
A Bundled Approach to Deontic Logic

Zilu Wang and Yanjing Wang

Department of Philosophy, Peking University

Nihil-LIRa Joint Seminar, ILLC

Sept 26th 2023

1

Background and Motivation

Language and Semantics

Proof Systems and Completeness

Generalizations and extensions

Conclusions

2

Background and Motivation

Phenomena in natural language as “Icebergs”

What shall we do when seeing an iceberg?

3

Phenomena in natural language as “Icebergs”

What shall we do when seeing an iceberg?

Using various logic techniques to fit the “data”...

4

Phenomena in natural language as “Icebergs”

New phenomena by looking at the iceberg from other angles ...

Using logic techniques to fit the new “data”...

5

Diving to understanding why

6

Implicit vs. Explicit

7

For harder cases, special diving equipment is needed

8

Our bundled approach (based on [Wang and Wang, 2023])

Core Idea: Many innocent-looking modalities are actually more

complicated constructions with inner structures – I call them bundles.

The bundles of a quantifier and modality packed together (e.g.,

∃x□, ∀x□) play important roles in the epistemic logics of know-wh.

For example, knowing how to achieve φ iff there exists a way x such

that it is known x can make sure φ (∃□).

Check wangyanjing.com/pubtype/bkt/ for recent papers on the

logics of knowing what/how/why

It also leads to:

• New Decidable fragments of first-order modal logic (e.g.,

[Liu et al., 2023]).

• Epistemic interpretations of non-classical logics (last time at

AC+LIRa seminar) e.g., [Wang et al., 2022]. 9

wangyanjing.com/pubtype/bkt/

For harder cases, special diving equipment is needed

10

For harder cases, special diving equipment is needed

11

For harder cases, special diving equipment is needed

12

For harder cases, special diving equipment is needed

13

For harder cases, special diving equipment is needed

14

Deontic Logic/Modality: another sea with lots of icebergs...

There are many logical puzzles in Standard Deontic Logic (SDL),

deviating from normal modal logic when taking Obligation (O) as a

□ and Permission (P) as a ♢.

Among many others:

• Ross’ paradox: Op → O(p ∨ q) and Pp → P(p ∨ q) are

intuitively invalid, but valid in SDL.

• Free choice: P(p ∨ q) → Pp ∧ Pq is intuitively valid, but

logically invalid in SDL.

Free choice is an intriguing linguistic phenomenon in general.

In this talk, we focus on Strong Permission (P), the permissions

explicitly granted rather than simply not being forbidden. Strong

permissions exhibit the property of free choice (FCP).

15

Our basic observations

• Deontic modalities may be more than what they appear to be!

• Are they also bundles of a quantifier and a usual modality?

• but, quantifying over what?

• Formulas inside deontic modalities might not be propositions

• Then what are they?

• How can we treat them formally?

16

Further observations regarding quantifiers and bundles

If a hidden quantifier were present, what would it quantify over?

• The distinction between action types and tokens (well-known)

• Deontic sentences are about action types

• But the semantics may be about tokens of those types

What could be the bundle for strong permission P?

• It is clearly not ∃x□, but it might be ∀x♢ (Hintikka 1971).

• Pα: each token of action type α is executable on some

deontically ideal world.

• Free choice for permission: P(α ∨ β) → Pα ∧ Pβ

• You are permitted to take one day off next week. All the

relevant token should be executable.

17

Further observations: formalizing action type and token

• Propositional formulas as action types

• They do not have truth values per se, though can be assigned!

• They can be viewed as collections of action tokens

• We borrow the BHK-like formalism to capture them

18

Brouwer-Heyting-Kolmogorov (BHK) interpretation

BHK proof interpretation of connectives:

(H1) A proof of α ∧ β is given by presenting a proof of α and a proof

of β

(H2) A proof of α ∨ β is given by presenting either a proof of α or a

proof of β

(H3) A proof of α→ β is a construction which transforms any proof

of α into some proof of β

(H4) Absurdity ⊥ has no proof.

