
Point-Set Neighborhood Logic

Yanjing Wang 1 Junhua Yu 2

NihiL/LIRa seminar, ILLC
Aug. 15 2024
1Department of Philosophy, Peking University

2Department of Philosophy, Tsinghua University

1



World-Team Neighborhood Logic

Yanjing Wang 1 Junhua Yu 2

NihiL/LIRa seminar, ILLC
Aug. 15 2024
1Department of Philosophy, Peking University

2Department of Philosophy, Tsinghua University

2



Background: my view

Point-Set Neighborhood Logic

Hilbert system and sequent calculus

Constructing uniform interpolats

Conclusions and future work

3



Background: my view



Bundling and unbundling

4



Bundling and unbundling in modal and non-classical logics

Bundling: take a construction as a modality

• Temporal Logic e.g., CTL ∶ AFϕ,ATL ∶ ⟪A⟫ϕUψ
• Epistemic Logic of Know-wh:

Kwϕ ∶= Kϕ ∨ K¬ϕ,Kvd ∶= ∃xK(x ≈ d),Khϕ ∶= ∃σK[σ]ϕ

• Bundled fragments of FOML (Wang 2017 -):

α ∶∶= P(x1, . . . , xn) ∣ ¬α ∣ α∧α ∣ ◻α ∣ ∀x◻α ∣ ∃x◻α ∣ ◻∀xα ∣ ◻∃xα

• Other applications: Modal syllogistic, Deontic logic,
Contingency logic, Group knowledge ...

Usual advantages: capture the concepts as a whole; balancing
expressivity and complexity... E.g., Normal modalities are
bundles too! ◻ϕ ∶= ∀y(xRy→ ϕ)

ESSLLI24 Course:
http://wangyanjing.com/introduction-to-bundled-modalities/

5

http://wangyanjing.com/introduction-to-bundled-modalities/


Bundling and unbundling in modal and non-classical logics

Unbundling: break constructions into certain components

• Temporal Logic: CTL∗,ATL∗

• Epistemic Logic of de re updates (Cohen, Tang & W. 21):

α ∶∶= t ≈ t ∣ Pt⃗ ∣ ¬α ∣ α ∧ α ∣ [x ∶= t]α ∣ Kα ∣ [!α]α

[x ∶= c]K(x ≈ c), [x ∶= c][y ∶= d]K(M(x, y)), [x ∶= c][!c ≈ x]α
• Non-classical logic: intuitionistic and intermediate logics
as epistemic logic of knowing how (Wang3 21 22)

Advantages: compositional, (sometimes) easier to axiomatize

6



Bundling or unbundling?

That is the question.

We take a certain neighborhood logic as a case study to
demonstrate the use of unbundling.

Not so much about fancy or surprising techniques, but that is
the point: making simple things simple!

My personal taste in research:

Max (conceptual significance − technical complexity)

7



Neighborhood Structures

Neighborhood (nbd) frame: F = (W,N)

• W ≠ ∅, a set of possible worlds;
• N ∶ W→ 22W , a nbd function.

Nbd Model: M = (F,V)

Different perspectives:

• Technical tools for non-normal modal logic
• As genuine structures or abstractions of finer structures

8



Monotonic Neighborhood Logic

Monotonic neighborhood logic with a unary operator ◻.

M,w ⊧ ◻α iff (∃X ∈ N(w))(∀x ∈ X)M, x ⊧ α.

There exists a nbd of w has α true everywhere inside.

Some schemes as examples:

invalid valid
◻α ∧ ◻β→◻(α ∧ β) ◻(α ∧ β)→◻α ∧ ◻β
⊧ ϕ
⊧ ◻ϕ

◻�→◻α
⊧ ϕ→ ψ

⊧ ◻ϕ→ ◻ψ

9



Instantial Neighborhood Logic (van Benthem et al. 2017 )

Instantial Neighborhood Logic adds instances in the modality
where j ∈ N:

◻(α1, ..., αj;α0)

M,w ⊧ ◻(α1, ..., αj;α0) iff ∃X ∈ N(w)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(∀x ∈ X)M, x ⊧ α0
(∃x1 ∈ X)M, x1 ⊧ α1

⋮
(∃xj ∈ X)M, xj ⊧ αj

There exists a nbd of w that has the following properties:

• α0 holds everywhere inside, and
• each instance (respectively) holds somewhere inside.

