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Another motivation for state-based or team-based semantics

Bilateral state-based modal logic (BSML): Modal logic + NE

States: sets of possible worlds.

Also known as Teams.

pqr pq

r

pr

Team semantics:
A compositional semantics introduced by Hodges (1997) for
characterizing dependencies between variables,

originally for Independence-friendly Logic (Hintikka, Sandu 1989),
and later developed further in Dependence Logic (Väänänen 2007).
Adopted also independently in Inquisitive Logic (Ciardelli, Roelofsen
2011), (Ciardelli, Groenendijk, Roelofsen 2018) for characterizing
questions in natural language.
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functional dependence between variables

y = f (x) = x2
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x determines y

for all s, s′ ∈ t :
s(x) = s′(x) =⇒ s(y) = s′(y)

A team t : a set of
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How to characterize functional dependence between variables?
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Propositional dependence atoms

pqr pq

r

A team t : a set of valuations / possible worlds

t |= p determines q iff for all u, v ∈ t :
u(p) = v(p) =⇒ u(q) = v(q)

– “Whether it is raining determines whether I will take my umbrella.”
– “Whether this set is empty determines whether it is raining in Amsterdam.”

Empty team/state property: |= =(~p, ~q)
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Connection with database theory

p q r s
v0 1 0 1 1
v1 1 0 1 0
v2 0 1 0 1
v3 0 1 0 0

A team can be viewed as a relational database.

Dependence atoms =(~p, ~q) correspond exactly to functional
dependencies ~p → ~q in database theory

Armstrong’s Axioms (1974) for functional dependencies:
=(~p, ~p) (identity)
=(~p~q,~r) implies =(~q~p,~r) (commutativity)
=(~p~p, ~q) implies =(~p, ~q) (contraction)
=(~q,~r) implies =(~p~q,~r) (weakening)
=(~p, ~q) and =(~q,~r) imply =(~p,~r) (transitivity)
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Propositional team-based logics around BSML

Language: φ ::= p | ¬p | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φ |=(~p, ~q)

Local disjunction Global disjunction

Team semantics: Let t ⊆ 2Prop be a team/state, i.e., a set of valuations.
t |= p iff v(p) = 1 for all v ∈ t
t |= ¬p iff v(p) = 0 for all v ∈ t
t |= φ \\/ψ iff t |= φ or t |= ψ
t |= φ ∨ ψ iff ∃s, r ⊆ t s.t. t = s ∪ r , s |= φ and r |= ψ

t |= ⊥ iff t =

pqp

q

t 6|= p
t 6|= ¬pφ

φ ψ

Empty Team Property: |= ψ for all ψ

Downward Closure: If s ⊆ t |= φ, then s |= φ.

Recall: Propositional BSML or BSPL: φ ::= p | ¬φ | φ ∧ φ | φ ∨ φ | NE

• t |= NE iff t 6= • {v} |= NE, whereas 6|= NE
• Union Closure: t |= φ and s |= φ imply t ∪ s |= φ for φ ∈ [¬,⊥,∧,∨,→,NE]
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t |= φ ∨ ψ iff ∃s, r ⊆ t s.t. t = s ∪ r , s |= φ and r |= ψ

t |= ⊥ iff t =

pqp

q

t 6|= p
t 6|= ¬pφ

φ ψ

Empty Team Property: |= ψ for all ψ
Downward Closure: If s ⊆ t |= φ, then s |= φ.

Recall: Propositional BSML or BSPL: φ ::= p | ¬φ | φ ∧ φ | φ∨φ | NE
• t |= NE iff t 6= • {v} |= NE, whereas 6|= NE
• Union Closure: t |= φ and s |= φ imply t ∪ s |= φ for φ ∈ [¬,⊥,∧,∨,→,NE]
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Propositional team-based logics around BSML

⊥,→
\\/ , =(~p, ~q)

• Inquisitive logic: [⊥,∧, \\/ ,→]

(Ciardelli, Roelofsen 2011)

• Propositional dependence logic: [¬,∧,∨, =(~p, ~q)]
(Y., Väänänen 2016)

Downward closed

BSPL
NE

Union closed

Convex

CPL
[¬,∧,∨]

Empty team property

Flat
Conservativity: If ∆ ∪ {α} is a set of CPL-formulas, then

∆ |=team α ⇐⇒ ∆ |=classical α

All these logics have been axiomatized (Ciardelli, Roelofsen 2011), (Y.,
Väänänen 2016), (Anttila, Aloni, Y. 2023), ...
There are labelled sequent calculi, display calculi, and deep inference style
calculi for inquisitive logic and [¬,∧,∨, \\/ ] (Chen, Ma 2017), (Müler 2023), (Barbero,
Girlando, Müler, Y. 2024), (Frittella, Greco, Palmigiano, Y. 2016), (Anttila, Iemhoff, Y. 2024).
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The power of splitting teams, and the empty trap...