¬α is the abbriviation of α→ ⊥.

19

Further observations: formalizing action type and token

• Propositional formulas as action types

• They do not have truth values per se, though can be assigned!

• They can be viewed as collections of action tokens

• We borrow the BHK-like formalism to capture them

Intuitionistic Logic Deontic Logic

prop. formulas type of problems type of actions

token solution/proof individual act

modality know-how permission

bundle ∃□ ∀♢

20

Clarification

Two readings of “You may take coffee or tea”.

• performative

• descriptive

Our work is more on the descriptive side. Wait till the end for nested

permissions, which is connected to the performative perspective.

21

Preview: beyond fitting the known data

Valid in our framework

FC P(α ∨ β) ↔ (Pα ∧ Pβ) CD P(α ∧ (β ∨ γ)) ↔ P((α ∧ β) ∨ (α ∧ γ))
CE P(α ∧ β) → (Pα ∧ Pβ) DCl P((α ∨ β) ∧ (α ∨ γ)) → P(α ∨ (β ∧ γ))
Invalid in our framework

CA (Pα ∧ Pβ) → P(α ∧ β) DCr P(α ∨ (β ∧ γ)) → P((α ∨ β) ∧ (α ∨ γ))
RP Pα→ P(α ∨ β) EX Pα→ P(α ∧ α)

DCr is invalid: imagine you are given a coupon that permits you to

take a hamburger or a menu of French fries and salad, this does not

mean you can take a hamburger or fries, and a hamburger or salad.

CA and DCr are valid in Boolean-algebra-based approaches, such as

[Castro and Kulicki, 2014, Trypuz and Kulicki, 2015]; CD is invalid in

[Bentzen, 2014]; DCr is valid in the hybrid approach based on BSML

[Aloni, 2022]; and CE is not valid in [van Benthem, 1979].
22

About the “innocent” EX: Pα → P(α ∧ α)

It is not as innocent as it may seem. Under free choice and acceptable

distribution, it leads to the unacceptable P(α ∨ β) → P(α ∧ β)!

P(α ∨ β)
=⇒ P((α ∨ β) ∧ (α ∨ β)) (EX)

⇐⇒ P(((α ∨ β) ∧ α) ∨ ((α ∨ β) ∧ β)) (CD)

⇐⇒ P((α ∨ β) ∧ α) ∧ P((α ∨ β) ∧ β) (FC)

⇐⇒ P((α ∧ α) ∨ (α ∧ β)) ∧ P((β ∧ α) ∨ (β ∧ β)) (CD, commutativity)

⇐⇒ P(α ∧ α) ∧ P(α ∧ β) ∧ P(β ∧ α) ∧ P(β ∧ β) (FC)

=⇒ P(α ∧ β) (TAUT)

In a lottery, you are allowed to pick a ticket does not mean you are

allowed to pick one and yet another one. The invalidity of EX signals

some resource-bounded flavor as in (deontic) linear logic (Lokhorst

1997, Backer 2010). 23

Language and Semantics

Language AT of action types

Definition (Action Type AT)

Given a countable set of propositional letters P, the language of

action types (AT) is defined as follows:

α := p | (α ∧ α) | (α ∨ α)

where p ∈ P.

We use atomic propositional letters to represent atomic action types

like “drink coffee”, “do homework”, “go to hospital”, etc. Complex

action types like ‘eat cookies and drink coffee”, “do homework or

play computer games” can also be expressed.

24

Language DLSP of Deontic Logic of Strong Permission

Definition (Language DLSP)

Given AT, the language of deontic logic for strong permission

(DLSP) is defined as follows:

φ := p | (φ ∧ φ) | ¬φ | Pα

where p ∈ P and α ∈ AT. Connectives ∨ and → are defined

classically as usual.

We call formulas containing the deontic operator P deontic formulas

and other formulas non-deontic.