10



Instantial nbd logic INL (van Benthem et al 2017)

Some invalid schemes:

• ¬ ◻ (;�), ◻(;α) ∧ ◻(;β)→◻(;α ∧ β)
• ⊧ α
⊧ ◻(;α)

, ◻(α;γ) ∧ ◻(β;γ)→◻(α,β;γ)

Some valid schemes:

• ◻(α1, ..., αj;α0)→◻(α1, ..., αj;α0 ∨ η)
• ◻(α1, ..., αj, β;α0)→◻(α1, ..., αj, β ∨ γ;α0)
• ◻(α1, α2, ..., αj;α0)→◻(α2, ..., αj;α0)
• ◻(α1, ..., αj;α0)→◻(α1, ..., αj, αi;α0) where i ∈ {1, ..., j}

• ◻(α1, ..., αj, η;α0)→◻(α1, ..., αj, η ∧ α0;α0)
• ¬ ◻ (α1, ..., αj,�;α0)
• ◻(α1, ..., αj;α0)→(◻(α1, ..., αj, δ;α0) ∨ ◻(α1, ..., αj;α0 ∧ ¬δ))

With propositional tautologies and replacement of
equivalence, a complete axiomatization of INL is obtained. 11



Sequent calculus G3inl (Yu 2020)

⎛
⎝

J = {−j, ...,−1} K = {1, ..., k}

K(I) = {y ∈ K ∣ I(y) = 0} ΩI
K = {β

i
I(i)}

I(i)≠0

i∈K
D =⊗

i∈K
{0, 1, ..., ji}

⎞
⎠

[α0, α−fI ⇒ ΩI
K]

fI∈J

I∈D
[α0 ⇒ βfI0 ,Ω

I
K]

fI∈K(I)

I∈D
Π,◻(α1, ..., αj;α0)⇒ {◻(βi1, ..., βiji ;β

i
0)}i∈K,Σ

• This is (◻j,k,f
⟨j1,...,jk⟩

), nbd rule with parameters j,k, j1, ..., jk, f.
• It respects the proper sub-formula property (no built-in contraction).
• G3inl is G3cp (in the language of INL) extended by

all (◻j,k,f
⟨j1,...,jk⟩

) where f ∶ D→ J ∪ K is adequate:
i.e., (∀I ∈ D)(fI ∈ K implies fI ∈ K(I), e.g., I(fI) = 0).

G3inl admits Weakening, Contraction, and Cut, and supports
mechanical proof-search. By applying Maehara’s method using
a splitting version of it, Yu (2020) constructively showed that
INL has Lydon Interpolation.

12



Bundling and unbundling

The bundles behind the semantics:

• The standard semantics for ◻α: ∃X∀w
• Instantial neighborhood logic: ∃X(Ð→∃vi;∀w)

The (weak) completeness of the Hilbert system of INL is based
on a normal form argument in van Benthem et al. 2017. The
sequent calculus of INL also looks complicated.

Can we do everything much simpler?

What about unbundling INL?

13



Point-Set Neighborhood Logic



Point-Set Neighborhood Language

A two-sorted modal language with two types of formulas.
Definition (Language Lps(⊡,⊠))
The language Lps(⊡,⊠) of point-formulas α is defined by the
following mutual induction with the set-formulas ϕ:

Lp ∋ α ∶∶= � ∣ p ∣ (α → α) ∣ ⊡ϕ
Ls ∋ ϕ ∶∶= ¬ϕ ∣ (ϕ→ ϕ) ∣ ⊠α

Note that Lp ∩Ls = ∅. E.g., ⊠p is not a point-formula but ⊡ ⊠ p
is. ∨, ∧,↔, are defined classically for all formulas. Define ¬α as
α → �, ⊺ as ¬�, ⟐ϕ as ¬ ⊡ ¬ϕ, and }α as ¬ ⊠ ¬α.

