Team-based logics around BSML

Fan Yang
i
N
A

™

. Utrecht University

Ay
K/

z The NihiL workshop
Jan. 31 - Feb. 2, 2024

1/23

Another motivation for state-based or team-based semantics

@ Bilateral state-based modal logic (BSML): Modal logic + NE
@ States: sets of possible worlds.

pr par pq

2/993

Another motivation for state-based or team-based semantics

@ Bilateral state-based modal logic (BSML): Modal logic + NE
@ States: sets of possible worlds. Also known as Teams.

pr par pq

2/993

Another motivation for state-based or team-based semantics

@ Bilateral state-based modal logic (BSML): Modal logic + NE
@ States: sets of possible worlds. Also known as Teams.

pr par pq

Team semantics:

@ A compositional semantics introduced by Hodges (1997) for
characterizing dependencies between variables,

originally for Independence-friendly Logic (Hintikka, Sandu 1989),
and later developed further in Dependence Logic (Vaanéanen 2007).

2/993

Another motivation for state-based or team-based semantics

@ Bilateral state-based modal logic (BSML): Modal logic + NE
@ States: sets of possible worlds. Also known as Teams.

pr par pq

Team semantics:

@ A compositional semantics introduced by Hodges (1997) for
characterizing dependencies between variables,

originally for Independence-friendly Logic (Hintikka, Sandu 1989),
and later developed further in Dependence Logic (Vaanéanen 2007).

@ Adopted also independently in Inquisitive Logic (Ciardelli, Roelofsen
2011), (Ciardelli, Groenendijk, Roelofsen 2018) for characterizing
questions in natural language.

2/993

functional dependence between variables

y = f(x) = x?

1y

@ X determines y

/993

How to characterize functional dependence between variables?

()

N><

N <
N

® R|=sx determines y iff ?7?

/993

How to characterize functional dependence between variables?

n
N

(v2,2)

® R|=sx determines y iff ?7?

/993

How to characterize functional dependence between variables?

y = f(x) = x?

1Y

V22

® R|=sx determines y iff 77

@ Ateam : a set of assignments

X y z
so| V2 2 0
si| vV2 2 1
S| -2 4 V2
s3] -2 4 2
Sy | —V2 2 0

/993

How to characterize functional dependence between variables?

y = f(x) = x?

Y
X y z
\ ' | so| V2 2 0
= s1| V2 2 1

V2,2
Al S| -2 4 V2

s3] -2 4 2
1 X Sy | —V2 2 0

@ Rt xdetermines y iff foralls,s €t:
s(x) = s'(x) = s(y) =s'(y)
@ Ateam t: a set of assignments

/993

How to characterize functional dependence between variables?

y = f(x) = x?
1y
X y z
\ So 2 2 0
si| v2 2 1
V2,2
Al S| -2 4 V2
S3| -2 4 2
1 X Sy | —V2 2 0

@ Rt xdetermines y iff foralls,s €t:
s(x) = s'(x) = s(y) =s'(y)
@ Ateam t: a set of assignments

/993

How to characterize functional dependence between variables?

y = f(x) = x?
Yy
X y z
! So 2 2 0
Sq \/§ 2 1
V2,2
MEH S| —2 4 V2
s3| -2 4 2
X Sy | —V2 2 0

@ Rt xdetermines y iff foralls,s €t:
s(x) = s'(x) = s(y) =s'(y)
@ Ateam t: a set of assignments

/993

How to characterize functional dependence between variables?

y = f(x) = x?
Yy
X y z
! So 2 2 0
Sq \/§ 2 1
V2,2
MEH s —2 4 2
s3| 2 4 2
X Sy | —V2 2 0

@ Rt xdetermines y iff foralls,s €t:
s(x) = s'(x) = s(y) =s'(y)
@ Ateam t: a set of assignments

/993

Propositional dependence atoms

par () rq ()
rO O

@ Ateam t: a set of valuations / possible worlds

@ t=pdetermines q iff forallu,vet:
u(p) = v(p) = u(q) = v(q)

— “Whether it is raining determines whether | will take my umbrella.”
— “Whether this set is empty determines whether it is raining in Amsterdam.”

4/23

Propositional dependence atoms

par () rq ()
rO O

@ Ateam t: a set of valuations / possible worlds

@ t=pdetermines q iff forallu,vet:
u(p) = v(p) = u(q) = v(q)

— “Whether it is raining determines whether | will take my umbrella.”
— “Whether this set is empty determines whether it is raining in Amsterdam.”

4/23

Propositional dependence atoms

par(O pa O
rQO . O

@ Ateam t: a set of valuations / possible worlds
@ t= =(p,q) iff forallu,vet:

— “Whether it is raining determines whether | will take my umbrella.”
— “Whether this set is empty determines whether it is raining in Amsterdam.”

4/23

Propositional dependence atoms

par(O pa O
rQO . O

@ Ateam t: a set of valuations / possible worlds
otk =(p,g) iff forallu,vet

— “Whether it is raining determines whether | will take my umbrella.”
— “Whether this set is empty determines whether it is raining in Amsterdam.”

4/23

Propositional dependence atoms

par(O pa O
rQO . O

@ Ateam t: a set of valuations / possible worlds
otk =(p,g) iff forallu,vet

— “Whether it is raining determines whether | will take my umbrella.”
— “Whether this set is empty determines whether it is raining in Amsterdam.”

Empty team/state property: & = =(p, g))

4/23

Connection with database theory

P g r s
w|1 0 1 1
V11010
|0 1 0 f
;|0 1 0 0

@ A team can be viewed as a relational database.

@ Dependence atoms =(p,) correspond exactly to functional
dependencies p — g in database theory

5/993

Connection with database theory

@ A team can be viewed as a relational database.

p
Vo 1
V4 1
Vo 0
vz | O

O O = =S

O -0 -0

@ Dependence atoms =(p,) correspond exactly to functional

dependencies p — g in database theory

@ Armstrong’s Axioms (1974) for functional dependencies:

=(P,p)

(B4, r) implies (Gp, 7)

=(pp, q) implies =(p

- -

,q)

(g, 7) implies =(, 7)

=(p. §) and

=(q, r) imply

:(ﬁa F)

(identity
(commutativity
(contraction
(weakening
(transitivity

)
)
)
)
)

5/293

Connection with database theory

@ A team can be viewed as a relational database.

p
Vo 1
V4 1
Vo 0
V3 0

O O = =S

O -0 -0

@ Dependence atoms =(p,) correspond exactly to functional

dependencies p — g in database theory

@ Armstrong’s Axioms (1974) for functional dependencies:

=(P,p)

(B4, r) implies (Gp, 7)

