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Another motivation for state-based or team-based semantics

@ Bilateral state-based modal logic (BSML): Modal logic + NE
@ States: sets of possible worlds.
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@ A compositional semantics introduced by Hodges (1997) for
characterizing dependencies between variables,

originally for Independence-friendly Logic (Hintikka, Sandu 1989),
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Another motivation for state-based or team-based semantics

@ Bilateral state-based modal logic (BSML): Modal logic + NE
@ States: sets of possible worlds. Also known as Teams.

pr par pq

Team semantics:

@ A compositional semantics introduced by Hodges (1997) for
characterizing dependencies between variables,

originally for Independence-friendly Logic (Hintikka, Sandu 1989),
and later developed further in Dependence Logic (Vaanéanen 2007).

@ Adopted also independently in Inquisitive Logic (Ciardelli, Roelofsen
2011), (Ciardelli, Groenendijk, Roelofsen 2018) for characterizing
questions in natural language.
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functional dependence between variables

y = f(x) = x?

1y

@ X determines y
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How to characterize functional dependence between variables?
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How to characterize functional dependence between variables?

y = f(x) = x?

1Y

V22

® R|=sx determines y iff 77

@ Ateam : a set of assignments

X y z
so| V2 2 0
si| vV2 2 1
S| -2 4 V2
s3] -2 4 2
Sy | —V2 2 0
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Propositional dependence atoms

par () rq ()
rO O

@ Ateam t: a set of valuations / possible worlds

@ t=pdetermines q iff forallu,vet:
u(p) = v(p) = u(q) = v(q)

— “Whether it is raining determines whether | will take my umbrella.”
— “Whether this set is empty determines whether it is raining in Amsterdam.”
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Propositional dependence atoms

par(O pa O
rQO . O

@ Ateam t: a set of valuations / possible worlds
otk =(p,g) iff forallu,vet

— “Whether it is raining determines whether | will take my umbrella.”
— “Whether this set is empty determines whether it is raining in Amsterdam.”

Empty team/state property: & = =(p, g) )
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Connection with database theory

P g r s
w|1 0 1 1
V11010
|0 1 0 f
;|0 1 0 0

@ A team can be viewed as a relational database.

@ Dependence atoms =(p, ) correspond exactly to functional
dependencies p — g in database theory
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Connection with database theory

p q r s
wil 0 1 1
V4 1 0 1 0
w0 1 0 1
w0 1 0 0

@ A team can be viewed as a relational database.

@ Dependence atoms =(p, ) correspond exactly to functional
dependencies p — g in database theory

@ Armstrong’s Axioms (1974) for functional dependencies:

e =(p,P) (identity)
e =(pqg,r) implies =(gp,7) (commutativity)
e =(pp, g) implies _(* o)) (contraction)
e =(g,r) implies =(pq, ) (weakening)
® =(p,q) and =(q,r) imply =(p,7) (transitivity)
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Language: ¢ m=p|-p| L] oAd|dVEld— ¢l oV |=(pq)

Local disjunction  Global (or inquisitive) disjunction
Team semantics: Let t C 2P be a team/state, i.e., a set of valuations.

o t=piff vip)=1forallvet

@ t=—p iff v(p)=0forallvet

etV iff t=¢ or tEY

etkEovy iff Is;rCtst.t=suUr, sE¢andr=y
et ifft=0

2@ Pa O
O a0
Empty Team Property: @ = « for all ¢
Downward Closure: If s C t = ¢, then s |= ¢.

ot =NE iff t#@ e {v} = NE, whereas & [~ NE

Recall: Propositional BSML or BSPL: ¢ ::=p| ¢ | oA G| oV | NE
e Union Closure: t = ¢ and s = ¢ imply tU s = ¢ for ¢ € [-, L, A, V, —,NE] J
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Propositional team-based logics around BSML

e Inquisitive logic: [L, A, v, —]
(Ciardelli, Roelofsen 2011)

e Propositional dependence logic: [, A, V, =(B, §)]
(Y., Va&nénen 2016)

BSPL

v, =(p.4q) NE Convex

1,—

CPL

[~ A, V] Union closed

Downward closed

Empty team property
Flat

@ Conservativity: If A U {a} is a set of CPL-formulas, then
A ':team a <= A }:classical «
@ All these logics have been axiomatized (Ciardelli, Roelofsen 2011), (Y.,
Vaananen 2016), (Anttila, Aloni, Y. 2023), ...
@ There are labelled sequent calculi, display calculi, and deep inference style
calculi for inquisitive logic and [, A, V, W] (Chen, Ma 2017), (Miiler 2023), (Barbero,
Girlando, Mler, Y. 2024), (Frittella, Greco, Palmigiano, Y. 2016), (Anttila, lemhoff, Y. 2024).- ..,



The power of splitting teams, and the empty trap...