Fix a finite set N = {p1, . . . ,pn} of propositional variables.

Fact: Given a valuation v : N → {0,1}, the CPL-formula

θv =

pv(1)
1 ∧ · · · ∧ pv(n)

n , where p1
i := pi and p0

i = ¬pi ,

defines v , in the sense that for any N-valuation u,
u |= θv ⇐⇒ u = v

p1 p2 p3
0 1 0
1 0 1
1 1 0

¬p1 ∧ p2 ∧ ¬p3
p1 ∧ ¬p2 ∧ p3
p1 ∧ p2 ∧ ¬p3

Question: Given an N-team t , is there a formula Θt that defines t , in
the sense that for any N-team s,

s |= Θt ⇐⇒ s = t?

Take Θt =
∨
v∈t

(pv(1)
1 ∧ · · · ∧ pv(n)

n )! But in fact, not exactly, due to :

s |= Θt ⇐⇒ s =
⋃
v∈t

sv and each sv |= θv ⇐⇒ s ⊆ t .
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Expressive completeness and normal forms

Theorem (Y. and Väänänen 2016 )
The team-based logic [¬,∧,∨, \\/ ] is expressively complete.

... in the following sense:
A formula φ in N defines a team property JφK = {t ⊆ 2N : t |= φ},
which is closed downward and contains the empty team.
For any N-team property P that is closed downward and contains
the empty team, there is a formula φ ∈ [¬,∧,∨, \\/ ] such that
JφK = P.

Proof. Take φ = \\/t∈P Θt .

Then,

s |= \\/
t∈P

Θt ⇐⇒ s ⊆ t for some t ∈ P ⇐⇒ s ∈ P.

Disjunctive normal form

: “The current team s is one of the teams in P”

Theorem (Y. and Väänänen 2016 )
Propositional dependence logic [¬,∧,∨, =(·)] is expressively complete.

A conjunctive normal form: “The current team s is not any team in P"
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Constancy atoms

, “excluded middle"

t |= =(〈〉, ~p) iff for all v ,u ∈ t : v(〈〉) = u(〈〉) =⇒ v(~p) = u(~p).

or

. . . p . . .

. . . 0 . . .

. . . 0 . . .

. . . 0 . . .

. . . 0 . . .

Fact: |= =(p)∨ =(p)

Failure of closure under uniform substitution:
p ∨ p |= p, whereas =(p)∨ =(p) 6|= =(p).

Fact: =(p) ≡ p \\/¬p

≡ ?p (in inquisitive logic)

t |= φ ∨ ψ iff ∃s, r ⊆ t s.t. t = s ∪ r , s |= φ and r |= ψ

t |= φ \\/ψ iff t |= φ or t |= ψ
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Counting with constancy atoms

Let N = {p1, . . . ,pn}.

Fact: For any N-team t ,
t |= =(p1) ∧ · · · ∧ =(pn) ⇐⇒ |t | ≤ 1.

p1 p2 . . . pn
1 0 . . . 1
0 1 . . . 0
0 1 . . . 1
1 0 . . . 1

t

t

Define
ηk =

k∨
i=1

( =(p1) ∧ · · · ∧ =(pn))

Prop. For any N-team t , we have that
t |= ηk ⇐⇒ |t | ≤ k .
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Saying “no” to supersets

Prop. For any N-teams t , the formula Θt =
∨

v∈t (p
v(1)
1 ∧ · · · ∧ pv(n)

n ) satisfies
that for any N-team s, s |= Θt ⇐⇒ s ⊆ t .

Prop. For any N-team t , we have that t |= ηk ⇐⇒ |t | ≤ k .

Lemma (Huuskonen 2016). For any nonempty N-team t , there exists a
formula Φt such that for any N-team s,

s |= Φt ⇐⇒ t 6⊆ s.