=(pp, q) implies =(p

- -

,q)

(g, 7) implies =(, 7)

=(p. §) and

=(q, r) imply

:(ﬁa F)

(identity
(commutativity
(contraction
(weakening
(transitivity

)
)
)
)
)

5/293

Connection with database theory

@ A team can be viewed as a relational database.

p
Vo 1
V4 1
Vo 0
V3 0

OO = =S

O -0 -0

@ Dependence atoms =(p,) correspond exactly to functional

dependencies p — g in database theory

@ Armstrong’s Axioms (1974) for functional dependencies:

=(P,p)

(B4, r) implies (Gp, 7)

=(pp, q) implies =(p

- -

,q)

(g, 7) implies =(, 7)

=(p. §) and

=(q, r) imply

:(ﬁa F)

(identity
(commutativity
(contraction
(weakening
(transitivity

)
)
)
)
)

5/293

Connection with database theory

p q r s
wil 0 1 1
V4 1 0 1 0
w0 1 0 1
w0 1 0 0

@ A team can be viewed as a relational database.

@ Dependence atoms =(p,) correspond exactly to functional
dependencies p — g in database theory

@ Armstrong’s Axioms (1974) for functional dependencies:

e =(p,P) (identity)
e =(pqg,r) implies =(gp,7) (commutativity)
e =(pp, g) implies _(* o)) (contraction)
e =(g,r) implies =(pq,) (weakening)
® =(p,q) and =(q,r) imply =(p,7) (transitivity)

5/293

Propositional team-based logics around BSML

Language: ¢ ==p|-p|L|oAd|dV | — ¢|=(p,q)

R/23

Propositional team-based logics around BSML

Language: ¢ :=p|-p|L[oAG|dVO|d— |V |=(P:q)

Global (or inquisitive) disjunction

R/23

Propositional team-based logics around BSML

Language: ¢ m=p|-p| L] oAd|dVEld— ¢l oV |=(pq)

Local disjunction Global (or inquisitive) disjunction

R/23

Propositional team-based logics around BSML

Language: ¢ m=p|-p| L] oAd|dVEld— ¢l oV |=(pq)

Local disjunction Global (or inquisitive) disjunction

Recall: Propositional BSML or BSPL: ¢ ::=p| ¢ | oA S| oV | NE

B/23

Propositional team-based logics around BSML

Language: ¢ m=p|-p| L] oAd|dVEld— ¢l oV |=(pq)

Local disjunction Global (or inquisitive) disjunction
Team semantics: Let t C 2P™P pe a team/state, i.e., a set of valuations.
o t=piff vip)=1forallvet
@ t=—p iff v(p)=0forallvet

p O pa O
tEp
O a0 t§ —p

Recall: Propositional BSML or BSPL: ¢ ::=p| ¢ | oA S| oV | NE

B/23

Propositional team-based logics around BSML

Language: ¢ m=p|-p| L] oAd|dVEld— ¢l oV |=(pq)

Local disjunction Global (or inquisitive) disjunction
Team semantics: Let t C 2P be a team/state, i.e., a set of valuations.

o t=piff vip)=1forallvet
@ t=—p iff v(p)=0forallvet

etV iff t=¢ or tEY
etkEovy iff Is;rCtst.t=suUr, sE¢andr=y

p O pa O

Recall: Propositional BSML or BSPL: ¢ ::=p| ¢ | oA S| oV | NE

B/23

Propositional team-based logics around BSML

Language: ¢ m=p|-p| L] oAd|dVEld— ¢l oV |=(pq)

Local disjunction Global (or inquisitive) disjunction
Team semantics: Let t C 2P be a team/state, i.e., a set of valuations.

o t=piff vip)=1forallvet
@ t=—p iff v(p)=0forallvet

etV iff t=¢ or tEY
etkEovy iff Is;rCtst.t=suUr, sE¢andr=y

P O\pqo

O a0

Recall: Propositional BSML or BSPL: ¢ ::=p| ¢ | oA S| oV | NE

B/23

Propositional team-based logics around BSML

Language: ¢ m=p|-p| L] oAd|dVEld— ¢l oV |=(pq)

Local disjunction Global (or inquisitive) disjunction
Team semantics: Let t C 2P be a team/state, i.e., a set of valuations.

o t=piff vip)=1forallvet
@ t=—p iff v(p)=0forallvet

etV iff t=¢ or tEY
etkEovy iff Is;rCtst.t=suUr, sE¢andr=y

¢\ v
[N@) pa O

20 a0

Recall: Propositional BSML or BSPL: ¢ ::=p| ¢ | oA S| oV | NE

B/23

Propositional team-based logics around BSML

Language: ¢ m=p|-p| L] oAd|dVEld— ¢l oV |=(pq)

Local disjunction Global (or inquisitive) disjunction
Team semantics: Let t C 2P be a team/state, i.e., a set of valuations.

o t=piff vip)=1forallvet
@ t=—p iff v(p)=0forallvet

etV iff t=¢ or tEY
etkEovy iff Is;rCtst.t=suUr, sE¢andr=y

ot L iff t=p

¢\ v
[N@) pa O

20 a0

Empty Team Property: @ = « for all ¢

Recall: Propositional BSML or BSPL: ¢ ::=p| ¢ | oA S| oV | NE

B/23

Propositional team-based logics around BSML

Language: ¢ m=p|-p| L] oAd|dVEld— ¢l oV |=(pq)

Local disjunction Global (or inquisitive) disjunction
Team semantics: Let t C 2P be a team/state, i.e., a set of valuations.

o t=piff vip)=1forallvet

@ t=—p iff v(p)=0forallvet

etV iff t=¢ or tEY

etkEovy iff Is;rCtst.t=suUr, sE¢andr=y
et ifft=0

¢\ v
[N@) pa O

20 a0

Empty Team Property: @ = « for all ¢

Recall: Propositional BSML or BSPL: ¢ ::=p| ¢ | oA S| oV | NE
et =NE iff t#@

B/23

Propositional team-based logics around BSML

Language: ¢ m=p|-p| L] oAd|dVEld— ¢l oV |=(pq)

Local disjunction Global (or inquisitive) disjunction
Team semantics: Let t C 2P be a team/state, i.e., a set of valuations.

o t=piff vip)=1forallvet
@ t=—p iff v(p)=0forallvet

etV iff t=¢ or tEY
etkEovy iff Is;rCtst.t=suUr, sE¢andr=y

ot L iff t=gp
2@ Pa O
O a0

Empty Team Property: @ = « for all ¢
Downward Closure: If s C t = ¢, then s = ¢.