Fix a finite set N = {py, ..., pn} of propositional variables.
Fact: Given a valuation v : N — {0, 1}, the CPL-formula
ev =

defines v, in the sense that for any N-valuation u,
Ul <= u=v

P P

N

Ps3
0
1
0

0o 1
1 0
1 1
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The power of splitting teams, and the empty trap...

Fix a finite set N = {py, ..., pn} of propositional variables.
Fact: Given a valuation v : N — {0, 1}, the CPL-formula
oy =p;" A A pf", where p! = p; and pf = —p;,

defines v, in the sense that for any N-valuation u,
Ul <= u=v
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N

P1 A =p2 A Ps

P3
0 —pP1 AP2 A —pP3
1
0 P1 A P2 A—p3
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The power of splitting teams, and the empty trap...
..., Ppn} of propositional variables.

Fix a finite set N = {py,
Fact: Given a valuation v : N — {0, 1}, the CPL-formula

oy =p;" A A pf", where p! = p; and pf = —p;,

defines v, in the sense that for any N-valuation u,
Ul <= u=v

P1 P2 P3

o 1 0 —P1 A P2 A—p3
1 0 P1 A P2 A3
1 1

1
0 P1 A P2 A—p3

Question: Given an N-team t, is there a formula ©; that defines t, in

the sense that for any N-team s,
SEO; «— s=1?

/293



The power of splitting teams, and the empty trap...
= ..., Ppn} of propositional variables.

Fix a finite set N = {py,
Fact: Given a valuation v : N — {0, 1}, the CPL-formula
") where p} := p;and pf = —p;,

defines v, in the sense that for any N-valuation u
Ul <= u=v

P1 P2 P3

0 1 0 =Py A P2 A —p3
1 0 P1 A —p2 Aps3
1 1

1
0 P1 A P2 A—p3

Question: Given an N-team t, is there a formula ©; that defines t, in

the sense that for any N-team s
SEO «— s=17

V@A)

vet

/293

Take ©;



The power of splitting teams, and the empty trap...
..., Ppn} of propositional variables.

Fix a finite set N = {py,
Fact: Given a valuation v : N — {0, 1}, the CPL-formula

oy =p;" A A pf", where p! = p; and pf = —p;,

defines v, in the sense that for any N-valuation u,
Ul <= u=v

P1 P2 P3

0 1 0 —P1 A P2 A—p3
1 0 P1 A —p2 Aps3
1 1

1
0 P1 A P2 A—p3

Question: Given an N-team t, is there a formula ©; that defines t, in

the sense that for any N-team s,
SEO; «— s=1?

Take ©; = \/(p;’(” A~ A pa™)1 But in fact, not exactly, due to &

/293
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Expressive completeness and normal forms

Theorem (Y. and V&ananen 2016 )

The team-based logic [, A, V, \V] is expressively complete.

... in the following sense:

e Aformula ¢ in N defines a team property [¢] = {t C 2V : t = ¢},
which is closed downward and contains the empty team.

@ For any N-team property P that is closed downward and contains
the empty team, there is a formula ¢ € [, A, V, W] such that

[¢] = P.
Proof. Take ¢ = \\/,p ©:. Then,

sE\ O «— sCtforsometcP < scP.
teP

Disjunctive normal form: “The current team s is one of the teams in P” )

Theorem (Y. and V&ananen 2016 )

Propositional dependence logic [, A\, V, =(-)] is expressively complete.

A conjunctive normal form: “The current team s is not any team in P"
q/23
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Constancy atoms, “excluded middle"
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Fact: ==(p) v =(p)
Failure of closure under uniform substitution:
pV p = p, whereas =(p) v =(p) = =(p).

Fact: =(p) = p\v —p= ?p (in inquisitive logic)
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Counting with constancy atoms

LetN:{p17"‘7pn}'

Fact: For any N-team t,
tE=(p1)A---A=(pn) <= || <1 J

Pn

_LOO_LP
o| =| oS

1
0
1
1

Define k
k= \/(=(p1) A+~ A =(pn))

i=1

Prop. For any N-team t, we have that
tE=n <= |t| <k J
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Conjunctive normal form

Theorem (Y. and V&ananen 2016 )

Propositional dependence logic [, A\, V, =()] is expressively complete.

Nontrivial direction: For any N-team property P that is closed
downward and contains the empty team, there is a formula
¢ € [, A, V, =(-)] such that [¢] = P.
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Theorem (Y. and V&ananen 2016 )

Propositional dependence logic [, A\, V, =()] is expressively complete.