α,β, γ, δ, θ are used for point-formulas and Γ,∆,Θ,Ω,Υ for
sets/multi-sets of them; ϕ,ψ, π, σ, ξ are used for set-formulas
and Φ,Ψ,Π,Σ,Ξ for sets/multi-sets of them. 14



Semantics

Given a nbd model M = ⟨W,N,V⟩, the satisfaction relation ⊧
between a world w and a point-formula α is defined mutually
with the relation ⊫ between a set X of worlds and a
set-formula ϕ:

M,w ⊧ � ⇔ never
M,w ⊧ p ⇔ w ∈ V(p)

M,w ⊧ (α → β) ⇔ M,w ⊭ α or M,w ⊧ β
M,w ⊧ ⊡ ϕ ⇔ for all X ∈ N(w): M,X ⊫ϕ
M,X⊫ ¬ϕ ⇔ M,X⊯ ϕ

M,X⊫ (ϕ→ ψ) ⇔ M,X⊯ ϕ or M,X⊫ ψ

M,X ⊫ ⊠ α ⇔ for all v ∈ X: M, v ⊧α

An INL formula ◻(α1, . . . αm;β) can be viewed as a formula in
Lps(⊡,⊠): ⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αm ∧ ⊠β). 15



Induced semantics for defined connectives and modalities:

M,w ⊧ ¬α ⇔ M,w ⊭ α
M,w ⊧ α ∧ β ⇔ M,w ⊧ α and M,w ⊧ β
M,w ⊧ α ∨ β ⇔ M,w ⊧ α or M,w ⊧ β
M,w ⊧⟐ϕ ⇔ for some X ∈ N(w): M,X⊫ ϕ

M,X⊫ ϕ ∧ ψ ⇔ M,X⊫ ϕ and M,X⊫ ψ

M,X⊫ ϕ ∨ ψ ⇔ M,X⊫ ϕ or M,X⊫ ψ

M,X⊫}α ⇔ for some v ∈ X: M, v ⊧ α
The following hold:

⊧ ⊡ ϕ↔ ¬⟐¬ϕ ⊫ ⊠ α↔ ¬}¬α
⊧ ⊡ (ϕ ∧ ψ)↔ ⊡ϕ ∧ ⊡ψ ⊫ ⊠ (α ∧ β)↔ ⊠α ∧ ⊠β
⊧⟐ (ϕ ∨ ψ)↔⟐ϕ ∨⟐ψ ⊫} (α ∨ β)↔}α ∨}β

⊫ ϕ↔ ψ

⊧ ⊡ ϕ↔ ⊡ψ
⊫ ϕ↔ ψ

⊧ ⟐ ϕ↔⟐ψ
⊧ α↔ β

⊫ ⊠ α↔ ⊠β
⊧ α↔ β

⊫ } α↔}β16



Normal form

Lemma (Normal form)

Each point-formula γ ∈ Lps(⊡,⊠) is equivalent to a Boolean
combination of point-formulas with the INL-shape
⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αn ∧ ⊠β) with the same propositional letters.

Just need to turn each ⟐ϕ into a boolean combination of
INL-shaped formulas:

• turn ϕ into a disjunction normal form of ψ1 ∨ ⋅ ⋅ ⋅ ∨ψn

(n > 0) s.t. each ψi is a conjunction of some ⊠β and }α.
• turn ⟐(ψ1 ∨ ⋅ ⋅ ⋅ ∨ψn) into the equivalent ⟐ψ1 ∨ ⋅ ⋅ ⋅ ∨ ⟐ψn.
• each ⟐ψi is ⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αm ∧ ⊠β1 ∧ ⋅ ⋅ ⋅ ∧ ⊠βk) which is
equivalent to its INL-shape:

⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αm ∧ ⊠(β1 ∧ ⋅ ⋅ ⋅ ∧ βk))
17



Expressivity

Each Linl(◻)-formula can obviously be rewritten to a
point-formula, of Lps(⊡,⊠) thus:

Theorem

Lps(⊡,⊠) and Linl(◻) are equally expressive.

We can define back and forth translations between Linl(◻)
and the point-formulas of Lps(⊡,⊠). This allows us to transfer
results of PSNL to INL.

18



Hilbert system and sequent calculus



Two-sorted Hilbert system HK⊡⊠

Axioms
TAUTP ⊢p CPLp

DIST⊡ ⊢p ⊡(ϕ→ ψ)→ (⊡ϕ→ ⊡ψ)
TAUTS ⊢s CPLs

DIST⊠ ⊢s ⊠(α → β)→ (⊠α → ⊠β)
CPLp/CPLs stands for classical tautolo-
gies for point-/set-formulas.