Recall: Propositional BSML or BSPL: ¢ ::=p| ¢ | oA G| oV | NE
ot =NE iff t#@ J

B/23

Propositional team-based logics around BSML

Language: ¢ m=p|-p| L] oAd|dVEld— ¢l oV |=(pq)

Local disjunction Global (or inquisitive) disjunction
Team semantics: Let t C 2P be a team/state, i.e., a set of valuations.

o t=piff vip)=1forallvet
@ t=—p iff v(p)=0forallvet

etV iff t=¢ or tEY
etkEovy iff Is;rCtst.t=suUr, sE¢andr=y

ot L iff t=gp
2@ Pa O
O a0

Empty Team Property: @ = « for all ¢
Downward Closure: If s C t = ¢, then s = ¢.

Recall: Propositional BSML or BSPL: ¢ ::=p| ¢ | oA G| oV | NE
ot =NE iff t#@ e {v} = NE, whereas & [~ NE J

B/23

Propositional team-based logics around BSML

Language: ¢ m=p|-p| L] oAd|dVEld— ¢l oV |=(pq)

Local disjunction Global (or inquisitive) disjunction
Team semantics: Let t C 2P be a team/state, i.e., a set of valuations.

o t=piff vip)=1forallvet

@ t=—p iff v(p)=0forallvet

etV iff t=¢ or tEY

etkEovy iff Is;rCtst.t=suUr, sE¢andr=y
et ifft=0

2@ Pa O
O a0
Empty Team Property: @ = « for all ¢
Downward Closure: If s C t = ¢, then s |= ¢.

ot =NE iff t#@ e {v} = NE, whereas & [~ NE

Recall: Propositional BSML or BSPL: ¢ ::=p| ¢ | oA G| oV | NE
e Union Closure: t = ¢ and s = ¢ imply tU s = ¢ for ¢ € [-, L, A, V, —,NE] J

B/23

Propositional team-based logics around BSML

CPL
[_'7 A, \/]

7/293

Propositional team-based logics around BSML

CPL

[~ A, V] Union closed

Downward closed

7/293

Propositional team-based logics around BSML

CPL

[~ A, V] Union closed

Downward closed

Empty team property

7/293

Propositional team-based logics around BSML

CPL

[~ A, V] Union closed

Downward closed

Empty team property
Flat

@ Conservativity: If A U {a} is a set of CPL-formulas, then
A ':team a <= A):classical «

7/23

Propositional team-based logics around BSML

BSPL
NE Convex

CPL

[~ A, V] Union closed

Downward closed

Empty team property
Flat

@ Conservativity: If A U {a} is a set of CPL-formulas, then
A ':team a <= A):classical «

7/23

Propositional team-based logics around BSML

BSPL

WV, =(p, g
.) NE Convex

1,—

CPL

[~ A, V] Union closed

Downward closed

Empty team property
Flat

@ Conservativity: If A U {a} is a set of CPL-formulas, then
A ':team a <= A):classical «

7/23

Propositional team-based logics around BSML

e Inquisitive logic: [L, A, v, —]
(Ciardelli, Roelofsen 2011)

e Propositional dependence logic: [, A, V, =(B, §)]
(Y., Va&nénen 2016)

BSPL

WV, =(p, g
.) NE Convex

1,—

CPL

[~ A, V] Union closed

Downward closed

Empty team property
Flat

@ Conservativity: If A U {a} is a set of CPL-formulas, then
A ':team a <= A):classical «

7/23

Propositional team-based logics around BSML

e Inquisitive logic: [L, A, v, —]
(Ciardelli, Roelofsen 2011)

e Propositional dependence logic: [, A, V, =(B, §)]
(Y., Va&nénen 2016)

BSPL

v, =(p.4q) NE Convex

1,—

CPL

[~ A, V] Union closed

Downward closed

Empty team property
Flat

@ Conservativity: If A U {a} is a set of CPL-formulas, then
A ':team a <= A }:classical «
@ All these logics have been axiomatized (Ciardelli, Roelofsen 2011), (Y.,
Vaananen 2016), (Anttila, Aloni, Y. 2023), ...
@ There are labelled sequent calculi, display calculi, and deep inference style
calculi for inquisitive logic and [, A, V, W] (Chen, Ma 2017), (Miiler 2023), (Barbero,
Girlando, Mler, Y. 2024), (Frittella, Greco, Palmigiano, Y. 2016), (Anttila, lemhoff, Y. 2024).- ..,

The power of splitting teams, and the empty trap...

Fix a finite set N = {py, ..., pn} of propositional variables.
Fact: Given a valuation v : N — {0, 1}, the CPL-formula
ev =

defines v, in the sense that for any N-valuation u,
Ul <= u=v

P P

N

Ps3
0
1
0

0o 1
1 0
1 1

/293

The power of splitting teams, and the empty trap...

Fix a finite set N = {py, ..., pn} of propositional variables.
Fact: Given a valuation v : N — {0, 1}, the CPL-formula
ev =

defines v, in the sense that for any N-valuation u,
Ul <= u=v

P P

N

P3
0 —P1 A P2 A =3
1
0

0o 1
1 0
1 1

/293

The power of splitting teams, and the empty trap...

Fix a finite set N = {py, ..., pn} of propositional variables.
Fact: Given a valuation v : N — {0, 1}, the CPL-formula
oy =p;" A A pf", where p! = p; and pf = —p;,

defines v, in the sense that for any N-valuation u,
Ul <= u=v

P P

N

P1 A =p2 A Ps

P3
0 —pP1 AP2 A —pP3
1
0 P1 A P2 A—p3

0o 1
1 0
1 1

/293

The power of splitting teams, and the empty trap...
..., Ppn} of propositional variables.

Fix a finite set N = {py,
Fact: Given a valuation v : N — {0, 1}, the CPL-formula

oy =p;" A A pf", where p! = p; and pf = —p;,

defines v, in the sense that for any N-valuation u,
Ul <= u=v

P1 P2 P3

o 1 0 —P1 A P2 A—p3
1 0 P1 A P2 A3
1 1

1
0 P1 A P2 A—p3

Question: Given an N-team t, is there a formula ©; that defines t, in

the sense that for any N-team s,
SEO; «— s=1?

/293

The power of splitting teams, and the empty trap...
= ..., Ppn} of propositional variables.

Fix a finite set N = {py,
Fact: Given a valuation v : N — {0, 1}, the CPL-formula
") where p} := p;and pf = —p;,

defines v, in the sense that for any N-valuation u
Ul <= u=v

P1 P2 P3

0 1 0 =Py A P2 A —p3
1 0 P1 A —p2 Aps3
1 1

1
0 P1 A P2 A—p3

Question: Given an N-team t, is there a formula ©; that defines t, in

the sense that for any N-team s
SEO «— s=17

V@A)

vet

/293

Take ©;

The power of splitting teams, and the empty trap...
..., Ppn} of propositional variables.

