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Quantifying over alternatives

The problem of free choice permission is to account for the apparent validity of inferences like:

If you may take an apple or a pear, you may take an apple and you may take a pear.

One way to capture this kind of free-choice effect is to interpret disjunction as introducing sets
of alternative propositions corresponding to the disjuncts, and interpret ’may’ as quantifying
over the alternatives in this set (e.g. [Aloni 2007, Aloni & Ciardelli 2013]).

’May(p or q)’ is true iff each alternative in alt(p or q) = {|p|, |q|} contains some ideal world

iff |p| contains some ideal world, and |q| contains some ideal world

iff ’May(p)’ is true and ’May(q)’ is true

The topic of this talk: Introduce and axiomatize an extension of inquisitive logic with a modal
operator interpreted along these lines.
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Background on propositional inquisitive logic
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Inquisitive logic

• Inquisitive logic captures the logical relations between both statements and questions (see
e.g. [Ciardelli 2016, Ciardelli 2022, Ciardelli, Groenendijk & Roelofsen 2018]).

• Formulas are evaluated in terms of support at information states:
• a statement is supported by an information state if the information contained in the state

implies that the statement is true;
• a question is supported by an information state if the information contained in the state

settles the issue raised by the question.

• The maximal information states supporting a formula are called the alternatives for the
formula.

• The topic of this talk: Extensions of propositional inquisitive logic featuring modal
operators with semantics defined in terms of quantification over the alternatives for their
argument formulas.
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Language of propositional inquisitive logic

Language for propositional inquisitive logic

Language L, where p ranges over a countable set Prop of atomic proposition symbols:

φ ::= p | ⊥ | φ ∧ φ | φ→ φ | φ ⩾

φ

Abbreviations:

¬φ := φ→ ⊥, φ ∨ ψ := ¬(¬φ ∧ ¬ψ), φ↔ ψ := (φ→ ψ) ∧ (ψ → φ)

Inquisitive disjunction

⩾

is used to form questions:

p

⩾ ¬p whether p Is it raining?

p

⩾

q whether p or q Is it raining or snowing?

(p

⩾ ¬p) ∧ (q

⩾ ¬q) whether p and whether q Is it raining, and is it snowing?

p → (q

⩾ ¬q) whether q, if p If it is raining, is it snowing?

4 / 45



Models, information states and support

A model is a pair M = (W ,V ) where

• W is a set of (of possible worlds),

• V : Prop → P(W ) is a function interpreting atomic propositions.

Any subset X ⊆ W is an information state.

Semantics in terms of support at information states

M,X |= p iff X ⊆ V (p)

M,X |= ⊥ iff X = ∅
M,X |= φ ∧ ψ iff M,X |= φ and M,X |= ψ

M,X |= φ→ ψ iff for all Y ⊆ X , M,Y |= φ implies M,Y |= ψ

M,X |= φ

⩾

ψ iff M,X |= φ or M,X |= ψ
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Truth, truth-conditionality, validity, logical
consequence

Truth: M,w |= φ iff M, {w} |= φ.

Truth set of a formula: |φ|M = {w ∈ W | M,w |= φ}

Truth-conditionality: For all M, for all X in M: M,X |= φ iff for all w ∈ X , M,w |= φ.

Validity in a model: M |= φ iff for all X in M: M,X |= φ

Validity: |= φ iff for all M: M |= φ

Logical consequence: Φ |= ψ iff for all M and all X in M: if M,X |= Φ then M,X |= ψ.
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Alternatives

The alternatives for φ are the ⊆-maximal information states supporting φ:

altM(φ) = {X ⊆ W | M,X |= φ and for all Y s.t. M,Y |= φ, if X ⊆ Y then X = Y }

Proposition (Normality)

For any formula φ, any model M and any info state X :

M,X |= φ iff X ⊆ Y for some Y ∈ altM(φ).
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Alternatives: some examples

pq p

q ∅

p

⩾ ¬p

pq p

q ∅

(p

⩾ ¬p) ∧ (q

⩾ ¬q)

pq p

q ∅

p
⩾

q

pq p

q ∅

p → (q

⩾ ¬q)
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A modal operator that quantifies over alternatives
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Adding a modal operator that quantifies over
alternatives

In [Nygren 2023], I extend propositional inquisitive logic with a modal operator ♢ that
generalizes the standard existential modal operator to the inquisitive logic setting.

A formula of the form ♢φ expresses that each alternative for φ is true at some accessible world.