Rules

MPP
⊢p α ⊢p α → β

⊢p β

MPS
⊢s ϕ ⊢s ϕ→ ψ

⊢s ψ

NEC⊡ ⊢sϕ

⊢p ⊡ ϕ
NEC⊠

⊢pα

⊢s ⊠ α

A proof of ⊢pα (⊢sϕ) is a finite sequence of both ⊢p and ⊢s

statements ending with ⊢p α (⊢s ϕ).

For any set of point-formulas Γ ∪ {α}, we write Γ ⊢p α iff there
are finitely many β1, . . . , βn ∈ Γ s.t. ⊢p β1 ∧ ⋅ ⋅ ⋅ ∧ βn → α is
provable. Similarly for set-formulas Σ ⊢s ϕ.

19



Recall: Hilbert system for INL

Crucial axioms:

• ◻(α1, ..., αj;α0)→◻(α1, ..., αj;α0 ∨ η)
• ◻(α1, ..., αj, ϕ;α0)→◻(α1, ..., αj, ϕ ∨ ψ;α0)
• ◻(α1, α2, ..., αj;α0)→◻(α2, ..., αj;α0)
• ◻(α1, ..., αj;α0)→◻(α1, ..., αj, αi;α0) where i ∈ {1, ..., j}

• ◻(α1, ..., αj, η;α0)→◻(α1, ..., αj, η ∧ α0;α0)
• ¬ ◻ (α1, ..., αj,�;α0)
• ◻(α1, ..., αn;β)→(◻(α1, ..., αn, γ;β) ∨ ◻(α1, ..., αn;β ∧ ¬γ))

Case schema:

⊢p ⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αn ∧ ⊠β)→
⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αn ∧}γ ∧ ⊠β) ∨⟐(}α1 ∧ ⋅ ⋅ ⋅ ∧ }αn ∧ ⊠(β ∧ ¬γ))

20



Sample derivation

We only prove the following simplified (n = 1) schema:

⊢p ⟐(}α ∧ ⊠β)→⟐(}α ∧}γ ∧ ⊠β) ∨⟐(}α ∧ ⊠(β ∧ ¬γ))

Proof.
By tautologies for set formulas and normality of ⊠:

⊢s }α ∧ ⊠β → (}α ∧}γ ∧ ⊠β) ∨ (}α ∧ ¬} γ ∧ ⊠β),

⊢s }α ∧ ⊠β → (}α ∧}γ ∧ ⊠β) ∨ (}α ∧ ⊠(¬γ ∧ β)).

By the admissible monotonicity rule,

⊢p ⟐(}α ∧ ⊠β)→⟐((}α ∧}γ ∧ ⊠β) ∨ (}α ∧ ⊠(β ∧ ¬γ))),

and then:
⊢p ⟐(}α ∧ ⊠β)→⟐(}α ∧}γ ∧ ⊠β) ∨⟐(}α ∧ ⊠(β ∧ ¬γ))

21



Strong completeness

To show Γ ⊢p α iff Γ ⊧ α and Σ ⊢s ϕ iff Σ⊫ ϕ.

Completeness via canonical model.
To show each ⊢p-consistent set of Lp has a pointed model,
and each ⊢s-consistent set of Ls has a model w.r.t. a set X.
We build a single canonical model Mc = ⟨Wc,Nc,Vc⟩ where

• Wc is the set of ⊢p-MCSs of point-formulas,
• Nc(∆) = {X ⊆ Wc ∣∆♭ ⊆ supp(X)} for each ∆ ∈ Wc,
• Vc(p) = {∆ ∈ Wc ∣ p ∈∆};

where ∆♭ ∶= {ϕ ∣ ⊡ϕ ∈∆} and supp(X) is the collection of all
set-formulas supported by X ⊆ Wc in the following sense:

X supports ⊠ α iff α ∈ Θ for all Θ ∈ X
X supports ¬ϕ iff X does not support ϕ

X supports ϕ→ψ iff X does not support ϕ or X supports ψ. 22



Strong completeness

Claim (#) Every ⊢s-consistent set of set-formulas is supported
by an X ⊆ Wc.
Lemma (Truth lemma)
For every point-formula α, set-formula ϕ, ∆ ∈ Wc and X ⊆ Wc:

α ∈∆ iff Mc,∆ ⊧ α and ϕ ∈ supp(X) iff Mc,X⊫ ϕ

In an induction, Boolean cases are trivial, and here we show:

1. ⊡ϕ ∈∆ iff Mc,∆ ⊧ ⊡ϕ
2. ⊠α ∈ supp(X) iff Mc,X⊫ ⊠α

Claim # is needed in (1)⇒.