Fix a finite set N = {py,
Fact: Given a valuation v : N — {0, 1}, the CPL-formula

oy =p;" A A pf", where p! = p; and pf = —p;,

defines v, in the sense that for any N-valuation u,
Ul <= u=v

P1 P2 P3

0 1 0 —P1 A P2 A—p3
1 0 P1 A —p2 Aps3
1 1

1
0 P1 A P2 A—p3

Question: Given an N-team t, is there a formula ©; that defines t, in

the sense that for any N-team s,
SEO; «— s=1?

Take ©; = \/(p;’(” A~ A pa™)1 But in fact, not exactly, due to &

/293

vet
SEO; — s:UsvandeaChsv)zev <~ sCt.

vet

Expressive completeness and normal forms

Theorem (Y. and V&ananen 2016)

The team-based logic [, A, V, \V] is expressively complete.

q/23

Expressive completeness and normal forms

Theorem (Y. and V&ananen 2016)

The team-based logic [, A, V, \V] is expressively complete.

... in the following sense:

@ Aformula ¢ in N defines a team property [¢] = {t C 2N : t |= ¢},
which is closed downward and contains the empty team.

q/23

Expressive completeness and normal forms

Theorem (Y. and V&ananen 2016)

The team-based logic [, A, V, \V] is expressively complete.

... in the following sense:

@ Aformula ¢ in N defines a team property [¢] = {t C 2N : t |= ¢},
which is closed downward and contains the empty team.

@ For any N-team property P that is closed downward and contains
the empty team, there is a formula ¢ € [, A, V, W] such that

[¢] = P.

q/23

Expressive completeness and normal forms

Theorem (Y. and V&ananen 2016)

The team-based logic [, A, V, \V] is expressively complete.

... in the following sense:

@ Aformula ¢ in N defines a team property [¢] = {t C 2N : t |= ¢},
which is closed downward and contains the empty team.

@ For any N-team property P that is closed downward and contains
the empty team, there is a formula ¢ € [, A, V, W] such that

[¢] =P.
Proof. Take ¢ = \\/,.p ©:.

Disjunctive normal form)

q/23

Expressive completeness and normal forms

Theorem (Y. and V&ananen 2016)

The team-based logic [, A, V, \V] is expressively complete.

... in the following sense:

e Aformula ¢ in N defines a team property [¢] = {t C 2V : t = ¢},
which is closed downward and contains the empty team.

@ For any N-team property P that is closed downward and contains
the empty team, there is a formula ¢ € [, A, V, W] such that

[¢] = P.
Proof. Take ¢ = \\/,p ©:. Then,

sE\ O «— sCtforsometcP < scP.
teP

Disjunctive normal form: “The current team s is one of the teams in P”)

q/23

Expressive completeness and normal forms

Theorem (Y. and V&ananen 2016)

The team-based logic [, A, V, \V] is expressively complete.

... in the following sense:

e Aformula ¢ in N defines a team property [¢] = {t C 2V : t = ¢},
which is closed downward and contains the empty team.

@ For any N-team property P that is closed downward and contains
the empty team, there is a formula ¢ € [, A, V, W] such that

[¢] = P.
Proof. Take ¢ = \\/,p ©:. Then,

sE\ O «— sCtforsometcP < scP.
teP

Disjunctive normal form: “The current team s is one of the teams in P”)

Theorem (Y. and V&ananen 2016)

Propositional dependence logic [, A\, V, =(-)] is expressively complete.

q/23

Expressive completeness and normal forms

Theorem (Y. and V&ananen 2016)

The team-based logic [, A, V, \V] is expressively complete.

... in the following sense:

e Aformula ¢ in N defines a team property [¢] = {t C 2V : t = ¢},
which is closed downward and contains the empty team.

@ For any N-team property P that is closed downward and contains
the empty team, there is a formula ¢ € [, A, V, W] such that

[¢] = P.
Proof. Take ¢ = \\/,p ©:. Then,

sE\ O «— sCtforsometcP < scP.
teP

Disjunctive normal form: “The current team s is one of the teams in P”)

Theorem (Y. and V&ananen 2016)

Propositional dependence logic [, A\, V, =(-)] is expressively complete.

A conjunctive normal form: “The current team s is not any team in P"
q/23

Constancy atoms

o tE==((),p) iff forallv,uect: v(()=u(()= v(P)=u(d).]

10/23

Constancy atoms

o tE==(p) iff forallv,uet: v(())=u()) = v(p) = u(p).]

10/23

Constancy atoms

o t==(p) iff forallv,uet: v(p)=u(p). J

e R o}

10/23

Constancy atoms

o t==(p) iff forallv,uet: v(p)=u(p). J

O O O O

10/23

Constancy atoms

o t==(p) iff forallv,uet: v(p)=u(p). J

- O =+ O

10/23

Constancy atoms, “excluded middle"

o t==(p) iff forallv,uet: v(p)=u(p). J

—- O =+ O

Fact: ==(p) v =(p)

otkEovy iff Is;rCtst.t=suUr, sE¢andrE=vy J

10/23

Constancy atoms, “excluded middle"

o t==(p) iff forallv,uet: v(p)=u(p). J

_L_Loo‘c

Fact: ==(p) v =(p)
Failure of closure under uniform substitution:
pV p = p, whereas =(p) v =(p) = =(p).

otkEovy iff Is;rCtst.t=suUr, sE¢pandrE=vy J

10/23

Constancy atoms, “excluded middle"

o t==(p) iff forallv,uet: v(p)=u(p). J

or

—_ A Al
O O O O

Fact: ==(p) v =(p)
Failure of closure under uniform substitution:
pV p = p, whereas =(p) v =(p) = =(p).

Fact: =(p)=pwv-p

otkEovy iff Is;rCtst.t=suUr, sE¢pandrE=vy
e tEovy iff tEgoOrtEY J

10/23

Constancy atoms, “excluded middle"

o t==(p) iff forallv,uet: v(p)=u(p). J

or

—_ A Al
O O O O

Fact: ==(p) v =(p)
Failure of closure under uniform substitution:
pV p = p, whereas =(p) v =(p) = =(p).