25

Action space

Following the BHK-style definition:

Definition (Action Token Space)

Given P and a non-empty set I of atomic action tokens, an action

(token) space S is a function based on I and AT satisfying the

following constraints:

1. S(p) ̸= ∅ ⊆ I for any p ∈ P;

2. S(α ∧ β) = S(α)× S(β);

3. S(α ∨ β) = S(α) ∪ S(β).

S is a singleton action space if |S(p)| = 1 for all p ∈ P. People may

treat types and tokens alike.

For example, action tokens for a disjunctive action type (α ∨ β) are
the union of tokens of α and β. 26

Deontic Model

Definition (Deontic Model)

A deontic model M for DLSP is a tuple (S ,W ,R,A) where S is

an action space, W is a non-empty set of possible worlds,

R ⊆ W ×W , and A is a binary function over AT×W such that

for any p ∈ P, α, β ∈ AT and w ∈ W :

• A(p,w) ⊆ S(p);

• A(α ∧ β,w) = A(α,w)× A(β,w);

• A(α ∨ β,w) = A(α,w) ∪ A(β,w);

A pointed model is a pair (M,w) where w is in M. A singleton

deontic model is a model based on a singleton action space.

The function A gives each deontially ideal world its executed action

tokens. 27

Semantics

Definition (Semantics)

For any φ ∈ DLSP and any pointed deontic model M,w where

M = (S ,W ,R,A), the satisfaction relation is defined as follows:

M,w ⊨ p ⇐⇒ A(p,w) ̸= ∅
M,w ⊨ (φ ∧ ψ) ⇐⇒ M,w ⊨ φ and M,w ⊨ ψ

M,w ⊨ ¬φ ⇐⇒ M,w ̸⊨ φ
M,w ⊨ Pα ⇐⇒ for any a ∈ S(α), there is a v s.t.

wRv and a ∈ A(α, v)

We use ⊨s to denote semantic consequence w.r.t. singleton deontic

models. We say φ is valid (s-valid) if ⊨ φ (⊨s φ).

28

Recall the preview

Valid in our framework

FC P(α ∨ β) ↔ (Pα ∧ Pβ) CD P(α ∧ (β ∨ γ)) ↔ P((α ∧ β) ∨ (α ∧ γ))
CE P(α ∧ β) → (Pα ∧ Pβ) DCl P((α ∨ β) ∧ (α ∨ γ)) → P(α ∨ (β ∧ γ))
Invalid in our framework (without further constraints)

CA (Pα ∧ Pβ) → P(α ∧ β) DCr P(α ∨ (β ∧ γ)) → P((α ∨ β) ∧ (α ∨ γ))
RP Pα→ P(α ∨ β) EX Pα→ P(α ∧ α)

The commutativity and associativity are valid.

P(α ∧ β) ↔ P(β ∧ α) P((α ∧ β) ∧ γ) ↔ P(α ∧ (β ∧ γ))
P(α ∨ β) ↔ P(β ∨ α) P((α ∨ β) ∨ γ) ↔ P(α ∨ (β ∨ γ))

29

Invalidity of DCr: P(α ∨ (β ∧ γ)) → P((α ∨ β) ∧ (α ∨ γ))

The rightmost part below demonstrates the definition of A on u, v ,

e.g., A(p, v) = {a} and A(q, u) = {b}.

v p : {a}, r : ∅, q : ∅
S(p) = {a},S(q) = {b},S(r) = {c} w

44

** u p : ∅, q : {b}, r : {c}

S(p ∨ (q ∧ r)) contains a and (b, c) only, which are executable on v

and u respectively, thus P(p ∨ (q ∧ r)) is true on w . However, the

token (a, c) in S((p ∨ q) ∧ (p ∨ r)) is not executable on u nor v , thus

P((p ∨ q) ∧ (p ∨ r)) is false on w . Note that this model is also a

singleton model so DCr is not s-valid.

30

A weaker version of EX over singleton models

EX : Pα→ P(α ∧ α) is not valid since every token of α is executable

does not mean every pair of α-tokens is executable.