For example, provided that the model M is such that |p|M, |q|M ∈ altM(p

⩾

q), ♢(p

⩾

q)
expresses that p is true at some accessible world, and that q is true at some accessible world.
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Language and semantics

Language extended with ♢
Language L♢, where p ranges over a countable set Prop of atomic proposition symbols:

φ ::= p | ⊥ | φ ∧ φ | φ→ φ | φ ⩾

φ | ♢φ

The language is interpreted on Kripke models M = (W ,R,V ).

New support clause:

M,X |= ♢φ iff for all w ∈ X , for all Y ∈ altM(φ), Y ∩ R[w ] ̸= ∅.

Here, altM(φ) is defined as before.

Note: This support clause only works as intended since each formula has an associated set of
alternatives, i.e. since each formula is normal.

The notions of truth, truth-conditionality, truth sets, validity and logical consequence are
defined in the same way as before.
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Examples

pq p

q ∅
w

w ̸|= ♢(p

⩾

q)

pq p

q ∅
w

w |= ♢(p

⩾

q)
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Free choice

Provided that p and q are independent in the model M in the sense that neither of |p|M and
|q|M is included in the other, the following hold:

M |= ♢(p

⩾

q) → ♢p ∧ ♢q.

Thus, ♢ can be used to capture (at least some) properties of free-choice inferences.

(However, the account cannot handle e.g. dual prohibition or wide scope FC – see recent work
on BSML (e.g. [Aloni 2022, Aloni, Anttila & Yang 2023]) for an alternative!)
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Ignorance
Under an epistemic interpretation, ♢φ means that an implicit agent’s information state is
consistent with all alternatives for φ.

The ♢ modality can be combined with a generalized box modality to capture a notion of
ignorance with respect to a question.

Generalized box modality [Ciardelli 2016]:

M,X |= □φ iff for all w ∈ X , M,R[w ] |= φ.

Epistemic interpretation: □φ means that the agent’s information state supports φ, or in other
words that the agent knows φ.

Define Iφ := ¬□φ ∧ ♢φ.

When φ is a question, Iφ says that the agent does not know an answer to φ, and, moreover, is
not able to rule out any of the alternatives for φ as being incorrect.

In other words, Iφ says that the agent is completely ignorant with respect to φ.

The account generalizes previous work on ignorance whether [van der Hoek & Lomuscio 2004].
14 / 45



Some properties
When α is truth-conditional, ♢α behaves just like an ordinary existential modal operator:

M,w |= ♢α iff there is v ∈ R[w ] such that M, v |= α.

What about the interaction with inquisitive disjunction?

Since
altM(φ

⩾

ψ) ⊆ altM(φ) ∪ altM(ψ),

the following validity holds:
|= ♢φ ∧ ♢ψ → ♢(φ

⩾

ψ).

However, since it is not in general the case that

altM(φ) ∪ altM(ψ) ⊆ altM(φ

⩾

ψ),

we have:
̸|= ♢(φ

⩾

ψ) → ♢φ, ̸|= ♢(φ

⩾

ψ) → ♢ψ
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Adding the global modality

One way to handle disjunctions in the scope of ♢ is to add an additional global modal
operator that allows talking about the alternatives for formulas in the object language.

Language extended with ♢ and A

Language L♢A, where p ranges over Prop:

φ ::= p | ⊥ | φ ∧ φ | φ→ φ | φ ⩾

φ | ♢φ | Aφ

A is a variant of the global modality [Goranko & Passy 1992], adapted to the inquisitive logic
setting.

Where M = (W ,R,V ) is a Kripke model:

M,X |= Aφ iff M,W |= φ.

That is: Aφ is supported iff φ is supported by the maximal info state iff φ is valid in the model.
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Using the global modality

Using the global modality, disjunctions in the scope of ♢ can be simplified.

Lemma
For any model M, any world w of M, any formula φ and any truth-conditional formula α:

M,w |= ¬A(α→ φ) implies |α|M ∈ altM(α
⩾

φ).

Hence, where α is a truth-conditional formula:

|= ♢(α

⩾

φ) ∧ ¬A(α→ φ) → ♢α.
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Axiomatization and completeness
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General semantics

Definition (General models)

A general model is a structure M = (W ,S ,R,V ) where W is a set, S ⊆ W ×W is an
equivalence relation, R ⊆ S is a relation, and V is a valuation function.

Definition (Generated submodel)

Let M = (W ,S ,R,V ) be a general model and let w ∈ W . The w -generated submodel
M[w ] = (Ww ,Sw ,Rw ,Vw ) is the restriction of M to S [w ].