Fact: =(p) = p\v —p= ?p (in inquisitive logic)

otkEovy iff Is;rCtst.t=suUr, sE¢pandrE=vy
e tEovy iff tEgoOrtEY J

10/23

Counting with constancy atoms

Let N={p1,...,Pn}

Fact: For any N-team t,
tE=(p1)A---A=(pn) <= || <1 J

Pn

_
_LOO_LP
o|= =|o|®

1
0
1
1

11/23

Counting with constancy atoms

Let N={p1,...,Pn}

Fact: For any N-team t,
tE=(p1)A---A=(pn) <= || <1 J

Pn

t |

_LOO_LP
o =|=|ol®

:
0[]
.
1

11/23

Counting with constancy atoms

LetN:{p17"‘7pn}'

Fact: For any N-team t,
tE=(p1)A---A=(pn) <= || <1 J

Pn

_LOO_LP
o| =| oS

1
0
1
1

Define k
k= \/(=(p1) A+~ A =(pn))

i=1

Prop. For any N-team t, we have that
tE=n <= |t| <k J

11/23

Saying “no” to supersets

Prop. For any N-teams t, the formula ©; = \/Ve(p}’“) A A pel™) satisfies
that for any N-teams, sE=0©; < sCt.

192/23

Saying “no” to supersets

Prop. For any N-teams t, the formula ©; = \/Ve(p}’“) A A pel™) satisfies
that for any N-teams, sE=0©; < sCt.

v

Lemma (Huuskonen 2016). For any nonempty N-team t, there exists a
formula ¢; such that for any N-team s,

SE® <— t¢s.

19/23

Saying “no” to supersets

Prop. For any N-teams t, the formula ©; = \/Ve(p}’“) A A pel™) satisfies
that for any N-teams, sE=0©; < sCt.

Prop. For any N-team t, we have that | < |f| < k.

v

Lemma (Huuskonen 2016). For any nonempty N-team t, there exists a
formula ¢; such that for any N-team s,

SE® <— t¢s.

Proof. Let |t| = k + 1. Define ®; := n, v ©5, where t = 2V \ t.

19/23

Saying “no” to supersets

Prop. For any N-teams t, the formula ©; = \/Ve(p}’“) A A pel™) satisfies
that for any N-teams, sE=0©; < sCt.

Prop. For any N-team t, we have that | < |f| < k.

v

Lemma (Huuskonen 2016). For any nonempty N-team t, there exists a
formula ¢; such that for any N-team s,

SE® <— t¢s.

Proof. Let |t| = k + 1. Define ®; := n, v ©5, where t = 2V \ t.
For any N-team s, we have that

Sk ® < s=rUnsuchthatr = and r, = ©;

] s

19/23

Saying “no” to supersets

Prop. For any N-teams t, the formula ©; = \/Ve(p}’“) A A pel™) satisfies
that for any N-teams, sE=0©; < sCt.

Prop. For any N-team t, we have that | < |f| < k.

v

Lemma (Huuskonen 2016). For any nonempty N-team t, there exists a
formula ¢; such that for any N-team s,

SE® <— t¢s.

Proof. Let |t| = k + 1. Define ®; := n, v ©5, where t = 2V \ t.
For any N-team s, we have that

Sk ® < s=rUnsuchthatr = and r, = ©;
< s=rnUnsuchthat|n|<kandrnCt ie,nNt=0

19/23

Saying “no” to supersets

Prop. For any N-teams t, the formula ©; = \/Ve(p}’“) A A pel™) satisfies
that for any N-teams, sE=0©; < sCt.

Prop. For any N-team t, we have that | < |f| < k.

v

Lemma (Huuskonen 2016). For any nonempty N-team t, there exists a
formula ¢; such that for any N-team s,

SE® <— t¢s.

Proof. Let |t| = k + 1. Define ®; := n, v ©5, where t = 2V \ t.
For any N-team s, we have that

Sk ® < s=rUnsuchthatr = and r, = ©;

< s=rnUnsuchthat|n|<kandrnCt ie,nNt=0
— t¢s.

19/23

Conjunctive normal form

Theorem (Y. and V&ananen 2016)

Propositional dependence logic [, A\, V, =()] is expressively complete.

Nontrivial direction: For any N-team property P that is closed
downward and contains the empty team, there is a formula
¢ € [, A, V, =(-)] such that [¢] = P.

13/23

Conjunctive normal form

Theorem (Y. and V&ananen 2016)

Propositional dependence logic [, A\, V, =()] is expressively complete.

Nontrivial direction: For any N-team property P that is closed
downward and contains the empty team, there is a formula
¢ € [, A, V, =(-)] such that [¢] = P.

Proof. Take ¢ = /\teﬁ ®;. Then

s\ < tZsforallt¢ P < scP.
teP

13/23

Conjunctive normal form

Theorem (Y. and V&ananen 2016)

Propositional dependence logic [, A\, V, =()] is expressively complete.

Nontrivial direction: For any N-team property P that is closed
downward and contains the empty team, there is a formula
¢ € [, A, V, =(-)] such that [¢] = P.

Proof. Take ¢ = /\teTD ®;. Then

s\ < tZsforallt¢ P < scP.
teP

Conjunctive normal form: “The current team s is not any team in P” J

13/23

Conjunctive normal form

Theorem (Y. and V&ananen 2016)

Propositional dependence logic [, A\, V, =()] is expressively complete.

Nontrivial direction: For any N-team property P that is closed
downward and contains the empty team, there is a formula
¢ € [, A, V, =(-)] such that [¢] = P.

Proof. Take ¢ = A, ®+. Then
s\ < tZsforallt¢ P < scP.
teP
L]

Conjunctive normal form: “The current team s is not any team in P” J

Disjunctive normal form: “The current team s is one of the teams in P”)

\\/teP et‘

13/23

Union closed team-based logics around BSML?

BSPL

v, =(P.) NE Convex

1,—

CPL

[~ A, V] Union closed

Downward closed

Empty team property
Flat

14/23

Union closed team-based logics around BSML?

v, =(B,d) BSPL
Convex
1,— NE
Downward closed [ﬁC/TLV] Union closed
Empty team property 5

Flat

14/23

Database theory connection revisited: inclusion dependencies

@ A team can be viewed as a relational database.

@ Dependence atoms =(p, g) correspond to functional
dependencies p — g in database theory

15/23

Database theory connection revisited: inclusion dependencies

@ A team can be viewed as a relational database.

@ Dependence atoms =(p, g) correspond to functional
dependencies p — g in database theory

@ Inclusion dependencies give rise to inclusion atoms (Galliani 2012):

15/23

Database theory connection revisited: inclusion dependencies

@ A team can be viewed as a relational database.

@ Dependence atoms =(p, g) correspond to functional
dependencies p — g in database theory

@ Inclusion dependencies give rise to inclusion atoms (Galliani 2012):
E.g.,
pqCrs

@tEpP...pnCq1...qn iff forallvet, there exists u e ts.t.
v(pi) = u(g;) forall1 <i<n.