The canonical model construction can be transformed into an
equivalent one in the setting of INL. 23



Sequent calculus G3psnl

A 2-sorted version of G3k for K features two sorts of sequents,
⇒ and ⇛ for point-and set-formulas.

(pAx)
p,Γ⇒∆,p

(pL�)
�,Γ⇒∆

Π⇛ Σ, ϕ
(sL¬)

¬ϕ,Π⇛ Σ

ϕ,Π⇛ Σ
(sR¬)

Π⇛ Σ,¬ϕ
Γ⇒∆, α β,Γ⇒∆

(pL→)
α→β,Γ⇒∆

α,Γ⇒∆, β
(pR→)

Γ⇒∆, α→β
Π⇛ Σ, ϕ ψ,Π⇛ Σ

(sL→)
ϕ→ψ,Π⇛ Σ

ϕ,Π⇛ Σ, ψ
(sR→)

Π⇛ Σ, ϕ→ψ
Π⇛σ

(p◻)
⊡Π,Γ⇒∆,⊡σ

Γ⇒δ
(s◻)

⊠Γ,Π⇛Σ,⊠δ

G3psnl is sound and complete, and also admits Cut and
support mechanical proof search. 24



Constructing uniform interpolats



Uniform Interpolation Property (UIP)

• Let Q be a finite set of prop. var.’s.
• A pre-interpolant of ⟨β,Q⟩ is a formula θ that meets:

• V(θ) ⊆ V(β) ∖Q;
• ⊩ θ→β;
• for each α, if V(α) ∩Q = ∅ and ⊩ α→β, then ⊩ α→θ.

• A post-interpolant of ⟨β,Q⟩ is a formula θ that meets:
• V(θ) ⊆ V(β) ∖Q;
• ⊩ β→θ;
• for each α, if V(α) ∩Q = ∅ and ⊩ β→α, then ⊩ θ→α.

• Uniform interpolation property UIP:
For each β and Q, pre- and post-interpolant exist.

25



Uniform Interpolation Property (UIP)

In a logic with classical ¬, it is sufficient to ensure existence of
either pre- or post-interpolant:

• if θ is a pre-interpolant of ⟨¬α,Q⟩, then ¬θ is a
post-interpolant of ⟨α,Q⟩.

Pre-(post-)interpolant is unique modulo equivalence:

• Interpolants trigger clause (iii) of each other.

Due to [Pitts 1992], there is a method to establish UIP of a logic
via a sequent calculus that supports proof-search; [Bílková
2007] extends that method to many modal logics.

Using Pitts-Bílková’s method to show UIP of PSNL (and INL).

26



An adequate notion of UIP for PSNL

Let Q be a finite set of propositional letters. Since PSNL has
classical negations (for both sorts of formulas), it is sufficient
to find only pre-interpolants (for both sorts).

For β ∈ Fp, a pre-interpolant of ⟨β,Q⟩ is a formula θ ∈ Fp s.t.:

• V(θ) ⊆ V(β) ∖Q;
• ⊧ θ→β;
• for each α ∈ Fp, if V(α) ∩Q = ∅ and ⊧ α→β, then ⊧ α→θ.

For ψ ∈ Fs, a pre-interpolant of ⟨ψ,Q⟩ is a formula ξ ∈ Fs s.t.:

• V(ξ) ⊆ V(ψ) ∖Q;
• ⊫ ξ→ψ;
• for each ϕ ∈ Fs, if V(ϕ) ∩Q = ∅ and ⊫ ϕ→ψ, then ⊫ ξ→ψ.

UIP: For each β ∈ Fp, ψ ∈ Fs and Q, pre-interpolants exist.
27



Applying Pitts-Bílková’s method to PSNL

It is sufficient to verify the sequent version of PSNL’s UIP.