Nontrivial direction: For any N-team property P that is closed
downward and contains the empty team, there is a formula
¢ € [, A, V, =(-)] such that [¢] = P.

Proof. Take ¢ = A, ®+. Then
s\ < tZsforallt¢ P < scP.
teP
L]

Conjunctive normal form: “The current team s is not any team in P” J

Disjunctive normal form: “The current team s is one of the teams in P” )
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@ A team can be viewed as a relational database.

@ Dependence atoms =(p, g) correspond to functional
dependencies p — g in database theory

@ Inclusion dependencies give rise to inclusion atoms (Galliani 2012):

E.g., 1 T p g r s
pg Crs o 1 1 0 1 1
1T - pPq 0 1 1 0O 0 1

1rs g qu 0 1 0 1 1 0

@tkEay...anCby...by iff forallvet, thereexistsuets.t.
v(a) =u(b;) forall1 <i<n.
where each a;, b ePropU{T, L}.

We now consider the logic [, A, V, a8 C B], known as propositional
inclusion logic.

Empty team property: @ = « for all ¢

Union closure: If t = ¢ and s |= ¢, then tU s |= ¢.
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Expressive completeness and disjunctive normal form

Theorem ((Y. 2022), (Hella, Kuusisto, Meier, Volimer 2019))

Propositional inclusion logic [, A\, V, C] is expressively complete over
union closed team properties that contain the empty team.

Proof idea of nontrivial direction: For any N-team property P that is
union closed and contains the empty team, construct a formula
¢ € [-,N,V,C]such that [¢] =P, ie,skE ¢ < seP.
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Proof idea of nontrivial direction: For any N-team property P that is
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¢ € [-,A,V,C] such that [¢] =P, i.e., s} ¢ <= s e P. The formula
¢ = \/;cp ¢+ in DNF says roughly

“the current team s is the union of some teams in P, and thus in P”.
This is achieved by taking ¢; = ©; A V¢, where:

Prop. For any N-team t, the formula ©; = \/,,(p!") A -+ A pp{™)
satisfies that for any N-team s,
SEFO < scCt

Prop. For any N-team t, there is a formula V; s.t. for any N-team s,
SEV: &< tCsors=g.

Thus, sE O AV; < s=tors=g.
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Defining supersets (... but ignore the empty set please)
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Proof. Observe that forany v: N — {0,1},
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where1:=Tand0:= 1.
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Prop. For any N-team t, there is a formula V; s.t. for any N-team s,
SEV; < tCsors=g. J

Proof. Observe that forany v: N — {0,1},
sEv(P)...v(pn) Cpy...pn < VES Or S=g,

where1:=Tand0:= 1.
For any N-team t, define
Vi =\ v(p1)...v(pn) CP1-..Pn.

vet

LTLC pi1p2ps

<
o~ o 1B
_.._.._..OE
_L_LO_LS
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Background:

@ First-order dependence logic, i.e., FO(=(X, ¥)), captures all downward
closed team properties definable in existential second-order logic (ESO)
(modulo @) (Kontinen, Vaananen 2009 + 2011 erratum about &).

@ FO(=(X,y),X C y) captures all ESO-team properties (modulo &)
(Galliani 2012)
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Proof. The trivial direction: @ = ¢ for all ¢ € [-, A, Vv, =(+), C].

The nontrivial direction: For any N-team property P that contains the
empty team, construct a formula ¢ € [, A, V, =(+), C] such that
[¢] =P, i.e., s = ¢iff s € P. The formula ¢ = A\, ¢+ in CNF says

“the current team s is not any team in P”.

To be precise:

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team S,J

SE¢ < s#t
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Saying “no” in [, A, V, =(+), ], and “the empty set test”

Prop. For any N-team t # (), there is a formula ¢; s.t. for any N-team s,
SE ¢t < s#t ie,eithersZ tort¢s.

v

Lm 1. For any N-team t # (), there is a formula o; s.t. for any N-team s,
SEot < sftors=g.

v

Lm 2. For any N-team t # (), there is a formula p¢ s.t. for any N-team s,
SEp <= t¢s.

v

Take ¢ = o V pt.
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Propositional team-based logics around BSML

—(B.d BSPL
v, =(p, q) NE Convex
1,—
Downward closed [ﬁC/F:LV] Union closed
Empty team property .
ach
Flat

Summary:

@ We have discussed a number of expressively complete
propositional team-based logics around BSPL (that have the
empty team property).

@ These results can also be generalized to the modal logic setting.

@ (More) applications?
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