15/23

Database theory connection revisited: inclusion dependencies

@ A team can be viewed as a relational database.

@ Dependence atoms =(p, g) correspond to functional
dependencies p — g in database theory

@ Inclusion dependencies give rise to inclusion atoms (Galliani 2012):
E.g.,
pqCrs

@tEpP...pnCq1...qn iff forallvet, there exists u e ts.t.
v(pi) = u(g;) forall1 <i<n.

15/23

Database theory connection revisited: inclusion dependencies

@ A team can be viewed as a relational database.
@ Dependence atoms =(p, g) correspond to functional
dependencies p — g in database theory
@ Inclusion dependencies give rise to inclusion atoms (Galliani 2012):
E.g.,
pq Crs

LT Cpq
1rs C pgT

@tkEay...anCby...by iff forallvet, thereexistsuets.t.
v(a) =u(b;) forall1 <i<n.
where each a;, b ePropU{T, L}.

15/23

Database theory connection revisited: inclusion dependencies

@ A team can be viewed as a relational database.

@ Dependence atoms =(p, g) correspond to functional
dependencies p — g in database theory

@ Inclusion dependencies give rise to inclusion atoms (Galliani 2012):

E.g., 1 T p g r s
pg Crs o 1 1 0 1 1
1T - pPq 0 1 1 0O 0 1

1rs g qu 0 1 0 1 1 0

@tkEay...anCby...by iff forallvet, thereexistsuets.t.
v(a) =u(b;) forall1 <i<n.
where each a;, b ePropU{T, L}.

15/23

Database theory connection revisited: inclusion dependencies

@ A team can be viewed as a relational database.

@ Dependence atoms =(p, g) correspond to functional
dependencies p — g in database theory

@ Inclusion dependencies give rise to inclusion atoms (Galliani 2012):

E.g., 1 T p g r s
pg Crs o 1 1 0 1 1
1T - pPq 0 1 1 0O 0 1

1rs g qu 0 1 0 1 1 0

@tkEay...anCby...by iff forallvet, thereexistsuets.t.
v(a) =u(b;) forall1 <i<n.
where each a;, b ePropU{T, L}.

We now consider the logic [, A, V, a8 C B], known as propositional
inclusion logic.

Empty team property: @ = « for all ¢

Union closure: If t = ¢ and s |= ¢, then tU s |= ¢.

15/23

Expressive completeness and disjunctive normal form

Theorem ((Y. 2022), (Hella, Kuusisto, Meier, Volimer 2019))

Propositional inclusion logic [, A\, V, C] is expressively complete over
union closed team properties that contain the empty team.

Proof idea of nontrivial direction: For any N-team property P that is
union closed and contains the empty team, construct a formula
¢ € [-,N,V,C]such that [¢] =P, ie,skE ¢ < seP.

16/23

Expressive completeness and disjunctive normal form

Theorem ((Y. 2022), (Hella, Kuusisto, Meier, Volimer 2019))

Propositional inclusion logic [, A\, V, C] is expressively complete over
union closed team properties that contain the empty team.

Proof idea of nontrivial direction: For any N-team property P that is
union closed and contains the empty team, construct a formula
¢ € [-,A,V,C] such that [¢] =P, i.e., s} ¢ <= s e P. The formula
¢ = \/;cp ¢+ in DNF says roughly

“the current team s is the union of some teams in P, and thus in P”.

16/23

Expressive completeness and disjunctive normal form

Theorem ((Y. 2022), (Hella, Kuusisto, Meier, Volimer 2019))

Propositional inclusion logic [, A\, V, C] is expressively complete over
union closed team properties that contain the empty team.

Proof idea of nontrivial direction: For any N-team property P that is
union closed and contains the empty team, construct a formula
¢ € [-,A,V,C] such that [¢] =P, i.e., s} ¢ <= s e P. The formula
¢ = \/;cp ¢+ in DNF says roughly

“the current team s is the union of some teams in P, and thus in P”.
This is achieved by taking ¢; = ©; A V¢, where:

16/23

Expressive completeness and disjunctive normal form

Theorem ((Y. 2022), (Hella, Kuusisto, Meier, Volimer 2019))

Propositional inclusion logic [, A\, V, C] is expressively complete over
union closed team properties that contain the empty team.

Proof idea of nontrivial direction: For any N-team property P that is
union closed and contains the empty team, construct a formula
¢ € [-,A,V,C] such that [¢] =P, i.e., s} ¢ <= s e P. The formula
¢ = \/;cp ¢+ in DNF says roughly

“the current team s is the union of some teams in P, and thus in P”.
This is achieved by taking ¢; = ©; A V¢, where:

Prop. For any N-team t, the formula ©; = \/,,(p!") A -+ A pp{™)
satisfies that for any N-team s,
SEFO < scCt

16/23

Expressive completeness and disjunctive normal form

Theorem ((Y. 2022), (Hella, Kuusisto, Meier, Volimer 2019))

Propositional inclusion logic [, A\, V, C] is expressively complete over
union closed team properties that contain the empty team.

Proof idea of nontrivial direction: For any N-team property P that is
union closed and contains the empty team, construct a formula
¢ € [-,A,V,C] such that [¢] =P, i.e., s} ¢ <= s e P. The formula
¢ = \/;cp ¢+ in DNF says roughly

“the current team s is the union of some teams in P, and thus in P”.
This is achieved by taking ¢; = ©; A V¢, where:

Prop. For any N-team t, the formula ©; = \/,,(p!") A -+ A pp{™)
satisfies that for any N-team s,
SEFO < scCt

Prop. For any N-team t, there is a formula V; s.t. for any N-team s,
SEV: &< tCsors=g.

16/23

Expressive completeness and disjunctive normal form

Theorem ((Y. 2022), (Hella, Kuusisto, Meier, Volimer 2019))

Propositional inclusion logic [, A\, V, C] is expressively complete over
union closed team properties that contain the empty team.

Proof idea of nontrivial direction: For any N-team property P that is
union closed and contains the empty team, construct a formula
¢ € [-,A,V,C] such that [¢] =P, i.e., s} ¢ <= s e P. The formula
¢ = \/;cp ¢+ in DNF says roughly

“the current team s is the union of some teams in P, and thus in P”.
This is achieved by taking ¢; = ©; A V¢, where:

Prop. For any N-team t, the formula ©; = \/,,(p!") A -+ A pp{™)
satisfies that for any N-team s,
SEFO < scCt

Prop. For any N-team t, there is a formula V; s.t. for any N-team s,
SEV: &< tCsors=g.

Thus, sE O AV; < s=tors=g.