The following formula (denoted by EXP) is valid with respect to the

class of singleton deontic models:

⊨s P(p1 ∧ ... ∧ pk) → P(m1 · p1 ∧ ... ∧mk · pk),

where p1, ...pk ∈ P are pairwise distinct, k ,mi ∈ N>0 for any

1 ≤ i ≤ k . Here mi · pi represents the conjunction of mi copies of pi .

31

Proof Systems and Completeness

Proof Systems (no replacement of equals in P)

System DLSP

Axioms

(TAUT) Propositional Tautologies

(FC) P(α ∨ β) ↔ (Pα ∧ Pβ)

(CE) P(α ∧ β) → (Pα ∧ Pβ)

(COM∧) P(α ∧ β) ↔ P(β ∧ α)
(ASSO∧) P((α ∧ β) ∧ γ) ↔ P(α ∧ (β ∧ γ))
(CD) P(α ∧ (β ∨ γ)) ↔ P((α ∧ β) ∨ (α ∧ γ))
Rules

(MP) Given φ and (φ→ ψ), infer ψ.

DCl : P((α ∨ β) ∧ (α ∨ γ)) → P(α ∨ (β ∧ γ)) is provable.

32

Normal form

We use DLSP to rewrite a DLSP-formula into a conjunction of

formulas in the shape of P(p1 ∧ ... ∧ pn).

P(p1 ∨ (p2 ∧ ((p3 ∨ p4) ∧ p5))).

The formula is logically equivalent to

1. Pp1 ∧ P(p2 ∧ ((p3 ∨ p4) ∧ p5)) (FC)

2. Pp1 ∧ P((p5 ∧ p2) ∧ (p3 ∨ p4)) (ASSO∧ + COM∧)

3. Pp1 ∧ P(((p5 ∧ p2) ∧ p3) ∨ ((p5 ∧ p2) ∧ p4)) (CD)

4. Pp1 ∧ P((p5 ∧ p2) ∧ p3) ∧ P((p5 ∧ p2) ∧ p4) (FC)

Lemma (Normal Form for Pα)

For any α ∈ AT, Pα is logically equivalent to a formula of the form

(Pβ1 ∧ ... ∧ Pβk) where for each 1 ≤ i ≤ k, βi is in the shape of

P(p1 ∧ ... ∧ pn), which is called a normal form for Pα. 33

Normal form

For any formula φ ∈ DLSP, φ is logically equivalent to a formula in

the following language (denoted by DLSP∗):

ψ ::= p | P(p1 ∧ ... ∧ pn) | ¬ψ | (ψ ∧ ψ),

where p, p1, ..., pn ∈ P.

To show the completeness, we will construct a model (S, W, R, A)

for each consistent set of formulas in the above language.

We need to first build the action space S before constructing the

canonical model.

34

Canonical action space

Now let Σ be a maximally DLSP-consistent set of DLSP∗ formulas.

Definition (Canonical Action Space)

Given Σ, we define SC
Σ by distinguishing the two cases of p ∈ P:

• If there is an i ∈ N>0 such that the formula ¬P(i · p) ∈ Σ,

assume that n is the least and let SC
Σ (p) := {p1, p2, ..., pn}, in

which each pi is the propositional letter p superscript with the

numeral i .

• If not, i.e., P(i · p) ∈ Σ for all i ∈ N>0, let S
C
Σ (p) := {p1, p2, ...}.

For any composite α ∈ AT, we define SC
Σ (α) recursively as in the

definition of S .

Note that for distinct p, q ∈ P, SC
Σ (p) ∩ SC

Σ (q) = ∅.
35

The very idea of canonical model

Based on SC
Σ , we will build a pointed deontic model MC

Σ,w such that

the truth lemma holds. The crucial step is the P(p1 ∧ ... ∧ pn) case.

Due to the validity of COM∧and ASSO∧, we only consider formulas of

the form P(m1 · pt1 ∧ ... ∧mk · ptk) ∈ Σ, where mj · ptj means the

conjunction of mj copies of ptj , and pti and ptj are pairwise distinct.

