence of
either pre- or post-interpolant:

• if θ is a pre-interpolant of ⟨¬α,Q⟩, then ¬θ is a
post-interpolant of ⟨α,Q⟩.

Pre-(post-)interpolant is unique modulo equivalence:

• Interpolants trigger clause (iii) of each other.

Due to [Pitts 1992], there is a method to establish UIP of a logic
via a sequent calculus that supports proof-search; [Bílková
2007] extends that method to many modal logics.

Using Pitts-Bílková’s method to show UIP of PSNL (and INL).

26



An adequate notion of UIP for PSNL

Let Q be a finite set of propositional letters. Since PSNL has
classical negations (for both sorts of formulas), it is sufficient
to find only pre-interpolants (for both sorts).

For β ∈ Fp, a pre-interpolant of ⟨β,Q⟩ is a formula θ ∈ Fp s.t.:

• V(θ) ⊆ V(β) ∖Q;
• ⊧ θ→β;
• for each α ∈ Fp, if V(α) ∩Q = ∅ and ⊧ α→β, then ⊧ α→θ.

For ψ ∈ Fs, a pre-interpolant of ⟨ψ,Q⟩ is a formula ξ ∈ Fs s.t.:

• V(ξ) ⊆ V(ψ) ∖Q;
• ⊫ ξ→ψ;
• for each ϕ ∈ Fs, if V(ϕ) ∩Q = ∅ and ⊫ ϕ→ψ, then ⊫ ξ→ψ.

UIP: For each β ∈ Fp, ψ ∈ Fs and Q, pre-interpolants exist.
27



Applying Pitts-Bílková’s method to PSNL

It is sufficient to verify the sequent version of PSNL’s UIP.

Given Q is a finite set of propositional letters, to show:

1. For each point-sequent Γ⇒∆, there is θQΓ∆ ∈ Fp s.t.:
• V(θQΓ∆) ⊆ V(Γ,∆) ∖Q;
• ⊢ Γ, θQΓ∆ ⇒∆;
• ⊢ Ω⇒ θQΓ∆,Υ for every point-sequent Ω⇒ Υ s.t.
V(Ω,Υ) ∩Q = ∅ and ⊢ Ω,Γ⇒∆,Υ.

2. For each set-sequent Π⇛Σ, there is ξQΠΣ ∈ Fs s.t.:
• V(ξQΠΣ) ⊆ V(Π,Σ) ∖Q;
• ⊢ Π, ξQΠΣ ⇛ Σ;
• ⊢ Φ⇛ ξQΠΣ,Ψ for every set-sequent Φ⇛ Ψ s.t.
V(Φ,Ψ) ∩Q = ∅ and ⊢ Φ,Π⇛ Σ,Ψ.

28



Applying Pitts-Bílková’s method to PSNL

Two-sorted extension of Bílková’s construction for K.

• For a non-empty point-/set-sequent s:
• c(s) := the closure of s under inverted Boolean schemes;
c(s) is always finite, and share the same sort with s.

• s is said to be critical, if s is non-empty and on it no
inverted Boolean rule scheme is applicable.

• let cl(s) ∶= {x ∈ c(s) ∣ x is critical}.
• For a multi-set Θ ⊆ Fp, let

• Θ0 ∶= {θ ∈ Θ ∣ θ is prime};
• Θ♮ ∶= {θ ∈ Θ ∣ θ is ⊡ -prefixed};
• Θ♭ ∶= {ξ ∣ ⊡ξ ∈ Θ♮}.

• Likewise, for a multi-set Ξ ⊆ Fs, let
• Ξ♮ ∶= {ξ ∈ Ξ ∣ ξ is ⊠ -prefixed};
• Ξ♭ ∶= {θ ∣ ⊠θ ∈ Ξ♮}.

29



Applying Pitts-Bílková’s method to PSNL

Construct θQΓ∆ and ξQΠΣ by a mutual induction on sequents:

θQΓ∆ ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if Γ =∆ = ∅
⊺ else if Γ⇒∆ is critical and Q ∩ Γ0 ∩∆0 ≠ ∅
⟐ξQ

Γ♭∅ ∨ ⋁
σ∈∆♭

⊡ξQ
Γ♭{σ} ∨⋁¬(Γ0∖Q) ∨⋁(∆0∖Q)

else if Γ⇒∆ is critical and Q ∩ Γ0 ∩∆0 = ∅
⋀
i∈I
θQΓi∆i

else, where cl(Γ⇒∆) = {Γi ⇒∆i}i∈I

ξQΠΣ ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

}� if Π = Σ = ∅
}θQ

Π♭∅ ∨ ⋁
δ∈Σ♭

⊠θQ
Π♭{δ} else if Π⇛ Σ is critical

⋀
i∈I
ξQΠiΣi

else, where cl(Π⇛ Σ) = {Πi ⇛ Σi}i∈I

30



UIP for PSNL and INL

Theorem
Pre- and post-interpolants can be constructed given a finite
set of propositional letters and any formula of Lps(⊡,⊠).

UIP of INL also follows by translation.

Note that it is unclear how to apply Pitts-Bílková’s method
directly on the sequent calculus G3inl for INL.

It was suggested UIP of PSNL and INL can be proved
semantically by coalgebraic method via definability of
bisimulation quantifiers.
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Conclusions and future work



Conclusions: Making simple things simple!

• Breaking the INL-bundles simplifies the techniques
• PSNL is intuitive to use
• It does not increase expressivity
• Multi-sorted language makes use of “non-formulas” in INL
• Bridging rules connects different subsystems
• UIP can be shown constructively

Applications to other bundle-based language: social-friendly
coalition logic, Aristotelian modal logic ...

Other connections to be explored: team semantics, coalgebraic
modal logic...
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Bundling or unbundling? That is the question.

The answer: it depends! 33



Thanks for your attention!
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