16/23

Defining supersets (... but ignore the empty set please)

Prop. For any N-team t, there is a formula V; s.t. for any N-team s,
SEV; < tCsors=g. J

_L_L_LOE
_L_LO_LS

o~ 0o =B

17/23

Defining supersets (... but ignore the empty set please)

Prop. For any N-team t, there is a formula V; s.t. for any N-team s,
SEV; < tCsors=g. J

Proof. Observe that forany v: N — {0,1},
sEv(P)...v(pn) Cpy...pn < VES Or S=g,

where1:=Tand0:= 1.

LTLC pi1p2ps

_L_L_LOE
_L_LO_LS

<
o - o =B

17/23

Defining supersets (... but ignore the empty set please)

Prop. For any N-team t, there is a formula V; s.t. for any N-team s,
SEV; < tCsors=g. J

Proof. Observe that forany v: N — {0,1},
sEv(P)...v(pn) Cpy...pn < VES Or S=g,

where1:=Tand0:= 1.
For any N-team t, define
Vi =\ v(p1)...v(pn) CP1-..Pn.

vet

LTLC pi1p2ps

<
o~ o 1B
...._..OE
_L_LO_LS

17/23

More expressively complete logics?

Vv, =(B, §)
1,—

Downward closed

Empty team property

CPL
[_‘7 /\7\/]

Flat

BSPL
NE

Dl
N
(e

Convex

Union closed

18/23

More expressively complete logics?

BSPL

v, =(p, G) NE Convex

1,—

CPL

Union closed
[=, A, V]

Downward closed

Empty team property

Dl
N
(e

Flat

Question: What is (the expressive power of) CPL(=(p, §), d C b)?

18/23

More expressively complete logics?

BSPL
NE Convex

CPL

Union closed
[=, A, V]

Downward closed

Empty team property

QI
N
(o 1}

Flat

Question: What is (the expressive power of) CPL(=(p, §), d C b)?

Background:

@ First-order dependence logic, i.e., FO(=(X, ¥)), captures all downward
closed team properties definable in existential second-order logic (ESO)
(modulo @) (Kontinen, Vaananen 2009 + 2011 erratum about &).

18/23

More expressively complete logics?

BSPL
NE Convex

CPL

Union closed
[=, A, V]

Downward closed

Empty team property

QI
N
(o 1}

Flat

Question: What is (the expressive power of) CPL(=(p, §), d C b)?

Background:

@ First-order dependence logic, i.e., FO(=(X, ¥)), captures all downward
closed team properties definable in existential second-order logic (ESO)
(modulo @) (Kontinen, Vaananen 2009 + 2011 erratum about &).

@ FO(=(X,y),X C y) captures all ESO-team properties (modulo &)
(Galliani 2012)

18/23

Expressive completeness and conjunctive normal form

The logic [-, A, Vv, =(+), C] is expressively complete over all team
properties that contain the empty team.

19/23

Expressive completeness and conjunctive normal form

The logic [-, A, Vv, =(+), C] is expressively complete over all team
properties that contain the empty team.

Proof. The trivial direction: @ = ¢ for all ¢ € [-, A, Vv, =(+), C].

19/23

Expressive completeness and conjunctive normal form

The logic [-, A, Vv, =(+), C] is expressively complete over all team
properties that contain the empty team.

Proof. The trivial direction: @ = ¢ for all ¢ € [-, A, Vv, =(+), C].

The nontrivial direction: For any N-team property P that contains the
empty team, construct a formula ¢ € [, A, V, =(+), C] such that
[¢o] =P, ie.,sE¢iffseP.

19/23

Expressive completeness and conjunctive normal form

The logic [-, A, Vv, =(+), C] is expressively complete over all team
properties that contain the empty team.

Proof. The trivial direction: @ = ¢ for all ¢ € [-, A, Vv, =(+), C].

The nontrivial direction: For any N-team property P that contains the
empty team, construct a formula ¢ € [, A, V, =(+), C] such that
[¢] =P, i.e., s = ¢iff s € P. The formula ¢ = A\, ¢+ in CNF says

“the current team s is not any team in P”.

19/23

Expressive completeness and conjunctive normal form

The logic [-, A, Vv, =(+), C] is expressively complete over all team
properties that contain the empty team.

Proof. The trivial direction: @ = ¢ for all ¢ € [-, A, Vv, =(+), C].

The nontrivial direction: For any N-team property P that contains the
empty team, construct a formula ¢ € [, A, V, =(+), C] such that
[¢] =P, i.e., s = ¢iff s € P. The formula ¢ = A\, ¢+ in CNF says

“the current team s is not any team in P”.

To be precise:

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team S,J

SE¢ < s#t

19/23

Saying “no” in [, A, Vv, =(+), C]

SE¢t <= s#t

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team S,J

20/23

Saying “no” in [, A, Vv, =(+), C]

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE¢r < s#t, ie.,eithersZ tort¢ s. J

20/23

Saying “no” in [, A, Vv, =(+), C]

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE¢r < s#t, ie.,eithersZ tort¢ s. J

Take ¢ = o V pt.

20/23

Saying “no” in [-, A, V, =(+), C]

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE¢r < s#t, ie.,eithersZ tort¢ s.

Lm 1. For any N-team t # (, there is a formula o; s.t. for any N-team s,
SEot < s¢t

v

Lm 2. For any N-team t # (), there is a formula p; s.t. for any N-team s,
SEp <= t¢s.

Take ¢ = o V pt.

20/23

Saying “no” in [-, A, V, =(+), C]

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE¢r < s#t, ie.,eithersZ tort¢ s.

Lm 1. For any N-team t # (, there is a formula o; s.t. for any N-team s,
SEot < s¢t

v

Lm 2. For any N-team t # (), there is a formula p; s.t. for any N-team s,
SEp <= t¢s.

Proof. By (Huuskonen 2016).

Take ¢ = o V pt.

20/23

Saying “no” in [, A, V, =(+),], and “the empty set test”

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE¢r < s#t, ie.,eithersZ tort¢ s.

Lm 1. For any N-team t # (, there is a formula o; s.t. for any N-team s,
SEot < s¢tors=g.

v

Lm 2. For any N-team t # (), there is a formula p; s.t. for any N-team s,
SEp <= t¢s.

Proof. By (Huuskonen 2016).

Take ¢ = o V pt.

20/23

Saying “no” in [, A, V, =(+),], and “the empty set test”

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE ¢t < s#t ie,eithersZ tort¢s.

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sftors=p.

v

Lm 2. For any N-team t # (), there is a formula p; s.t. for any N-team s,

SEpt < t¢s. ‘,@B |

Proof. By (Huuskonen 2016).