Definition (Support conditions, general semantics)

M,X |=G Aφ iff for all w ∈ X , M,S [w ] |=G φ;

M,X |=G ♢φ iff for all w ∈ X , for all Y ∈ altM[w ](φ), Y ∩ R[w ] ̸= ∅.
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Examples

pq p

v

q ∅
w

M

pq

q ∅
w

M[w ]

p

v

M[v ]

M, {w , v} |=G ♢(p

⩾

q), since:

• for each Y ∈ altM[w ](p

⩾

q), Y ∩ R[w ] ̸= ∅;
• for each Y ∈ altM[v ](p

⩾

q), Y ∩ R[v ] ̸= ∅.
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General semantics

Every standard model can be seen as a special kind of general model, where the equivalence
relation S is the universal relation:

Proposition

Let M = (W ,S ,R,V ) be a general model such that S = W ×W . Let M′ be the standard
model M′ = (W ,R,V ). Then for all formulas φ and all info states X : M,X |=G φ iff
M′,X |= φ.
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Declarative formulas

The declarative fragment of the language consists of formulas where

⩾

is only allowed within
the scope of a modal operator:

Declarative fragment

Language Ld
♢A, where p ranges over Prop and φ ranges over L♢A:

α ::= p | ⊥ | α ∧ α | α→ α | ♢φ | Aφ

Proposition ([Ciardelli 2016])

All declarative formulas in Ld
♢A are truth-conditional.
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Resolutions and normal form

Any formula of L♢A is equivalent to an inquisitive disjunction of declarative formulas.

Definition (Resolutions [Ciardelli 2016])

• R(φ) = {φ}, if φ ∈ Prop, φ = ⊥, φ = ♢ψ or φ = Aψ;

• R(φ ∧ ψ) = {α ∧ β | α ∈ R(φ), β ∈ R(ψ)};
• R(φ→ ψ) = {

∧
α∈R(φ)(α→ f (α)) | f is a function from R(φ) to R(ψ)};

• R(φ

⩾

ψ) = R(φ) ∪R(ψ).

Proposition (Normal form [Ciardelli 2016])

Any formula φ ∈ L♢A is equivalent to α1

⩾ · · · ⩾ αn, where {α1, . . . , αn} = R(φ).
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Filtered resolutions

Let M be a model. Define the preorder ≤M (M-entailment) and the equivalence relation
∼M (M-equivalence) on the set of declarative formulas as follows:

α ≤M β iff |α|M ⊆ |β|M;

α ∼M β iff α ≤M β and β ≤M α (i.e. |α|M = |β|M).

The M-filtered set of resolutions of φ is the set

RM(φ) := {α ∈ R(φ) | for all β ∈ R(φ), α ≤M β implies α ∼M β}.

Lemma

Let M be a general model and φ a formula. Then altM(φ) = {|α|M | α ∈ RM(φ)}.
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Semantic characterization of ♢

Lemma

Let M be a general model, M[w ] the w -generated submodel of M for some world w and let
φ be a formula. Then

M,w |=G ♢φ iff M,w |=G

∧
α∈RM[w ]

(φ)

♢α.
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Axiomatizing logical consequence in general
semantics

1. Axioms for prop. inquisitive logic.

2. Axioms for A, where α ∈ Ld
♢A is

declarative:

2.1 A(φ

⩾

ψ) → Aφ ∨ Aψ
2.2 A(φ→ ψ) → (Aφ→ Aψ)
2.3 Aα→ α
2.4 Aφ→ AAφ
2.5 ¬Aφ→ A¬Aφ

3. Axioms for ♢, where α, β ∈ Ld
♢A are

declaratives:

3.1 ♢α→ ¬A¬α
3.2 ♢(α ∨ β) ↔ ♢α ∨ ♢β
3.3 A(φ↔ ψ) → (♢φ↔ ♢ψ)
3.4 ♢φ ∧ ♢ψ → ♢(φ

⩾

ψ)
3.5 ♢(α

⩾
φ) ∧ ¬A(α→ φ) → ♢α

Rules of inference:
• MP: from φ and φ→ ψ, infer ψ
• Nec for A: if φ is a theorem, infer Aφ

Denote derivability in this system by ⊢G. Define Φ ⊢G ψ by ⊢G φ1 ∧ · · · ∧ φn → ψ for some
φ1, . . . , φn ∈ Φ.
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Complete declarative theories

Definition (Complete declarative theories)

A set Γ ⊆ Ld
♢A of declarative formulas is a complete declarative theory (CDT) if Γ is

consistent, closed under deduction of declaratives, and complete with respect to declaratives
(i.e. for any declarative α, either α ∈ Γ or ¬α ∈ Γ).