Proof. Let |t | = k + 1. Define Φt := ηk ∨Θt , where t = 2N \ t .
For any N-team s, we have that

s |= Φt ⇐⇒ s = r1 ∪ r2 such that r1 |= ηk and r2 |= Θt

⇐⇒ s = r1 ∪ r2 such that |r1| ≤ k and r2 ⊆ t , i.e., r2 ∩ t = ∅
⇐⇒ t * s.

s

t

r2

r1
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Conjunctive normal form

Theorem (Y. and Väänänen 2016 )
Propositional dependence logic [¬,∧,∨, =(·)] is expressively complete.

Nontrivial direction: For any N-team property P that is closed
downward and contains the empty team, there is a formula
φ ∈ [¬,∧,∨, =(·)] such that JφK = P.

Proof. Take φ =
∧

t∈P Φt . Then

s |=
∧
t∈P

Φt ⇐⇒ t * s for all t /∈ P ⇐⇒ s ∈ P.

Conjunctive normal form: “The current team s is not any team in P”

Disjunctive normal form: “The current team s is one of the teams in P”

\\/t∈P Θt
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Union closed team-based logics around BSML?

⊥,→
\\/ , =(~p, ~q)

Downward closed

?

BSPL
NE

Union closed

Convex

CPL
[¬,∧,∨]

Empty team property

Flat
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Database theory connection revisited: inclusion dependencies

A team can be viewed as a relational database.
Dependence atoms =(~p, ~q) correspond to functional
dependencies ~p → ~q in database theory
Inclusion dependencies give rise to inclusion atoms (Galliani 2012):

E.g.,
pq ⊆ rs
⊥> ⊆ pq
⊥rs ⊆ pq>

p q r s
1 0 1 1
1 0 0 1
0 1 1 0

⊥ > p q r s
0 1 1 0 1 1
0 1 1 0 0 1
0 1 0 1 1 0

t |=

p1 . . . pn ⊆ q1 . . . qn

iff for all v ∈ t , there exists u ∈ t s.t.
v(pi) = u(qi) for all 1 ≤ i ≤ n.

where each ai ,bi ∈Prop∪{>,⊥}.

We now consider the logic [¬,∧,∨, ~a ⊆ ~b], known as propositional
inclusion logic.
Empty team property: |= ψ for all ψ
Union closure: If t |= φ and s |= φ, then t ∪ s |= φ.
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Expressive completeness and disjunctive normal form

Theorem ((Y. 2022), (Hella, Kuusisto, Meier, Vollmer 2019))

Propositional inclusion logic [¬,∧,∨,⊆] is expressively complete over
union closed team properties that contain the empty team.

Proof idea of nontrivial direction: For any N-team property P that is
union closed and contains the empty team, construct a formula
φ ∈ [¬,∧,∨,⊆] such that JφK = P, i.e., s |= φ ⇐⇒ s ∈ P.

The formula
φ =

∨
t∈P φt in DNF says roughly

“the current team s is the union of some teams in P, and thus in P”.
This is achieved by taking φt = Θt ∧Ψt , where:

Prop. For any N-team t , the formula Θt =
∨

v∈t (p
v(1)
1 ∧ · · · ∧ pv(n)

n )
satisfies that for any N-team s,

s |= Θt ⇐⇒ s ⊆ t .

Prop. For any N-team t , there is a formula Ψt s.t. for any N-team s,
s |= Ψt ⇐⇒ t ⊆ s or s = .

Thus, s |= Θt ∧Ψt ⇐⇒ s = t or s = .
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Defining supersets (... but ignore the empty set please)

Prop. For any N-team t , there is a formula Ψt s.t. for any N-team s,
s |= Ψt ⇐⇒ t ⊆ s or s = .

Proof. Observe that for any v : N → {0,1},
s |= v(p1) . . . v(pn) ⊆ p1 . . . pn ⇐⇒ v ∈ s or s = ,

where 1 := > and 0 := ⊥.

For any N-team t , define

Ψt =
∧
v∈t

v(p1) . . . v(pn) ⊆ p1 . . . pn.

...

p1 p2 p3
1 0 1
0 1 0
1 1 1
0 1 1

v ⊥>⊥ ⊆ p1p2p3
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More expressively complete logics?