Take ot = otV pt.

20/23

Saying “no” in [, A, Vv, =(+), C]

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sdtors=p. J

21/23

Saying “no” in [, A, Vv, =(+), C]

Lm 1. For any N-team t # (, there is a formula o s.t. for any N-team s,
SEot < sftors=g. J

Proof. Recall that forany v : N — {0, 1},
revipy)...v(pn) Cp1...pp < VETr or r=g,

LTLC p1p2ps

<
O =0 =B

P2
0
1
1
1

21/23

Saying “no” in [, A, Vv, =(+), C]

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sdtors=p. J

Proof. Recall that forany v : N — {0, 1},
revipy)...v(pn) Cp1...pp < VETr or r=g,

Take
or=\/v(p1)...v(Pn) C P1...Pn.
vt

21/23

Saying “no” in [, A, Vv, =(+), C]

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sdtors=p. J

Proof. Recall that forany v : N — {0, 1},
revipy)...v(pn) Cp1...pp < VETr or r=g,

Take
or=\/v(p1)...v(Pn) C P1...Pn.
vt

““="1lf@ #s ¢t thenthereisvst vesandv ¢t

21/23

Saying “no” in [, A, Vv, =(+), C]

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sdtors=p. J

Proof. Recall that forany v : N — {0, 1},
revipy)...v(pn) Cp1...pp < VETr or r=g,

Take
or=\/v(p1)...v(Pn) C P1...Pn.
vt

““="1lf@ # s ¢ t, thenthereis vst. vesand v ¢t Thus,

sEvV(py)...v(pn) Cpi...pp and s = oy

21/923

Saying “no” in [, A, Vv, =(+), C]

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sdtors=p. J

Proof. Recall that forany v : N — {0, 1},
revipy)...v(pn) Cp1...pp < VETr or r=g,

Take
or=\/v(p1)...v(Pn) C P1...Pn.
vt

““="1lf@ # s ¢ t, thenthereis vst. vesand v ¢t Thus,

sEvV(py)...v(pn) Cpi...pp and s = oy

‘=" If @ # s = o, then s = Uv¢t sy and s, =v(p1)...v(ps) C p1. . -Pn

21/23

Saying “no” in [, A, Vv, =(+), C]

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sdtors=p. J

Proof. Recall that forany v : N — {0, 1},
revipy)...v(pn) Cp1...pp < VETr or r=g,

Take
or=\/v(p1)...v(Pn) C P1...Pn.
vt

““="1lf@ # s ¢ t, thenthereis vst. vesand v ¢t Thus,

sEvV(py)...v(pn) Cpi...pp and s = oy

‘=" 1f@# s = or thens=J,4 sy and s, =v(p1)...v(pn) € pi-.Pn.
At least one such s, must be nonempty and satisfies v € s, C s.

21/23

Saying “no” in [-, A, V, =(+), C]

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sdtors=p. J

Proof. Recall that forany v : N — {0, 1},
revipy)...v(pn) Cp1...pp < VETr or r=g,

Take
or=\/v(p1)...v(Pn) C P1...Pn.
vt

““="1lf@ # s ¢ t, thenthereis vst. vesand v ¢t Thus,

sEvV(py)...v(pn) Cpi...pp and s = oy

‘=" If @ # s = o, then s = Uv¢t sy and s, =v(p1)...v(ps) C p1. . -Pn
At least one such s, must be nonempty and satisfies v € s, C s. We
have v € s\ t, thereby s Z t. O

21/23

Saying “no” in [, A, V, =(+),], and “the empty set test”

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE ¢t < s#t ie,eithersZ tort¢s.

v

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sftors=g.

v

Lm 2. For any N-team t # (), there is a formula p¢ s.t. for any N-team s,
SEp <= t¢s.

v

Take ¢ = o V pt.

29/99

Saying “no” in [, A, V, =(+),], and “the empty set test”

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE ¢t < s#t ie,eithersZ tort¢s.

v

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sftors=g.

v

Lm 2. For any N-team t # (), there is a formula p¢ s.t. for any N-team s,
SEp <= t¢s.

v

Take ¢ = o V pt.

Poof of Prop. Q s
Suppose s = ¢;. 5

Thens=rUmr..

29/99

Saying “no” in [, A, V, =(+),], and “the empty set test”

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE ¢t < s#t ie,eithersZ tort¢s.

v

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sftors=g.

v

Lm 2. For any N-team t # (), there is a formula p¢ s.t. for any N-team s,
SEp <= t¢s.

v

Take ¢ = o V pt.

Poof of Prop. % s
Suppose s = ¢;. b

Thens=rUmr..

29/99

Saying “no” in [, A, V, =(+),], and “the empty set test”

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE ¢t < s#t ie,eithersZ tort¢s.

v

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sftors=g.

v

Lm 2. For any N-team t # (), there is a formula p¢ s.t. for any N-team s,
SEp <= t¢s.

v

Take ¢ = o V pt.

Poof of Prop. % s
Suppose s = ¢;. »

Thens=rUmr..

29/99

Saying “no” in [, A, V, =(+),], and “the empty set test”

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE ¢t < s#t ie,eithersZ tort¢s.

v

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sftors=g.

v

Lm 2. For any N-team t # (), there is a formula p¢ s.t. for any N-team s,
SEp <= t¢s.

v

Take ¢ = o V pt.

Poof of Prop. e& s
Suppose s = ¢. @

Thens=rUmr..

29/99

Saying “no” in [, A, V, =(+),], and “the empty set test”

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE ¢t < s#t ie,eithersZ tort¢s.

v

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sftors=g.

v

Lm 2. For any N-team t # (), there is a formula p¢ s.t. for any N-team s,
SEp <= t¢s.

v

Take ¢ = o V pt.

Poof of Prop. % s
Suppose s = ¢;. %
/)

Thens=rUmr..

29/99

Saying “no” in [, A, V, =(+),], and “the empty set test”

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE ¢t < s#t ie,eithersZ tort¢s.

v

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sftors=g.

v

Lm 2. For any N-team t # (), there is a formula p¢ s.t. for any N-team s,
SEp <= t¢s.

v

Take ¢ = o V pt.

Poof of Prop. s=1r

Suppose s = ¢;.
Thens=rUmr..

29/99

Propositional team-based logics around BSML

—(B.d BSPL
v, =(p, q) NE Convex
1,—
Downward closed [ﬁC/F:LV] Union closed
Empty team property .
ach
Flat

Summary:

@ We have discussed a number of expressively complete
propositional team-based logics around BSPL (that have the
empty team property).

@ These results can also be generalized to the modal logic setting.

@ (More) applications?

23/993