Let Γ be a CDT. Define the preorder ≤Γ (global Γ-entailment) and the equivalence relation ∼Γ

(global Γ-equivalence) on the set of declarative formulas Ld
♢A as follows:

α ≤Γ β iff Γ ⊢G A(α→ β);

α ∼Γ β iff α ≤Γ β and β ≤Γ α (equivalent to Γ ⊢G A(α↔ β)).

Definition (Theory-filtered resolutions)

Let Γ be a CDT and φ any formula. The Γ-filtered set of resolutions of φ is the set

RΓ(φ) := {α ∈ R(φ) | for all β ∈ R(φ) : α ≤Γ β implies α ∼Γ β}.
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Syntactic characterization of ♢

Lemma

Let φ be a formula and let Γ be a CDT. Then

Γ ⊢G ♢φ iff Γ ⊢G

∧
α∈RΓ(φ)

♢α.
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Canonical model

Definition (Canonical general model)

The canonical general model is the structure Mc = (W c ,Sc ,Rc ,V c) such that

• W c is the set of CDTs;

• for all ∆,∆′ ∈ W c : ∆′ ∈ Sc [∆] iff for all α ∈ Ld
♢A, if Aα ∈ ∆ then α ∈ ∆′;

• for all ∆,∆′ ∈ W c : ∆′ ∈ Rc [∆] iff for all α ∈ Ld
♢A, if α ∈ ∆′ then ♢α ∈ ∆;

• V c(p) = {∆ ∈ W c | p ∈ ∆}.
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Truth lemma

Lemma (Truth lemma for declaratives)

For any declarative formula α ∈ Ld
♢A and any ∆ ∈ W c : Mc ,∆ |=G α if and only if α ∈ ∆.
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Proof of truth lemma

By induction on the structure of declarative formulas. Most interesting case: ♢φ.

• Let ∆ ∈ W c .

• By IH it holds that for all α, β ∈ R(φ): α ≤Mc [∆] β iff α ≤∆ β.

• Then RMc [∆](φ) = R∆(φ).

• Then, using IH and standard canonical model properties: Mc ,∆ |=G ♢α iff ∆ ⊢G ♢α for
all α ∈ RMc [∆](φ) = R∆(φ).

• Then:

Mc ,∆ |=G ♢φ iff Mc ,∆ |=G
∧

α∈RMc [∆]
(φ) ♢α (by result on previous slide)

iff ∆ ⊢G
∧

α∈R∆(φ) ♢α (by above)

iff ∆ ⊢G ♢φ (by result on previous slide)

iff ♢φ ∈ ∆.
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Soundness and completeness

Theorem (Soundness and completeness, general semantics)

For any Φ ∪ {ψ} ⊆ L♢A: Φ |=G ψ if and only if Φ ⊢G ψ.

32 / 45



Axiomatizing logical consequence in standard
semantics

An axiomatization of logical consequence in standard semantics is obtained by replacing the
axiom schema (where α is required to be a declarative formula)

(2.3) Aα→ α

by the schema

(2.3∗) Aφ→ φ

where φ can now be any formula.

Denote derivability in the resulting axiom system by ⊢S, and define Φ ⊢S ψ in the same way as
before.
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Axiomatizing logical consequence in standard
semantics

Lemma

Let M = (W ,S ,R,V ) be a general model, let ∅ ≠ X ⊆ W , and assume that
M,X |=G Aχ→ χ for all χ ∈ L♢A.

Let M′ = (W ′,R ′,V ′) be the standard model such that W ′ =
⋃

w∈X S [w ] and R ′ and V ′ are
the restrictions of R and V to W ′.

Then for all Y ⊆ W ′, for all φ ∈ L♢A: M′,Y |= φ iff M,Y |=G φ.

Proposition

For any Φ ∪ {ψ} ⊆ L♢A: Φ |= ψ implies Φ ∪ {Aχ→ χ | χ ∈ L♢A} |=G ψ.
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Axiomatizing logical consequence in standard
semantics

Theorem (Soundness and completeness, standard semantics)

For any Φ ∪ {ψ} ⊆ L♢A: Φ |= ψ if and only if Φ ⊢S ψ.