The idea is simple: given a designated world w , build the accessible

worlds according to formulas P(m1 · pt1 ∧ ... ∧mk · ptk) ∈ Σ.

The subtlety is that we should only realize action tokens that are

necessary to witness the truth of those φ, but no more, for we also

need tokens not realizable to witness ¬P(p1 ∧ ... ∧ pn) ∈ Σ.

36

All-distinct action token

These necessary tokens are all-distinct action tokens.

Given an action token space, first note that we can treat each action

token of type (p1 ∧ ... ∧ pn) as an n-ary tuple of atomic action tokens

modulo paring.

Definition (All-Distinct Token)

An action token of type (p1 ∧ ... ∧ pn) is all-distinct if tokens of the

same atomic action type in the tuple are pairwise distinct.

For our canonical model, we will construct a unique successor for

each all-distinct token to realize P(m1 · pt1 ∧ ... ∧mk · ptk) ∈ Σ. But

before that, we need to guarantee that such tokens indeed exist.

37

The existence of all-distinct token

The following lemma shows that the size of the canonical action

space is more than enough to guarantee the existence of all-distinct

action tokens of the type when P(m1 · pt1 ∧ ... ∧mk · ptk) ∈ Σ.

Lemma (Existence of All-Distinct Tokens)

For any formula φ of the form P(m1 · pt1 ∧ ... ∧mk · ptk) where
pti , ptj are pairwise distinct, if φ ∈ Σ, then for any 1 ≤ j ≤ k,

mj < |SC
Σ (ptj)|.

Proof.

Prove by contradiction. Suppose there is j s.t. mj ≥ |SC
Σ (ptj)| = n.

Thus by (CE) we have φ→ P(n · ptj) ∈ Σ. Since φ ∈ Σ and Σ is

maximal, P(n · ptj) ∈ Σ, which contradicts that Σ is consistent.

38

Functional representation for permissions

Fixing an ordering of propositional letters p0, p1, p2, ..., we only need

to consider P(m1 · pt1 ∧ ... ∧mk · ptk) ∈ Σ such that pti and ptj are

distinct and ordered, e.g., P(3 · p2 ∧ 4 · p6).
Definition

For any φ of the form P(m1 · pt1 ∧ ... ∧mk · ptk) ∈ Σ such that pti
and ptj are distinct and ordered according to the order of

propositional letters, we define fφ : N → N such that

fφ(i) =

{
mj i = tj for some 1 ≤ j ≤ k ;

0 i ̸= tj for any 1 ≤ j ≤ k .

For example, P(3 · p2 ∧ 4 · p6) is represented by the function f such

that f (2) = 3, f (6) = 4 and f (i) = 0 for any i ∈ N \ {2, 6}. We

collect these (countably many) functions in FΣ. 39

Functional representation for all-distinct tokens

Definition

For any f ∈ FΣ, we define Gf := {g : N → P(
⋃

p∈P(S
C
Σ (p))) |

for any i ∈ N, g(i) ⊆ SC
Σ (pi) and |g(i)| = f (i)}.

Intuitively, each g ∈ Gf assigns a subset of the canonical action space

of each pi whose cardinality is f (i). It follows if f (i) = 0 then

g(i) = ∅. In fact, each g ∈ Gf can be treated as an all-distinct token

of the corresponding type to function f . Let GΣ =
⋃
{Gf | f ∈ FΣ}.

Proposition

Given a MCS Σ and any distinct f , f ′ ∈ FΣ, we have: (1) Gf is not

empty; (2) Gf ∩ Gf ′ = ∅.

40

Canonical deontic model

Definition (Canonical Deontic Model)

Given a MCS Σ, we define the model MC
Σ = (SC

Σ ,W
C ,RC ,AC)

where:

• W C = {w} ∪ GΣ; R
C = {(w , g) | g ∈ GΣ};

• AC (pi , u) =


SC
Σ (pi) if u = w and pi ∈ Σ,

∅ if u = w and pi ̸∈ Σ,

u(i) if u ∈ GΣ;

and AC (α, u) for composite α is defined as above.