Given Q is a finite set of propositional letters, to show:

1. For each point-sequent Γ⇒∆, there is θQΓ∆ ∈ Fp s.t.:
• V(θQΓ∆) ⊆ V(Γ,∆) ∖Q;
• ⊢ Γ, θQΓ∆ ⇒∆;
• ⊢ Ω⇒ θQΓ∆,Υ for every point-sequent Ω⇒ Υ s.t.
V(Ω,Υ) ∩Q = ∅ and ⊢ Ω,Γ⇒∆,Υ.

2. For each set-sequent Π⇛Σ, there is ξQΠΣ ∈ Fs s.t.:
• V(ξQΠΣ) ⊆ V(Π,Σ) ∖Q;
• ⊢ Π, ξQΠΣ ⇛ Σ;
• ⊢ Φ⇛ ξQΠΣ,Ψ for every set-sequent Φ⇛ Ψ s.t.
V(Φ,Ψ) ∩Q = ∅ and ⊢ Φ,Π⇛ Σ,Ψ.

28



Applying Pitts-Bílková’s method to PSNL

Two-sorted extension of Bílková’s construction for K.

• For a non-empty point-/set-sequent s:
• c(s) := the closure of s under inverted Boolean schemes;
c(s) is always finite, and share the same sort with s.

• s is said to be critical, if s is non-empty and on it no
inverted Boolean rule scheme is applicable.

• let cl(s) ∶= {x ∈ c(s) ∣ x is critical}.
• For a multi-set Θ ⊆ Fp, let

• Θ0 ∶= {θ ∈ Θ ∣ θ is prime};
• Θ♮ ∶= {θ ∈ Θ ∣ θ is ⊡ -prefixed};
• Θ♭ ∶= {ξ ∣ ⊡ξ ∈ Θ♮}.

• Likewise, for a multi-set Ξ ⊆ Fs, let
• Ξ♮ ∶= {ξ ∈ Ξ ∣ ξ is ⊠ -prefixed};
• Ξ♭ ∶= {θ ∣ ⊠θ ∈ Ξ♮}.

29



Applying Pitts-Bílková’s method to PSNL

Construct θQΓ∆ and ξQΠΣ by a mutual induction on sequents:

θQΓ∆ ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if Γ =∆ = ∅
⊺ else if Γ⇒∆ is critical and Q ∩ Γ0 ∩∆0 ≠ ∅
⟐ξQ

Γ♭∅ ∨ ⋁
σ∈∆♭

⊡ξQ
Γ♭{σ} ∨⋁¬(Γ0∖Q) ∨⋁(∆0∖Q)

else if Γ⇒∆ is critical and Q ∩ Γ0 ∩∆0 = ∅
⋀
i∈I
θQΓi∆i

else, where cl(Γ⇒∆) = {Γi ⇒∆i}i∈I

ξQΠΣ ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

}� if Π = Σ = ∅
}θQ

Π♭∅ ∨ ⋁
δ∈Σ♭

⊠θQ
Π♭{δ} else if Π⇛ Σ is critical

⋀
i∈I
ξQΠiΣi

else, where cl(Π⇛ Σ) = {Πi ⇛ Σi}i∈I

30



UIP for PSNL and INL

Theorem
Pre- and post-interpolants can be constructed given a finite
set of propositional letters and any formula of Lps(⊡,⊠).

UIP of INL also follows by translation.

Note that it is unclear how to apply Pitts-Bílková’s method
directly on the sequent calculus G3inl for INL.

It was suggested UIP of PSNL and INL can be proved
semantically by coalgebraic method via definability of
bisimulation quantifiers.

31



Conclusions and future work



Conclusions: Making simple things simple!

• Breaking the INL-bundles simplifies the techniques
• PSNL is intuitive to use
• It does not increase expressivity
• Multi-sorted language makes use of “non-formulas” in INL
• Bridging rules connects different subsystems
• UIP can be shown constructively

Applications to other bundle-based language: social-friendly
coalition logic, Aristotelian modal logic ...

Other connections to be explored: team semantics, coalgebraic
modal logic...

32



Bundling or unbundling? That is the question.

The answer: it depends! 33



Thanks for your attention!

34


	Background: my view
	Point-Set Neighborhood Logic
	Hilbert system and sequent calculus
	Constructing uniform interpolats
	Conclusions and future work