Proof of completeness:

Φ |= ψ implies Φ ∪ {Aχ→ χ | χ ∈ L♢A} |=G ψ (previous slide)

implies Φ ∪ {Aχ→ χ | χ ∈ L♢A} ⊢G ψ (completeness for general semantics)

implies Φ ∪ {Aχ→ χ | χ ∈ L♢A} ⊢S ψ (⊢S conservative extension of ⊢G)

implies Φ ⊢S ψ (⊢S Aχ→ χ for each χ ∈ L♢A)
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Booth’s minimal cover modality
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The minimal cover modality

Another generalization of the existential Kripke modality is suggested by [Booth 2022].

Booth’s generalization is designed to capture independence inferences:

If you may take an apple or a pear, you may take an apple without taking a pear, and
you may take a pear without taking an apple.

Booth’s interpretation of ♢ is intended to capture the following property (assuming that the
truth sets of p and q are not included in each other):

♢(p

⩾

q) → ♢(p ∧ ¬q) ∧ ♢(q ∧ ¬p).
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The minimal cover modality

Under Booth’s interpretation: for ♢φ to be true, each alternative for φ must be possible
independently from the other alternatives for φ.

Definition (Minimal cover)

Let W be a set, let C ⊆ P(W ) be a set of subsets of W , and let X ⊆ W . Then C is a
minimal cover of X iff

1. C is a cover of X , i.e. X ⊆
⋃
C , and

2. no proper subset C ′ ⊂ C is a cover of X .

Replace the clause previously used to interpret ♢ by the following:

M,X |=MC ♢φ iff for all w ∈ X , there is a non-empty Y ⊆ R[w ] such that

altM(φ) is a minimal cover of Y .
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Example

pq p

q ∅
w

{|q|M} ⊂ altM(p

⩾

q) is a cover of R[w ].

altM(p

⩾

q) is not a minimal cover of R[w ].

M,w ̸|=MC ♢(p

⩾

q)

pq p

q ∅
w

No C ⊂ altM(p

⩾

q) is a cover of R[w ].

altM(p
⩾

q) is a minimal cover of R[w ].

M,w |=MC ♢(p

⩾

q)
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Some validities

Where α is a declarative:

|=MC ♢(α

⩾

φ) ∧ ¬A(α→ φ) → ♢(α ∧ ¬φ)

For each k ∈ N with k ≥ 2, where αi and αj for i , j ∈ N are declaratives:

|=MC

 ∧
1≤i≤k

♢

αi ∧
∧

1≤j≤k,j ̸=i

¬αj

 → ♢

 ⩾

1≤i≤k

αi

 .
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Axiomatizing the minimal cover modality

1. Axioms for prop. inq. logic.

2. Axioms for A, where α ∈ Ld
♢A is

declarative:

2.1 A(φ

⩾

ψ) → Aφ ∨ Aψ
2.2 A(φ→ ψ) → (Aφ→ Aψ)
2.3 Aφ→ φ
2.4 Aφ→ AAφ
2.5 ¬Aφ→ A¬Aφ

3. Axioms for ♢, where α, β, αi and αj for i , j ∈ N are
declaratives:

3.1 ♢(α ∨ β) ↔ ♢α ∨ ♢β
3.2 ♢α→ ¬A¬α
3.3 A(φ↔ ψ) → (♢φ↔ ♢ψ)
3.4 ♢(α

⩾

φ) ∧ ¬A(α→ φ) → ♢(α ∧ ¬φ)
3.5 For each k ∈ N with k ≥ 2: ∧

1≤i≤k

♢

αi ∧
∧

1≤j≤k,j ̸=i

¬αj

 → ♢

 ⩾

1≤i≤k

αi


Rules of inference:

• MP: from φ and φ→ ψ, infer ψ

• Nec for A: if φ is a theorem, infer Aφ

Denote derivability in this system by ⊢MC, and define Φ ⊢MC ψ in the same way as before.
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Proving completeness

The completeness proof follows the same structure as before:

• First define a general semantics for the logic, with a notion |=GMC of logical consequence
over general models.

• Take the axiom system on the previous slide and replace the schema Aφ→ φ by the
schema Aα→ α, where α is required to be a declarative, thus obtaining a notion ⊢GMC

of derivability.

• Prove completeness for general logical consequence, analogously to how it was proven
earlier (Φ |=GMC ψ implies Φ ⊢GMC ψ).

• Finally, general logical consequence can be shown to imply standard logical consequence in
the same way as before, thus completeness for standard logical consequence is obtained.
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Thank you!
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