If g ∈ GΣ then there is a unique f ∈ FΣ s.t. g ∈ Gf . Intuitively, each

g ∈ Gf realizes some all-distinct token of the formula Pα ∈ Σ

corresponding to f , and Gf realize all the necessary tokens.

41

Truth Lemma for DLSP

Lemma (Truth Lemma for DLSP)

Given a MCS Σ. For any φ ∈ Σ,

MC
Σ,w ⊨ φ⇐⇒ φ ∈ Σ.

Proof.

Prove by induction on the structure of φ. We only show the

inductive case when φ = P(m1 · pt1 ∧ ... ∧mk · ptk).

⇐: Assume that φ ∈ Σ. We have the corresponding fφ ∈ FΣ. Then

each all-distinct token of the type is represented and thus realized

by some g ∈ Gfφ . And this will guarantee all tokens be realized.

42

Truth Lemma for DLSP

Proof.

⇒: Assume that φ ̸∈ Σ. To show MC
Σ,w ̸|= φ, we need to find

some token in SC
Σ (m1 · pt1 ∧ ... ∧mk · ptk) cannot be witnessed by

any successor. The crucial point here is that our definition of SC
Σ

and AC together guarantee that some action tokens are indeed left

out at every g ∈ GΣ. We consider two cases:

◦ If for any 1 ≤ j ≤ k, mj ≤ |SC
Σ (ptj)|,

◦ If there is 1 ≤ j ≤ k such that mj > |SC
Σ (ptj)|,

43

Truth Lemma for DLSP

Proof.

◦ If for any 1 ≤ j ≤ k , mj ≤ |SC
Σ (ptj)|, we take an all-distinct

token x ∈ S(m1 · pt1 ∧ ... ∧mk · ptk) and show it is not realizable

in GΣ, thus MC
Σ,w ⊭ φ. Suppose not, so there is a g ∈ GΣ that

realizes x , then there is a unique f such that g ∈ Gf . Since g

realizes all-distinct token x , then we have

f (tj) = |g(tj)| = |AC (ptj , g)| ≥ mj for any 1 ≤ j ≤ k . Due to

our construction, there must be a χ ∈ Σ such that f = fχ.

Therefore, χ must be of the form

P((m′
1 · pt1 ∧ ...∧m′

k · ptk)∧ (m′
k+1 · ptk+1

∧ ...∧m′
k+l · ptk+l

)) ∈ Σ

such that m′
j = f (tj) ≥ mj . By (CE) and (MP), φ ∈ Σ,

contradicting to the assumption that φ ̸∈ Σ.

44

Truth Lemma for DLSP

Proof.

◦ If there is 1 ≤ j ≤ k such that mj > |SC
Σ (ptj)|, thus SC

Σ (ptj) is

finite, say |SC
Σ (ptj)| = n. Suppose towards a contradiction that

MC
Σ,w ⊨ ψ. Thus by the validity of CE, MC

Σ,w ⊨ P(n · ptj).
Hence, to realize the token using all the atomic tokens in

SC
Σ (ptj), there must be a g ∈ G such that

AC (ptj , g) = g(tj) = SC
Σ (ptj). Further there must be a unique f

such that g ∈ Gf and f (tj) = |g(tj)| = |SC
Σ (ptj)| = n. Therefore

there is a χ ∈ Σ such that f = fχ. However this means χ must

be in the shape of P(n · ptj ∧ β) ∈ Σ. By (CE), P(n · ptj) ∈ Σ

contradicting to the fact that |SC
Σ (ptj)| = n. Therefore

MC
Σ,w ⊭ ψ.

45

Completeness Theorems

Based on the truth lemma, by a Lindenbaum-like argument, we can

show:

Theorem (Completeness Theorem for DLSP)

DLSP is strongly complete with respect to the class of all deontic

models.

Note that DLSP is also complete over all serial models, i.e., the

models where every node has a successor.