⊥,→
\\/ , =(~p, ~q)

Downward closed

~a ⊆ ~b

BSPL
NE

Union closed

Convex

CPL
[¬,∧,∨]

Empty team property

Flat

Question: What is (the expressive power of) CPL(=(~p, ~q), ~a ⊆ ~b)?

Background:
First-order dependence logic, i.e., FO( =(~x , ~y)), captures all downward
closed team properties definable in existential second-order logic (ESO)
(modulo ) (Kontinen, Väänänen 2009 + 2011 erratum about ).
FO( =(~x , ~y), ~x ⊆ ~y) captures all ESO-team properties (modulo )
(Galliani 2012)
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Expressive completeness and conjunctive normal form

Theorem

The logic [¬,∧,∨, =(·),⊆] is expressively complete over all team
properties that contain the empty team.

Proof. The trivial direction: |= ψ for all ψ ∈ [¬,∧,∨, =(·),⊆].

The nontrivial direction: For any N-team property P that contains the
empty team, construct a formula φ ∈ [¬,∧,∨, =(·),⊆] such that
JφK = P, i.e., s |= φ iff s ∈ P. The formula φ =

∧
t∈P φt in CNF says

“the current team s is not any team in P”.

To be precise:

Prop. For any N-team t 6= ∅, there is a formula φt s.t. for any N-team s,
s |= φt ⇐⇒ s 6= t
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Saying “no” in [¬,∧,∨, =(·),⊆]

, and “the empty set test”

Prop. For any N-team t 6= ∅, there is a formula φt s.t. for any N-team s,
s |= φt ⇐⇒ s 6= t

, i.e., either s * t or t * s.

Lm 1. For any N-team t 6= ∅, there is a formula σt s.t. for any N-team s,
s |= σt ⇐⇒ s * t .

Lm 2. For any N-team t 6= ∅, there is a formula ρt s.t. for any N-team s,
s |= ρt ⇐⇒ t * s.

Proof. By (Huuskonen 2016).

Take φt = σt ∨ ρt .
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Saying “no” in [¬,∧,∨, =(·),⊆]

Lm 1. For any N-team t 6= ∅, there is a formula σt s.t. for any N-team s,
s |= σt ⇐⇒ s * t or s = .

Proof. Recall that for any v : N → {0,1},
r |= v(p1) . . . v(pn) ⊆ p1 . . . pn ⇐⇒ v ∈ r or r = ,

Take
σt =

∨
v /∈t

v(p1) . . . v(pn) ⊆ p1 . . . pn.

“⇐=”: If 6= s * t , then there is v s.t. v ∈ s and v /∈ t . Thus,

s |= v(p1) . . . v(pn) ⊆ p1 . . . pn and s |= σt .

“=⇒”: If 6= s |= σt , then s =
⋃

v /∈t sv and sv |=v(p1). . .v(pn) ⊆ p1. . .pn.
At least one such sv must be nonempty and satisfies v ∈ sv ⊆ s. We
have v ∈ s \ t , thereby s * t .
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“=⇒”: If 6= s |= σt , then s =
⋃

v /∈t sv and sv |=v(p1). . .v(pn) ⊆ p1. . .pn.
At least one such sv must be nonempty and satisfies v ∈ sv ⊆ s.

We
have v ∈ s \ t , thereby s * t .
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Saying “no” in [¬,∧,∨, =(·),⊆], and “the empty set test”

Prop. For any N-team t 6= ∅, there is a formula φt s.t. for any N-team s,
s |= φt ⇐⇒ s 6= t , i.e., either s * t or t * s.

Lm 1. For any N-team t 6= ∅, there is a formula σt s.t. for any N-team s,
s |= σt ⇐⇒ s * t or s = .

Lm 2. For any N-team t 6= ∅, there is a formula ρt s.t. for any N-team s,
s |= ρt ⇐⇒ t * s.

Take φt = σt ∨ ρt .

Poof of Prop.
Suppose s |= φt .
Then s = r1 ∪ r2...

s

= r2

t t * r2 = s

r2

|= ρt

r1
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Propositional team-based logics around BSML

⊥,→
\\/ , =(~p, ~q)

Downward closed

~a ⊆ ~b

BSPL
NE

Union closed

Convex

CPL
[¬,∧,∨]

Empty team property

Flat

Summary:
We have discussed a number of expressively complete
propositional team-based logics around BSPL (that have the
empty team property).
These results can also be generalized to the modal logic setting.
(More) applications?
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