System DLSPs is the System DLSP with an extra axiom schema:

(EXP) P(p1 ∧ ... ∧ pk) → P(m1 · p1 ∧ ... ∧mk · pk)

Theorem (Completeness Theorem for DLSPs)

DLSPs is strongly complete with respect to the class of all singleton

deontic models. 46

Generalizations and extensions

Generalizations

The BHK-definition is just one particular way to define the action

types and tokens. We can relax the setting inherited from the

proof-interpretation.

For example regarding ∧, we can ask:

• whether token a of type α and token b of type β on a world

necessarily lead to (a, b) of type (α ∧ β)?
• whether a token of type (α∧ β) necessarily induces the existence

of a token of α and the existence of a token of β?

• whether the type α ∧ β asks for a token which is in both type α

and β?

Essentially we can give different versions of the “semantics” to the

connectives. Surprisingly, some changes do not affect the logic. E.g.,

if we allow the possibility of having token a of α and token b of type

β without having (a, b) of type (α ∧ β). 47

Closure set of tokens

Given an action space S , we define IS :=
⋃

α∈AT S(α). That is, IS

collects exactly all possible action tokens of all action types under S .

Definition (Closure Set of Tokens)

We say a set T ⊆ IS of action tokens is closed iff

1. If (a, b) ∈ T , then a ∈ T and b ∈ T ;

2. If (a, b) ∈ T , then (b, a) ∈ T ;

3. ((a, b), c) ∈ T if and only if (a, (b, c)) ∈ T .

These closure properties validate basic axioms in our system DLSP.
However, it is possible for a, b ∈ T but (a, b) ̸∈ T .

This can also model resource-boundedness when a = b.

48

General deontic model

Definition (I-Type General Deontic Model)

A I-type general deontic model MG is a 5-ary tuple (S ,W ,R,A, σ)

such that

• (S ,W ,R,A) is a deontic model.

• σ : W → ℘(IS) such that for any w ∈ W , σ(w) is closed.

We define: AG (α,w) := A(α,w) ∩ σ(w).

Definition (II-Type General Deontic Model)

A II-type general deontic model is a 4-ary tuple (S ,W ,R, σ) such

that S , W , R are as usual, and

• σ : W → ℘(IS) such that for any w ∈ W , σ(w) is closed.

We also define function AG rather by AG (α,w) := S(α) ∩ σ(w).

49

Mutual transformation

Semantics is defined as before except we set M,w ⊩i Pα ⇐⇒ for

any a ∈ S(α), there is a v ∈ W such that wRv and a ∈ AG (α, v),

where i ∈ {I, II}.

Definition (Disjointed Action Space)

Given a non-empty set I of action tokens, a disjointed action space

S is an action space such that for any p, q ∈ P, if p ̸= q, then

S(p) ∩ S(q) = ∅.

Proposition (Mutual Transformation)

Given a disjointed action space S, for each I-type general deontic

model M = (S ,W ,R,A, σ), there is a II-type general deontic

model M′ = (S ,W ,R, σ′) such that for any φ ∈ DLSP and

w ∈ W, M,w ⊩I φ if and only if M′,w ⊩II φ; and vice versa.

50

Various soundness and completeness results

Deontic Models A A: Co (A, σ) (A, σ): Co σ

S DLSP DLSP DLSP DLSP DLSP
S: Disjointed DLSP DLSP DLSP DLSP DLSP
S: Singleton DLSPs DLSPs DLSP DLSP DLSP
S: Singleton, Disjointed DLSPs DLSPs DLSP DLSP DLSP

In the future, we may also relax other closure properties.

51

Extension: higher-order permissions

Definition (Action Type AT)

Given a countable set of propositional letters P, the language of

action types (AT) is defined as follows:

α := p | (α ∧ α) | (α ∨ α) | Pα

Giving a permission itself can also be an action type!

Then we can express PPp, ¬P(p ∨ Pq), PPp → Pp,Pp ∧ ¬PPp . . .

Higher-order permissions matter a lot in security systems, where

permissions can be inhierated and transferred.

52

Action space and tokens

We can give the interpretation for Pα as a type.

• S(Pα) = {cα}.

• A(Pα,w) =

{
{cα} w ⊨ Pα

∅ otherwise

Moreover, we still have w ⊨ α iff A(α,w) ̸= ∅.

The system DLSP with the following rule is sound and complete:

Given ⊢
∧

Pα→
∧
Pβ, infer χ→ χ[

∧
Pβ/

∧
Pα].

With an extra axiom PPα→ Pα, the logic is complete over

transitive frames.

53

Extension: adding negation

Definition (Action Type AT)

α := p | (α ∧ α) | (α ∨ α) | Pα | ¬α

P¬α intuitively says it is permitted not to do α.

• S(¬α) = {nα}.

• A(¬α,w) =

{
{nα} A(α,w) = ∅ or equivalently w ⊭ α
∅ otherwise

Given the semantics, we have: P¬¬α is true at w iff ♢α. ¬P¬α is

then the (weak) obligation: □α.

54

Validity and invalidity with negation

Valid in our framework

¬P(α ∧ ¬α) P¬(α ∨ β) ↔ P(¬α ∧ ¬β)
P¬(α ∧ β) ↔ (P¬α ∨ P¬β) P(¬α ∨ ¬β) → P¬(α ∧ β)
Invalid in our framework

P(α ∨ ¬α) P¬(α ∧ β) → P(¬α ∨ ¬β)

Mommy to baby: You are permitted not to eat both the egg white

and the egg yolk if full, but you are only permitted not to eat the egg

white, as the yolk is very good for you.

We are still working on the axiomatization of the logic with

higher-order permission and action negation.

55

Conclusions

Conclusions

We propose a new semantic approach to deontic logic/modality

based on bundled modalities. In this talk:

• We formalize strong permission as a ∀x♢ bundle

• The propositional formulas are action types whose tokens are

given by a BHK-style recursive definition

• The resulting logic admits FC and most other good properties.

• It also predicts new phenomena aligned with our linguistic

intuition, which were not discussed in the literature.

56

Overview

57

It is the beginning of yet another interesting story

58

Ongoing work

Inspired by the BHK interpretation:

• Capturing various versions of O and F

• Adding implications in the scope of modalities

• Try to solve more puzzles!

Thank you!

59

Aloni, M. (2022).

Logic and conversation: the case of free choice.

Semantics and Pragmatics, 15:5–EA.

Bentzen, M. M. (2014).

Action type deontic logic.

Journal of Logic, Language and Information, 23(4):397–414.

Castro, P. F. and Kulicki, P. (2014).

Deontic logics based on boolean algebra.

In Trypuz, R., editor, Krister Segerberg on Logic of Actions, page

85–117. Springer Netherlands, Dordrecht.

Liu, M., Padmanabha, A., Ramanujam, R., and Wang, Y.

(2023).

Are bundles good deals for first-order modal logic?

Inf. Comput., 293:105062.

59

Trypuz, R. and Kulicki, P. (2015).

On deontic action logics based on boolean algebra.

Journal of Logic and Computation, 25(5):1241–1260.

van Benthem, J. (1979).

Minimal deontic logics.

Bulletin of the Section of Logic, 8(1):36–42.

Wang, H., Wang, Y., and Wang, Y. (2022).

Inquisitive logic as an epistemic logic of knowing how.

Ann. Pure Appl. Log., 173(10):103145.

Wang, Z. and Wang, Y. (2023).

Strong permission bundled: First steps.

In Maranhão, J., Peterson, C., Straßer, C., and van der Torre, L.,

editors, Deontic Logic and Normative Systems - 16th

59

International Conference, DEON 2023, Trois-Rivières, QC,

Canada, July 5-7, 2023, pages 217–234. College Publications.

59

	Background and Motivation
	Language and Semantics
	Proof Systems and Completeness
	Generalizations and extensions
	Conclusions

